| 1 | //! Compound types (unions and structs) in our intermediate representation. |
| 2 | |
| 3 | use itertools::Itertools; |
| 4 | |
| 5 | use super::analysis::Sizedness; |
| 6 | use super::annotations::Annotations; |
| 7 | use super::context::{BindgenContext, FunctionId, ItemId, TypeId, VarId}; |
| 8 | use super::dot::DotAttributes; |
| 9 | use super::item::{IsOpaque, Item}; |
| 10 | use super::layout::Layout; |
| 11 | use super::template::TemplateParameters; |
| 12 | use super::traversal::{EdgeKind, Trace, Tracer}; |
| 13 | use super::ty::RUST_DERIVE_IN_ARRAY_LIMIT; |
| 14 | use crate::clang; |
| 15 | use crate::codegen::struct_layout::{align_to, bytes_from_bits_pow2}; |
| 16 | use crate::ir::derive::CanDeriveCopy; |
| 17 | use crate::parse::ParseError; |
| 18 | use crate::HashMap; |
| 19 | use crate::NonCopyUnionStyle; |
| 20 | use std::cmp; |
| 21 | use std::io; |
| 22 | use std::mem; |
| 23 | |
| 24 | /// The kind of compound type. |
| 25 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
| 26 | pub(crate) enum CompKind { |
| 27 | /// A struct. |
| 28 | Struct, |
| 29 | /// A union. |
| 30 | Union, |
| 31 | } |
| 32 | |
| 33 | /// The kind of C++ method. |
| 34 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
| 35 | pub(crate) enum MethodKind { |
| 36 | /// A constructor. We represent it as method for convenience, to avoid code |
| 37 | /// duplication. |
| 38 | Constructor, |
| 39 | /// A destructor. |
| 40 | Destructor, |
| 41 | /// A virtual destructor. |
| 42 | VirtualDestructor { |
| 43 | /// Whether it's pure virtual. |
| 44 | pure_virtual: bool, |
| 45 | }, |
| 46 | /// A static method. |
| 47 | Static, |
| 48 | /// A normal method. |
| 49 | Normal, |
| 50 | /// A virtual method. |
| 51 | Virtual { |
| 52 | /// Whether it's pure virtual. |
| 53 | pure_virtual: bool, |
| 54 | }, |
| 55 | } |
| 56 | |
| 57 | impl MethodKind { |
| 58 | /// Is this a destructor method? |
| 59 | pub(crate) fn is_destructor(&self) -> bool { |
| 60 | matches!( |
| 61 | *self, |
| 62 | MethodKind::Destructor | MethodKind::VirtualDestructor { .. } |
| 63 | ) |
| 64 | } |
| 65 | |
| 66 | /// Is this a pure virtual method? |
| 67 | pub(crate) fn is_pure_virtual(&self) -> bool { |
| 68 | match *self { |
| 69 | MethodKind::Virtual { pure_virtual: bool } | |
| 70 | MethodKind::VirtualDestructor { pure_virtual: bool } => pure_virtual, |
| 71 | _ => false, |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | /// A struct representing a C++ method, either static, normal, or virtual. |
| 77 | #[derive (Debug)] |
| 78 | pub(crate) struct Method { |
| 79 | kind: MethodKind, |
| 80 | /// The signature of the method. Take into account this is not a `Type` |
| 81 | /// item, but a `Function` one. |
| 82 | /// |
| 83 | /// This is tricky and probably this field should be renamed. |
| 84 | signature: FunctionId, |
| 85 | is_const: bool, |
| 86 | } |
| 87 | |
| 88 | impl Method { |
| 89 | /// Construct a new `Method`. |
| 90 | pub(crate) fn new( |
| 91 | kind: MethodKind, |
| 92 | signature: FunctionId, |
| 93 | is_const: bool, |
| 94 | ) -> Self { |
| 95 | Method { |
| 96 | kind, |
| 97 | signature, |
| 98 | is_const, |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /// What kind of method is this? |
| 103 | pub(crate) fn kind(&self) -> MethodKind { |
| 104 | self.kind |
| 105 | } |
| 106 | |
| 107 | /// Is this a constructor? |
| 108 | pub(crate) fn is_constructor(&self) -> bool { |
| 109 | self.kind == MethodKind::Constructor |
| 110 | } |
| 111 | |
| 112 | /// Is this a virtual method? |
| 113 | pub(crate) fn is_virtual(&self) -> bool { |
| 114 | matches!( |
| 115 | self.kind, |
| 116 | MethodKind::Virtual { .. } | MethodKind::VirtualDestructor { .. } |
| 117 | ) |
| 118 | } |
| 119 | |
| 120 | /// Is this a static method? |
| 121 | pub(crate) fn is_static(&self) -> bool { |
| 122 | self.kind == MethodKind::Static |
| 123 | } |
| 124 | |
| 125 | /// Get the ID for the `Function` signature for this method. |
| 126 | pub(crate) fn signature(&self) -> FunctionId { |
| 127 | self.signature |
| 128 | } |
| 129 | |
| 130 | /// Is this a const qualified method? |
| 131 | pub(crate) fn is_const(&self) -> bool { |
| 132 | self.is_const |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | /// Methods common to the various field types. |
| 137 | pub(crate) trait FieldMethods { |
| 138 | /// Get the name of this field. |
| 139 | fn name(&self) -> Option<&str>; |
| 140 | |
| 141 | /// Get the type of this field. |
| 142 | fn ty(&self) -> TypeId; |
| 143 | |
| 144 | /// Get the comment for this field. |
| 145 | fn comment(&self) -> Option<&str>; |
| 146 | |
| 147 | /// If this is a bitfield, how many bits does it need? |
| 148 | fn bitfield_width(&self) -> Option<u32>; |
| 149 | |
| 150 | /// Is this field declared public? |
| 151 | fn is_public(&self) -> bool; |
| 152 | |
| 153 | /// Get the annotations for this field. |
| 154 | fn annotations(&self) -> &Annotations; |
| 155 | |
| 156 | /// The offset of the field (in bits) |
| 157 | fn offset(&self) -> Option<usize>; |
| 158 | } |
| 159 | |
| 160 | /// A contiguous set of logical bitfields that live within the same physical |
| 161 | /// allocation unit. See 9.2.4 [class.bit] in the C++ standard and [section |
| 162 | /// 2.4.II.1 in the Itanium C++ |
| 163 | /// ABI](http://itanium-cxx-abi.github.io/cxx-abi/abi.html#class-types). |
| 164 | #[derive (Debug)] |
| 165 | pub(crate) struct BitfieldUnit { |
| 166 | nth: usize, |
| 167 | layout: Layout, |
| 168 | bitfields: Vec<Bitfield>, |
| 169 | } |
| 170 | |
| 171 | impl BitfieldUnit { |
| 172 | /// Get the 1-based index of this bitfield unit within its containing |
| 173 | /// struct. Useful for generating a Rust struct's field name for this unit |
| 174 | /// of bitfields. |
| 175 | pub(crate) fn nth(&self) -> usize { |
| 176 | self.nth |
| 177 | } |
| 178 | |
| 179 | /// Get the layout within which these bitfields reside. |
| 180 | pub(crate) fn layout(&self) -> Layout { |
| 181 | self.layout |
| 182 | } |
| 183 | |
| 184 | /// Get the bitfields within this unit. |
| 185 | pub(crate) fn bitfields(&self) -> &[Bitfield] { |
| 186 | &self.bitfields |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /// A struct representing a C++ field. |
| 191 | #[derive (Debug)] |
| 192 | pub(crate) enum Field { |
| 193 | /// A normal data member. |
| 194 | DataMember(FieldData), |
| 195 | |
| 196 | /// A physical allocation unit containing many logical bitfields. |
| 197 | Bitfields(BitfieldUnit), |
| 198 | } |
| 199 | |
| 200 | impl Field { |
| 201 | /// Get this field's layout. |
| 202 | pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
| 203 | match *self { |
| 204 | Field::Bitfields(BitfieldUnit { layout: Layout, .. }) => Some(layout), |
| 205 | Field::DataMember(ref data: &FieldData) => { |
| 206 | ctx.resolve_type(type_id:data.ty).layout(ctx) |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | impl Trace for Field { |
| 213 | type Extra = (); |
| 214 | |
| 215 | fn trace<T>(&self, _: &BindgenContext, tracer: &mut T, _: &()) |
| 216 | where |
| 217 | T: Tracer, |
| 218 | { |
| 219 | match *self { |
| 220 | Field::DataMember(ref data: &FieldData) => { |
| 221 | tracer.visit_kind(item:data.ty.into(), kind:EdgeKind::Field); |
| 222 | } |
| 223 | Field::Bitfields(BitfieldUnit { ref bitfields: &Vec, .. }) => { |
| 224 | for bf: &Bitfield in bitfields { |
| 225 | tracer.visit_kind(item:bf.ty().into(), kind:EdgeKind::Field); |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | impl DotAttributes for Field { |
| 233 | fn dot_attributes<W>( |
| 234 | &self, |
| 235 | ctx: &BindgenContext, |
| 236 | out: &mut W, |
| 237 | ) -> io::Result<()> |
| 238 | where |
| 239 | W: io::Write, |
| 240 | { |
| 241 | match *self { |
| 242 | Field::DataMember(ref data) => data.dot_attributes(ctx, out), |
| 243 | Field::Bitfields(BitfieldUnit { |
| 244 | layout, |
| 245 | ref bitfields, |
| 246 | .. |
| 247 | }) => { |
| 248 | writeln!( |
| 249 | out, |
| 250 | r#"<tr> |
| 251 | <td>bitfield unit</td> |
| 252 | <td> |
| 253 | <table border="0"> |
| 254 | <tr> |
| 255 | <td>unit.size</td><td> {}</td> |
| 256 | </tr> |
| 257 | <tr> |
| 258 | <td>unit.align</td><td> {}</td> |
| 259 | </tr> |
| 260 | "# , |
| 261 | layout.size, layout.align |
| 262 | )?; |
| 263 | for bf in bitfields { |
| 264 | bf.dot_attributes(ctx, out)?; |
| 265 | } |
| 266 | writeln!(out, "</table></td></tr>" ) |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | impl DotAttributes for FieldData { |
| 273 | fn dot_attributes<W>( |
| 274 | &self, |
| 275 | _ctx: &BindgenContext, |
| 276 | out: &mut W, |
| 277 | ) -> io::Result<()> |
| 278 | where |
| 279 | W: io::Write, |
| 280 | { |
| 281 | writeln!( |
| 282 | out, |
| 283 | "<tr><td> {}</td><td> {:?}</td></tr>" , |
| 284 | self.name().unwrap_or("(anonymous)" ), |
| 285 | self.ty() |
| 286 | ) |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | impl DotAttributes for Bitfield { |
| 291 | fn dot_attributes<W>( |
| 292 | &self, |
| 293 | _ctx: &BindgenContext, |
| 294 | out: &mut W, |
| 295 | ) -> io::Result<()> |
| 296 | where |
| 297 | W: io::Write, |
| 298 | { |
| 299 | writeln!( |
| 300 | out, |
| 301 | "<tr><td> {} : {}</td><td> {:?}</td></tr>" , |
| 302 | self.name().unwrap_or("(anonymous)" ), |
| 303 | self.width(), |
| 304 | self.ty() |
| 305 | ) |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /// A logical bitfield within some physical bitfield allocation unit. |
| 310 | #[derive (Debug)] |
| 311 | pub(crate) struct Bitfield { |
| 312 | /// Index of the bit within this bitfield's allocation unit where this |
| 313 | /// bitfield's bits begin. |
| 314 | offset_into_unit: usize, |
| 315 | |
| 316 | /// The field data for this bitfield. |
| 317 | data: FieldData, |
| 318 | |
| 319 | /// Name of the generated Rust getter for this bitfield. |
| 320 | /// |
| 321 | /// Should be assigned before codegen. |
| 322 | getter_name: Option<String>, |
| 323 | |
| 324 | /// Name of the generated Rust setter for this bitfield. |
| 325 | /// |
| 326 | /// Should be assigned before codegen. |
| 327 | setter_name: Option<String>, |
| 328 | } |
| 329 | |
| 330 | impl Bitfield { |
| 331 | /// Construct a new bitfield. |
| 332 | fn new(offset_into_unit: usize, raw: RawField) -> Bitfield { |
| 333 | assert!(raw.bitfield_width().is_some()); |
| 334 | |
| 335 | Bitfield { |
| 336 | offset_into_unit, |
| 337 | data: raw.0, |
| 338 | getter_name: None, |
| 339 | setter_name: None, |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | /// Get the index of the bit within this bitfield's allocation unit where |
| 344 | /// this bitfield begins. |
| 345 | pub(crate) fn offset_into_unit(&self) -> usize { |
| 346 | self.offset_into_unit |
| 347 | } |
| 348 | |
| 349 | /// Get the bit width of this bitfield. |
| 350 | pub(crate) fn width(&self) -> u32 { |
| 351 | self.data.bitfield_width().unwrap() |
| 352 | } |
| 353 | |
| 354 | /// Name of the generated Rust getter for this bitfield. |
| 355 | /// |
| 356 | /// Panics if called before assigning bitfield accessor names or if |
| 357 | /// this bitfield have no name. |
| 358 | pub(crate) fn getter_name(&self) -> &str { |
| 359 | assert!( |
| 360 | self.name().is_some(), |
| 361 | "`Bitfield::getter_name` called on anonymous field" |
| 362 | ); |
| 363 | self.getter_name.as_ref().expect( |
| 364 | "`Bitfield::getter_name` should only be called after\ |
| 365 | assigning bitfield accessor names" , |
| 366 | ) |
| 367 | } |
| 368 | |
| 369 | /// Name of the generated Rust setter for this bitfield. |
| 370 | /// |
| 371 | /// Panics if called before assigning bitfield accessor names or if |
| 372 | /// this bitfield have no name. |
| 373 | pub(crate) fn setter_name(&self) -> &str { |
| 374 | assert!( |
| 375 | self.name().is_some(), |
| 376 | "`Bitfield::setter_name` called on anonymous field" |
| 377 | ); |
| 378 | self.setter_name.as_ref().expect( |
| 379 | "`Bitfield::setter_name` should only be called\ |
| 380 | after assigning bitfield accessor names" , |
| 381 | ) |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | impl FieldMethods for Bitfield { |
| 386 | fn name(&self) -> Option<&str> { |
| 387 | self.data.name() |
| 388 | } |
| 389 | |
| 390 | fn ty(&self) -> TypeId { |
| 391 | self.data.ty() |
| 392 | } |
| 393 | |
| 394 | fn comment(&self) -> Option<&str> { |
| 395 | self.data.comment() |
| 396 | } |
| 397 | |
| 398 | fn bitfield_width(&self) -> Option<u32> { |
| 399 | self.data.bitfield_width() |
| 400 | } |
| 401 | |
| 402 | fn is_public(&self) -> bool { |
| 403 | self.data.is_public() |
| 404 | } |
| 405 | |
| 406 | fn annotations(&self) -> &Annotations { |
| 407 | self.data.annotations() |
| 408 | } |
| 409 | |
| 410 | fn offset(&self) -> Option<usize> { |
| 411 | self.data.offset() |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | /// A raw field might be either of a plain data member or a bitfield within a |
| 416 | /// bitfield allocation unit, but we haven't processed it and determined which |
| 417 | /// yet (which would involve allocating it into a bitfield unit if it is a |
| 418 | /// bitfield). |
| 419 | #[derive (Debug)] |
| 420 | struct RawField(FieldData); |
| 421 | |
| 422 | impl RawField { |
| 423 | /// Construct a new `RawField`. |
| 424 | fn new( |
| 425 | name: Option<String>, |
| 426 | ty: TypeId, |
| 427 | comment: Option<String>, |
| 428 | annotations: Option<Annotations>, |
| 429 | bitfield_width: Option<u32>, |
| 430 | public: bool, |
| 431 | offset: Option<usize>, |
| 432 | ) -> RawField { |
| 433 | RawField(FieldData { |
| 434 | name, |
| 435 | ty, |
| 436 | comment, |
| 437 | annotations: annotations.unwrap_or_default(), |
| 438 | bitfield_width, |
| 439 | public, |
| 440 | offset, |
| 441 | }) |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | impl FieldMethods for RawField { |
| 446 | fn name(&self) -> Option<&str> { |
| 447 | self.0.name() |
| 448 | } |
| 449 | |
| 450 | fn ty(&self) -> TypeId { |
| 451 | self.0.ty() |
| 452 | } |
| 453 | |
| 454 | fn comment(&self) -> Option<&str> { |
| 455 | self.0.comment() |
| 456 | } |
| 457 | |
| 458 | fn bitfield_width(&self) -> Option<u32> { |
| 459 | self.0.bitfield_width() |
| 460 | } |
| 461 | |
| 462 | fn is_public(&self) -> bool { |
| 463 | self.0.is_public() |
| 464 | } |
| 465 | |
| 466 | fn annotations(&self) -> &Annotations { |
| 467 | self.0.annotations() |
| 468 | } |
| 469 | |
| 470 | fn offset(&self) -> Option<usize> { |
| 471 | self.0.offset() |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | /// Convert the given ordered set of raw fields into a list of either plain data |
| 476 | /// members, and/or bitfield units containing multiple bitfields. |
| 477 | /// |
| 478 | /// If we do not have the layout for a bitfield's type, then we can't reliably |
| 479 | /// compute its allocation unit. In such cases, we return an error. |
| 480 | fn raw_fields_to_fields_and_bitfield_units<I>( |
| 481 | ctx: &BindgenContext, |
| 482 | raw_fields: I, |
| 483 | packed: bool, |
| 484 | ) -> Result<(Vec<Field>, bool), ()> |
| 485 | where |
| 486 | I: IntoIterator<Item = RawField>, |
| 487 | { |
| 488 | let mut raw_fields = raw_fields.into_iter().fuse().peekable(); |
| 489 | let mut fields = vec![]; |
| 490 | let mut bitfield_unit_count = 0; |
| 491 | |
| 492 | loop { |
| 493 | // While we have plain old data members, just keep adding them to our |
| 494 | // resulting fields. We introduce a scope here so that we can use |
| 495 | // `raw_fields` again after the `by_ref` iterator adaptor is dropped. |
| 496 | { |
| 497 | let non_bitfields = raw_fields |
| 498 | .by_ref() |
| 499 | .peeking_take_while(|f| f.bitfield_width().is_none()) |
| 500 | .map(|f| Field::DataMember(f.0)); |
| 501 | fields.extend(non_bitfields); |
| 502 | } |
| 503 | |
| 504 | // Now gather all the consecutive bitfields. Only consecutive bitfields |
| 505 | // may potentially share a bitfield allocation unit with each other in |
| 506 | // the Itanium C++ ABI. |
| 507 | let mut bitfields = raw_fields |
| 508 | .by_ref() |
| 509 | .peeking_take_while(|f| f.bitfield_width().is_some()) |
| 510 | .peekable(); |
| 511 | |
| 512 | if bitfields.peek().is_none() { |
| 513 | break; |
| 514 | } |
| 515 | |
| 516 | bitfields_to_allocation_units( |
| 517 | ctx, |
| 518 | &mut bitfield_unit_count, |
| 519 | &mut fields, |
| 520 | bitfields, |
| 521 | packed, |
| 522 | )?; |
| 523 | } |
| 524 | |
| 525 | assert!( |
| 526 | raw_fields.next().is_none(), |
| 527 | "The above loop should consume all items in `raw_fields`" |
| 528 | ); |
| 529 | |
| 530 | Ok((fields, bitfield_unit_count != 0)) |
| 531 | } |
| 532 | |
| 533 | /// Given a set of contiguous raw bitfields, group and allocate them into |
| 534 | /// (potentially multiple) bitfield units. |
| 535 | fn bitfields_to_allocation_units<E, I>( |
| 536 | ctx: &BindgenContext, |
| 537 | bitfield_unit_count: &mut usize, |
| 538 | fields: &mut E, |
| 539 | raw_bitfields: I, |
| 540 | packed: bool, |
| 541 | ) -> Result<(), ()> |
| 542 | where |
| 543 | E: Extend<Field>, |
| 544 | I: IntoIterator<Item = RawField>, |
| 545 | { |
| 546 | assert!(ctx.collected_typerefs()); |
| 547 | |
| 548 | // NOTE: What follows is reverse-engineered from LLVM's |
| 549 | // lib/AST/RecordLayoutBuilder.cpp |
| 550 | // |
| 551 | // FIXME(emilio): There are some differences between Microsoft and the |
| 552 | // Itanium ABI, but we'll ignore those and stick to Itanium for now. |
| 553 | // |
| 554 | // Also, we need to handle packed bitfields and stuff. |
| 555 | // |
| 556 | // TODO(emilio): Take into account C++'s wide bitfields, and |
| 557 | // packing, sigh. |
| 558 | |
| 559 | fn flush_allocation_unit<E>( |
| 560 | fields: &mut E, |
| 561 | bitfield_unit_count: &mut usize, |
| 562 | unit_size_in_bits: usize, |
| 563 | unit_align_in_bits: usize, |
| 564 | bitfields: Vec<Bitfield>, |
| 565 | packed: bool, |
| 566 | ) where |
| 567 | E: Extend<Field>, |
| 568 | { |
| 569 | *bitfield_unit_count += 1; |
| 570 | let align = if packed { |
| 571 | 1 |
| 572 | } else { |
| 573 | bytes_from_bits_pow2(unit_align_in_bits) |
| 574 | }; |
| 575 | let size = align_to(unit_size_in_bits, 8) / 8; |
| 576 | let layout = Layout::new(size, align); |
| 577 | fields.extend(Some(Field::Bitfields(BitfieldUnit { |
| 578 | nth: *bitfield_unit_count, |
| 579 | layout, |
| 580 | bitfields, |
| 581 | }))); |
| 582 | } |
| 583 | |
| 584 | let mut max_align = 0; |
| 585 | let mut unfilled_bits_in_unit = 0; |
| 586 | let mut unit_size_in_bits = 0; |
| 587 | let mut unit_align = 0; |
| 588 | let mut bitfields_in_unit = vec![]; |
| 589 | |
| 590 | // TODO(emilio): Determine this from attributes or pragma ms_struct |
| 591 | // directives. Also, perhaps we should check if the target is MSVC? |
| 592 | const is_ms_struct: bool = false; |
| 593 | |
| 594 | for bitfield in raw_bitfields { |
| 595 | let bitfield_width = bitfield.bitfield_width().unwrap() as usize; |
| 596 | let bitfield_layout = |
| 597 | ctx.resolve_type(bitfield.ty()).layout(ctx).ok_or(())?; |
| 598 | let bitfield_size = bitfield_layout.size; |
| 599 | let bitfield_align = bitfield_layout.align; |
| 600 | |
| 601 | let mut offset = unit_size_in_bits; |
| 602 | if !packed { |
| 603 | if is_ms_struct { |
| 604 | if unit_size_in_bits != 0 && |
| 605 | (bitfield_width == 0 || |
| 606 | bitfield_width > unfilled_bits_in_unit) |
| 607 | { |
| 608 | // We've reached the end of this allocation unit, so flush it |
| 609 | // and its bitfields. |
| 610 | unit_size_in_bits = |
| 611 | align_to(unit_size_in_bits, unit_align * 8); |
| 612 | flush_allocation_unit( |
| 613 | fields, |
| 614 | bitfield_unit_count, |
| 615 | unit_size_in_bits, |
| 616 | unit_align, |
| 617 | mem::take(&mut bitfields_in_unit), |
| 618 | packed, |
| 619 | ); |
| 620 | |
| 621 | // Now we're working on a fresh bitfield allocation unit, so reset |
| 622 | // the current unit size and alignment. |
| 623 | offset = 0; |
| 624 | unit_align = 0; |
| 625 | } |
| 626 | } else if offset != 0 && |
| 627 | (bitfield_width == 0 || |
| 628 | (offset & (bitfield_align * 8 - 1)) + bitfield_width > |
| 629 | bitfield_size * 8) |
| 630 | { |
| 631 | offset = align_to(offset, bitfield_align * 8); |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | // According to the x86[-64] ABI spec: "Unnamed bit-fields’ types do not |
| 636 | // affect the alignment of a structure or union". This makes sense: such |
| 637 | // bit-fields are only used for padding, and we can't perform an |
| 638 | // un-aligned read of something we can't read because we can't even name |
| 639 | // it. |
| 640 | if bitfield.name().is_some() { |
| 641 | max_align = cmp::max(max_align, bitfield_align); |
| 642 | |
| 643 | // NB: The `bitfield_width` here is completely, absolutely |
| 644 | // intentional. Alignment of the allocation unit is based on the |
| 645 | // maximum bitfield width, not (directly) on the bitfields' types' |
| 646 | // alignment. |
| 647 | unit_align = cmp::max(unit_align, bitfield_width); |
| 648 | } |
| 649 | |
| 650 | // Always keep all bitfields around. While unnamed bitifields are used |
| 651 | // for padding (and usually not needed hereafter), large unnamed |
| 652 | // bitfields over their types size cause weird allocation size behavior from clang. |
| 653 | // Therefore, all bitfields needed to be kept around in order to check for this |
| 654 | // and make the struct opaque in this case |
| 655 | bitfields_in_unit.push(Bitfield::new(offset, bitfield)); |
| 656 | |
| 657 | unit_size_in_bits = offset + bitfield_width; |
| 658 | |
| 659 | // Compute what the physical unit's final size would be given what we |
| 660 | // have seen so far, and use that to compute how many bits are still |
| 661 | // available in the unit. |
| 662 | let data_size = align_to(unit_size_in_bits, bitfield_align * 8); |
| 663 | unfilled_bits_in_unit = data_size - unit_size_in_bits; |
| 664 | } |
| 665 | |
| 666 | if unit_size_in_bits != 0 { |
| 667 | // Flush the last allocation unit and its bitfields. |
| 668 | flush_allocation_unit( |
| 669 | fields, |
| 670 | bitfield_unit_count, |
| 671 | unit_size_in_bits, |
| 672 | unit_align, |
| 673 | bitfields_in_unit, |
| 674 | packed, |
| 675 | ); |
| 676 | } |
| 677 | |
| 678 | Ok(()) |
| 679 | } |
| 680 | |
| 681 | /// A compound structure's fields are initially raw, and have bitfields that |
| 682 | /// have not been grouped into allocation units. During this time, the fields |
| 683 | /// are mutable and we build them up during parsing. |
| 684 | /// |
| 685 | /// Then, once resolving typerefs is completed, we compute all structs' fields' |
| 686 | /// bitfield allocation units, and they remain frozen and immutable forever |
| 687 | /// after. |
| 688 | #[derive (Debug)] |
| 689 | enum CompFields { |
| 690 | Before(Vec<RawField>), |
| 691 | After { |
| 692 | fields: Vec<Field>, |
| 693 | has_bitfield_units: bool, |
| 694 | }, |
| 695 | Error, |
| 696 | } |
| 697 | |
| 698 | impl Default for CompFields { |
| 699 | fn default() -> CompFields { |
| 700 | CompFields::Before(vec![]) |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | impl CompFields { |
| 705 | fn append_raw_field(&mut self, raw: RawField) { |
| 706 | match *self { |
| 707 | CompFields::Before(ref mut raws) => { |
| 708 | raws.push(raw); |
| 709 | } |
| 710 | _ => { |
| 711 | panic!( |
| 712 | "Must not append new fields after computing bitfield allocation units" |
| 713 | ); |
| 714 | } |
| 715 | } |
| 716 | } |
| 717 | |
| 718 | fn compute_bitfield_units(&mut self, ctx: &BindgenContext, packed: bool) { |
| 719 | let raws = match *self { |
| 720 | CompFields::Before(ref mut raws) => mem::take(raws), |
| 721 | _ => { |
| 722 | panic!("Already computed bitfield units" ); |
| 723 | } |
| 724 | }; |
| 725 | |
| 726 | let result = raw_fields_to_fields_and_bitfield_units(ctx, raws, packed); |
| 727 | |
| 728 | match result { |
| 729 | Ok((fields, has_bitfield_units)) => { |
| 730 | *self = CompFields::After { |
| 731 | fields, |
| 732 | has_bitfield_units, |
| 733 | }; |
| 734 | } |
| 735 | Err(()) => { |
| 736 | *self = CompFields::Error; |
| 737 | } |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | fn deanonymize_fields(&mut self, ctx: &BindgenContext, methods: &[Method]) { |
| 742 | let fields = match *self { |
| 743 | CompFields::After { ref mut fields, .. } => fields, |
| 744 | // Nothing to do here. |
| 745 | CompFields::Error => return, |
| 746 | CompFields::Before(_) => { |
| 747 | panic!("Not yet computed bitfield units." ); |
| 748 | } |
| 749 | }; |
| 750 | |
| 751 | fn has_method( |
| 752 | methods: &[Method], |
| 753 | ctx: &BindgenContext, |
| 754 | name: &str, |
| 755 | ) -> bool { |
| 756 | methods.iter().any(|method| { |
| 757 | let method_name = ctx.resolve_func(method.signature()).name(); |
| 758 | method_name == name || ctx.rust_mangle(method_name) == name |
| 759 | }) |
| 760 | } |
| 761 | |
| 762 | struct AccessorNamesPair { |
| 763 | getter: String, |
| 764 | setter: String, |
| 765 | } |
| 766 | |
| 767 | let mut accessor_names: HashMap<String, AccessorNamesPair> = fields |
| 768 | .iter() |
| 769 | .flat_map(|field| match *field { |
| 770 | Field::Bitfields(ref bu) => &*bu.bitfields, |
| 771 | Field::DataMember(_) => &[], |
| 772 | }) |
| 773 | .filter_map(|bitfield| bitfield.name()) |
| 774 | .map(|bitfield_name| { |
| 775 | let bitfield_name = bitfield_name.to_string(); |
| 776 | let getter = { |
| 777 | let mut getter = |
| 778 | ctx.rust_mangle(&bitfield_name).to_string(); |
| 779 | if has_method(methods, ctx, &getter) { |
| 780 | getter.push_str("_bindgen_bitfield" ); |
| 781 | } |
| 782 | getter |
| 783 | }; |
| 784 | let setter = { |
| 785 | let setter = format!("set_ {}" , bitfield_name); |
| 786 | let mut setter = ctx.rust_mangle(&setter).to_string(); |
| 787 | if has_method(methods, ctx, &setter) { |
| 788 | setter.push_str("_bindgen_bitfield" ); |
| 789 | } |
| 790 | setter |
| 791 | }; |
| 792 | (bitfield_name, AccessorNamesPair { getter, setter }) |
| 793 | }) |
| 794 | .collect(); |
| 795 | |
| 796 | let mut anon_field_counter = 0; |
| 797 | for field in fields.iter_mut() { |
| 798 | match *field { |
| 799 | Field::DataMember(FieldData { ref mut name, .. }) => { |
| 800 | if name.is_some() { |
| 801 | continue; |
| 802 | } |
| 803 | |
| 804 | anon_field_counter += 1; |
| 805 | *name = Some(format!( |
| 806 | " {}{}" , |
| 807 | ctx.options().anon_fields_prefix, |
| 808 | anon_field_counter |
| 809 | )); |
| 810 | } |
| 811 | Field::Bitfields(ref mut bu) => { |
| 812 | for bitfield in &mut bu.bitfields { |
| 813 | if bitfield.name().is_none() { |
| 814 | continue; |
| 815 | } |
| 816 | |
| 817 | if let Some(AccessorNamesPair { getter, setter }) = |
| 818 | accessor_names.remove(bitfield.name().unwrap()) |
| 819 | { |
| 820 | bitfield.getter_name = Some(getter); |
| 821 | bitfield.setter_name = Some(setter); |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | /// Return the flex array member for the struct/class, if any. |
| 830 | fn flex_array_member(&self, ctx: &BindgenContext) -> Option<TypeId> { |
| 831 | let fields = match self { |
| 832 | CompFields::Before(_) => panic!("raw fields" ), |
| 833 | CompFields::After { fields, .. } => fields, |
| 834 | CompFields::Error => return None, // panic? |
| 835 | }; |
| 836 | |
| 837 | match fields.last()? { |
| 838 | Field::Bitfields(..) => None, |
| 839 | Field::DataMember(FieldData { ty, .. }) => ctx |
| 840 | .resolve_type(*ty) |
| 841 | .is_incomplete_array(ctx) |
| 842 | .map(|item| item.expect_type_id(ctx)), |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | impl Trace for CompFields { |
| 848 | type Extra = (); |
| 849 | |
| 850 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, _: &()) |
| 851 | where |
| 852 | T: Tracer, |
| 853 | { |
| 854 | match *self { |
| 855 | CompFields::Error => {} |
| 856 | CompFields::Before(ref fields: &Vec) => { |
| 857 | for f: &RawField in fields { |
| 858 | tracer.visit_kind(item:f.ty().into(), kind:EdgeKind::Field); |
| 859 | } |
| 860 | } |
| 861 | CompFields::After { ref fields: &Vec, .. } => { |
| 862 | for f: &Field in fields { |
| 863 | f.trace(context, tracer, &()); |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | /// Common data shared across different field types. |
| 871 | #[derive (Clone, Debug)] |
| 872 | pub(crate) struct FieldData { |
| 873 | /// The name of the field, empty if it's an unnamed bitfield width. |
| 874 | name: Option<String>, |
| 875 | |
| 876 | /// The inner type. |
| 877 | ty: TypeId, |
| 878 | |
| 879 | /// The doc comment on the field if any. |
| 880 | comment: Option<String>, |
| 881 | |
| 882 | /// Annotations for this field, or the default. |
| 883 | annotations: Annotations, |
| 884 | |
| 885 | /// If this field is a bitfield, and how many bits does it contain if it is. |
| 886 | bitfield_width: Option<u32>, |
| 887 | |
| 888 | /// If the C++ field is declared `public` |
| 889 | public: bool, |
| 890 | |
| 891 | /// The offset of the field (in bits) |
| 892 | offset: Option<usize>, |
| 893 | } |
| 894 | |
| 895 | impl FieldMethods for FieldData { |
| 896 | fn name(&self) -> Option<&str> { |
| 897 | self.name.as_deref() |
| 898 | } |
| 899 | |
| 900 | fn ty(&self) -> TypeId { |
| 901 | self.ty |
| 902 | } |
| 903 | |
| 904 | fn comment(&self) -> Option<&str> { |
| 905 | self.comment.as_deref() |
| 906 | } |
| 907 | |
| 908 | fn bitfield_width(&self) -> Option<u32> { |
| 909 | self.bitfield_width |
| 910 | } |
| 911 | |
| 912 | fn is_public(&self) -> bool { |
| 913 | self.public |
| 914 | } |
| 915 | |
| 916 | fn annotations(&self) -> &Annotations { |
| 917 | &self.annotations |
| 918 | } |
| 919 | |
| 920 | fn offset(&self) -> Option<usize> { |
| 921 | self.offset |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | /// The kind of inheritance a base class is using. |
| 926 | #[derive (Clone, Debug, PartialEq, Eq)] |
| 927 | pub(crate) enum BaseKind { |
| 928 | /// Normal inheritance, like: |
| 929 | /// |
| 930 | /// ```cpp |
| 931 | /// class A : public B {}; |
| 932 | /// ``` |
| 933 | Normal, |
| 934 | /// Virtual inheritance, like: |
| 935 | /// |
| 936 | /// ```cpp |
| 937 | /// class A: public virtual B {}; |
| 938 | /// ``` |
| 939 | Virtual, |
| 940 | } |
| 941 | |
| 942 | /// A base class. |
| 943 | #[derive (Clone, Debug)] |
| 944 | pub(crate) struct Base { |
| 945 | /// The type of this base class. |
| 946 | pub(crate) ty: TypeId, |
| 947 | /// The kind of inheritance we're doing. |
| 948 | pub(crate) kind: BaseKind, |
| 949 | /// Name of the field in which this base should be stored. |
| 950 | pub(crate) field_name: String, |
| 951 | /// Whether this base is inherited from publicly. |
| 952 | pub(crate) is_pub: bool, |
| 953 | } |
| 954 | |
| 955 | impl Base { |
| 956 | /// Whether this base class is inheriting virtually. |
| 957 | pub(crate) fn is_virtual(&self) -> bool { |
| 958 | self.kind == BaseKind::Virtual |
| 959 | } |
| 960 | |
| 961 | /// Whether this base class should have it's own field for storage. |
| 962 | pub(crate) fn requires_storage(&self, ctx: &BindgenContext) -> bool { |
| 963 | // Virtual bases are already taken into account by the vtable |
| 964 | // pointer. |
| 965 | // |
| 966 | // FIXME(emilio): Is this always right? |
| 967 | if self.is_virtual() { |
| 968 | return false; |
| 969 | } |
| 970 | |
| 971 | // NB: We won't include zero-sized types in our base chain because they |
| 972 | // would contribute to our size given the dummy field we insert for |
| 973 | // zero-sized types. |
| 974 | if self.ty.is_zero_sized(ctx) { |
| 975 | return false; |
| 976 | } |
| 977 | |
| 978 | true |
| 979 | } |
| 980 | |
| 981 | /// Whether this base is inherited from publicly. |
| 982 | pub(crate) fn is_public(&self) -> bool { |
| 983 | self.is_pub |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | /// A compound type. |
| 988 | /// |
| 989 | /// Either a struct or union, a compound type is built up from the combination |
| 990 | /// of fields which also are associated with their own (potentially compound) |
| 991 | /// type. |
| 992 | #[derive (Debug)] |
| 993 | pub(crate) struct CompInfo { |
| 994 | /// Whether this is a struct or a union. |
| 995 | kind: CompKind, |
| 996 | |
| 997 | /// The members of this struct or union. |
| 998 | fields: CompFields, |
| 999 | |
| 1000 | /// The abstract template parameters of this class. Note that these are NOT |
| 1001 | /// concrete template arguments, and should always be a |
| 1002 | /// `Type(TypeKind::TypeParam(name))`. For concrete template arguments, see |
| 1003 | /// `TypeKind::TemplateInstantiation`. |
| 1004 | template_params: Vec<TypeId>, |
| 1005 | |
| 1006 | /// The method declarations inside this class, if in C++ mode. |
| 1007 | methods: Vec<Method>, |
| 1008 | |
| 1009 | /// The different constructors this struct or class contains. |
| 1010 | constructors: Vec<FunctionId>, |
| 1011 | |
| 1012 | /// The destructor of this type. The bool represents whether this destructor |
| 1013 | /// is virtual. |
| 1014 | destructor: Option<(MethodKind, FunctionId)>, |
| 1015 | |
| 1016 | /// Vector of classes this one inherits from. |
| 1017 | base_members: Vec<Base>, |
| 1018 | |
| 1019 | /// The inner types that were declared inside this class, in something like: |
| 1020 | /// |
| 1021 | /// class Foo { |
| 1022 | /// typedef int FooTy; |
| 1023 | /// struct Bar { |
| 1024 | /// int baz; |
| 1025 | /// }; |
| 1026 | /// } |
| 1027 | /// |
| 1028 | /// static Foo::Bar const = {3}; |
| 1029 | inner_types: Vec<TypeId>, |
| 1030 | |
| 1031 | /// Set of static constants declared inside this class. |
| 1032 | inner_vars: Vec<VarId>, |
| 1033 | |
| 1034 | /// Whether this type should generate an vtable (TODO: Should be able to |
| 1035 | /// look at the virtual methods and ditch this field). |
| 1036 | has_own_virtual_method: bool, |
| 1037 | |
| 1038 | /// Whether this type has destructor. |
| 1039 | has_destructor: bool, |
| 1040 | |
| 1041 | /// Whether this type has a base type with more than one member. |
| 1042 | /// |
| 1043 | /// TODO: We should be able to compute this. |
| 1044 | has_nonempty_base: bool, |
| 1045 | |
| 1046 | /// If this type has a template parameter which is not a type (e.g.: a |
| 1047 | /// size_t) |
| 1048 | has_non_type_template_params: bool, |
| 1049 | |
| 1050 | /// Whether this type has a bit field member whose width couldn't be |
| 1051 | /// evaluated (e.g. if it depends on a template parameter). We generate an |
| 1052 | /// opaque type in this case. |
| 1053 | has_unevaluable_bit_field_width: bool, |
| 1054 | |
| 1055 | /// Whether we saw `__attribute__((packed))` on or within this type. |
| 1056 | packed_attr: bool, |
| 1057 | |
| 1058 | /// Used to know if we've found an opaque attribute that could cause us to |
| 1059 | /// generate a type with invalid layout. This is explicitly used to avoid us |
| 1060 | /// generating bad alignments when parsing types like max_align_t. |
| 1061 | /// |
| 1062 | /// It's not clear what the behavior should be here, if generating the item |
| 1063 | /// and pray, or behave as an opaque type. |
| 1064 | found_unknown_attr: bool, |
| 1065 | |
| 1066 | /// Used to indicate when a struct has been forward declared. Usually used |
| 1067 | /// in headers so that APIs can't modify them directly. |
| 1068 | is_forward_declaration: bool, |
| 1069 | } |
| 1070 | |
| 1071 | impl CompInfo { |
| 1072 | /// Construct a new compound type. |
| 1073 | pub(crate) fn new(kind: CompKind) -> Self { |
| 1074 | CompInfo { |
| 1075 | kind, |
| 1076 | fields: CompFields::default(), |
| 1077 | template_params: vec![], |
| 1078 | methods: vec![], |
| 1079 | constructors: vec![], |
| 1080 | destructor: None, |
| 1081 | base_members: vec![], |
| 1082 | inner_types: vec![], |
| 1083 | inner_vars: vec![], |
| 1084 | has_own_virtual_method: false, |
| 1085 | has_destructor: false, |
| 1086 | has_nonempty_base: false, |
| 1087 | has_non_type_template_params: false, |
| 1088 | has_unevaluable_bit_field_width: false, |
| 1089 | packed_attr: false, |
| 1090 | found_unknown_attr: false, |
| 1091 | is_forward_declaration: false, |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | /// Compute the layout of this type. |
| 1096 | /// |
| 1097 | /// This is called as a fallback under some circumstances where LLVM doesn't |
| 1098 | /// give us the correct layout. |
| 1099 | /// |
| 1100 | /// If we're a union without known layout, we try to compute it from our |
| 1101 | /// members. This is not ideal, but clang fails to report the size for these |
| 1102 | /// kind of unions, see test/headers/template_union.hpp |
| 1103 | pub(crate) fn layout(&self, ctx: &BindgenContext) -> Option<Layout> { |
| 1104 | // We can't do better than clang here, sorry. |
| 1105 | if self.kind == CompKind::Struct { |
| 1106 | return None; |
| 1107 | } |
| 1108 | |
| 1109 | // By definition, we don't have the right layout information here if |
| 1110 | // we're a forward declaration. |
| 1111 | if self.is_forward_declaration() { |
| 1112 | return None; |
| 1113 | } |
| 1114 | |
| 1115 | // empty union case |
| 1116 | if !self.has_fields() { |
| 1117 | return None; |
| 1118 | } |
| 1119 | |
| 1120 | let mut max_size = 0; |
| 1121 | // Don't allow align(0) |
| 1122 | let mut max_align = 1; |
| 1123 | self.each_known_field_layout(ctx, |layout| { |
| 1124 | max_size = cmp::max(max_size, layout.size); |
| 1125 | max_align = cmp::max(max_align, layout.align); |
| 1126 | }); |
| 1127 | |
| 1128 | Some(Layout::new(max_size, max_align)) |
| 1129 | } |
| 1130 | |
| 1131 | /// Get this type's set of fields. |
| 1132 | pub(crate) fn fields(&self) -> &[Field] { |
| 1133 | match self.fields { |
| 1134 | CompFields::Error => &[], |
| 1135 | CompFields::After { ref fields, .. } => fields, |
| 1136 | CompFields::Before(..) => { |
| 1137 | panic!("Should always have computed bitfield units first" ); |
| 1138 | } |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | /// Return the flex array member and its element type if any |
| 1143 | pub(crate) fn flex_array_member( |
| 1144 | &self, |
| 1145 | ctx: &BindgenContext, |
| 1146 | ) -> Option<TypeId> { |
| 1147 | self.fields.flex_array_member(ctx) |
| 1148 | } |
| 1149 | |
| 1150 | fn has_fields(&self) -> bool { |
| 1151 | match self.fields { |
| 1152 | CompFields::Error => false, |
| 1153 | CompFields::After { ref fields, .. } => !fields.is_empty(), |
| 1154 | CompFields::Before(ref raw_fields) => !raw_fields.is_empty(), |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | fn each_known_field_layout( |
| 1159 | &self, |
| 1160 | ctx: &BindgenContext, |
| 1161 | mut callback: impl FnMut(Layout), |
| 1162 | ) { |
| 1163 | match self.fields { |
| 1164 | CompFields::Error => {} |
| 1165 | CompFields::After { ref fields, .. } => { |
| 1166 | for field in fields.iter() { |
| 1167 | if let Some(layout) = field.layout(ctx) { |
| 1168 | callback(layout); |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | CompFields::Before(ref raw_fields) => { |
| 1173 | for field in raw_fields.iter() { |
| 1174 | let field_ty = ctx.resolve_type(field.0.ty); |
| 1175 | if let Some(layout) = field_ty.layout(ctx) { |
| 1176 | callback(layout); |
| 1177 | } |
| 1178 | } |
| 1179 | } |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | fn has_bitfields(&self) -> bool { |
| 1184 | match self.fields { |
| 1185 | CompFields::Error => false, |
| 1186 | CompFields::After { |
| 1187 | has_bitfield_units, .. |
| 1188 | } => has_bitfield_units, |
| 1189 | CompFields::Before(_) => { |
| 1190 | panic!("Should always have computed bitfield units first" ); |
| 1191 | } |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | /// Returns whether we have a too large bitfield unit, in which case we may |
| 1196 | /// not be able to derive some of the things we should be able to normally |
| 1197 | /// derive. |
| 1198 | pub(crate) fn has_too_large_bitfield_unit(&self) -> bool { |
| 1199 | if !self.has_bitfields() { |
| 1200 | return false; |
| 1201 | } |
| 1202 | self.fields().iter().any(|field| match *field { |
| 1203 | Field::DataMember(..) => false, |
| 1204 | Field::Bitfields(ref unit) => { |
| 1205 | unit.layout.size > RUST_DERIVE_IN_ARRAY_LIMIT |
| 1206 | } |
| 1207 | }) |
| 1208 | } |
| 1209 | |
| 1210 | /// Does this type have any template parameters that aren't types |
| 1211 | /// (e.g. int)? |
| 1212 | pub(crate) fn has_non_type_template_params(&self) -> bool { |
| 1213 | self.has_non_type_template_params |
| 1214 | } |
| 1215 | |
| 1216 | /// Do we see a virtual function during parsing? |
| 1217 | /// Get the has_own_virtual_method boolean. |
| 1218 | pub(crate) fn has_own_virtual_method(&self) -> bool { |
| 1219 | self.has_own_virtual_method |
| 1220 | } |
| 1221 | |
| 1222 | /// Did we see a destructor when parsing this type? |
| 1223 | pub(crate) fn has_own_destructor(&self) -> bool { |
| 1224 | self.has_destructor |
| 1225 | } |
| 1226 | |
| 1227 | /// Get this type's set of methods. |
| 1228 | pub(crate) fn methods(&self) -> &[Method] { |
| 1229 | &self.methods |
| 1230 | } |
| 1231 | |
| 1232 | /// Get this type's set of constructors. |
| 1233 | pub(crate) fn constructors(&self) -> &[FunctionId] { |
| 1234 | &self.constructors |
| 1235 | } |
| 1236 | |
| 1237 | /// Get this type's destructor. |
| 1238 | pub(crate) fn destructor(&self) -> Option<(MethodKind, FunctionId)> { |
| 1239 | self.destructor |
| 1240 | } |
| 1241 | |
| 1242 | /// What kind of compound type is this? |
| 1243 | pub(crate) fn kind(&self) -> CompKind { |
| 1244 | self.kind |
| 1245 | } |
| 1246 | |
| 1247 | /// Is this a union? |
| 1248 | pub(crate) fn is_union(&self) -> bool { |
| 1249 | self.kind() == CompKind::Union |
| 1250 | } |
| 1251 | |
| 1252 | /// The set of types that this one inherits from. |
| 1253 | pub(crate) fn base_members(&self) -> &[Base] { |
| 1254 | &self.base_members |
| 1255 | } |
| 1256 | |
| 1257 | /// Construct a new compound type from a Clang type. |
| 1258 | pub(crate) fn from_ty( |
| 1259 | potential_id: ItemId, |
| 1260 | ty: &clang::Type, |
| 1261 | location: Option<clang::Cursor>, |
| 1262 | ctx: &mut BindgenContext, |
| 1263 | ) -> Result<Self, ParseError> { |
| 1264 | use clang_sys::*; |
| 1265 | assert!( |
| 1266 | ty.template_args().is_none(), |
| 1267 | "We handle template instantiations elsewhere" |
| 1268 | ); |
| 1269 | |
| 1270 | let mut cursor = ty.declaration(); |
| 1271 | let mut kind = Self::kind_from_cursor(&cursor); |
| 1272 | if kind.is_err() { |
| 1273 | if let Some(location) = location { |
| 1274 | kind = Self::kind_from_cursor(&location); |
| 1275 | cursor = location; |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | let kind = kind?; |
| 1280 | |
| 1281 | debug!("CompInfo::from_ty( {:?}, {:?})" , kind, cursor); |
| 1282 | |
| 1283 | let mut ci = CompInfo::new(kind); |
| 1284 | ci.is_forward_declaration = |
| 1285 | location.map_or(true, |cur| match cur.kind() { |
| 1286 | CXCursor_ParmDecl => true, |
| 1287 | CXCursor_StructDecl | CXCursor_UnionDecl | |
| 1288 | CXCursor_ClassDecl => !cur.is_definition(), |
| 1289 | _ => false, |
| 1290 | }); |
| 1291 | |
| 1292 | let mut maybe_anonymous_struct_field = None; |
| 1293 | cursor.visit(|cur| { |
| 1294 | if cur.kind() != CXCursor_FieldDecl { |
| 1295 | if let Some((ty, clang_ty, public, offset)) = |
| 1296 | maybe_anonymous_struct_field.take() |
| 1297 | { |
| 1298 | if cur.kind() == CXCursor_TypedefDecl && |
| 1299 | cur.typedef_type().unwrap().canonical_type() == |
| 1300 | clang_ty |
| 1301 | { |
| 1302 | // Typedefs of anonymous structs appear later in the ast |
| 1303 | // than the struct itself, that would otherwise be an |
| 1304 | // anonymous field. Detect that case here, and do |
| 1305 | // nothing. |
| 1306 | } else { |
| 1307 | let field = RawField::new( |
| 1308 | None, ty, None, None, None, public, offset, |
| 1309 | ); |
| 1310 | ci.fields.append_raw_field(field); |
| 1311 | } |
| 1312 | } |
| 1313 | } |
| 1314 | |
| 1315 | match cur.kind() { |
| 1316 | CXCursor_FieldDecl => { |
| 1317 | if let Some((ty, clang_ty, public, offset)) = |
| 1318 | maybe_anonymous_struct_field.take() |
| 1319 | { |
| 1320 | let mut used = false; |
| 1321 | cur.visit(|child| { |
| 1322 | if child.cur_type() == clang_ty { |
| 1323 | used = true; |
| 1324 | } |
| 1325 | CXChildVisit_Continue |
| 1326 | }); |
| 1327 | |
| 1328 | if !used { |
| 1329 | let field = RawField::new( |
| 1330 | None, ty, None, None, None, public, offset, |
| 1331 | ); |
| 1332 | ci.fields.append_raw_field(field); |
| 1333 | } |
| 1334 | } |
| 1335 | |
| 1336 | let bit_width = if cur.is_bit_field() { |
| 1337 | let width = cur.bit_width(); |
| 1338 | |
| 1339 | // Make opaque type if the bit width couldn't be |
| 1340 | // evaluated. |
| 1341 | if width.is_none() { |
| 1342 | ci.has_unevaluable_bit_field_width = true; |
| 1343 | return CXChildVisit_Break; |
| 1344 | } |
| 1345 | |
| 1346 | width |
| 1347 | } else { |
| 1348 | None |
| 1349 | }; |
| 1350 | |
| 1351 | let field_type = Item::from_ty_or_ref( |
| 1352 | cur.cur_type(), |
| 1353 | cur, |
| 1354 | Some(potential_id), |
| 1355 | ctx, |
| 1356 | ); |
| 1357 | |
| 1358 | let comment = cur.raw_comment(); |
| 1359 | let annotations = Annotations::new(&cur); |
| 1360 | let name = cur.spelling(); |
| 1361 | let is_public = cur.public_accessible(); |
| 1362 | let offset = cur.offset_of_field().ok(); |
| 1363 | |
| 1364 | // Name can be empty if there are bitfields, for example, |
| 1365 | // see tests/headers/struct_with_bitfields.h |
| 1366 | assert!( |
| 1367 | !name.is_empty() || bit_width.is_some(), |
| 1368 | "Empty field name?" |
| 1369 | ); |
| 1370 | |
| 1371 | let name = if name.is_empty() { None } else { Some(name) }; |
| 1372 | |
| 1373 | let field = RawField::new( |
| 1374 | name, |
| 1375 | field_type, |
| 1376 | comment, |
| 1377 | annotations, |
| 1378 | bit_width, |
| 1379 | is_public, |
| 1380 | offset, |
| 1381 | ); |
| 1382 | ci.fields.append_raw_field(field); |
| 1383 | |
| 1384 | // No we look for things like attributes and stuff. |
| 1385 | cur.visit(|cur| { |
| 1386 | if cur.kind() == CXCursor_UnexposedAttr { |
| 1387 | ci.found_unknown_attr = true; |
| 1388 | } |
| 1389 | CXChildVisit_Continue |
| 1390 | }); |
| 1391 | } |
| 1392 | CXCursor_UnexposedAttr => { |
| 1393 | ci.found_unknown_attr = true; |
| 1394 | } |
| 1395 | CXCursor_EnumDecl | |
| 1396 | CXCursor_TypeAliasDecl | |
| 1397 | CXCursor_TypeAliasTemplateDecl | |
| 1398 | CXCursor_TypedefDecl | |
| 1399 | CXCursor_StructDecl | |
| 1400 | CXCursor_UnionDecl | |
| 1401 | CXCursor_ClassTemplate | |
| 1402 | CXCursor_ClassDecl => { |
| 1403 | // We can find non-semantic children here, clang uses a |
| 1404 | // StructDecl to note incomplete structs that haven't been |
| 1405 | // forward-declared before, see [1]. |
| 1406 | // |
| 1407 | // Also, clang seems to scope struct definitions inside |
| 1408 | // unions, and other named struct definitions inside other |
| 1409 | // structs to the whole translation unit. |
| 1410 | // |
| 1411 | // Let's just assume that if the cursor we've found is a |
| 1412 | // definition, it's a valid inner type. |
| 1413 | // |
| 1414 | // [1]: https://github.com/rust-lang/rust-bindgen/issues/482 |
| 1415 | let is_inner_struct = |
| 1416 | cur.semantic_parent() == cursor || cur.is_definition(); |
| 1417 | if !is_inner_struct { |
| 1418 | return CXChildVisit_Continue; |
| 1419 | } |
| 1420 | |
| 1421 | // Even if this is a definition, we may not be the semantic |
| 1422 | // parent, see #1281. |
| 1423 | let inner = Item::parse(cur, Some(potential_id), ctx) |
| 1424 | .expect("Inner ClassDecl" ); |
| 1425 | |
| 1426 | // If we avoided recursion parsing this type (in |
| 1427 | // `Item::from_ty_with_id()`), then this might not be a |
| 1428 | // valid type ID, so check and gracefully handle this. |
| 1429 | if ctx.resolve_item_fallible(inner).is_some() { |
| 1430 | let inner = inner.expect_type_id(ctx); |
| 1431 | |
| 1432 | ci.inner_types.push(inner); |
| 1433 | |
| 1434 | // A declaration of an union or a struct without name |
| 1435 | // could also be an unnamed field, unfortunately. |
| 1436 | if cur.is_anonymous() && cur.kind() != CXCursor_EnumDecl |
| 1437 | { |
| 1438 | let ty = cur.cur_type(); |
| 1439 | let public = cur.public_accessible(); |
| 1440 | let offset = cur.offset_of_field().ok(); |
| 1441 | |
| 1442 | maybe_anonymous_struct_field = |
| 1443 | Some((inner, ty, public, offset)); |
| 1444 | } |
| 1445 | } |
| 1446 | } |
| 1447 | CXCursor_PackedAttr => { |
| 1448 | ci.packed_attr = true; |
| 1449 | } |
| 1450 | CXCursor_TemplateTypeParameter => { |
| 1451 | let param = Item::type_param(None, cur, ctx).expect( |
| 1452 | "Item::type_param shouldn't fail when pointing \ |
| 1453 | at a TemplateTypeParameter" , |
| 1454 | ); |
| 1455 | ci.template_params.push(param); |
| 1456 | } |
| 1457 | CXCursor_CXXBaseSpecifier => { |
| 1458 | let is_virtual_base = cur.is_virtual_base(); |
| 1459 | ci.has_own_virtual_method |= is_virtual_base; |
| 1460 | |
| 1461 | let kind = if is_virtual_base { |
| 1462 | BaseKind::Virtual |
| 1463 | } else { |
| 1464 | BaseKind::Normal |
| 1465 | }; |
| 1466 | |
| 1467 | let field_name = match ci.base_members.len() { |
| 1468 | 0 => "_base" .into(), |
| 1469 | n => format!("_base_ {}" , n), |
| 1470 | }; |
| 1471 | let type_id = |
| 1472 | Item::from_ty_or_ref(cur.cur_type(), cur, None, ctx); |
| 1473 | ci.base_members.push(Base { |
| 1474 | ty: type_id, |
| 1475 | kind, |
| 1476 | field_name, |
| 1477 | is_pub: cur.access_specifier() == |
| 1478 | clang_sys::CX_CXXPublic, |
| 1479 | }); |
| 1480 | } |
| 1481 | CXCursor_Constructor | CXCursor_Destructor | |
| 1482 | CXCursor_CXXMethod => { |
| 1483 | let is_virtual = cur.method_is_virtual(); |
| 1484 | let is_static = cur.method_is_static(); |
| 1485 | debug_assert!(!(is_static && is_virtual), "How?" ); |
| 1486 | |
| 1487 | ci.has_destructor |= cur.kind() == CXCursor_Destructor; |
| 1488 | ci.has_own_virtual_method |= is_virtual; |
| 1489 | |
| 1490 | // This used to not be here, but then I tried generating |
| 1491 | // stylo bindings with this (without path filters), and |
| 1492 | // cried a lot with a method in gfx/Point.h |
| 1493 | // (ToUnknownPoint), that somehow was causing the same type |
| 1494 | // to be inserted in the map two times. |
| 1495 | // |
| 1496 | // I couldn't make a reduced test case, but anyway... |
| 1497 | // Methods of template functions not only used to be inlined, |
| 1498 | // but also instantiated, and we wouldn't be able to call |
| 1499 | // them, so just bail out. |
| 1500 | if !ci.template_params.is_empty() { |
| 1501 | return CXChildVisit_Continue; |
| 1502 | } |
| 1503 | |
| 1504 | // NB: This gets us an owned `Function`, not a |
| 1505 | // `FunctionSig`. |
| 1506 | let signature = |
| 1507 | match Item::parse(cur, Some(potential_id), ctx) { |
| 1508 | Ok(item) |
| 1509 | if ctx |
| 1510 | .resolve_item(item) |
| 1511 | .kind() |
| 1512 | .is_function() => |
| 1513 | { |
| 1514 | item |
| 1515 | } |
| 1516 | _ => return CXChildVisit_Continue, |
| 1517 | }; |
| 1518 | |
| 1519 | let signature = signature.expect_function_id(ctx); |
| 1520 | |
| 1521 | match cur.kind() { |
| 1522 | CXCursor_Constructor => { |
| 1523 | ci.constructors.push(signature); |
| 1524 | } |
| 1525 | CXCursor_Destructor => { |
| 1526 | let kind = if is_virtual { |
| 1527 | MethodKind::VirtualDestructor { |
| 1528 | pure_virtual: cur.method_is_pure_virtual(), |
| 1529 | } |
| 1530 | } else { |
| 1531 | MethodKind::Destructor |
| 1532 | }; |
| 1533 | ci.destructor = Some((kind, signature)); |
| 1534 | } |
| 1535 | CXCursor_CXXMethod => { |
| 1536 | let is_const = cur.method_is_const(); |
| 1537 | let method_kind = if is_static { |
| 1538 | MethodKind::Static |
| 1539 | } else if is_virtual { |
| 1540 | MethodKind::Virtual { |
| 1541 | pure_virtual: cur.method_is_pure_virtual(), |
| 1542 | } |
| 1543 | } else { |
| 1544 | MethodKind::Normal |
| 1545 | }; |
| 1546 | |
| 1547 | let method = |
| 1548 | Method::new(method_kind, signature, is_const); |
| 1549 | |
| 1550 | ci.methods.push(method); |
| 1551 | } |
| 1552 | _ => unreachable!("How can we see this here?" ), |
| 1553 | } |
| 1554 | } |
| 1555 | CXCursor_NonTypeTemplateParameter => { |
| 1556 | ci.has_non_type_template_params = true; |
| 1557 | } |
| 1558 | CXCursor_VarDecl => { |
| 1559 | let linkage = cur.linkage(); |
| 1560 | if linkage != CXLinkage_External && |
| 1561 | linkage != CXLinkage_UniqueExternal |
| 1562 | { |
| 1563 | return CXChildVisit_Continue; |
| 1564 | } |
| 1565 | |
| 1566 | let visibility = cur.visibility(); |
| 1567 | if visibility != CXVisibility_Default { |
| 1568 | return CXChildVisit_Continue; |
| 1569 | } |
| 1570 | |
| 1571 | if let Ok(item) = Item::parse(cur, Some(potential_id), ctx) |
| 1572 | { |
| 1573 | ci.inner_vars.push(item.as_var_id_unchecked()); |
| 1574 | } |
| 1575 | } |
| 1576 | // Intentionally not handled |
| 1577 | CXCursor_CXXAccessSpecifier | |
| 1578 | CXCursor_CXXFinalAttr | |
| 1579 | CXCursor_FunctionTemplate | |
| 1580 | CXCursor_ConversionFunction => {} |
| 1581 | _ => { |
| 1582 | warn!( |
| 1583 | "unhandled comp member ` {}` (kind {:?}) in ` {}` ( {})" , |
| 1584 | cur.spelling(), |
| 1585 | clang::kind_to_str(cur.kind()), |
| 1586 | cursor.spelling(), |
| 1587 | cur.location() |
| 1588 | ); |
| 1589 | } |
| 1590 | } |
| 1591 | CXChildVisit_Continue |
| 1592 | }); |
| 1593 | |
| 1594 | if let Some((ty, _, public, offset)) = maybe_anonymous_struct_field { |
| 1595 | let field = |
| 1596 | RawField::new(None, ty, None, None, None, public, offset); |
| 1597 | ci.fields.append_raw_field(field); |
| 1598 | } |
| 1599 | |
| 1600 | Ok(ci) |
| 1601 | } |
| 1602 | |
| 1603 | fn kind_from_cursor( |
| 1604 | cursor: &clang::Cursor, |
| 1605 | ) -> Result<CompKind, ParseError> { |
| 1606 | use clang_sys::*; |
| 1607 | Ok(match cursor.kind() { |
| 1608 | CXCursor_UnionDecl => CompKind::Union, |
| 1609 | CXCursor_ClassDecl | CXCursor_StructDecl => CompKind::Struct, |
| 1610 | CXCursor_CXXBaseSpecifier | |
| 1611 | CXCursor_ClassTemplatePartialSpecialization | |
| 1612 | CXCursor_ClassTemplate => match cursor.template_kind() { |
| 1613 | CXCursor_UnionDecl => CompKind::Union, |
| 1614 | _ => CompKind::Struct, |
| 1615 | }, |
| 1616 | _ => { |
| 1617 | warn!("Unknown kind for comp type: {:?}" , cursor); |
| 1618 | return Err(ParseError::Continue); |
| 1619 | } |
| 1620 | }) |
| 1621 | } |
| 1622 | |
| 1623 | /// Get the set of types that were declared within this compound type |
| 1624 | /// (e.g. nested class definitions). |
| 1625 | pub(crate) fn inner_types(&self) -> &[TypeId] { |
| 1626 | &self.inner_types |
| 1627 | } |
| 1628 | |
| 1629 | /// Get the set of static variables declared within this compound type. |
| 1630 | pub(crate) fn inner_vars(&self) -> &[VarId] { |
| 1631 | &self.inner_vars |
| 1632 | } |
| 1633 | |
| 1634 | /// Have we found a field with an opaque type that could potentially mess up |
| 1635 | /// the layout of this compound type? |
| 1636 | pub(crate) fn found_unknown_attr(&self) -> bool { |
| 1637 | self.found_unknown_attr |
| 1638 | } |
| 1639 | |
| 1640 | /// Is this compound type packed? |
| 1641 | pub(crate) fn is_packed( |
| 1642 | &self, |
| 1643 | ctx: &BindgenContext, |
| 1644 | layout: Option<&Layout>, |
| 1645 | ) -> bool { |
| 1646 | if self.packed_attr { |
| 1647 | return true; |
| 1648 | } |
| 1649 | |
| 1650 | // Even though `libclang` doesn't expose `#pragma packed(...)`, we can |
| 1651 | // detect it through its effects. |
| 1652 | if let Some(parent_layout) = layout { |
| 1653 | let mut packed = false; |
| 1654 | self.each_known_field_layout(ctx, |layout| { |
| 1655 | packed = packed || layout.align > parent_layout.align; |
| 1656 | }); |
| 1657 | if packed { |
| 1658 | info!("Found a struct that was defined within `#pragma packed(...)`" ); |
| 1659 | return true; |
| 1660 | } |
| 1661 | |
| 1662 | if self.has_own_virtual_method && parent_layout.align == 1 { |
| 1663 | return true; |
| 1664 | } |
| 1665 | } |
| 1666 | |
| 1667 | false |
| 1668 | } |
| 1669 | |
| 1670 | /// Return true if a compound type is "naturally packed". This means we can exclude the |
| 1671 | /// "packed" attribute without changing the layout. |
| 1672 | /// This is useful for types that need an "align(N)" attribute since rustc won't compile |
| 1673 | /// structs that have both of those attributes. |
| 1674 | pub(crate) fn already_packed(&self, ctx: &BindgenContext) -> Option<bool> { |
| 1675 | let mut total_size: usize = 0; |
| 1676 | |
| 1677 | for field in self.fields().iter() { |
| 1678 | let layout = field.layout(ctx)?; |
| 1679 | |
| 1680 | if layout.align != 0 && total_size % layout.align != 0 { |
| 1681 | return Some(false); |
| 1682 | } |
| 1683 | |
| 1684 | total_size += layout.size; |
| 1685 | } |
| 1686 | |
| 1687 | Some(true) |
| 1688 | } |
| 1689 | |
| 1690 | /// Returns true if compound type has been forward declared |
| 1691 | pub(crate) fn is_forward_declaration(&self) -> bool { |
| 1692 | self.is_forward_declaration |
| 1693 | } |
| 1694 | |
| 1695 | /// Compute this compound structure's bitfield allocation units. |
| 1696 | pub(crate) fn compute_bitfield_units( |
| 1697 | &mut self, |
| 1698 | ctx: &BindgenContext, |
| 1699 | layout: Option<&Layout>, |
| 1700 | ) { |
| 1701 | let packed = self.is_packed(ctx, layout); |
| 1702 | self.fields.compute_bitfield_units(ctx, packed) |
| 1703 | } |
| 1704 | |
| 1705 | /// Assign for each anonymous field a generated name. |
| 1706 | pub(crate) fn deanonymize_fields(&mut self, ctx: &BindgenContext) { |
| 1707 | self.fields.deanonymize_fields(ctx, &self.methods); |
| 1708 | } |
| 1709 | |
| 1710 | /// Returns whether the current union can be represented as a Rust `union` |
| 1711 | /// |
| 1712 | /// Requirements: |
| 1713 | /// 1. Current RustTarget allows for `untagged_union` |
| 1714 | /// 2. Each field can derive `Copy` or we use ManuallyDrop. |
| 1715 | /// 3. It's not zero-sized. |
| 1716 | /// |
| 1717 | /// Second boolean returns whether all fields can be copied (and thus |
| 1718 | /// ManuallyDrop is not needed). |
| 1719 | pub(crate) fn is_rust_union( |
| 1720 | &self, |
| 1721 | ctx: &BindgenContext, |
| 1722 | layout: Option<&Layout>, |
| 1723 | name: &str, |
| 1724 | ) -> (bool, bool) { |
| 1725 | if !self.is_union() { |
| 1726 | return (false, false); |
| 1727 | } |
| 1728 | |
| 1729 | if !ctx.options().untagged_union { |
| 1730 | return (false, false); |
| 1731 | } |
| 1732 | |
| 1733 | if self.is_forward_declaration() { |
| 1734 | return (false, false); |
| 1735 | } |
| 1736 | |
| 1737 | let union_style = if ctx.options().bindgen_wrapper_union.matches(name) { |
| 1738 | NonCopyUnionStyle::BindgenWrapper |
| 1739 | } else if ctx.options().manually_drop_union.matches(name) { |
| 1740 | NonCopyUnionStyle::ManuallyDrop |
| 1741 | } else { |
| 1742 | ctx.options().default_non_copy_union_style |
| 1743 | }; |
| 1744 | |
| 1745 | let all_can_copy = self.fields().iter().all(|f| match *f { |
| 1746 | Field::DataMember(ref field_data) => { |
| 1747 | field_data.ty().can_derive_copy(ctx) |
| 1748 | } |
| 1749 | Field::Bitfields(_) => true, |
| 1750 | }); |
| 1751 | |
| 1752 | if !all_can_copy && union_style == NonCopyUnionStyle::BindgenWrapper { |
| 1753 | return (false, false); |
| 1754 | } |
| 1755 | |
| 1756 | if layout.map_or(false, |l| l.size == 0) { |
| 1757 | return (false, false); |
| 1758 | } |
| 1759 | |
| 1760 | (true, all_can_copy) |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | impl DotAttributes for CompInfo { |
| 1765 | fn dot_attributes<W>( |
| 1766 | &self, |
| 1767 | ctx: &BindgenContext, |
| 1768 | out: &mut W, |
| 1769 | ) -> io::Result<()> |
| 1770 | where |
| 1771 | W: io::Write, |
| 1772 | { |
| 1773 | writeln!(out, "<tr><td>CompKind</td><td> {:?}</td></tr>" , self.kind)?; |
| 1774 | |
| 1775 | if self.has_own_virtual_method { |
| 1776 | writeln!(out, "<tr><td>has_vtable</td><td>true</td></tr>" )?; |
| 1777 | } |
| 1778 | |
| 1779 | if self.has_destructor { |
| 1780 | writeln!(out, "<tr><td>has_destructor</td><td>true</td></tr>" )?; |
| 1781 | } |
| 1782 | |
| 1783 | if self.has_nonempty_base { |
| 1784 | writeln!(out, "<tr><td>has_nonempty_base</td><td>true</td></tr>" )?; |
| 1785 | } |
| 1786 | |
| 1787 | if self.has_non_type_template_params { |
| 1788 | writeln!( |
| 1789 | out, |
| 1790 | "<tr><td>has_non_type_template_params</td><td>true</td></tr>" |
| 1791 | )?; |
| 1792 | } |
| 1793 | |
| 1794 | if self.packed_attr { |
| 1795 | writeln!(out, "<tr><td>packed_attr</td><td>true</td></tr>" )?; |
| 1796 | } |
| 1797 | |
| 1798 | if self.is_forward_declaration { |
| 1799 | writeln!( |
| 1800 | out, |
| 1801 | "<tr><td>is_forward_declaration</td><td>true</td></tr>" |
| 1802 | )?; |
| 1803 | } |
| 1804 | |
| 1805 | if !self.fields().is_empty() { |
| 1806 | writeln!(out, r#"<tr><td>fields</td><td><table border="0">"# )?; |
| 1807 | for field in self.fields() { |
| 1808 | field.dot_attributes(ctx, out)?; |
| 1809 | } |
| 1810 | writeln!(out, "</table></td></tr>" )?; |
| 1811 | } |
| 1812 | |
| 1813 | Ok(()) |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | impl IsOpaque for CompInfo { |
| 1818 | type Extra = Option<Layout>; |
| 1819 | |
| 1820 | fn is_opaque(&self, ctx: &BindgenContext, layout: &Option<Layout>) -> bool { |
| 1821 | if self.has_non_type_template_params || |
| 1822 | self.has_unevaluable_bit_field_width |
| 1823 | { |
| 1824 | return true; |
| 1825 | } |
| 1826 | |
| 1827 | // When we do not have the layout for a bitfield's type (for example, it |
| 1828 | // is a type parameter), then we can't compute bitfield units. We are |
| 1829 | // left with no choice but to make the whole struct opaque, or else we |
| 1830 | // might generate structs with incorrect sizes and alignments. |
| 1831 | if let CompFields::Error = self.fields { |
| 1832 | return true; |
| 1833 | } |
| 1834 | |
| 1835 | // Bitfields with a width that is larger than their unit's width have |
| 1836 | // some strange things going on, and the best we can do is make the |
| 1837 | // whole struct opaque. |
| 1838 | if self.fields().iter().any(|f| match *f { |
| 1839 | Field::DataMember(_) => false, |
| 1840 | Field::Bitfields(ref unit) => unit.bitfields().iter().any(|bf| { |
| 1841 | let bitfield_layout = ctx |
| 1842 | .resolve_type(bf.ty()) |
| 1843 | .layout(ctx) |
| 1844 | .expect("Bitfield without layout? Gah!" ); |
| 1845 | bf.width() / 8 > bitfield_layout.size as u32 |
| 1846 | }), |
| 1847 | }) { |
| 1848 | return true; |
| 1849 | } |
| 1850 | |
| 1851 | if !ctx.options().rust_features().repr_packed_n { |
| 1852 | // If we don't have `#[repr(packed(N)]`, the best we can |
| 1853 | // do is make this struct opaque. |
| 1854 | // |
| 1855 | // See https://github.com/rust-lang/rust-bindgen/issues/537 and |
| 1856 | // https://github.com/rust-lang/rust/issues/33158 |
| 1857 | if self.is_packed(ctx, layout.as_ref()) && |
| 1858 | layout.map_or(false, |l| l.align > 1) |
| 1859 | { |
| 1860 | warn!("Found a type that is both packed and aligned to greater than \ |
| 1861 | 1; Rust before version 1.33 doesn't have `#[repr(packed(N))]`, so we \ |
| 1862 | are treating it as opaque. You may wish to set bindgen's rust target \ |
| 1863 | version to 1.33 or later to enable `#[repr(packed(N))]` support." ); |
| 1864 | return true; |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | false |
| 1869 | } |
| 1870 | } |
| 1871 | |
| 1872 | impl TemplateParameters for CompInfo { |
| 1873 | fn self_template_params(&self, _ctx: &BindgenContext) -> Vec<TypeId> { |
| 1874 | self.template_params.clone() |
| 1875 | } |
| 1876 | } |
| 1877 | |
| 1878 | impl Trace for CompInfo { |
| 1879 | type Extra = Item; |
| 1880 | |
| 1881 | fn trace<T>(&self, context: &BindgenContext, tracer: &mut T, item: &Item) |
| 1882 | where |
| 1883 | T: Tracer, |
| 1884 | { |
| 1885 | for p in item.all_template_params(context) { |
| 1886 | tracer.visit_kind(p.into(), EdgeKind::TemplateParameterDefinition); |
| 1887 | } |
| 1888 | |
| 1889 | for ty in self.inner_types() { |
| 1890 | tracer.visit_kind(ty.into(), EdgeKind::InnerType); |
| 1891 | } |
| 1892 | |
| 1893 | for &var in self.inner_vars() { |
| 1894 | tracer.visit_kind(var.into(), EdgeKind::InnerVar); |
| 1895 | } |
| 1896 | |
| 1897 | for method in self.methods() { |
| 1898 | tracer.visit_kind(method.signature.into(), EdgeKind::Method); |
| 1899 | } |
| 1900 | |
| 1901 | if let Some((_kind, signature)) = self.destructor() { |
| 1902 | tracer.visit_kind(signature.into(), EdgeKind::Destructor); |
| 1903 | } |
| 1904 | |
| 1905 | for ctor in self.constructors() { |
| 1906 | tracer.visit_kind(ctor.into(), EdgeKind::Constructor); |
| 1907 | } |
| 1908 | |
| 1909 | // Base members and fields are not generated for opaque types (but all |
| 1910 | // of the above things are) so stop here. |
| 1911 | if item.is_opaque(context, &()) { |
| 1912 | return; |
| 1913 | } |
| 1914 | |
| 1915 | for base in self.base_members() { |
| 1916 | tracer.visit_kind(base.ty.into(), EdgeKind::BaseMember); |
| 1917 | } |
| 1918 | |
| 1919 | self.fields.trace(context, tracer, &()); |
| 1920 | } |
| 1921 | } |
| 1922 | |