| 1 | //! Everything related to types in our intermediate representation. |
| 2 | |
| 3 | use super::comp::CompInfo; |
| 4 | use super::context::{BindgenContext, ItemId, TypeId}; |
| 5 | use super::dot::DotAttributes; |
| 6 | use super::enum_ty::Enum; |
| 7 | use super::function::FunctionSig; |
| 8 | use super::item::{IsOpaque, Item}; |
| 9 | use super::layout::{Layout, Opaque}; |
| 10 | use super::objc::ObjCInterface; |
| 11 | use super::template::{ |
| 12 | AsTemplateParam, TemplateInstantiation, TemplateParameters, |
| 13 | }; |
| 14 | use super::traversal::{EdgeKind, Trace, Tracer}; |
| 15 | use crate::clang::{self, Cursor}; |
| 16 | use crate::parse::{ParseError, ParseResult}; |
| 17 | use std::borrow::Cow; |
| 18 | use std::io; |
| 19 | |
| 20 | pub use super::int::IntKind; |
| 21 | |
| 22 | /// The base representation of a type in bindgen. |
| 23 | /// |
| 24 | /// A type has an optional name, which if present cannot be empty, a `layout` |
| 25 | /// (size, alignment and packedness) if known, a `Kind`, which determines which |
| 26 | /// kind of type it is, and whether the type is const. |
| 27 | #[derive (Debug)] |
| 28 | pub(crate) struct Type { |
| 29 | /// The name of the type, or None if it was an unnamed struct or union. |
| 30 | name: Option<String>, |
| 31 | /// The layout of the type, if known. |
| 32 | layout: Option<Layout>, |
| 33 | /// The inner kind of the type |
| 34 | kind: TypeKind, |
| 35 | /// Whether this type is const-qualified. |
| 36 | is_const: bool, |
| 37 | } |
| 38 | |
| 39 | /// The maximum number of items in an array for which Rust implements common |
| 40 | /// traits, and so if we have a type containing an array with more than this |
| 41 | /// many items, we won't be able to derive common traits on that type. |
| 42 | /// |
| 43 | pub(crate) const RUST_DERIVE_IN_ARRAY_LIMIT: usize = 32; |
| 44 | |
| 45 | impl Type { |
| 46 | /// Get the underlying `CompInfo` for this type as a mutable reference, or |
| 47 | /// `None` if this is some other kind of type. |
| 48 | pub(crate) fn as_comp_mut(&mut self) -> Option<&mut CompInfo> { |
| 49 | match self.kind { |
| 50 | TypeKind::Comp(ref mut ci) => Some(ci), |
| 51 | _ => None, |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | /// Construct a new `Type`. |
| 56 | pub(crate) fn new( |
| 57 | name: Option<String>, |
| 58 | layout: Option<Layout>, |
| 59 | kind: TypeKind, |
| 60 | is_const: bool, |
| 61 | ) -> Self { |
| 62 | Type { |
| 63 | name, |
| 64 | layout, |
| 65 | kind, |
| 66 | is_const, |
| 67 | } |
| 68 | } |
| 69 | |
| 70 | /// Which kind of type is this? |
| 71 | pub(crate) fn kind(&self) -> &TypeKind { |
| 72 | &self.kind |
| 73 | } |
| 74 | |
| 75 | /// Get a mutable reference to this type's kind. |
| 76 | pub(crate) fn kind_mut(&mut self) -> &mut TypeKind { |
| 77 | &mut self.kind |
| 78 | } |
| 79 | |
| 80 | /// Get this type's name. |
| 81 | pub(crate) fn name(&self) -> Option<&str> { |
| 82 | self.name.as_deref() |
| 83 | } |
| 84 | |
| 85 | /// Whether this is a block pointer type. |
| 86 | pub(crate) fn is_block_pointer(&self) -> bool { |
| 87 | matches!(self.kind, TypeKind::BlockPointer(..)) |
| 88 | } |
| 89 | |
| 90 | /// Is this an integer type, including `bool` or `char`? |
| 91 | pub(crate) fn is_int(&self) -> bool { |
| 92 | matches!(self.kind, TypeKind::Int(_)) |
| 93 | } |
| 94 | |
| 95 | /// Is this a compound type? |
| 96 | pub(crate) fn is_comp(&self) -> bool { |
| 97 | matches!(self.kind, TypeKind::Comp(..)) |
| 98 | } |
| 99 | |
| 100 | /// Is this a union? |
| 101 | pub(crate) fn is_union(&self) -> bool { |
| 102 | match self.kind { |
| 103 | TypeKind::Comp(ref comp) => comp.is_union(), |
| 104 | _ => false, |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /// Is this type of kind `TypeKind::TypeParam`? |
| 109 | pub(crate) fn is_type_param(&self) -> bool { |
| 110 | matches!(self.kind, TypeKind::TypeParam) |
| 111 | } |
| 112 | |
| 113 | /// Is this a template instantiation type? |
| 114 | pub(crate) fn is_template_instantiation(&self) -> bool { |
| 115 | matches!(self.kind, TypeKind::TemplateInstantiation(..)) |
| 116 | } |
| 117 | |
| 118 | /// Is this a function type? |
| 119 | pub(crate) fn is_function(&self) -> bool { |
| 120 | matches!(self.kind, TypeKind::Function(..)) |
| 121 | } |
| 122 | |
| 123 | /// Is this an enum type? |
| 124 | pub(crate) fn is_enum(&self) -> bool { |
| 125 | matches!(self.kind, TypeKind::Enum(..)) |
| 126 | } |
| 127 | |
| 128 | /// Is this void? |
| 129 | pub(crate) fn is_void(&self) -> bool { |
| 130 | matches!(self.kind, TypeKind::Void) |
| 131 | } |
| 132 | /// Is this either a builtin or named type? |
| 133 | pub(crate) fn is_builtin_or_type_param(&self) -> bool { |
| 134 | matches!( |
| 135 | self.kind, |
| 136 | TypeKind::Void | |
| 137 | TypeKind::NullPtr | |
| 138 | TypeKind::Function(..) | |
| 139 | TypeKind::Array(..) | |
| 140 | TypeKind::Reference(..) | |
| 141 | TypeKind::Pointer(..) | |
| 142 | TypeKind::Int(..) | |
| 143 | TypeKind::Float(..) | |
| 144 | TypeKind::TypeParam |
| 145 | ) |
| 146 | } |
| 147 | |
| 148 | /// Creates a new named type, with name `name`. |
| 149 | pub(crate) fn named(name: String) -> Self { |
| 150 | let name = if name.is_empty() { None } else { Some(name) }; |
| 151 | Self::new(name, None, TypeKind::TypeParam, false) |
| 152 | } |
| 153 | |
| 154 | /// Is this a floating point type? |
| 155 | pub(crate) fn is_float(&self) -> bool { |
| 156 | matches!(self.kind, TypeKind::Float(..)) |
| 157 | } |
| 158 | |
| 159 | /// Is this a boolean type? |
| 160 | pub(crate) fn is_bool(&self) -> bool { |
| 161 | matches!(self.kind, TypeKind::Int(IntKind::Bool)) |
| 162 | } |
| 163 | |
| 164 | /// Is this an integer type? |
| 165 | pub(crate) fn is_integer(&self) -> bool { |
| 166 | matches!(self.kind, TypeKind::Int(..)) |
| 167 | } |
| 168 | |
| 169 | /// Cast this type to an integer kind, or `None` if it is not an integer |
| 170 | /// type. |
| 171 | pub(crate) fn as_integer(&self) -> Option<IntKind> { |
| 172 | match self.kind { |
| 173 | TypeKind::Int(int_kind) => Some(int_kind), |
| 174 | _ => None, |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | /// Is this a `const` qualified type? |
| 179 | pub(crate) fn is_const(&self) -> bool { |
| 180 | self.is_const |
| 181 | } |
| 182 | |
| 183 | /// Is this an unresolved reference? |
| 184 | pub(crate) fn is_unresolved_ref(&self) -> bool { |
| 185 | matches!(self.kind, TypeKind::UnresolvedTypeRef(_, _, _)) |
| 186 | } |
| 187 | |
| 188 | /// Is this a incomplete array type? |
| 189 | pub(crate) fn is_incomplete_array( |
| 190 | &self, |
| 191 | ctx: &BindgenContext, |
| 192 | ) -> Option<ItemId> { |
| 193 | match self.kind { |
| 194 | TypeKind::Array(item, len) => { |
| 195 | if len == 0 { |
| 196 | Some(item.into()) |
| 197 | } else { |
| 198 | None |
| 199 | } |
| 200 | } |
| 201 | TypeKind::ResolvedTypeRef(inner) => { |
| 202 | ctx.resolve_type(inner).is_incomplete_array(ctx) |
| 203 | } |
| 204 | _ => None, |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | /// What is the layout of this type? |
| 209 | pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
| 210 | self.layout.or_else(|| { |
| 211 | match self.kind { |
| 212 | TypeKind::Comp(ref ci) => ci.layout(ctx), |
| 213 | TypeKind::Array(inner, 0) => Some(Layout::new( |
| 214 | 0, |
| 215 | ctx.resolve_type(inner).layout(ctx)?.align, |
| 216 | )), |
| 217 | // FIXME(emilio): This is a hack for anonymous union templates. |
| 218 | // Use the actual pointer size! |
| 219 | TypeKind::Pointer(..) => Some(Layout::new( |
| 220 | ctx.target_pointer_size(), |
| 221 | ctx.target_pointer_size(), |
| 222 | )), |
| 223 | TypeKind::ResolvedTypeRef(inner) => { |
| 224 | ctx.resolve_type(inner).layout(ctx) |
| 225 | } |
| 226 | _ => None, |
| 227 | } |
| 228 | }) |
| 229 | } |
| 230 | |
| 231 | /// Whether this named type is an invalid C++ identifier. This is done to |
| 232 | /// avoid generating invalid code with some cases we can't handle, see: |
| 233 | /// |
| 234 | /// tests/headers/381-decltype-alias.hpp |
| 235 | pub(crate) fn is_invalid_type_param(&self) -> bool { |
| 236 | match self.kind { |
| 237 | TypeKind::TypeParam => { |
| 238 | let name = self.name().expect("Unnamed named type?" ); |
| 239 | !clang::is_valid_identifier(name) |
| 240 | } |
| 241 | _ => false, |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | /// Takes `name`, and returns a suitable identifier representation for it. |
| 246 | fn sanitize_name(name: &str) -> Cow<str> { |
| 247 | if clang::is_valid_identifier(name) { |
| 248 | return Cow::Borrowed(name); |
| 249 | } |
| 250 | |
| 251 | let name = name.replace(|c| c == ' ' || c == ':' || c == '.' , "_" ); |
| 252 | Cow::Owned(name) |
| 253 | } |
| 254 | |
| 255 | /// Get this type's sanitized name. |
| 256 | pub(crate) fn sanitized_name<'a>( |
| 257 | &'a self, |
| 258 | ctx: &BindgenContext, |
| 259 | ) -> Option<Cow<'a, str>> { |
| 260 | let name_info = match *self.kind() { |
| 261 | TypeKind::Pointer(inner) => Some((inner, Cow::Borrowed("ptr" ))), |
| 262 | TypeKind::Reference(inner) => Some((inner, Cow::Borrowed("ref" ))), |
| 263 | TypeKind::Array(inner, length) => { |
| 264 | Some((inner, format!("array {}" , length).into())) |
| 265 | } |
| 266 | _ => None, |
| 267 | }; |
| 268 | if let Some((inner, prefix)) = name_info { |
| 269 | ctx.resolve_item(inner) |
| 270 | .expect_type() |
| 271 | .sanitized_name(ctx) |
| 272 | .map(|name| format!(" {}_ {}" , prefix, name).into()) |
| 273 | } else { |
| 274 | self.name().map(Self::sanitize_name) |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /// See safe_canonical_type. |
| 279 | pub(crate) fn canonical_type<'tr>( |
| 280 | &'tr self, |
| 281 | ctx: &'tr BindgenContext, |
| 282 | ) -> &'tr Type { |
| 283 | self.safe_canonical_type(ctx) |
| 284 | .expect("Should have been resolved after parsing!" ) |
| 285 | } |
| 286 | |
| 287 | /// Returns the canonical type of this type, that is, the "inner type". |
| 288 | /// |
| 289 | /// For example, for a `typedef`, the canonical type would be the |
| 290 | /// `typedef`ed type, for a template instantiation, would be the template |
| 291 | /// its specializing, and so on. Return None if the type is unresolved. |
| 292 | pub(crate) fn safe_canonical_type<'tr>( |
| 293 | &'tr self, |
| 294 | ctx: &'tr BindgenContext, |
| 295 | ) -> Option<&'tr Type> { |
| 296 | match self.kind { |
| 297 | TypeKind::TypeParam | |
| 298 | TypeKind::Array(..) | |
| 299 | TypeKind::Vector(..) | |
| 300 | TypeKind::Comp(..) | |
| 301 | TypeKind::Opaque | |
| 302 | TypeKind::Int(..) | |
| 303 | TypeKind::Float(..) | |
| 304 | TypeKind::Complex(..) | |
| 305 | TypeKind::Function(..) | |
| 306 | TypeKind::Enum(..) | |
| 307 | TypeKind::Reference(..) | |
| 308 | TypeKind::Void | |
| 309 | TypeKind::NullPtr | |
| 310 | TypeKind::Pointer(..) | |
| 311 | TypeKind::BlockPointer(..) | |
| 312 | TypeKind::ObjCId | |
| 313 | TypeKind::ObjCSel | |
| 314 | TypeKind::ObjCInterface(..) => Some(self), |
| 315 | |
| 316 | TypeKind::ResolvedTypeRef(inner) | |
| 317 | TypeKind::Alias(inner) | |
| 318 | TypeKind::TemplateAlias(inner, _) => { |
| 319 | ctx.resolve_type(inner).safe_canonical_type(ctx) |
| 320 | } |
| 321 | TypeKind::TemplateInstantiation(ref inst) => ctx |
| 322 | .resolve_type(inst.template_definition()) |
| 323 | .safe_canonical_type(ctx), |
| 324 | |
| 325 | TypeKind::UnresolvedTypeRef(..) => None, |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | /// There are some types we don't want to stop at when finding an opaque |
| 330 | /// item, so we can arrive to the proper item that needs to be generated. |
| 331 | pub(crate) fn should_be_traced_unconditionally(&self) -> bool { |
| 332 | matches!( |
| 333 | self.kind, |
| 334 | TypeKind::Comp(..) | |
| 335 | TypeKind::Function(..) | |
| 336 | TypeKind::Pointer(..) | |
| 337 | TypeKind::Array(..) | |
| 338 | TypeKind::Reference(..) | |
| 339 | TypeKind::TemplateInstantiation(..) | |
| 340 | TypeKind::ResolvedTypeRef(..) |
| 341 | ) |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | impl IsOpaque for Type { |
| 346 | type Extra = Item; |
| 347 | |
| 348 | fn is_opaque(&self, ctx: &BindgenContext, item: &Item) -> bool { |
| 349 | match self.kind { |
| 350 | TypeKind::Opaque => true, |
| 351 | TypeKind::TemplateInstantiation(ref inst: &TemplateInstantiation) => { |
| 352 | inst.is_opaque(ctx, extra:item) |
| 353 | } |
| 354 | TypeKind::Comp(ref comp: &CompInfo) => comp.is_opaque(ctx, &self.layout), |
| 355 | TypeKind::ResolvedTypeRef(to: TypeId) => to.is_opaque(ctx, &()), |
| 356 | _ => false, |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | impl AsTemplateParam for Type { |
| 362 | type Extra = Item; |
| 363 | |
| 364 | fn as_template_param( |
| 365 | &self, |
| 366 | ctx: &BindgenContext, |
| 367 | item: &Item, |
| 368 | ) -> Option<TypeId> { |
| 369 | self.kind.as_template_param(ctx, extra:item) |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | impl AsTemplateParam for TypeKind { |
| 374 | type Extra = Item; |
| 375 | |
| 376 | fn as_template_param( |
| 377 | &self, |
| 378 | ctx: &BindgenContext, |
| 379 | item: &Item, |
| 380 | ) -> Option<TypeId> { |
| 381 | match *self { |
| 382 | TypeKind::TypeParam => Some(item.id().expect_type_id(ctx)), |
| 383 | TypeKind::ResolvedTypeRef(id: TypeId) => id.as_template_param(ctx, &()), |
| 384 | _ => None, |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | impl DotAttributes for Type { |
| 390 | fn dot_attributes<W>( |
| 391 | &self, |
| 392 | ctx: &BindgenContext, |
| 393 | out: &mut W, |
| 394 | ) -> io::Result<()> |
| 395 | where |
| 396 | W: io::Write, |
| 397 | { |
| 398 | if let Some(ref layout) = self.layout { |
| 399 | writeln!( |
| 400 | out, |
| 401 | "<tr><td>size</td><td> {}</td></tr> |
| 402 | <tr><td>align</td><td> {}</td></tr>" , |
| 403 | layout.size, layout.align |
| 404 | )?; |
| 405 | if layout.packed { |
| 406 | writeln!(out, "<tr><td>packed</td><td>true</td></tr>" )?; |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | if self.is_const { |
| 411 | writeln!(out, "<tr><td>const</td><td>true</td></tr>" )?; |
| 412 | } |
| 413 | |
| 414 | self.kind.dot_attributes(ctx, out) |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | impl DotAttributes for TypeKind { |
| 419 | fn dot_attributes<W>( |
| 420 | &self, |
| 421 | ctx: &BindgenContext, |
| 422 | out: &mut W, |
| 423 | ) -> io::Result<()> |
| 424 | where |
| 425 | W: io::Write, |
| 426 | { |
| 427 | writeln!( |
| 428 | out, |
| 429 | "<tr><td>type kind</td><td> {}</td></tr>" , |
| 430 | self.kind_name() |
| 431 | )?; |
| 432 | |
| 433 | if let TypeKind::Comp(ref comp: &CompInfo) = *self { |
| 434 | comp.dot_attributes(ctx, out)?; |
| 435 | } |
| 436 | |
| 437 | Ok(()) |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | impl TypeKind { |
| 442 | fn kind_name(&self) -> &'static str { |
| 443 | match *self { |
| 444 | TypeKind::Void => "Void" , |
| 445 | TypeKind::NullPtr => "NullPtr" , |
| 446 | TypeKind::Comp(..) => "Comp" , |
| 447 | TypeKind::Opaque => "Opaque" , |
| 448 | TypeKind::Int(..) => "Int" , |
| 449 | TypeKind::Float(..) => "Float" , |
| 450 | TypeKind::Complex(..) => "Complex" , |
| 451 | TypeKind::Alias(..) => "Alias" , |
| 452 | TypeKind::TemplateAlias(..) => "TemplateAlias" , |
| 453 | TypeKind::Array(..) => "Array" , |
| 454 | TypeKind::Vector(..) => "Vector" , |
| 455 | TypeKind::Function(..) => "Function" , |
| 456 | TypeKind::Enum(..) => "Enum" , |
| 457 | TypeKind::Pointer(..) => "Pointer" , |
| 458 | TypeKind::BlockPointer(..) => "BlockPointer" , |
| 459 | TypeKind::Reference(..) => "Reference" , |
| 460 | TypeKind::TemplateInstantiation(..) => "TemplateInstantiation" , |
| 461 | TypeKind::UnresolvedTypeRef(..) => "UnresolvedTypeRef" , |
| 462 | TypeKind::ResolvedTypeRef(..) => "ResolvedTypeRef" , |
| 463 | TypeKind::TypeParam => "TypeParam" , |
| 464 | TypeKind::ObjCInterface(..) => "ObjCInterface" , |
| 465 | TypeKind::ObjCId => "ObjCId" , |
| 466 | TypeKind::ObjCSel => "ObjCSel" , |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | #[test ] |
| 472 | fn is_invalid_type_param_valid() { |
| 473 | let ty = Type::new(Some("foo" .into()), None, TypeKind::TypeParam, false); |
| 474 | assert!(!ty.is_invalid_type_param()) |
| 475 | } |
| 476 | |
| 477 | #[test ] |
| 478 | fn is_invalid_type_param_valid_underscore_and_numbers() { |
| 479 | let ty = Type::new( |
| 480 | Some("_foo123456789_" .into()), |
| 481 | None, |
| 482 | TypeKind::TypeParam, |
| 483 | false, |
| 484 | ); |
| 485 | assert!(!ty.is_invalid_type_param()) |
| 486 | } |
| 487 | |
| 488 | #[test ] |
| 489 | fn is_invalid_type_param_valid_unnamed_kind() { |
| 490 | let ty = Type::new(Some("foo" .into()), None, TypeKind::Void, false); |
| 491 | assert!(!ty.is_invalid_type_param()) |
| 492 | } |
| 493 | |
| 494 | #[test ] |
| 495 | fn is_invalid_type_param_invalid_start() { |
| 496 | let ty = Type::new(Some("1foo" .into()), None, TypeKind::TypeParam, false); |
| 497 | assert!(ty.is_invalid_type_param()) |
| 498 | } |
| 499 | |
| 500 | #[test ] |
| 501 | fn is_invalid_type_param_invalid_remaining() { |
| 502 | let ty = Type::new(Some("foo-" .into()), None, TypeKind::TypeParam, false); |
| 503 | assert!(ty.is_invalid_type_param()) |
| 504 | } |
| 505 | |
| 506 | #[test ] |
| 507 | #[should_panic ] |
| 508 | fn is_invalid_type_param_unnamed() { |
| 509 | let ty = Type::new(None, None, TypeKind::TypeParam, false); |
| 510 | assert!(ty.is_invalid_type_param()) |
| 511 | } |
| 512 | |
| 513 | #[test ] |
| 514 | fn is_invalid_type_param_empty_name() { |
| 515 | let ty = Type::new(Some("" .into()), None, TypeKind::TypeParam, false); |
| 516 | assert!(ty.is_invalid_type_param()) |
| 517 | } |
| 518 | |
| 519 | impl TemplateParameters for Type { |
| 520 | fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> { |
| 521 | self.kind.self_template_params(ctx) |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | impl TemplateParameters for TypeKind { |
| 526 | fn self_template_params(&self, ctx: &BindgenContext) -> Vec<TypeId> { |
| 527 | match *self { |
| 528 | TypeKind::ResolvedTypeRef(id) => { |
| 529 | ctx.resolve_type(id).self_template_params(ctx) |
| 530 | } |
| 531 | TypeKind::Comp(ref comp) => comp.self_template_params(ctx), |
| 532 | TypeKind::TemplateAlias(_, ref args) => args.clone(), |
| 533 | |
| 534 | TypeKind::Opaque | |
| 535 | TypeKind::TemplateInstantiation(..) | |
| 536 | TypeKind::Void | |
| 537 | TypeKind::NullPtr | |
| 538 | TypeKind::Int(_) | |
| 539 | TypeKind::Float(_) | |
| 540 | TypeKind::Complex(_) | |
| 541 | TypeKind::Array(..) | |
| 542 | TypeKind::Vector(..) | |
| 543 | TypeKind::Function(_) | |
| 544 | TypeKind::Enum(_) | |
| 545 | TypeKind::Pointer(_) | |
| 546 | TypeKind::BlockPointer(_) | |
| 547 | TypeKind::Reference(_) | |
| 548 | TypeKind::UnresolvedTypeRef(..) | |
| 549 | TypeKind::TypeParam | |
| 550 | TypeKind::Alias(_) | |
| 551 | TypeKind::ObjCId | |
| 552 | TypeKind::ObjCSel | |
| 553 | TypeKind::ObjCInterface(_) => vec![], |
| 554 | } |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | /// The kind of float this type represents. |
| 559 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
| 560 | pub(crate) enum FloatKind { |
| 561 | /// A half (`_Float16` or `__fp16`) |
| 562 | Float16, |
| 563 | /// A `float`. |
| 564 | Float, |
| 565 | /// A `double`. |
| 566 | Double, |
| 567 | /// A `long double`. |
| 568 | LongDouble, |
| 569 | /// A `__float128`. |
| 570 | Float128, |
| 571 | } |
| 572 | |
| 573 | /// The different kinds of types that we can parse. |
| 574 | #[derive (Debug)] |
| 575 | pub(crate) enum TypeKind { |
| 576 | /// The void type. |
| 577 | Void, |
| 578 | |
| 579 | /// The `nullptr_t` type. |
| 580 | NullPtr, |
| 581 | |
| 582 | /// A compound type, that is, a class, struct, or union. |
| 583 | Comp(CompInfo), |
| 584 | |
| 585 | /// An opaque type that we just don't understand. All usage of this shoulf |
| 586 | /// result in an opaque blob of bytes generated from the containing type's |
| 587 | /// layout. |
| 588 | Opaque, |
| 589 | |
| 590 | /// An integer type, of a given kind. `bool` and `char` are also considered |
| 591 | /// integers. |
| 592 | Int(IntKind), |
| 593 | |
| 594 | /// A floating point type. |
| 595 | Float(FloatKind), |
| 596 | |
| 597 | /// A complex floating point type. |
| 598 | Complex(FloatKind), |
| 599 | |
| 600 | /// A type alias, with a name, that points to another type. |
| 601 | Alias(TypeId), |
| 602 | |
| 603 | /// A templated alias, pointing to an inner type, just as `Alias`, but with |
| 604 | /// template parameters. |
| 605 | TemplateAlias(TypeId, Vec<TypeId>), |
| 606 | |
| 607 | /// A packed vector type: element type, number of elements |
| 608 | Vector(TypeId, usize), |
| 609 | |
| 610 | /// An array of a type and a length. |
| 611 | Array(TypeId, usize), |
| 612 | |
| 613 | /// A function type, with a given signature. |
| 614 | Function(FunctionSig), |
| 615 | |
| 616 | /// An `enum` type. |
| 617 | Enum(Enum), |
| 618 | |
| 619 | /// A pointer to a type. The bool field represents whether it's const or |
| 620 | /// not. |
| 621 | Pointer(TypeId), |
| 622 | |
| 623 | /// A pointer to an Apple block. |
| 624 | BlockPointer(TypeId), |
| 625 | |
| 626 | /// A reference to a type, as in: int& foo(). |
| 627 | Reference(TypeId), |
| 628 | |
| 629 | /// An instantiation of an abstract template definition with a set of |
| 630 | /// concrete template arguments. |
| 631 | TemplateInstantiation(TemplateInstantiation), |
| 632 | |
| 633 | /// A reference to a yet-to-resolve type. This stores the clang cursor |
| 634 | /// itself, and postpones its resolution. |
| 635 | /// |
| 636 | /// These are gone in a phase after parsing where these are mapped to |
| 637 | /// already known types, and are converted to ResolvedTypeRef. |
| 638 | /// |
| 639 | /// see tests/headers/typeref.hpp to see somewhere where this is a problem. |
| 640 | UnresolvedTypeRef( |
| 641 | clang::Type, |
| 642 | clang::Cursor, |
| 643 | /* parent_id */ |
| 644 | Option<ItemId>, |
| 645 | ), |
| 646 | |
| 647 | /// An indirection to another type. |
| 648 | /// |
| 649 | /// These are generated after we resolve a forward declaration, or when we |
| 650 | /// replace one type with another. |
| 651 | ResolvedTypeRef(TypeId), |
| 652 | |
| 653 | /// A named type, that is, a template parameter. |
| 654 | TypeParam, |
| 655 | |
| 656 | /// Objective C interface. Always referenced through a pointer |
| 657 | ObjCInterface(ObjCInterface), |
| 658 | |
| 659 | /// Objective C 'id' type, points to any object |
| 660 | ObjCId, |
| 661 | |
| 662 | /// Objective C selector type |
| 663 | ObjCSel, |
| 664 | } |
| 665 | |
| 666 | impl Type { |
| 667 | /// This is another of the nasty methods. This one is the one that takes |
| 668 | /// care of the core logic of converting a clang type to a `Type`. |
| 669 | /// |
| 670 | /// It's sort of nasty and full of special-casing, but hopefully the |
| 671 | /// comments in every special case justify why they're there. |
| 672 | pub(crate) fn from_clang_ty( |
| 673 | potential_id: ItemId, |
| 674 | ty: &clang::Type, |
| 675 | location: Cursor, |
| 676 | parent_id: Option<ItemId>, |
| 677 | ctx: &mut BindgenContext, |
| 678 | ) -> Result<ParseResult<Self>, ParseError> { |
| 679 | use clang_sys::*; |
| 680 | { |
| 681 | let already_resolved = ctx.builtin_or_resolved_ty( |
| 682 | potential_id, |
| 683 | parent_id, |
| 684 | ty, |
| 685 | Some(location), |
| 686 | ); |
| 687 | if let Some(ty) = already_resolved { |
| 688 | debug!(" {:?} already resolved: {:?}" , ty, location); |
| 689 | return Ok(ParseResult::AlreadyResolved(ty.into())); |
| 690 | } |
| 691 | } |
| 692 | |
| 693 | let layout = ty.fallible_layout(ctx).ok(); |
| 694 | let cursor = ty.declaration(); |
| 695 | let is_anonymous = cursor.is_anonymous(); |
| 696 | let mut name = if is_anonymous { |
| 697 | None |
| 698 | } else { |
| 699 | Some(cursor.spelling()).filter(|n| !n.is_empty()) |
| 700 | }; |
| 701 | |
| 702 | debug!( |
| 703 | "from_clang_ty: {:?}, ty: {:?}, loc: {:?}" , |
| 704 | potential_id, ty, location |
| 705 | ); |
| 706 | debug!("currently_parsed_types: {:?}" , ctx.currently_parsed_types()); |
| 707 | |
| 708 | let canonical_ty = ty.canonical_type(); |
| 709 | |
| 710 | // Parse objc protocols as if they were interfaces |
| 711 | let mut ty_kind = ty.kind(); |
| 712 | match location.kind() { |
| 713 | CXCursor_ObjCProtocolDecl | CXCursor_ObjCCategoryDecl => { |
| 714 | ty_kind = CXType_ObjCInterface |
| 715 | } |
| 716 | _ => {} |
| 717 | } |
| 718 | |
| 719 | // Objective C template type parameter |
| 720 | // FIXME: This is probably wrong, we are attempting to find the |
| 721 | // objc template params, which seem to manifest as a typedef. |
| 722 | // We are rewriting them as ID to suppress multiple conflicting |
| 723 | // typedefs at root level |
| 724 | if ty_kind == CXType_Typedef { |
| 725 | let is_template_type_param = |
| 726 | ty.declaration().kind() == CXCursor_TemplateTypeParameter; |
| 727 | let is_canonical_objcpointer = |
| 728 | canonical_ty.kind() == CXType_ObjCObjectPointer; |
| 729 | |
| 730 | // We have found a template type for objc interface |
| 731 | if is_canonical_objcpointer && is_template_type_param { |
| 732 | // Objective-C generics are just ids with fancy name. |
| 733 | // To keep it simple, just name them ids |
| 734 | name = Some("id" .to_owned()); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | if location.kind() == CXCursor_ClassTemplatePartialSpecialization { |
| 739 | // Sorry! (Not sorry) |
| 740 | warn!( |
| 741 | "Found a partial template specialization; bindgen does not \ |
| 742 | support partial template specialization! Constructing \ |
| 743 | opaque type instead." |
| 744 | ); |
| 745 | return Ok(ParseResult::New( |
| 746 | Opaque::from_clang_ty(&canonical_ty, ctx), |
| 747 | None, |
| 748 | )); |
| 749 | } |
| 750 | |
| 751 | let kind = if location.kind() == CXCursor_TemplateRef || |
| 752 | (ty.template_args().is_some() && ty_kind != CXType_Typedef) |
| 753 | { |
| 754 | // This is a template instantiation. |
| 755 | match TemplateInstantiation::from_ty(ty, ctx) { |
| 756 | Some(inst) => TypeKind::TemplateInstantiation(inst), |
| 757 | None => TypeKind::Opaque, |
| 758 | } |
| 759 | } else { |
| 760 | match ty_kind { |
| 761 | CXType_Unexposed |
| 762 | if *ty != canonical_ty && |
| 763 | canonical_ty.kind() != CXType_Invalid && |
| 764 | ty.ret_type().is_none() && |
| 765 | // Sometime clang desugars some types more than |
| 766 | // what we need, specially with function |
| 767 | // pointers. |
| 768 | // |
| 769 | // We should also try the solution of inverting |
| 770 | // those checks instead of doing this, that is, |
| 771 | // something like: |
| 772 | // |
| 773 | // CXType_Unexposed if ty.ret_type().is_some() |
| 774 | // => { ... } |
| 775 | // |
| 776 | // etc. |
| 777 | !canonical_ty.spelling().contains("type-parameter" ) => |
| 778 | { |
| 779 | debug!("Looking for canonical type: {:?}" , canonical_ty); |
| 780 | return Self::from_clang_ty( |
| 781 | potential_id, |
| 782 | &canonical_ty, |
| 783 | location, |
| 784 | parent_id, |
| 785 | ctx, |
| 786 | ); |
| 787 | } |
| 788 | CXType_Unexposed | CXType_Invalid => { |
| 789 | // For some reason Clang doesn't give us any hint in some |
| 790 | // situations where we should generate a function pointer (see |
| 791 | // tests/headers/func_ptr_in_struct.h), so we do a guess here |
| 792 | // trying to see if it has a valid return type. |
| 793 | if ty.ret_type().is_some() { |
| 794 | let signature = |
| 795 | FunctionSig::from_ty(ty, &location, ctx)?; |
| 796 | TypeKind::Function(signature) |
| 797 | // Same here, with template specialisations we can safely |
| 798 | // assume this is a Comp(..) |
| 799 | } else if ty.is_fully_instantiated_template() { |
| 800 | debug!( |
| 801 | "Template specialization: {:?}, {:?} {:?}" , |
| 802 | ty, location, canonical_ty |
| 803 | ); |
| 804 | let complex = CompInfo::from_ty( |
| 805 | potential_id, |
| 806 | ty, |
| 807 | Some(location), |
| 808 | ctx, |
| 809 | ) |
| 810 | .expect("C'mon" ); |
| 811 | TypeKind::Comp(complex) |
| 812 | } else { |
| 813 | match location.kind() { |
| 814 | CXCursor_CXXBaseSpecifier | |
| 815 | CXCursor_ClassTemplate => { |
| 816 | if location.kind() == CXCursor_CXXBaseSpecifier |
| 817 | { |
| 818 | // In the case we're parsing a base specifier |
| 819 | // inside an unexposed or invalid type, it means |
| 820 | // that we're parsing one of two things: |
| 821 | // |
| 822 | // * A template parameter. |
| 823 | // * A complex class that isn't exposed. |
| 824 | // |
| 825 | // This means, unfortunately, that there's no |
| 826 | // good way to differentiate between them. |
| 827 | // |
| 828 | // Probably we could try to look at the |
| 829 | // declaration and complicate more this logic, |
| 830 | // but we'll keep it simple... if it's a valid |
| 831 | // C++ identifier, we'll consider it as a |
| 832 | // template parameter. |
| 833 | // |
| 834 | // This is because: |
| 835 | // |
| 836 | // * We expect every other base that is a |
| 837 | // proper identifier (that is, a simple |
| 838 | // struct/union declaration), to be exposed, |
| 839 | // so this path can't be reached in that |
| 840 | // case. |
| 841 | // |
| 842 | // * Quite conveniently, complex base |
| 843 | // specifiers preserve their full names (that |
| 844 | // is: Foo<T> instead of Foo). We can take |
| 845 | // advantage of this. |
| 846 | // |
| 847 | // If we find some edge case where this doesn't |
| 848 | // work (which I guess is unlikely, see the |
| 849 | // different test cases[1][2][3][4]), we'd need |
| 850 | // to find more creative ways of differentiating |
| 851 | // these two cases. |
| 852 | // |
| 853 | // [1]: inherit_named.hpp |
| 854 | // [2]: forward-inherit-struct-with-fields.hpp |
| 855 | // [3]: forward-inherit-struct.hpp |
| 856 | // [4]: inherit-namespaced.hpp |
| 857 | if location.spelling().chars().all(|c| { |
| 858 | c.is_alphanumeric() || c == '_' |
| 859 | }) { |
| 860 | return Err(ParseError::Recurse); |
| 861 | } |
| 862 | } else { |
| 863 | name = Some(location.spelling()); |
| 864 | } |
| 865 | |
| 866 | let complex = CompInfo::from_ty( |
| 867 | potential_id, |
| 868 | ty, |
| 869 | Some(location), |
| 870 | ctx, |
| 871 | ); |
| 872 | match complex { |
| 873 | Ok(complex) => TypeKind::Comp(complex), |
| 874 | Err(_) => { |
| 875 | warn!( |
| 876 | "Could not create complex type \ |
| 877 | from class template or base \ |
| 878 | specifier, using opaque blob" |
| 879 | ); |
| 880 | let opaque = |
| 881 | Opaque::from_clang_ty(ty, ctx); |
| 882 | return Ok(ParseResult::New( |
| 883 | opaque, None, |
| 884 | )); |
| 885 | } |
| 886 | } |
| 887 | } |
| 888 | CXCursor_TypeAliasTemplateDecl => { |
| 889 | debug!("TypeAliasTemplateDecl" ); |
| 890 | |
| 891 | // We need to manually unwind this one. |
| 892 | let mut inner = Err(ParseError::Continue); |
| 893 | let mut args = vec![]; |
| 894 | |
| 895 | location.visit(|cur| { |
| 896 | match cur.kind() { |
| 897 | CXCursor_TypeAliasDecl => { |
| 898 | let current = cur.cur_type(); |
| 899 | |
| 900 | debug_assert_eq!( |
| 901 | current.kind(), |
| 902 | CXType_Typedef |
| 903 | ); |
| 904 | |
| 905 | name = Some(location.spelling()); |
| 906 | |
| 907 | let inner_ty = cur |
| 908 | .typedef_type() |
| 909 | .expect("Not valid Type?" ); |
| 910 | inner = Ok(Item::from_ty_or_ref( |
| 911 | inner_ty, |
| 912 | cur, |
| 913 | Some(potential_id), |
| 914 | ctx, |
| 915 | )); |
| 916 | } |
| 917 | CXCursor_TemplateTypeParameter => { |
| 918 | let param = Item::type_param( |
| 919 | None, cur, ctx, |
| 920 | ) |
| 921 | .expect( |
| 922 | "Item::type_param shouldn't \ |
| 923 | ever fail if we are looking \ |
| 924 | at a TemplateTypeParameter" , |
| 925 | ); |
| 926 | args.push(param); |
| 927 | } |
| 928 | _ => {} |
| 929 | } |
| 930 | CXChildVisit_Continue |
| 931 | }); |
| 932 | |
| 933 | let inner_type = match inner { |
| 934 | Ok(inner) => inner, |
| 935 | Err(..) => { |
| 936 | warn!( |
| 937 | "Failed to parse template alias \ |
| 938 | {:?}" , |
| 939 | location |
| 940 | ); |
| 941 | return Err(ParseError::Continue); |
| 942 | } |
| 943 | }; |
| 944 | |
| 945 | TypeKind::TemplateAlias(inner_type, args) |
| 946 | } |
| 947 | CXCursor_TemplateRef => { |
| 948 | let referenced = location.referenced().unwrap(); |
| 949 | let referenced_ty = referenced.cur_type(); |
| 950 | |
| 951 | debug!( |
| 952 | "TemplateRef: location = {:?}; referenced = \ |
| 953 | {:?}; referenced_ty = {:?}" , |
| 954 | location, |
| 955 | referenced, |
| 956 | referenced_ty |
| 957 | ); |
| 958 | |
| 959 | return Self::from_clang_ty( |
| 960 | potential_id, |
| 961 | &referenced_ty, |
| 962 | referenced, |
| 963 | parent_id, |
| 964 | ctx, |
| 965 | ); |
| 966 | } |
| 967 | CXCursor_TypeRef => { |
| 968 | let referenced = location.referenced().unwrap(); |
| 969 | let referenced_ty = referenced.cur_type(); |
| 970 | let declaration = referenced_ty.declaration(); |
| 971 | |
| 972 | debug!( |
| 973 | "TypeRef: location = {:?}; referenced = \ |
| 974 | {:?}; referenced_ty = {:?}" , |
| 975 | location, referenced, referenced_ty |
| 976 | ); |
| 977 | |
| 978 | let id = Item::from_ty_or_ref_with_id( |
| 979 | potential_id, |
| 980 | referenced_ty, |
| 981 | declaration, |
| 982 | parent_id, |
| 983 | ctx, |
| 984 | ); |
| 985 | return Ok(ParseResult::AlreadyResolved( |
| 986 | id.into(), |
| 987 | )); |
| 988 | } |
| 989 | CXCursor_NamespaceRef => { |
| 990 | return Err(ParseError::Continue); |
| 991 | } |
| 992 | _ => { |
| 993 | if ty.kind() == CXType_Unexposed { |
| 994 | warn!( |
| 995 | "Unexposed type {:?}, recursing inside, \ |
| 996 | loc: {:?}" , |
| 997 | ty, |
| 998 | location |
| 999 | ); |
| 1000 | return Err(ParseError::Recurse); |
| 1001 | } |
| 1002 | |
| 1003 | warn!("invalid type {:?}" , ty); |
| 1004 | return Err(ParseError::Continue); |
| 1005 | } |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | CXType_Auto => { |
| 1010 | if canonical_ty == *ty { |
| 1011 | debug!("Couldn't find deduced type: {:?}" , ty); |
| 1012 | return Err(ParseError::Continue); |
| 1013 | } |
| 1014 | |
| 1015 | return Self::from_clang_ty( |
| 1016 | potential_id, |
| 1017 | &canonical_ty, |
| 1018 | location, |
| 1019 | parent_id, |
| 1020 | ctx, |
| 1021 | ); |
| 1022 | } |
| 1023 | // NOTE: We don't resolve pointers eagerly because the pointee type |
| 1024 | // might not have been parsed, and if it contains templates or |
| 1025 | // something else we might get confused, see the comment inside |
| 1026 | // TypeRef. |
| 1027 | // |
| 1028 | // We might need to, though, if the context is already in the |
| 1029 | // process of resolving them. |
| 1030 | CXType_ObjCObjectPointer | |
| 1031 | CXType_MemberPointer | |
| 1032 | CXType_Pointer => { |
| 1033 | let mut pointee = ty.pointee_type().unwrap(); |
| 1034 | if *ty != canonical_ty { |
| 1035 | let canonical_pointee = |
| 1036 | canonical_ty.pointee_type().unwrap(); |
| 1037 | // clang sometimes loses pointee constness here, see |
| 1038 | // #2244. |
| 1039 | if canonical_pointee.is_const() != pointee.is_const() { |
| 1040 | pointee = canonical_pointee; |
| 1041 | } |
| 1042 | } |
| 1043 | let inner = |
| 1044 | Item::from_ty_or_ref(pointee, location, None, ctx); |
| 1045 | TypeKind::Pointer(inner) |
| 1046 | } |
| 1047 | CXType_BlockPointer => { |
| 1048 | let pointee = ty.pointee_type().expect("Not valid Type?" ); |
| 1049 | let inner = |
| 1050 | Item::from_ty_or_ref(pointee, location, None, ctx); |
| 1051 | TypeKind::BlockPointer(inner) |
| 1052 | } |
| 1053 | // XXX: RValueReference is most likely wrong, but I don't think we |
| 1054 | // can even add bindings for that, so huh. |
| 1055 | CXType_RValueReference | CXType_LValueReference => { |
| 1056 | let inner = Item::from_ty_or_ref( |
| 1057 | ty.pointee_type().unwrap(), |
| 1058 | location, |
| 1059 | None, |
| 1060 | ctx, |
| 1061 | ); |
| 1062 | TypeKind::Reference(inner) |
| 1063 | } |
| 1064 | // XXX DependentSizedArray is wrong |
| 1065 | CXType_VariableArray | CXType_DependentSizedArray => { |
| 1066 | let inner = Item::from_ty( |
| 1067 | ty.elem_type().as_ref().unwrap(), |
| 1068 | location, |
| 1069 | None, |
| 1070 | ctx, |
| 1071 | ) |
| 1072 | .expect("Not able to resolve array element?" ); |
| 1073 | TypeKind::Pointer(inner) |
| 1074 | } |
| 1075 | CXType_IncompleteArray => { |
| 1076 | let inner = Item::from_ty( |
| 1077 | ty.elem_type().as_ref().unwrap(), |
| 1078 | location, |
| 1079 | None, |
| 1080 | ctx, |
| 1081 | ) |
| 1082 | .expect("Not able to resolve array element?" ); |
| 1083 | TypeKind::Array(inner, 0) |
| 1084 | } |
| 1085 | CXType_FunctionNoProto | CXType_FunctionProto => { |
| 1086 | let signature = FunctionSig::from_ty(ty, &location, ctx)?; |
| 1087 | TypeKind::Function(signature) |
| 1088 | } |
| 1089 | CXType_Typedef => { |
| 1090 | let inner = cursor.typedef_type().expect("Not valid Type?" ); |
| 1091 | let inner_id = |
| 1092 | Item::from_ty_or_ref(inner, location, None, ctx); |
| 1093 | if inner_id == potential_id { |
| 1094 | warn!( |
| 1095 | "Generating opaque type instead of self-referential \ |
| 1096 | typedef" ); |
| 1097 | // This can happen if we bail out of recursive situations |
| 1098 | // within the clang parsing. |
| 1099 | TypeKind::Opaque |
| 1100 | } else { |
| 1101 | // Check if this type definition is an alias to a pointer of a `struct` / |
| 1102 | // `union` / `enum` with the same name and add the `_ptr` suffix to it to |
| 1103 | // avoid name collisions. |
| 1104 | if let Some(ref mut name) = name { |
| 1105 | if inner.kind() == CXType_Pointer && |
| 1106 | !ctx.options().c_naming |
| 1107 | { |
| 1108 | let pointee = inner.pointee_type().unwrap(); |
| 1109 | if pointee.kind() == CXType_Elaborated && |
| 1110 | pointee.declaration().spelling() == *name |
| 1111 | { |
| 1112 | *name += "_ptr" ; |
| 1113 | } |
| 1114 | } |
| 1115 | } |
| 1116 | TypeKind::Alias(inner_id) |
| 1117 | } |
| 1118 | } |
| 1119 | CXType_Enum => { |
| 1120 | let enum_ = Enum::from_ty(ty, ctx).expect("Not an enum?" ); |
| 1121 | |
| 1122 | if !is_anonymous { |
| 1123 | let pretty_name = ty.spelling(); |
| 1124 | if clang::is_valid_identifier(&pretty_name) { |
| 1125 | name = Some(pretty_name); |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | TypeKind::Enum(enum_) |
| 1130 | } |
| 1131 | CXType_Record => { |
| 1132 | let complex = CompInfo::from_ty( |
| 1133 | potential_id, |
| 1134 | ty, |
| 1135 | Some(location), |
| 1136 | ctx, |
| 1137 | ) |
| 1138 | .expect("Not a complex type?" ); |
| 1139 | |
| 1140 | if !is_anonymous { |
| 1141 | // The pretty-printed name may contain typedefed name, |
| 1142 | // but may also be "struct (anonymous at .h:1)" |
| 1143 | let pretty_name = ty.spelling(); |
| 1144 | if clang::is_valid_identifier(&pretty_name) { |
| 1145 | name = Some(pretty_name); |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | TypeKind::Comp(complex) |
| 1150 | } |
| 1151 | CXType_Vector => { |
| 1152 | let inner = Item::from_ty( |
| 1153 | ty.elem_type().as_ref().unwrap(), |
| 1154 | location, |
| 1155 | None, |
| 1156 | ctx, |
| 1157 | )?; |
| 1158 | TypeKind::Vector(inner, ty.num_elements().unwrap()) |
| 1159 | } |
| 1160 | CXType_ConstantArray => { |
| 1161 | let inner = Item::from_ty( |
| 1162 | ty.elem_type().as_ref().unwrap(), |
| 1163 | location, |
| 1164 | None, |
| 1165 | ctx, |
| 1166 | ) |
| 1167 | .expect("Not able to resolve array element?" ); |
| 1168 | TypeKind::Array(inner, ty.num_elements().unwrap()) |
| 1169 | } |
| 1170 | CXType_Elaborated => { |
| 1171 | return Self::from_clang_ty( |
| 1172 | potential_id, |
| 1173 | &ty.named(), |
| 1174 | location, |
| 1175 | parent_id, |
| 1176 | ctx, |
| 1177 | ); |
| 1178 | } |
| 1179 | CXType_ObjCId => TypeKind::ObjCId, |
| 1180 | CXType_ObjCSel => TypeKind::ObjCSel, |
| 1181 | CXType_ObjCClass | CXType_ObjCInterface => { |
| 1182 | let interface = ObjCInterface::from_ty(&location, ctx) |
| 1183 | .expect("Not a valid objc interface?" ); |
| 1184 | if !is_anonymous { |
| 1185 | name = Some(interface.rust_name()); |
| 1186 | } |
| 1187 | TypeKind::ObjCInterface(interface) |
| 1188 | } |
| 1189 | CXType_Dependent => { |
| 1190 | return Err(ParseError::Continue); |
| 1191 | } |
| 1192 | _ => { |
| 1193 | warn!( |
| 1194 | "unsupported type: kind = {:?}; ty = {:?}; at {:?}" , |
| 1195 | ty.kind(), |
| 1196 | ty, |
| 1197 | location |
| 1198 | ); |
| 1199 | return Err(ParseError::Continue); |
| 1200 | } |
| 1201 | } |
| 1202 | }; |
| 1203 | |
| 1204 | name = name.filter(|n| !n.is_empty()); |
| 1205 | |
| 1206 | let is_const = ty.is_const() || |
| 1207 | (ty.kind() == CXType_ConstantArray && |
| 1208 | ty.elem_type() |
| 1209 | .map_or(false, |element| element.is_const())); |
| 1210 | |
| 1211 | let ty = Type::new(name, layout, kind, is_const); |
| 1212 | // TODO: maybe declaration.canonical()? |
| 1213 | Ok(ParseResult::New(ty, Some(cursor.canonical()))) |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | impl Trace for Type { |
| 1218 | type Extra = Item; |
| 1219 | |
| 1220 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item) |
| 1221 | where |
| 1222 | T: Tracer, |
| 1223 | { |
| 1224 | if self |
| 1225 | .name() |
| 1226 | .map_or(false, |name| context.is_stdint_type(name)) |
| 1227 | { |
| 1228 | // These types are special-cased in codegen and don't need to be traversed. |
| 1229 | return; |
| 1230 | } |
| 1231 | match *self.kind() { |
| 1232 | TypeKind::Pointer(inner) | |
| 1233 | TypeKind::Reference(inner) | |
| 1234 | TypeKind::Array(inner, _) | |
| 1235 | TypeKind::Vector(inner, _) | |
| 1236 | TypeKind::BlockPointer(inner) | |
| 1237 | TypeKind::Alias(inner) | |
| 1238 | TypeKind::ResolvedTypeRef(inner) => { |
| 1239 | tracer.visit_kind(inner.into(), EdgeKind::TypeReference); |
| 1240 | } |
| 1241 | TypeKind::TemplateAlias(inner, ref template_params) => { |
| 1242 | tracer.visit_kind(inner.into(), EdgeKind::TypeReference); |
| 1243 | for param in template_params { |
| 1244 | tracer.visit_kind( |
| 1245 | param.into(), |
| 1246 | EdgeKind::TemplateParameterDefinition, |
| 1247 | ); |
| 1248 | } |
| 1249 | } |
| 1250 | TypeKind::TemplateInstantiation(ref inst) => { |
| 1251 | inst.trace(context, tracer, &()); |
| 1252 | } |
| 1253 | TypeKind::Comp(ref ci) => ci.trace(context, tracer, item), |
| 1254 | TypeKind::Function(ref sig) => sig.trace(context, tracer, &()), |
| 1255 | TypeKind::Enum(ref en) => { |
| 1256 | if let Some(repr) = en.repr() { |
| 1257 | tracer.visit(repr.into()); |
| 1258 | } |
| 1259 | } |
| 1260 | TypeKind::UnresolvedTypeRef(_, _, Some(id)) => { |
| 1261 | tracer.visit(id); |
| 1262 | } |
| 1263 | |
| 1264 | TypeKind::ObjCInterface(ref interface) => { |
| 1265 | interface.trace(context, tracer, &()); |
| 1266 | } |
| 1267 | |
| 1268 | // None of these variants have edges to other items and types. |
| 1269 | TypeKind::Opaque | |
| 1270 | TypeKind::UnresolvedTypeRef(_, _, None) | |
| 1271 | TypeKind::TypeParam | |
| 1272 | TypeKind::Void | |
| 1273 | TypeKind::NullPtr | |
| 1274 | TypeKind::Int(_) | |
| 1275 | TypeKind::Float(_) | |
| 1276 | TypeKind::Complex(_) | |
| 1277 | TypeKind::ObjCId | |
| 1278 | TypeKind::ObjCSel => {} |
| 1279 | } |
| 1280 | } |
| 1281 | } |
| 1282 | |