1 | // This is a part of Chrono. |
2 | // See README.md and LICENSE.txt for details. |
3 | |
4 | //! ISO 8601 date and time with time zone. |
5 | |
6 | #[cfg (all(not(feature = "std" ), feature = "alloc" ))] |
7 | use alloc::string::String; |
8 | use core::borrow::Borrow; |
9 | use core::cmp::Ordering; |
10 | use core::fmt::Write; |
11 | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
12 | use core::time::Duration; |
13 | use core::{fmt, hash, str}; |
14 | #[cfg (feature = "std" )] |
15 | use std::time::{SystemTime, UNIX_EPOCH}; |
16 | |
17 | #[cfg (all(feature = "unstable-locales" , feature = "alloc" ))] |
18 | use crate::format::Locale; |
19 | use crate::format::{ |
20 | parse, parse_and_remainder, parse_rfc3339, Fixed, Item, ParseError, ParseResult, Parsed, |
21 | StrftimeItems, TOO_LONG, |
22 | }; |
23 | #[cfg (feature = "alloc" )] |
24 | use crate::format::{write_rfc2822, write_rfc3339, DelayedFormat, SecondsFormat}; |
25 | use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime}; |
26 | #[cfg (feature = "clock" )] |
27 | use crate::offset::Local; |
28 | use crate::offset::{FixedOffset, Offset, TimeZone, Utc}; |
29 | #[allow (deprecated)] |
30 | use crate::Date; |
31 | use crate::{expect, try_opt}; |
32 | use crate::{Datelike, Months, TimeDelta, Timelike, Weekday}; |
33 | |
34 | #[cfg (any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ))] |
35 | use rkyv::{Archive, Deserialize, Serialize}; |
36 | |
37 | #[cfg (feature = "rustc-serialize" )] |
38 | pub(super) mod rustc_serialize; |
39 | |
40 | /// documented at re-export site |
41 | #[cfg (feature = "serde" )] |
42 | pub(super) mod serde; |
43 | |
44 | #[cfg (test)] |
45 | mod tests; |
46 | |
47 | /// ISO 8601 combined date and time with time zone. |
48 | /// |
49 | /// There are some constructors implemented here (the `from_*` methods), but |
50 | /// the general-purpose constructors are all via the methods on the |
51 | /// [`TimeZone`](./offset/trait.TimeZone.html) implementations. |
52 | #[derive (Clone)] |
53 | #[cfg_attr ( |
54 | any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ), |
55 | derive(Archive, Deserialize, Serialize), |
56 | archive(compare(PartialEq, PartialOrd)) |
57 | )] |
58 | #[cfg_attr (feature = "rkyv-validation" , archive(check_bytes))] |
59 | pub struct DateTime<Tz: TimeZone> { |
60 | datetime: NaiveDateTime, |
61 | offset: Tz::Offset, |
62 | } |
63 | |
64 | /// The minimum possible `DateTime<Utc>`. |
65 | #[deprecated (since = "0.4.20" , note = "Use DateTime::MIN_UTC instead" )] |
66 | pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC; |
67 | /// The maximum possible `DateTime<Utc>`. |
68 | #[deprecated (since = "0.4.20" , note = "Use DateTime::MAX_UTC instead" )] |
69 | pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC; |
70 | |
71 | impl<Tz: TimeZone> DateTime<Tz> { |
72 | /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. |
73 | /// |
74 | /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or |
75 | /// passing it through FFI. |
76 | /// |
77 | /// For regular use you will probably want to use a method such as |
78 | /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead. |
79 | /// |
80 | /// # Example |
81 | /// |
82 | #[cfg_attr (not(feature = "clock" ), doc = "```ignore" )] |
83 | #[cfg_attr (feature = "clock" , doc = "```rust" )] |
84 | /// use chrono::{DateTime, Local}; |
85 | /// |
86 | /// let dt = Local::now(); |
87 | /// // Get components |
88 | /// let naive_utc = dt.naive_utc(); |
89 | /// let offset = dt.offset().clone(); |
90 | /// // Serialize, pass through FFI... and recreate the `DateTime`: |
91 | /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset); |
92 | /// assert_eq!(dt, dt_new); |
93 | /// ``` |
94 | #[inline ] |
95 | #[must_use ] |
96 | pub const fn from_naive_utc_and_offset( |
97 | datetime: NaiveDateTime, |
98 | offset: Tz::Offset, |
99 | ) -> DateTime<Tz> { |
100 | DateTime { datetime, offset } |
101 | } |
102 | |
103 | /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. |
104 | #[inline ] |
105 | #[must_use ] |
106 | #[deprecated ( |
107 | since = "0.4.27" , |
108 | note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead" |
109 | )] |
110 | pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> { |
111 | DateTime { datetime, offset } |
112 | } |
113 | |
114 | /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`. |
115 | /// |
116 | /// # Panics |
117 | /// |
118 | /// Panics if the local datetime can't be converted to UTC because it would be out of range. |
119 | /// |
120 | /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`, |
121 | /// and the offset from UTC pushes it beyond that. |
122 | #[inline ] |
123 | #[must_use ] |
124 | #[deprecated ( |
125 | since = "0.4.27" , |
126 | note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead" |
127 | )] |
128 | pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> { |
129 | let datetime_utc = datetime - offset.fix(); |
130 | |
131 | DateTime { datetime: datetime_utc, offset } |
132 | } |
133 | |
134 | /// Retrieves the date component with an associated timezone. |
135 | /// |
136 | /// Unless you are immediately planning on turning this into a `DateTime` |
137 | /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method. |
138 | /// |
139 | /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it, |
140 | /// so should be preferred to [`Date`] any time you truly want to operate on dates. |
141 | /// |
142 | /// # Panics |
143 | /// |
144 | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
145 | /// method will panic if the offset from UTC would push the local date outside of the |
146 | /// representable range of a [`Date`]. |
147 | #[inline ] |
148 | #[deprecated (since = "0.4.23" , note = "Use `date_naive()` instead" )] |
149 | #[allow (deprecated)] |
150 | #[must_use ] |
151 | pub fn date(&self) -> Date<Tz> { |
152 | Date::from_utc(self.naive_local().date(), self.offset.clone()) |
153 | } |
154 | |
155 | /// Retrieves the date component. |
156 | /// |
157 | /// # Panics |
158 | /// |
159 | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
160 | /// method will panic if the offset from UTC would push the local date outside of the |
161 | /// representable range of a [`NaiveDate`]. |
162 | /// |
163 | /// # Example |
164 | /// |
165 | /// ``` |
166 | /// use chrono::prelude::*; |
167 | /// |
168 | /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); |
169 | /// let other: DateTime<FixedOffset> = |
170 | /// FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); |
171 | /// assert_eq!(date.date_naive(), other.date_naive()); |
172 | /// ``` |
173 | #[inline ] |
174 | #[must_use ] |
175 | pub fn date_naive(&self) -> NaiveDate { |
176 | let local = self.naive_local(); |
177 | NaiveDate::from_ymd_opt(local.year(), local.month(), local.day()).unwrap() |
178 | } |
179 | |
180 | /// Retrieves the time component. |
181 | #[inline ] |
182 | #[must_use ] |
183 | pub fn time(&self) -> NaiveTime { |
184 | self.datetime.time() + self.offset.fix() |
185 | } |
186 | |
187 | /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC |
188 | /// (aka "UNIX timestamp"). |
189 | /// |
190 | /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed |
191 | /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`]. |
192 | /// |
193 | /// ``` |
194 | /// use chrono::{DateTime, TimeZone, Utc}; |
195 | /// |
196 | /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap(); |
197 | /// assert_eq!(dt.timestamp(), 1431648000); |
198 | /// |
199 | /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); |
200 | /// ``` |
201 | #[inline ] |
202 | #[must_use ] |
203 | pub const fn timestamp(&self) -> i64 { |
204 | let gregorian_day = self.datetime.date().num_days_from_ce() as i64; |
205 | let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64; |
206 | (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight |
207 | } |
208 | |
209 | /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC. |
210 | /// |
211 | /// # Example |
212 | /// |
213 | /// ``` |
214 | /// use chrono::{NaiveDate, Utc}; |
215 | /// |
216 | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
217 | /// .unwrap() |
218 | /// .and_hms_milli_opt(0, 0, 1, 444) |
219 | /// .unwrap() |
220 | /// .and_local_timezone(Utc) |
221 | /// .unwrap(); |
222 | /// assert_eq!(dt.timestamp_millis(), 1_444); |
223 | /// |
224 | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
225 | /// .unwrap() |
226 | /// .and_hms_milli_opt(1, 46, 40, 555) |
227 | /// .unwrap() |
228 | /// .and_local_timezone(Utc) |
229 | /// .unwrap(); |
230 | /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555); |
231 | /// ``` |
232 | #[inline ] |
233 | #[must_use ] |
234 | pub const fn timestamp_millis(&self) -> i64 { |
235 | let as_ms = self.timestamp() * 1000; |
236 | as_ms + self.timestamp_subsec_millis() as i64 |
237 | } |
238 | |
239 | /// Returns the number of non-leap-microseconds since January 1, 1970 UTC. |
240 | /// |
241 | /// # Example |
242 | /// |
243 | /// ``` |
244 | /// use chrono::{NaiveDate, Utc}; |
245 | /// |
246 | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
247 | /// .unwrap() |
248 | /// .and_hms_micro_opt(0, 0, 1, 444) |
249 | /// .unwrap() |
250 | /// .and_local_timezone(Utc) |
251 | /// .unwrap(); |
252 | /// assert_eq!(dt.timestamp_micros(), 1_000_444); |
253 | /// |
254 | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
255 | /// .unwrap() |
256 | /// .and_hms_micro_opt(1, 46, 40, 555) |
257 | /// .unwrap() |
258 | /// .and_local_timezone(Utc) |
259 | /// .unwrap(); |
260 | /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555); |
261 | /// ``` |
262 | #[inline ] |
263 | #[must_use ] |
264 | pub const fn timestamp_micros(&self) -> i64 { |
265 | let as_us = self.timestamp() * 1_000_000; |
266 | as_us + self.timestamp_subsec_micros() as i64 |
267 | } |
268 | |
269 | /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. |
270 | /// |
271 | /// # Panics |
272 | /// |
273 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on |
274 | /// an out of range `DateTime`. |
275 | /// |
276 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
277 | /// and 2262-04-11T23:47:16.854775807. |
278 | #[deprecated (since = "0.4.31" , note = "use `timestamp_nanos_opt()` instead" )] |
279 | #[inline ] |
280 | #[must_use ] |
281 | pub const fn timestamp_nanos(&self) -> i64 { |
282 | expect!( |
283 | self.timestamp_nanos_opt(), |
284 | "value can not be represented in a timestamp with nanosecond precision." |
285 | ) |
286 | } |
287 | |
288 | /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. |
289 | /// |
290 | /// # Errors |
291 | /// |
292 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns |
293 | /// `None` on an out of range `DateTime`. |
294 | /// |
295 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
296 | /// and 2262-04-11T23:47:16.854775807. |
297 | /// |
298 | /// # Example |
299 | /// |
300 | /// ``` |
301 | /// use chrono::{NaiveDate, Utc}; |
302 | /// |
303 | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
304 | /// .unwrap() |
305 | /// .and_hms_nano_opt(0, 0, 1, 444) |
306 | /// .unwrap() |
307 | /// .and_local_timezone(Utc) |
308 | /// .unwrap(); |
309 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444)); |
310 | /// |
311 | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
312 | /// .unwrap() |
313 | /// .and_hms_nano_opt(1, 46, 40, 555) |
314 | /// .unwrap() |
315 | /// .and_local_timezone(Utc) |
316 | /// .unwrap(); |
317 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555)); |
318 | /// |
319 | /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) |
320 | /// .unwrap() |
321 | /// .and_hms_nano_opt(0, 12, 43, 145_224_192) |
322 | /// .unwrap() |
323 | /// .and_local_timezone(Utc) |
324 | /// .unwrap(); |
325 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808)); |
326 | /// |
327 | /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) |
328 | /// .unwrap() |
329 | /// .and_hms_nano_opt(23, 47, 16, 854_775_807) |
330 | /// .unwrap() |
331 | /// .and_local_timezone(Utc) |
332 | /// .unwrap(); |
333 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807)); |
334 | /// |
335 | /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) |
336 | /// .unwrap() |
337 | /// .and_hms_nano_opt(0, 12, 43, 145_224_191) |
338 | /// .unwrap() |
339 | /// .and_local_timezone(Utc) |
340 | /// .unwrap(); |
341 | /// assert_eq!(dt.timestamp_nanos_opt(), None); |
342 | /// |
343 | /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) |
344 | /// .unwrap() |
345 | /// .and_hms_nano_opt(23, 47, 16, 854_775_808) |
346 | /// .unwrap() |
347 | /// .and_local_timezone(Utc) |
348 | /// .unwrap(); |
349 | /// assert_eq!(dt.timestamp_nanos_opt(), None); |
350 | /// ``` |
351 | #[inline ] |
352 | #[must_use ] |
353 | pub const fn timestamp_nanos_opt(&self) -> Option<i64> { |
354 | let mut timestamp = self.timestamp(); |
355 | let mut subsec_nanos = self.timestamp_subsec_nanos() as i64; |
356 | // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while |
357 | // the final value can be represented as an `i64`. |
358 | // As workaround we converting the negative case to: |
359 | // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)`` |
360 | // |
361 | // Also see <https://github.com/chronotope/chrono/issues/1289>. |
362 | if timestamp < 0 { |
363 | subsec_nanos -= 1_000_000_000; |
364 | timestamp += 1; |
365 | } |
366 | try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos) |
367 | } |
368 | |
369 | /// Returns the number of milliseconds since the last second boundary. |
370 | /// |
371 | /// In event of a leap second this may exceed 999. |
372 | #[inline ] |
373 | #[must_use ] |
374 | pub const fn timestamp_subsec_millis(&self) -> u32 { |
375 | self.timestamp_subsec_nanos() / 1_000_000 |
376 | } |
377 | |
378 | /// Returns the number of microseconds since the last second boundary. |
379 | /// |
380 | /// In event of a leap second this may exceed 999,999. |
381 | #[inline ] |
382 | #[must_use ] |
383 | pub const fn timestamp_subsec_micros(&self) -> u32 { |
384 | self.timestamp_subsec_nanos() / 1_000 |
385 | } |
386 | |
387 | /// Returns the number of nanoseconds since the last second boundary |
388 | /// |
389 | /// In event of a leap second this may exceed 999,999,999. |
390 | #[inline ] |
391 | #[must_use ] |
392 | pub const fn timestamp_subsec_nanos(&self) -> u32 { |
393 | self.datetime.time().nanosecond() |
394 | } |
395 | |
396 | /// Retrieves an associated offset from UTC. |
397 | #[inline ] |
398 | #[must_use ] |
399 | pub const fn offset(&self) -> &Tz::Offset { |
400 | &self.offset |
401 | } |
402 | |
403 | /// Retrieves an associated time zone. |
404 | #[inline ] |
405 | #[must_use ] |
406 | pub fn timezone(&self) -> Tz { |
407 | TimeZone::from_offset(&self.offset) |
408 | } |
409 | |
410 | /// Changes the associated time zone. |
411 | /// The returned `DateTime` references the same instant of time from the perspective of the |
412 | /// provided time zone. |
413 | #[inline ] |
414 | #[must_use ] |
415 | pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> { |
416 | tz.from_utc_datetime(&self.datetime) |
417 | } |
418 | |
419 | /// Fix the offset from UTC to its current value, dropping the associated timezone information. |
420 | /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`. |
421 | #[inline ] |
422 | #[must_use ] |
423 | pub fn fixed_offset(&self) -> DateTime<FixedOffset> { |
424 | self.with_timezone(&self.offset().fix()) |
425 | } |
426 | |
427 | /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone |
428 | /// information. |
429 | #[inline ] |
430 | #[must_use ] |
431 | pub const fn to_utc(&self) -> DateTime<Utc> { |
432 | DateTime { datetime: self.datetime, offset: Utc } |
433 | } |
434 | |
435 | /// Adds given `TimeDelta` to the current date and time. |
436 | /// |
437 | /// # Errors |
438 | /// |
439 | /// Returns `None` if the resulting date would be out of range. |
440 | #[inline ] |
441 | #[must_use ] |
442 | pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> { |
443 | let datetime = self.datetime.checked_add_signed(rhs)?; |
444 | let tz = self.timezone(); |
445 | Some(tz.from_utc_datetime(&datetime)) |
446 | } |
447 | |
448 | /// Adds given `Months` to the current date and time. |
449 | /// |
450 | /// Uses the last day of the month if the day does not exist in the resulting month. |
451 | /// |
452 | /// See [`NaiveDate::checked_add_months`] for more details on behavior. |
453 | /// |
454 | /// # Errors |
455 | /// |
456 | /// Returns `None` if: |
457 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
458 | /// daylight saving time transition. |
459 | /// - The resulting UTC datetime would be out of range. |
460 | /// - The resulting local datetime would be out of range (unless `months` is zero). |
461 | #[must_use ] |
462 | pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> { |
463 | // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate |
464 | // the resulting date, with which we can return `Some` even for an out of range local |
465 | // datetime. |
466 | self.overflowing_naive_local() |
467 | .checked_add_months(months)? |
468 | .and_local_timezone(Tz::from_offset(&self.offset)) |
469 | .single() |
470 | } |
471 | |
472 | /// Subtracts given `TimeDelta` from the current date and time. |
473 | /// |
474 | /// # Errors |
475 | /// |
476 | /// Returns `None` if the resulting date would be out of range. |
477 | #[inline ] |
478 | #[must_use ] |
479 | pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> { |
480 | let datetime = self.datetime.checked_sub_signed(rhs)?; |
481 | let tz = self.timezone(); |
482 | Some(tz.from_utc_datetime(&datetime)) |
483 | } |
484 | |
485 | /// Subtracts given `Months` from the current date and time. |
486 | /// |
487 | /// Uses the last day of the month if the day does not exist in the resulting month. |
488 | /// |
489 | /// See [`NaiveDate::checked_sub_months`] for more details on behavior. |
490 | /// |
491 | /// # Errors |
492 | /// |
493 | /// Returns `None` if: |
494 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
495 | /// daylight saving time transition. |
496 | /// - The resulting UTC datetime would be out of range. |
497 | /// - The resulting local datetime would be out of range (unless `months` is zero). |
498 | #[must_use ] |
499 | pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> { |
500 | // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate |
501 | // the resulting date, with which we can return `Some` even for an out of range local |
502 | // datetime. |
503 | self.overflowing_naive_local() |
504 | .checked_sub_months(months)? |
505 | .and_local_timezone(Tz::from_offset(&self.offset)) |
506 | .single() |
507 | } |
508 | |
509 | /// Add a duration in [`Days`] to the date part of the `DateTime`. |
510 | /// |
511 | /// # Errors |
512 | /// |
513 | /// Returns `None` if: |
514 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
515 | /// daylight saving time transition. |
516 | /// - The resulting UTC datetime would be out of range. |
517 | /// - The resulting local datetime would be out of range (unless `days` is zero). |
518 | #[must_use ] |
519 | pub fn checked_add_days(self, days: Days) -> Option<Self> { |
520 | if days == Days::new(0) { |
521 | return Some(self); |
522 | } |
523 | // `NaiveDate::add_days` has a fast path if the result remains within the same year, that |
524 | // does not validate the resulting date. This allows us to return `Some` even for an out of |
525 | // range local datetime when adding `Days(0)`. |
526 | self.overflowing_naive_local() |
527 | .checked_add_days(days) |
528 | .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) |
529 | .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC) |
530 | } |
531 | |
532 | /// Subtract a duration in [`Days`] from the date part of the `DateTime`. |
533 | /// |
534 | /// # Errors |
535 | /// |
536 | /// Returns `None` if: |
537 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
538 | /// daylight saving time transition. |
539 | /// - The resulting UTC datetime would be out of range. |
540 | /// - The resulting local datetime would be out of range (unless `days` is zero). |
541 | #[must_use ] |
542 | pub fn checked_sub_days(self, days: Days) -> Option<Self> { |
543 | // `NaiveDate::add_days` has a fast path if the result remains within the same year, that |
544 | // does not validate the resulting date. This allows us to return `Some` even for an out of |
545 | // range local datetime when adding `Days(0)`. |
546 | self.overflowing_naive_local() |
547 | .checked_sub_days(days) |
548 | .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) |
549 | .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC) |
550 | } |
551 | |
552 | /// Subtracts another `DateTime` from the current date and time. |
553 | /// This does not overflow or underflow at all. |
554 | #[inline ] |
555 | #[must_use ] |
556 | pub fn signed_duration_since<Tz2: TimeZone>( |
557 | self, |
558 | rhs: impl Borrow<DateTime<Tz2>>, |
559 | ) -> TimeDelta { |
560 | self.datetime.signed_duration_since(rhs.borrow().datetime) |
561 | } |
562 | |
563 | /// Returns a view to the naive UTC datetime. |
564 | #[inline ] |
565 | #[must_use ] |
566 | pub const fn naive_utc(&self) -> NaiveDateTime { |
567 | self.datetime |
568 | } |
569 | |
570 | /// Returns a view to the naive local datetime. |
571 | /// |
572 | /// # Panics |
573 | /// |
574 | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
575 | /// method will panic if the offset from UTC would push the local datetime outside of the |
576 | /// representable range of a [`NaiveDateTime`]. |
577 | #[inline ] |
578 | #[must_use ] |
579 | pub fn naive_local(&self) -> NaiveDateTime { |
580 | self.datetime |
581 | .checked_add_offset(self.offset.fix()) |
582 | .expect("Local time out of range for `NaiveDateTime`" ) |
583 | } |
584 | |
585 | /// Returns the naive local datetime. |
586 | /// |
587 | /// This makes use of the buffer space outside of the representable range of values of |
588 | /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed |
589 | /// outside chrono. |
590 | #[inline ] |
591 | #[must_use ] |
592 | pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime { |
593 | self.datetime.overflowing_add_offset(self.offset.fix()) |
594 | } |
595 | |
596 | /// Retrieve the elapsed years from now to the given [`DateTime`]. |
597 | /// |
598 | /// # Errors |
599 | /// |
600 | /// Returns `None` if `base < self`. |
601 | #[must_use ] |
602 | pub fn years_since(&self, base: Self) -> Option<u32> { |
603 | let mut years = self.year() - base.year(); |
604 | let earlier_time = |
605 | (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time()); |
606 | |
607 | years -= match earlier_time { |
608 | true => 1, |
609 | false => 0, |
610 | }; |
611 | |
612 | match years >= 0 { |
613 | true => Some(years as u32), |
614 | false => None, |
615 | } |
616 | } |
617 | |
618 | /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`. |
619 | /// |
620 | /// # Panics |
621 | /// |
622 | /// Panics if the date can not be represented in this format: the year may not be negative and |
623 | /// can not have more than 4 digits. |
624 | #[cfg (feature = "alloc" )] |
625 | #[must_use ] |
626 | pub fn to_rfc2822(&self) -> String { |
627 | let mut result = String::with_capacity(32); |
628 | write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix()) |
629 | .expect("writing rfc2822 datetime to string should never fail" ); |
630 | result |
631 | } |
632 | |
633 | /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`. |
634 | #[cfg (feature = "alloc" )] |
635 | #[must_use ] |
636 | pub fn to_rfc3339(&self) -> String { |
637 | // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking. |
638 | let mut result = String::with_capacity(32); |
639 | let naive = self.overflowing_naive_local(); |
640 | let offset = self.offset.fix(); |
641 | write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false) |
642 | .expect("writing rfc3339 datetime to string should never fail" ); |
643 | result |
644 | } |
645 | |
646 | /// Return an RFC 3339 and ISO 8601 date and time string with subseconds |
647 | /// formatted as per `SecondsFormat`. |
648 | /// |
649 | /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as |
650 | /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses |
651 | /// [`Fixed::TimezoneOffsetColon`] |
652 | /// |
653 | /// # Examples |
654 | /// |
655 | /// ```rust |
656 | /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, Utc, NaiveDate}; |
657 | /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26) |
658 | /// .unwrap() |
659 | /// .and_hms_micro_opt(18, 30, 9, 453_829) |
660 | /// .unwrap() |
661 | /// .and_local_timezone(Utc) |
662 | /// .unwrap(); |
663 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00" ); |
664 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z" ); |
665 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z" ); |
666 | /// |
667 | /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap(); |
668 | /// let dt = pst |
669 | /// .from_local_datetime( |
670 | /// &NaiveDate::from_ymd_opt(2018, 1, 26) |
671 | /// .unwrap() |
672 | /// .and_hms_micro_opt(10, 30, 9, 453_829) |
673 | /// .unwrap(), |
674 | /// ) |
675 | /// .unwrap(); |
676 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00" ); |
677 | /// ``` |
678 | #[cfg (feature = "alloc" )] |
679 | #[must_use ] |
680 | pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String { |
681 | let mut result = String::with_capacity(38); |
682 | write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z) |
683 | .expect("writing rfc3339 datetime to string should never fail" ); |
684 | result |
685 | } |
686 | |
687 | /// The minimum possible `DateTime<Utc>`. |
688 | pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc }; |
689 | /// The maximum possible `DateTime<Utc>`. |
690 | pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc }; |
691 | } |
692 | |
693 | impl DateTime<Utc> { |
694 | /// Makes a new `DateTime<Utc>` from the number of non-leap seconds |
695 | /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp") |
696 | /// and the number of nanoseconds since the last whole non-leap second. |
697 | /// |
698 | /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and |
699 | /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos). |
700 | /// |
701 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
702 | /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`]. |
703 | /// |
704 | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
705 | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
706 | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
707 | /// |
708 | /// # Errors |
709 | /// |
710 | /// Returns `None` on out-of-range number of seconds and/or |
711 | /// invalid nanosecond, otherwise returns `Some(DateTime {...})`. |
712 | /// |
713 | /// # Example |
714 | /// |
715 | /// ``` |
716 | /// use chrono::DateTime; |
717 | /// |
718 | /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp" ); |
719 | /// |
720 | /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC" ); |
721 | /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); |
722 | /// ``` |
723 | #[inline ] |
724 | #[must_use ] |
725 | pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> { |
726 | let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY; |
727 | let secs = secs.rem_euclid(86_400); |
728 | if days < i32::MIN as i64 || days > i32::MAX as i64 { |
729 | return None; |
730 | } |
731 | let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32)); |
732 | let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs)); |
733 | Some(date.and_time(time).and_utc()) |
734 | } |
735 | |
736 | /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds |
737 | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
738 | /// |
739 | /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis). |
740 | /// |
741 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
742 | /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`]. |
743 | /// |
744 | /// # Errors |
745 | /// |
746 | /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`. |
747 | /// |
748 | /// # Example |
749 | /// |
750 | /// ``` |
751 | /// use chrono::DateTime; |
752 | /// |
753 | /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp" ); |
754 | /// |
755 | /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC" ); |
756 | /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt); |
757 | /// ``` |
758 | #[inline ] |
759 | #[must_use ] |
760 | pub const fn from_timestamp_millis(millis: i64) -> Option<Self> { |
761 | let secs = millis.div_euclid(1000); |
762 | let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000; |
763 | Self::from_timestamp(secs, nsecs) |
764 | } |
765 | |
766 | /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds |
767 | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
768 | /// |
769 | /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros). |
770 | /// |
771 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
772 | /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`]. |
773 | /// |
774 | /// # Errors |
775 | /// |
776 | /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` |
777 | /// (more than ca. 262,000 years away from common era) |
778 | /// |
779 | /// # Example |
780 | /// |
781 | /// ``` |
782 | /// use chrono::DateTime; |
783 | /// |
784 | /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC |
785 | /// let dt = DateTime::from_timestamp_micros(timestamp_micros); |
786 | /// assert!(dt.is_some()); |
787 | /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp" ).timestamp_micros()); |
788 | /// |
789 | /// // Negative timestamps (before the UNIX epoch) are supported as well. |
790 | /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC |
791 | /// let dt = DateTime::from_timestamp_micros(timestamp_micros); |
792 | /// assert!(dt.is_some()); |
793 | /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp" ).timestamp_micros()); |
794 | /// ``` |
795 | #[inline ] |
796 | #[must_use ] |
797 | pub const fn from_timestamp_micros(micros: i64) -> Option<Self> { |
798 | let secs = micros.div_euclid(1_000_000); |
799 | let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; |
800 | Self::from_timestamp(secs, nsecs) |
801 | } |
802 | |
803 | /// Creates a new [`DateTime<Utc>`] from the number of non-leap microseconds |
804 | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
805 | /// |
806 | /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos). |
807 | /// |
808 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
809 | /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`]. |
810 | /// |
811 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
812 | /// |
813 | /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can |
814 | /// be represented as a `DateTime` this method never fails. |
815 | /// |
816 | /// # Example |
817 | /// |
818 | /// ``` |
819 | /// use chrono::DateTime; |
820 | /// |
821 | /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC |
822 | /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); |
823 | /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); |
824 | /// |
825 | /// // Negative timestamps (before the UNIX epoch) are supported as well. |
826 | /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC |
827 | /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); |
828 | /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); |
829 | /// ``` |
830 | #[inline ] |
831 | #[must_use ] |
832 | pub const fn from_timestamp_nanos(nanos: i64) -> Self { |
833 | let secs = nanos.div_euclid(1_000_000_000); |
834 | let nsecs = nanos.rem_euclid(1_000_000_000) as u32; |
835 | expect!(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range" ) |
836 | } |
837 | |
838 | /// The Unix Epoch, 1970-01-01 00:00:00 UTC. |
839 | pub const UNIX_EPOCH: Self = Self { datetime: NaiveDateTime::UNIX_EPOCH, offset: Utc }; |
840 | } |
841 | |
842 | impl Default for DateTime<Utc> { |
843 | fn default() -> Self { |
844 | Utc.from_utc_datetime(&NaiveDateTime::default()) |
845 | } |
846 | } |
847 | |
848 | #[cfg (feature = "clock" )] |
849 | impl Default for DateTime<Local> { |
850 | fn default() -> Self { |
851 | Local.from_utc_datetime(&NaiveDateTime::default()) |
852 | } |
853 | } |
854 | |
855 | impl Default for DateTime<FixedOffset> { |
856 | fn default() -> Self { |
857 | FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default()) |
858 | } |
859 | } |
860 | |
861 | /// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance. |
862 | impl From<DateTime<Utc>> for DateTime<FixedOffset> { |
863 | /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance. |
864 | /// |
865 | /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by |
866 | /// this will be created with a fixed timezone offset of 0. |
867 | fn from(src: DateTime<Utc>) -> Self { |
868 | src.with_timezone(&FixedOffset::east_opt(secs:0).unwrap()) |
869 | } |
870 | } |
871 | |
872 | /// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance. |
873 | #[cfg (feature = "clock" )] |
874 | impl From<DateTime<Utc>> for DateTime<Local> { |
875 | /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance. |
876 | /// |
877 | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones. |
878 | fn from(src: DateTime<Utc>) -> Self { |
879 | src.with_timezone(&Local) |
880 | } |
881 | } |
882 | |
883 | /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance. |
884 | impl From<DateTime<FixedOffset>> for DateTime<Utc> { |
885 | /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance. |
886 | /// |
887 | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone |
888 | /// difference. |
889 | fn from(src: DateTime<FixedOffset>) -> Self { |
890 | src.with_timezone(&Utc) |
891 | } |
892 | } |
893 | |
894 | /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance. |
895 | #[cfg (feature = "clock" )] |
896 | impl From<DateTime<FixedOffset>> for DateTime<Local> { |
897 | /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance. |
898 | /// |
899 | /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local |
900 | /// time. |
901 | fn from(src: DateTime<FixedOffset>) -> Self { |
902 | src.with_timezone(&Local) |
903 | } |
904 | } |
905 | |
906 | /// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance. |
907 | #[cfg (feature = "clock" )] |
908 | impl From<DateTime<Local>> for DateTime<Utc> { |
909 | /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance. |
910 | /// |
911 | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in |
912 | /// timezones. |
913 | fn from(src: DateTime<Local>) -> Self { |
914 | src.with_timezone(&Utc) |
915 | } |
916 | } |
917 | |
918 | /// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance. |
919 | #[cfg (feature = "clock" )] |
920 | impl From<DateTime<Local>> for DateTime<FixedOffset> { |
921 | /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance. |
922 | /// |
923 | /// Conversion is performed via [`DateTime::with_timezone`]. |
924 | fn from(src: DateTime<Local>) -> Self { |
925 | src.with_timezone(&src.offset().fix()) |
926 | } |
927 | } |
928 | |
929 | /// Maps the local datetime to other datetime with given conversion function. |
930 | fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>> |
931 | where |
932 | F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>, |
933 | { |
934 | fOption>(dt.overflowing_naive_local()) |
935 | .and_then(|datetime: NaiveDateTime| dt.timezone().from_local_datetime(&datetime).single()) |
936 | .filter(|dt: &DateTime| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC) |
937 | } |
938 | |
939 | impl DateTime<FixedOffset> { |
940 | /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value. |
941 | /// |
942 | /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`) |
943 | /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`]. |
944 | /// |
945 | /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP |
946 | /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in |
947 | /// 2008. |
948 | /// |
949 | /// # Support for the obsolete date format |
950 | /// |
951 | /// - A 2-digit year is interpreted to be a year in 1950-2049. |
952 | /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and |
953 | /// [Appendix A.5] |
954 | /// - Single letter 'military' time zone names are parsed as a `-0000` offset. |
955 | /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because |
956 | /// the meaning is now ambiguous, the standard says they should be be considered as `-0000` |
957 | /// unless there is out-of-band information confirming their meaning. |
958 | /// The exception is `Z`, which remains identical to `+0000`. |
959 | /// |
960 | /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3 |
961 | /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5 |
962 | /// |
963 | /// # Example |
964 | /// |
965 | /// ``` |
966 | /// # use chrono::{DateTime, FixedOffset, TimeZone}; |
967 | /// assert_eq!( |
968 | /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT" ).unwrap(), |
969 | /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() |
970 | /// ); |
971 | /// ``` |
972 | pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> { |
973 | const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)]; |
974 | let mut parsed = Parsed::new(); |
975 | parse(&mut parsed, s, ITEMS.iter())?; |
976 | parsed.to_datetime() |
977 | } |
978 | |
979 | /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value. |
980 | /// |
981 | /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are |
982 | /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a |
983 | /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide |
984 | /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly |
985 | /// encountered variety of RFC 3339 formats. |
986 | /// |
987 | /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing |
988 | /// values in a wide range of formats, only some of which represent actual date-and-time |
989 | /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are |
990 | /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601 |
991 | /// values (or the other way around). |
992 | pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> { |
993 | let mut parsed = Parsed::new(); |
994 | let (s, _) = parse_rfc3339(&mut parsed, s)?; |
995 | if !s.is_empty() { |
996 | return Err(TOO_LONG); |
997 | } |
998 | parsed.to_datetime() |
999 | } |
1000 | |
1001 | /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value. |
1002 | /// |
1003 | /// Note that this method *requires a timezone* in the input string. See |
1004 | /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str) |
1005 | /// for a version that does not require a timezone in the to-be-parsed str. The returned |
1006 | /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone. |
1007 | /// |
1008 | /// See the [`format::strftime` module](./format/strftime/index.html) for supported format |
1009 | /// sequences. |
1010 | /// |
1011 | /// # Example |
1012 | /// |
1013 | /// ```rust |
1014 | /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone}; |
1015 | /// |
1016 | /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000" , "%Y %b %d %H:%M:%S%.3f %z" ); |
1017 | /// assert_eq!( |
1018 | /// dt, |
1019 | /// Ok(FixedOffset::east_opt(0) |
1020 | /// .unwrap() |
1021 | /// .from_local_datetime( |
1022 | /// &NaiveDate::from_ymd_opt(1983, 4, 13) |
1023 | /// .unwrap() |
1024 | /// .and_hms_milli_opt(12, 9, 14, 274) |
1025 | /// .unwrap() |
1026 | /// ) |
1027 | /// .unwrap()) |
1028 | /// ); |
1029 | /// ``` |
1030 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> { |
1031 | let mut parsed = Parsed::new(); |
1032 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
1033 | parsed.to_datetime() |
1034 | } |
1035 | |
1036 | /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a |
1037 | /// slice with the remaining portion of the string. |
1038 | /// |
1039 | /// Note that this method *requires a timezone* in the input string. See |
1040 | /// [`NaiveDateTime::parse_and_remainder`] for a version that does not |
1041 | /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`] |
1042 | /// reflecting the parsed timezone. |
1043 | /// |
1044 | /// See the [`format::strftime` module](./format/strftime/index.html) for supported format |
1045 | /// sequences. |
1046 | /// |
1047 | /// Similar to [`parse_from_str`](#method.parse_from_str). |
1048 | /// |
1049 | /// # Example |
1050 | /// |
1051 | /// ```rust |
1052 | /// # use chrono::{DateTime, FixedOffset, TimeZone}; |
1053 | /// let (datetime, remainder) = DateTime::parse_and_remainder( |
1054 | /// "2015-02-18 23:16:09 +0200 trailing text" , |
1055 | /// "%Y-%m-%d %H:%M:%S %z" , |
1056 | /// ) |
1057 | /// .unwrap(); |
1058 | /// assert_eq!( |
1059 | /// datetime, |
1060 | /// FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() |
1061 | /// ); |
1062 | /// assert_eq!(remainder, " trailing text" ); |
1063 | /// ``` |
1064 | pub fn parse_and_remainder<'a>( |
1065 | s: &'a str, |
1066 | fmt: &str, |
1067 | ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> { |
1068 | let mut parsed = Parsed::new(); |
1069 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
1070 | parsed.to_datetime().map(|d| (d, remainder)) |
1071 | } |
1072 | } |
1073 | |
1074 | impl<Tz: TimeZone> DateTime<Tz> |
1075 | where |
1076 | Tz::Offset: fmt::Display, |
1077 | { |
1078 | /// Formats the combined date and time with the specified formatting items. |
1079 | #[cfg (feature = "alloc" )] |
1080 | #[inline ] |
1081 | #[must_use ] |
1082 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
1083 | where |
1084 | I: Iterator<Item = B> + Clone, |
1085 | B: Borrow<Item<'a>>, |
1086 | { |
1087 | let local = self.overflowing_naive_local(); |
1088 | DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items) |
1089 | } |
1090 | |
1091 | /// Formats the combined date and time per the specified format string. |
1092 | /// |
1093 | /// See the [`crate::format::strftime`] module for the supported escape sequences. |
1094 | /// |
1095 | /// # Example |
1096 | /// ```rust |
1097 | /// use chrono::prelude::*; |
1098 | /// |
1099 | /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap(); |
1100 | /// let formatted = format!("{}" , date_time.format("%d/%m/%Y %H:%M" )); |
1101 | /// assert_eq!(formatted, "02/04/2017 12:50" ); |
1102 | /// ``` |
1103 | #[cfg (feature = "alloc" )] |
1104 | #[inline ] |
1105 | #[must_use ] |
1106 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
1107 | self.format_with_items(StrftimeItems::new(fmt)) |
1108 | } |
1109 | |
1110 | /// Formats the combined date and time with the specified formatting items and locale. |
1111 | #[cfg (all(feature = "unstable-locales" , feature = "alloc" ))] |
1112 | #[inline ] |
1113 | #[must_use ] |
1114 | pub fn format_localized_with_items<'a, I, B>( |
1115 | &self, |
1116 | items: I, |
1117 | locale: Locale, |
1118 | ) -> DelayedFormat<I> |
1119 | where |
1120 | I: Iterator<Item = B> + Clone, |
1121 | B: Borrow<Item<'a>>, |
1122 | { |
1123 | let local = self.overflowing_naive_local(); |
1124 | DelayedFormat::new_with_offset_and_locale( |
1125 | Some(local.date()), |
1126 | Some(local.time()), |
1127 | &self.offset, |
1128 | items, |
1129 | locale, |
1130 | ) |
1131 | } |
1132 | |
1133 | /// Formats the combined date and time per the specified format string and |
1134 | /// locale. |
1135 | /// |
1136 | /// See the [`crate::format::strftime`] module on the supported escape |
1137 | /// sequences. |
1138 | #[cfg (all(feature = "unstable-locales" , feature = "alloc" ))] |
1139 | #[inline ] |
1140 | #[must_use ] |
1141 | pub fn format_localized<'a>( |
1142 | &self, |
1143 | fmt: &'a str, |
1144 | locale: Locale, |
1145 | ) -> DelayedFormat<StrftimeItems<'a>> { |
1146 | self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale) |
1147 | } |
1148 | } |
1149 | |
1150 | impl<Tz: TimeZone> Datelike for DateTime<Tz> { |
1151 | #[inline ] |
1152 | fn year(&self) -> i32 { |
1153 | self.overflowing_naive_local().year() |
1154 | } |
1155 | #[inline ] |
1156 | fn month(&self) -> u32 { |
1157 | self.overflowing_naive_local().month() |
1158 | } |
1159 | #[inline ] |
1160 | fn month0(&self) -> u32 { |
1161 | self.overflowing_naive_local().month0() |
1162 | } |
1163 | #[inline ] |
1164 | fn day(&self) -> u32 { |
1165 | self.overflowing_naive_local().day() |
1166 | } |
1167 | #[inline ] |
1168 | fn day0(&self) -> u32 { |
1169 | self.overflowing_naive_local().day0() |
1170 | } |
1171 | #[inline ] |
1172 | fn ordinal(&self) -> u32 { |
1173 | self.overflowing_naive_local().ordinal() |
1174 | } |
1175 | #[inline ] |
1176 | fn ordinal0(&self) -> u32 { |
1177 | self.overflowing_naive_local().ordinal0() |
1178 | } |
1179 | #[inline ] |
1180 | fn weekday(&self) -> Weekday { |
1181 | self.overflowing_naive_local().weekday() |
1182 | } |
1183 | #[inline ] |
1184 | fn iso_week(&self) -> IsoWeek { |
1185 | self.overflowing_naive_local().iso_week() |
1186 | } |
1187 | |
1188 | #[inline ] |
1189 | /// Makes a new `DateTime` with the year number changed, while keeping the same month and day. |
1190 | /// |
1191 | /// See also the [`NaiveDate::with_year`] method. |
1192 | /// |
1193 | /// # Errors |
1194 | /// |
1195 | /// Returns `None` if: |
1196 | /// - The resulting date does not exist (February 29 in a non-leap year). |
1197 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1198 | /// daylight saving time transition. |
1199 | /// - The resulting UTC datetime would be out of range. |
1200 | /// - The resulting local datetime would be out of range (unless the year remains the same). |
1201 | fn with_year(&self, year: i32) -> Option<DateTime<Tz>> { |
1202 | map_local(self, |dt| match dt.year() == year { |
1203 | true => Some(dt), |
1204 | false => dt.with_year(year), |
1205 | }) |
1206 | } |
1207 | |
1208 | /// Makes a new `DateTime` with the month number (starting from 1) changed. |
1209 | /// |
1210 | /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. |
1211 | /// |
1212 | /// See also the [`NaiveDate::with_month`] method. |
1213 | /// |
1214 | /// # Errors |
1215 | /// |
1216 | /// Returns `None` if: |
1217 | /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). |
1218 | /// - The value for `month` is invalid. |
1219 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1220 | /// daylight saving time transition. |
1221 | #[inline ] |
1222 | fn with_month(&self, month: u32) -> Option<DateTime<Tz>> { |
1223 | map_local(self, |datetime| datetime.with_month(month)) |
1224 | } |
1225 | |
1226 | /// Makes a new `DateTime` with the month number (starting from 0) changed. |
1227 | /// |
1228 | /// See also the [`NaiveDate::with_month0`] method. |
1229 | /// |
1230 | /// # Errors |
1231 | /// |
1232 | /// Returns `None` if: |
1233 | /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). |
1234 | /// - The value for `month0` is invalid. |
1235 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1236 | /// daylight saving time transition. |
1237 | #[inline ] |
1238 | fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> { |
1239 | map_local(self, |datetime| datetime.with_month0(month0)) |
1240 | } |
1241 | |
1242 | /// Makes a new `DateTime` with the day of month (starting from 1) changed. |
1243 | /// |
1244 | /// See also the [`NaiveDate::with_day`] method. |
1245 | /// |
1246 | /// # Errors |
1247 | /// |
1248 | /// Returns `None` if: |
1249 | /// - The resulting date does not exist (for example `day(31)` in April). |
1250 | /// - The value for `day` is invalid. |
1251 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1252 | /// daylight saving time transition. |
1253 | #[inline ] |
1254 | fn with_day(&self, day: u32) -> Option<DateTime<Tz>> { |
1255 | map_local(self, |datetime| datetime.with_day(day)) |
1256 | } |
1257 | |
1258 | /// Makes a new `DateTime` with the day of month (starting from 0) changed. |
1259 | /// |
1260 | /// See also the [`NaiveDate::with_day0`] method. |
1261 | /// |
1262 | /// # Errors |
1263 | /// |
1264 | /// Returns `None` if: |
1265 | /// - The resulting date does not exist (for example `day(30)` in April). |
1266 | /// - The value for `day0` is invalid. |
1267 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1268 | /// daylight saving time transition. |
1269 | #[inline ] |
1270 | fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> { |
1271 | map_local(self, |datetime| datetime.with_day0(day0)) |
1272 | } |
1273 | |
1274 | /// Makes a new `DateTime` with the day of year (starting from 1) changed. |
1275 | /// |
1276 | /// See also the [`NaiveDate::with_ordinal`] method. |
1277 | /// |
1278 | /// # Errors |
1279 | /// |
1280 | /// Returns `None` if: |
1281 | /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). |
1282 | /// - The value for `ordinal` is invalid. |
1283 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1284 | /// daylight saving time transition. |
1285 | #[inline ] |
1286 | fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> { |
1287 | map_local(self, |datetime| datetime.with_ordinal(ordinal)) |
1288 | } |
1289 | |
1290 | /// Makes a new `DateTime` with the day of year (starting from 0) changed. |
1291 | /// |
1292 | /// See also the [`NaiveDate::with_ordinal0`] method. |
1293 | /// |
1294 | /// # Errors |
1295 | /// |
1296 | /// Returns `None` if: |
1297 | /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). |
1298 | /// - The value for `ordinal0` is invalid. |
1299 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1300 | /// daylight saving time transition. |
1301 | #[inline ] |
1302 | fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> { |
1303 | map_local(self, |datetime| datetime.with_ordinal0(ordinal0)) |
1304 | } |
1305 | } |
1306 | |
1307 | impl<Tz: TimeZone> Timelike for DateTime<Tz> { |
1308 | #[inline ] |
1309 | fn hour(&self) -> u32 { |
1310 | self.overflowing_naive_local().hour() |
1311 | } |
1312 | #[inline ] |
1313 | fn minute(&self) -> u32 { |
1314 | self.overflowing_naive_local().minute() |
1315 | } |
1316 | #[inline ] |
1317 | fn second(&self) -> u32 { |
1318 | self.overflowing_naive_local().second() |
1319 | } |
1320 | #[inline ] |
1321 | fn nanosecond(&self) -> u32 { |
1322 | self.overflowing_naive_local().nanosecond() |
1323 | } |
1324 | |
1325 | /// Makes a new `DateTime` with the hour number changed. |
1326 | /// |
1327 | /// See also the [`NaiveTime::with_hour`] method. |
1328 | /// |
1329 | /// # Errors |
1330 | /// |
1331 | /// Returns `None` if: |
1332 | /// - The value for `hour` is invalid. |
1333 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1334 | /// daylight saving time transition. |
1335 | #[inline ] |
1336 | fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> { |
1337 | map_local(self, |datetime| datetime.with_hour(hour)) |
1338 | } |
1339 | |
1340 | /// Makes a new `DateTime` with the minute number changed. |
1341 | /// |
1342 | /// See also the [`NaiveTime::with_minute`] method. |
1343 | /// |
1344 | /// # Errors |
1345 | /// |
1346 | /// - The value for `minute` is invalid. |
1347 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1348 | /// daylight saving time transition. |
1349 | #[inline ] |
1350 | fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> { |
1351 | map_local(self, |datetime| datetime.with_minute(min)) |
1352 | } |
1353 | |
1354 | /// Makes a new `DateTime` with the second number changed. |
1355 | /// |
1356 | /// As with the [`second`](#method.second) method, |
1357 | /// the input range is restricted to 0 through 59. |
1358 | /// |
1359 | /// See also the [`NaiveTime::with_second`] method. |
1360 | /// |
1361 | /// # Errors |
1362 | /// |
1363 | /// Returns `None` if: |
1364 | /// - The value for `second` is invalid. |
1365 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1366 | /// daylight saving time transition. |
1367 | #[inline ] |
1368 | fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> { |
1369 | map_local(self, |datetime| datetime.with_second(sec)) |
1370 | } |
1371 | |
1372 | /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed. |
1373 | /// |
1374 | /// Returns `None` when the resulting `NaiveDateTime` would be invalid. |
1375 | /// As with the [`NaiveDateTime::nanosecond`] method, |
1376 | /// the input range can exceed 1,000,000,000 for leap seconds. |
1377 | /// |
1378 | /// See also the [`NaiveTime::with_nanosecond`] method. |
1379 | /// |
1380 | /// # Errors |
1381 | /// |
1382 | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
1383 | #[inline ] |
1384 | fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> { |
1385 | map_local(self, |datetime| datetime.with_nanosecond(nano)) |
1386 | } |
1387 | } |
1388 | |
1389 | // we need them as automatic impls cannot handle associated types |
1390 | impl<Tz: TimeZone> Copy for DateTime<Tz> where <Tz as TimeZone>::Offset: Copy {} |
1391 | unsafe impl<Tz: TimeZone> Send for DateTime<Tz> where <Tz as TimeZone>::Offset: Send {} |
1392 | |
1393 | impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> { |
1394 | fn eq(&self, other: &DateTime<Tz2>) -> bool { |
1395 | self.datetime == other.datetime |
1396 | } |
1397 | } |
1398 | |
1399 | impl<Tz: TimeZone> Eq for DateTime<Tz> {} |
1400 | |
1401 | impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> { |
1402 | /// Compare two DateTimes based on their true time, ignoring time zones |
1403 | /// |
1404 | /// # Example |
1405 | /// |
1406 | /// ``` |
1407 | /// use chrono::prelude::*; |
1408 | /// |
1409 | /// let earlier = Utc |
1410 | /// .with_ymd_and_hms(2015, 5, 15, 2, 0, 0) |
1411 | /// .unwrap() |
1412 | /// .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap()); |
1413 | /// let later = Utc |
1414 | /// .with_ymd_and_hms(2015, 5, 15, 3, 0, 0) |
1415 | /// .unwrap() |
1416 | /// .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap()); |
1417 | /// |
1418 | /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00" ); |
1419 | /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00" ); |
1420 | /// |
1421 | /// assert!(later > earlier); |
1422 | /// ``` |
1423 | fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> { |
1424 | self.datetime.partial_cmp(&other.datetime) |
1425 | } |
1426 | } |
1427 | |
1428 | impl<Tz: TimeZone> Ord for DateTime<Tz> { |
1429 | fn cmp(&self, other: &DateTime<Tz>) -> Ordering { |
1430 | self.datetime.cmp(&other.datetime) |
1431 | } |
1432 | } |
1433 | |
1434 | impl<Tz: TimeZone> hash::Hash for DateTime<Tz> { |
1435 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
1436 | self.datetime.hash(state) |
1437 | } |
1438 | } |
1439 | |
1440 | /// Add `TimeDelta` to `DateTime`. |
1441 | /// |
1442 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1443 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1444 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1445 | /// |
1446 | /// # Panics |
1447 | /// |
1448 | /// Panics if the resulting date would be out of range. |
1449 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1450 | impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> { |
1451 | type Output = DateTime<Tz>; |
1452 | |
1453 | #[inline ] |
1454 | fn add(self, rhs: TimeDelta) -> DateTime<Tz> { |
1455 | self.checked_add_signed(rhs).expect(msg:"`DateTime + TimeDelta` overflowed" ) |
1456 | } |
1457 | } |
1458 | |
1459 | /// Add `std::time::Duration` to `DateTime`. |
1460 | /// |
1461 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1462 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1463 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1464 | /// |
1465 | /// # Panics |
1466 | /// |
1467 | /// Panics if the resulting date would be out of range. |
1468 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1469 | impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> { |
1470 | type Output = DateTime<Tz>; |
1471 | |
1472 | #[inline ] |
1473 | fn add(self, rhs: Duration) -> DateTime<Tz> { |
1474 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
1475 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
1476 | self.checked_add_signed(rhs).expect(msg:"`DateTime + TimeDelta` overflowed" ) |
1477 | } |
1478 | } |
1479 | |
1480 | /// Add-assign `chrono::Duration` to `DateTime`. |
1481 | /// |
1482 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1483 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1484 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1485 | /// |
1486 | /// # Panics |
1487 | /// |
1488 | /// Panics if the resulting date would be out of range. |
1489 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1490 | impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> { |
1491 | #[inline ] |
1492 | fn add_assign(&mut self, rhs: TimeDelta) { |
1493 | let datetime: NaiveDateTime = |
1494 | self.datetime.checked_add_signed(rhs).expect(msg:"`DateTime + TimeDelta` overflowed" ); |
1495 | let tz: Tz = self.timezone(); |
1496 | *self = tz.from_utc_datetime(&datetime); |
1497 | } |
1498 | } |
1499 | |
1500 | /// Add-assign `std::time::Duration` to `DateTime`. |
1501 | /// |
1502 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1503 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1504 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1505 | /// |
1506 | /// # Panics |
1507 | /// |
1508 | /// Panics if the resulting date would be out of range. |
1509 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
1510 | impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> { |
1511 | #[inline ] |
1512 | fn add_assign(&mut self, rhs: Duration) { |
1513 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
1514 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
1515 | *self += rhs; |
1516 | } |
1517 | } |
1518 | |
1519 | /// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged). |
1520 | /// |
1521 | /// # Panics |
1522 | /// |
1523 | /// Panics if the resulting date would be out of range. |
1524 | impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> { |
1525 | type Output = DateTime<Tz>; |
1526 | |
1527 | #[inline ] |
1528 | fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> { |
1529 | self.datetime = |
1530 | self.naive_utc().checked_add_offset(rhs).expect(msg:"`DateTime + FixedOffset` overflowed" ); |
1531 | self |
1532 | } |
1533 | } |
1534 | |
1535 | /// Add `Months` to `DateTime`. |
1536 | /// |
1537 | /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for |
1538 | /// details. |
1539 | /// |
1540 | /// # Panics |
1541 | /// |
1542 | /// Panics if: |
1543 | /// - The resulting date would be out of range. |
1544 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1545 | /// daylight saving time transition. |
1546 | /// |
1547 | /// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead. |
1548 | impl<Tz: TimeZone> Add<Months> for DateTime<Tz> { |
1549 | type Output = DateTime<Tz>; |
1550 | |
1551 | fn add(self, rhs: Months) -> Self::Output { |
1552 | self.checked_add_months(rhs).expect(msg:"`DateTime + Months` out of range" ) |
1553 | } |
1554 | } |
1555 | |
1556 | /// Subtract `TimeDelta` from `DateTime`. |
1557 | /// |
1558 | /// This is the same as the addition with a negated `TimeDelta`. |
1559 | /// |
1560 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1561 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1562 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1563 | /// |
1564 | /// # Panics |
1565 | /// |
1566 | /// Panics if the resulting date would be out of range. |
1567 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1568 | impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> { |
1569 | type Output = DateTime<Tz>; |
1570 | |
1571 | #[inline ] |
1572 | fn sub(self, rhs: TimeDelta) -> DateTime<Tz> { |
1573 | self.checked_sub_signed(rhs).expect(msg:"`DateTime - TimeDelta` overflowed" ) |
1574 | } |
1575 | } |
1576 | |
1577 | /// Subtract `std::time::Duration` from `DateTime`. |
1578 | /// |
1579 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1580 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1581 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1582 | /// |
1583 | /// # Panics |
1584 | /// |
1585 | /// Panics if the resulting date would be out of range. |
1586 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1587 | impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> { |
1588 | type Output = DateTime<Tz>; |
1589 | |
1590 | #[inline ] |
1591 | fn sub(self, rhs: Duration) -> DateTime<Tz> { |
1592 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
1593 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
1594 | self.checked_sub_signed(rhs).expect(msg:"`DateTime - TimeDelta` overflowed" ) |
1595 | } |
1596 | } |
1597 | |
1598 | /// Subtract-assign `TimeDelta` from `DateTime`. |
1599 | /// |
1600 | /// This is the same as the addition with a negated `TimeDelta`. |
1601 | /// |
1602 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1603 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1604 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1605 | /// |
1606 | /// # Panics |
1607 | /// |
1608 | /// Panics if the resulting date would be out of range. |
1609 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1610 | impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> { |
1611 | #[inline ] |
1612 | fn sub_assign(&mut self, rhs: TimeDelta) { |
1613 | let datetime: NaiveDateTime = |
1614 | self.datetime.checked_sub_signed(rhs).expect(msg:"`DateTime - TimeDelta` overflowed" ); |
1615 | let tz: Tz = self.timezone(); |
1616 | *self = tz.from_utc_datetime(&datetime) |
1617 | } |
1618 | } |
1619 | |
1620 | /// Subtract-assign `std::time::Duration` from `DateTime`. |
1621 | /// |
1622 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1623 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
1624 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1625 | /// |
1626 | /// # Panics |
1627 | /// |
1628 | /// Panics if the resulting date would be out of range. |
1629 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
1630 | impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> { |
1631 | #[inline ] |
1632 | fn sub_assign(&mut self, rhs: Duration) { |
1633 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
1634 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
1635 | *self -= rhs; |
1636 | } |
1637 | } |
1638 | |
1639 | /// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged). |
1640 | /// |
1641 | /// # Panics |
1642 | /// |
1643 | /// Panics if the resulting date would be out of range. |
1644 | impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> { |
1645 | type Output = DateTime<Tz>; |
1646 | |
1647 | #[inline ] |
1648 | fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> { |
1649 | self.datetime = |
1650 | self.naive_utc().checked_sub_offset(rhs).expect(msg:"`DateTime - FixedOffset` overflowed" ); |
1651 | self |
1652 | } |
1653 | } |
1654 | |
1655 | /// Subtract `Months` from `DateTime`. |
1656 | /// |
1657 | /// The result will be clamped to valid days in the resulting month, see |
1658 | /// [`DateTime<Tz>::checked_sub_months`] for details. |
1659 | /// |
1660 | /// # Panics |
1661 | /// |
1662 | /// Panics if: |
1663 | /// - The resulting date would be out of range. |
1664 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1665 | /// daylight saving time transition. |
1666 | /// |
1667 | /// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead. |
1668 | impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> { |
1669 | type Output = DateTime<Tz>; |
1670 | |
1671 | fn sub(self, rhs: Months) -> Self::Output { |
1672 | self.checked_sub_months(rhs).expect(msg:"`DateTime - Months` out of range" ) |
1673 | } |
1674 | } |
1675 | |
1676 | impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> { |
1677 | type Output = TimeDelta; |
1678 | |
1679 | #[inline ] |
1680 | fn sub(self, rhs: DateTime<Tz>) -> TimeDelta { |
1681 | self.signed_duration_since(rhs) |
1682 | } |
1683 | } |
1684 | |
1685 | impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> { |
1686 | type Output = TimeDelta; |
1687 | |
1688 | #[inline ] |
1689 | fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta { |
1690 | self.signed_duration_since(rhs) |
1691 | } |
1692 | } |
1693 | |
1694 | /// Add `Days` to `NaiveDateTime`. |
1695 | /// |
1696 | /// # Panics |
1697 | /// |
1698 | /// Panics if: |
1699 | /// - The resulting date would be out of range. |
1700 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1701 | /// daylight saving time transition. |
1702 | /// |
1703 | /// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead. |
1704 | impl<Tz: TimeZone> Add<Days> for DateTime<Tz> { |
1705 | type Output = DateTime<Tz>; |
1706 | |
1707 | fn add(self, days: Days) -> Self::Output { |
1708 | self.checked_add_days(days).expect(msg:"`DateTime + Days` out of range" ) |
1709 | } |
1710 | } |
1711 | |
1712 | /// Subtract `Days` from `DateTime`. |
1713 | /// |
1714 | /// # Panics |
1715 | /// |
1716 | /// Panics if: |
1717 | /// - The resulting date would be out of range. |
1718 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
1719 | /// daylight saving time transition. |
1720 | /// |
1721 | /// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead. |
1722 | impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> { |
1723 | type Output = DateTime<Tz>; |
1724 | |
1725 | fn sub(self, days: Days) -> Self::Output { |
1726 | self.checked_sub_days(days).expect(msg:"`DateTime - Days` out of range" ) |
1727 | } |
1728 | } |
1729 | |
1730 | impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> { |
1731 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1732 | self.overflowing_naive_local().fmt(f)?; |
1733 | self.offset.fmt(f) |
1734 | } |
1735 | } |
1736 | |
1737 | // `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because |
1738 | // deriving a trait recursively does not propagate trait defined associated types with their own |
1739 | // constraints: |
1740 | // In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived` |
1741 | // cannot be formatted using `{:?}` because it doesn't implement `Debug`. |
1742 | // See below for further discussion: |
1743 | // * https://github.com/rust-lang/rust/issues/26925 |
1744 | // * https://github.com/rkyv/rkyv/issues/333 |
1745 | // * https://github.com/dtolnay/syn/issues/370 |
1746 | #[cfg (feature = "rkyv-validation" )] |
1747 | impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz> |
1748 | where |
1749 | Tz: Archive, |
1750 | <Tz as Archive>::Archived: fmt::Debug, |
1751 | <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug, |
1752 | <Tz as TimeZone>::Offset: fmt::Debug + Archive, |
1753 | { |
1754 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1755 | f.debug_struct("ArchivedDateTime" ) |
1756 | .field("datetime" , &self.datetime) |
1757 | .field("offset" , &self.offset) |
1758 | .finish() |
1759 | } |
1760 | } |
1761 | |
1762 | impl<Tz: TimeZone> fmt::Display for DateTime<Tz> |
1763 | where |
1764 | Tz::Offset: fmt::Display, |
1765 | { |
1766 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1767 | self.overflowing_naive_local().fmt(f)?; |
1768 | f.write_char(' ' )?; |
1769 | self.offset.fmt(f) |
1770 | } |
1771 | } |
1772 | |
1773 | /// Accepts a relaxed form of RFC3339. |
1774 | /// A space or a 'T' are accepted as the separator between the date and time |
1775 | /// parts. |
1776 | /// |
1777 | /// All of these examples are equivalent: |
1778 | /// ``` |
1779 | /// # use chrono::{DateTime, Utc}; |
1780 | /// "2012-12-12T12:12:12Z" .parse::<DateTime<Utc>>()?; |
1781 | /// "2012-12-12 12:12:12Z" .parse::<DateTime<Utc>>()?; |
1782 | /// "2012-12-12 12:12:12+0000" .parse::<DateTime<Utc>>()?; |
1783 | /// "2012-12-12 12:12:12+00:00" .parse::<DateTime<Utc>>()?; |
1784 | /// # Ok::<(), chrono::ParseError>(()) |
1785 | /// ``` |
1786 | impl str::FromStr for DateTime<Utc> { |
1787 | type Err = ParseError; |
1788 | |
1789 | fn from_str(s: &str) -> ParseResult<DateTime<Utc>> { |
1790 | s.parse::<DateTime<FixedOffset>>().map(|dt: DateTime| dt.with_timezone(&Utc)) |
1791 | } |
1792 | } |
1793 | |
1794 | /// Accepts a relaxed form of RFC3339. |
1795 | /// A space or a 'T' are accepted as the separator between the date and time |
1796 | /// parts. |
1797 | /// |
1798 | /// All of these examples are equivalent: |
1799 | /// ``` |
1800 | /// # use chrono::{DateTime, Local}; |
1801 | /// "2012-12-12T12:12:12Z" .parse::<DateTime<Local>>()?; |
1802 | /// "2012-12-12 12:12:12Z" .parse::<DateTime<Local>>()?; |
1803 | /// "2012-12-12 12:12:12+0000" .parse::<DateTime<Local>>()?; |
1804 | /// "2012-12-12 12:12:12+00:00" .parse::<DateTime<Local>>()?; |
1805 | /// # Ok::<(), chrono::ParseError>(()) |
1806 | /// ``` |
1807 | #[cfg (feature = "clock" )] |
1808 | impl str::FromStr for DateTime<Local> { |
1809 | type Err = ParseError; |
1810 | |
1811 | fn from_str(s: &str) -> ParseResult<DateTime<Local>> { |
1812 | s.parse::<DateTime<FixedOffset>>().map(|dt: DateTime| dt.with_timezone(&Local)) |
1813 | } |
1814 | } |
1815 | |
1816 | #[cfg (feature = "std" )] |
1817 | impl From<SystemTime> for DateTime<Utc> { |
1818 | fn from(t: SystemTime) -> DateTime<Utc> { |
1819 | let (sec: i64, nsec: u32) = match t.duration_since(UNIX_EPOCH) { |
1820 | Ok(dur: Duration) => (dur.as_secs() as i64, dur.subsec_nanos()), |
1821 | Err(e: SystemTimeError) => { |
1822 | // unlikely but should be handled |
1823 | let dur: Duration = e.duration(); |
1824 | let (sec: i64, nsec: u32) = (dur.as_secs() as i64, dur.subsec_nanos()); |
1825 | if nsec == 0 { |
1826 | (-sec, 0) |
1827 | } else { |
1828 | (-sec - 1, 1_000_000_000 - nsec) |
1829 | } |
1830 | } |
1831 | }; |
1832 | Utc.timestamp_opt(secs:sec, nsecs:nsec).unwrap() |
1833 | } |
1834 | } |
1835 | |
1836 | #[cfg (feature = "clock" )] |
1837 | impl From<SystemTime> for DateTime<Local> { |
1838 | fn from(t: SystemTime) -> DateTime<Local> { |
1839 | DateTime::<Utc>::from(t).with_timezone(&Local) |
1840 | } |
1841 | } |
1842 | |
1843 | #[cfg (feature = "std" )] |
1844 | impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime { |
1845 | fn from(dt: DateTime<Tz>) -> SystemTime { |
1846 | let sec: i64 = dt.timestamp(); |
1847 | let nsec: u32 = dt.timestamp_subsec_nanos(); |
1848 | if sec < 0 { |
1849 | // unlikely but should be handled |
1850 | UNIX_EPOCH - Duration::new(-sec as u64, nanos:0) + Duration::new(secs:0, nanos:nsec) |
1851 | } else { |
1852 | UNIX_EPOCH + Duration::new(secs:sec as u64, nanos:nsec) |
1853 | } |
1854 | } |
1855 | } |
1856 | |
1857 | #[cfg (all( |
1858 | target_arch = "wasm32" , |
1859 | feature = "wasmbind" , |
1860 | not(any(target_os = "emscripten" , target_os = "wasi" )) |
1861 | ))] |
1862 | impl From<js_sys::Date> for DateTime<Utc> { |
1863 | fn from(date: js_sys::Date) -> DateTime<Utc> { |
1864 | DateTime::<Utc>::from(&date) |
1865 | } |
1866 | } |
1867 | |
1868 | #[cfg (all( |
1869 | target_arch = "wasm32" , |
1870 | feature = "wasmbind" , |
1871 | not(any(target_os = "emscripten" , target_os = "wasi" )) |
1872 | ))] |
1873 | impl From<&js_sys::Date> for DateTime<Utc> { |
1874 | fn from(date: &js_sys::Date) -> DateTime<Utc> { |
1875 | Utc.timestamp_millis_opt(date.get_time() as i64).unwrap() |
1876 | } |
1877 | } |
1878 | |
1879 | #[cfg (all( |
1880 | target_arch = "wasm32" , |
1881 | feature = "wasmbind" , |
1882 | not(any(target_os = "emscripten" , target_os = "wasi" )) |
1883 | ))] |
1884 | impl From<DateTime<Utc>> for js_sys::Date { |
1885 | /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy, |
1886 | /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000 |
1887 | /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS. |
1888 | fn from(date: DateTime<Utc>) -> js_sys::Date { |
1889 | let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64); |
1890 | js_sys::Date::new(&js_millis) |
1891 | } |
1892 | } |
1893 | |
1894 | // Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to |
1895 | // the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary. |
1896 | #[cfg (all(feature = "arbitrary" , feature = "std" ))] |
1897 | impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz> |
1898 | where |
1899 | Tz: TimeZone, |
1900 | <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>, |
1901 | { |
1902 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> { |
1903 | let datetime = NaiveDateTime::arbitrary(u)?; |
1904 | let offset = <Tz as TimeZone>::Offset::arbitrary(u)?; |
1905 | Ok(DateTime::from_naive_utc_and_offset(datetime, offset)) |
1906 | } |
1907 | } |
1908 | |
1909 | /// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0. |
1910 | /// 4 full leap year cycles until December 31, 1600 4 * 146097 = 584388 |
1911 | /// 1 day until January 1, 1601 1 |
1912 | /// 369 years until Januari 1, 1970 369 * 365 = 134685 |
1913 | /// of which floor(369 / 4) are leap years floor(369 / 4) = 92 |
1914 | /// except for 1700, 1800 and 1900 -3 + |
1915 | /// -------- |
1916 | /// 719163 |
1917 | const UNIX_EPOCH_DAY: i64 = 719_163; |
1918 | |
1919 | #[cfg (all(test, any(feature = "rustc-serialize" , feature = "serde" )))] |
1920 | fn test_encodable_json<FUtc, FFixed, E>(to_string_utc: FUtc, to_string_fixed: FFixed) |
1921 | where |
1922 | FUtc: Fn(&DateTime<Utc>) -> Result<String, E>, |
1923 | FFixed: Fn(&DateTime<FixedOffset>) -> Result<String, E>, |
1924 | E: ::core::fmt::Debug, |
1925 | { |
1926 | assert_eq!( |
1927 | to_string_utc(&Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()).ok(), |
1928 | Some(r#""2014-07-24T12:34:06Z""# .into()) |
1929 | ); |
1930 | |
1931 | assert_eq!( |
1932 | to_string_fixed( |
1933 | &FixedOffset::east_opt(3660).unwrap().with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap() |
1934 | ) |
1935 | .ok(), |
1936 | Some(r#""2014-07-24T12:34:06+01:01""# .into()) |
1937 | ); |
1938 | assert_eq!( |
1939 | to_string_fixed( |
1940 | &FixedOffset::east_opt(3650).unwrap().with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap() |
1941 | ) |
1942 | .ok(), |
1943 | // An offset with seconds is not allowed by RFC 3339, so we round it to the nearest minute. |
1944 | // In this case `+01:00:50` becomes `+01:01` |
1945 | Some(r#""2014-07-24T12:34:06+01:01""# .into()) |
1946 | ); |
1947 | } |
1948 | |
1949 | #[cfg (all(test, feature = "clock" , any(feature = "rustc-serialize" , feature = "serde" )))] |
1950 | fn test_decodable_json<FUtc, FFixed, FLocal, E>( |
1951 | utc_from_str: FUtc, |
1952 | fixed_from_str: FFixed, |
1953 | local_from_str: FLocal, |
1954 | ) where |
1955 | FUtc: Fn(&str) -> Result<DateTime<Utc>, E>, |
1956 | FFixed: Fn(&str) -> Result<DateTime<FixedOffset>, E>, |
1957 | FLocal: Fn(&str) -> Result<DateTime<Local>, E>, |
1958 | E: ::core::fmt::Debug, |
1959 | { |
1960 | // should check against the offset as well (the normal DateTime comparison will ignore them) |
1961 | fn norm<Tz: TimeZone>(dt: &Option<DateTime<Tz>>) -> Option<(&DateTime<Tz>, &Tz::Offset)> { |
1962 | dt.as_ref().map(|dt| (dt, dt.offset())) |
1963 | } |
1964 | |
1965 | assert_eq!( |
1966 | norm(&utc_from_str(r#""2014-07-24T12:34:06Z""# ).ok()), |
1967 | norm(&Some(Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap())) |
1968 | ); |
1969 | assert_eq!( |
1970 | norm(&utc_from_str(r#""2014-07-24T13:57:06+01:23""# ).ok()), |
1971 | norm(&Some(Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap())) |
1972 | ); |
1973 | |
1974 | assert_eq!( |
1975 | norm(&fixed_from_str(r#""2014-07-24T12:34:06Z""# ).ok()), |
1976 | norm(&Some( |
1977 | FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap() |
1978 | )) |
1979 | ); |
1980 | assert_eq!( |
1981 | norm(&fixed_from_str(r#""2014-07-24T13:57:06+01:23""# ).ok()), |
1982 | norm(&Some( |
1983 | FixedOffset::east_opt(60 * 60 + 23 * 60) |
1984 | .unwrap() |
1985 | .with_ymd_and_hms(2014, 7, 24, 13, 57, 6) |
1986 | .unwrap() |
1987 | )) |
1988 | ); |
1989 | |
1990 | // we don't know the exact local offset but we can check that |
1991 | // the conversion didn't change the instant itself |
1992 | assert_eq!( |
1993 | local_from_str(r#""2014-07-24T12:34:06Z""# ).expect("local should parse" ), |
1994 | Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap() |
1995 | ); |
1996 | assert_eq!( |
1997 | local_from_str(r#""2014-07-24T13:57:06+01:23""# ).expect("local should parse with offset" ), |
1998 | Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap() |
1999 | ); |
2000 | |
2001 | assert!(utc_from_str(r#""2014-07-32T12:34:06Z""# ).is_err()); |
2002 | assert!(fixed_from_str(r#""2014-07-32T12:34:06Z""# ).is_err()); |
2003 | } |
2004 | |
2005 | #[cfg (all(test, feature = "clock" , feature = "rustc-serialize" ))] |
2006 | fn test_decodable_json_timestamps<FUtc, FFixed, FLocal, E>( |
2007 | utc_from_str: FUtc, |
2008 | fixed_from_str: FFixed, |
2009 | local_from_str: FLocal, |
2010 | ) where |
2011 | FUtc: Fn(&str) -> Result<rustc_serialize::TsSeconds<Utc>, E>, |
2012 | FFixed: Fn(&str) -> Result<rustc_serialize::TsSeconds<FixedOffset>, E>, |
2013 | FLocal: Fn(&str) -> Result<rustc_serialize::TsSeconds<Local>, E>, |
2014 | E: ::core::fmt::Debug, |
2015 | { |
2016 | fn norm<Tz: TimeZone>(dt: &Option<DateTime<Tz>>) -> Option<(&DateTime<Tz>, &Tz::Offset)> { |
2017 | dt.as_ref().map(|dt| (dt, dt.offset())) |
2018 | } |
2019 | |
2020 | assert_eq!( |
2021 | norm(&utc_from_str("0" ).ok().map(DateTime::from)), |
2022 | norm(&Some(Utc.with_ymd_and_hms(1970, 1, 1, 0, 0, 0).unwrap())) |
2023 | ); |
2024 | assert_eq!( |
2025 | norm(&utc_from_str("-1" ).ok().map(DateTime::from)), |
2026 | norm(&Some(Utc.with_ymd_and_hms(1969, 12, 31, 23, 59, 59).unwrap())) |
2027 | ); |
2028 | |
2029 | assert_eq!( |
2030 | norm(&fixed_from_str("0" ).ok().map(DateTime::from)), |
2031 | norm(&Some( |
2032 | FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(1970, 1, 1, 0, 0, 0).unwrap() |
2033 | )) |
2034 | ); |
2035 | assert_eq!( |
2036 | norm(&fixed_from_str("-1" ).ok().map(DateTime::from)), |
2037 | norm(&Some( |
2038 | FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(1969, 12, 31, 23, 59, 59).unwrap() |
2039 | )) |
2040 | ); |
2041 | |
2042 | assert_eq!( |
2043 | *fixed_from_str("0" ).expect("0 timestamp should parse" ), |
2044 | Utc.with_ymd_and_hms(1970, 1, 1, 0, 0, 0).unwrap() |
2045 | ); |
2046 | assert_eq!( |
2047 | *local_from_str("-1" ).expect("-1 timestamp should parse" ), |
2048 | Utc.with_ymd_and_hms(1969, 12, 31, 23, 59, 59).unwrap() |
2049 | ); |
2050 | } |
2051 | |