| 1 | // This is a part of Chrono. |
| 2 | // See README.md and LICENSE.txt for details. |
| 3 | |
| 4 | //! ISO 8601 time without timezone. |
| 5 | |
| 6 | #[cfg (feature = "alloc" )] |
| 7 | use core::borrow::Borrow; |
| 8 | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
| 9 | use core::time::Duration; |
| 10 | use core::{fmt, str}; |
| 11 | |
| 12 | #[cfg (any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ))] |
| 13 | use rkyv::{Archive, Deserialize, Serialize}; |
| 14 | |
| 15 | #[cfg (feature = "alloc" )] |
| 16 | use crate::format::DelayedFormat; |
| 17 | use crate::format::{ |
| 18 | Fixed, Item, Numeric, Pad, ParseError, ParseResult, Parsed, StrftimeItems, parse, |
| 19 | parse_and_remainder, write_hundreds, |
| 20 | }; |
| 21 | use crate::{FixedOffset, TimeDelta, Timelike}; |
| 22 | use crate::{expect, try_opt}; |
| 23 | |
| 24 | #[cfg (feature = "serde" )] |
| 25 | mod serde; |
| 26 | |
| 27 | #[cfg (test)] |
| 28 | mod tests; |
| 29 | |
| 30 | /// ISO 8601 time without timezone. |
| 31 | /// Allows for the nanosecond precision and optional leap second representation. |
| 32 | /// |
| 33 | /// # Leap Second Handling |
| 34 | /// |
| 35 | /// Since 1960s, the manmade atomic clock has been so accurate that |
| 36 | /// it is much more accurate than Earth's own motion. |
| 37 | /// It became desirable to define the civil time in terms of the atomic clock, |
| 38 | /// but that risks the desynchronization of the civil time from Earth. |
| 39 | /// To account for this, the designers of the Coordinated Universal Time (UTC) |
| 40 | /// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. |
| 41 | /// When the mean solar day is longer than the ideal (86,400 seconds), |
| 42 | /// the error slowly accumulates and it is necessary to add a **leap second** |
| 43 | /// to slow the UTC down a bit. |
| 44 | /// (We may also remove a second to speed the UTC up a bit, but it never happened.) |
| 45 | /// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC. |
| 46 | /// |
| 47 | /// Fast forward to the 21st century, |
| 48 | /// we have seen 26 leap seconds from January 1972 to December 2015. |
| 49 | /// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. |
| 50 | /// But those 26 seconds, and possibly more in the future, are never predictable, |
| 51 | /// and whether to add a leap second or not is known only before 6 months. |
| 52 | /// Internet-based clocks (via NTP) do account for known leap seconds, |
| 53 | /// but the system API normally doesn't (and often can't, with no network connection) |
| 54 | /// and there is no reliable way to retrieve leap second information. |
| 55 | /// |
| 56 | /// Chrono does not try to accurately implement leap seconds; it is impossible. |
| 57 | /// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.** |
| 58 | /// Various operations will ignore any possible leap second(s) |
| 59 | /// except when any of the operands were actually leap seconds. |
| 60 | /// |
| 61 | /// If you cannot tolerate this behavior, |
| 62 | /// you must use a separate `TimeZone` for the International Atomic Time (TAI). |
| 63 | /// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC. |
| 64 | /// Chrono does not yet provide such implementation, but it is planned. |
| 65 | /// |
| 66 | /// ## Representing Leap Seconds |
| 67 | /// |
| 68 | /// The leap second is indicated via fractional seconds more than 1 second. |
| 69 | /// This makes possible to treat a leap second as the prior non-leap second |
| 70 | /// if you don't care about sub-second accuracy. |
| 71 | /// You should use the proper formatting to get the raw leap second. |
| 72 | /// |
| 73 | /// All methods accepting fractional seconds will accept such values. |
| 74 | /// |
| 75 | /// ``` |
| 76 | /// use chrono::{NaiveDate, NaiveTime}; |
| 77 | /// |
| 78 | /// let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap(); |
| 79 | /// |
| 80 | /// let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1) |
| 81 | /// .unwrap() |
| 82 | /// .and_hms_micro_opt(8, 59, 59, 1_000_000) |
| 83 | /// .unwrap(); |
| 84 | /// |
| 85 | /// let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30) |
| 86 | /// .unwrap() |
| 87 | /// .and_hms_nano_opt(23, 59, 59, 1_000_000_000) |
| 88 | /// .unwrap() |
| 89 | /// .and_utc(); |
| 90 | /// # let _ = (t, dt1, dt2); |
| 91 | /// ``` |
| 92 | /// |
| 93 | /// Note that the leap second can happen anytime given an appropriate time zone; |
| 94 | /// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed. |
| 95 | /// Practically speaking, though, by the time of the first leap second on 1972-06-30, |
| 96 | /// every time zone offset around the world has standardized to the 5-minute alignment. |
| 97 | /// |
| 98 | /// ## Date And Time Arithmetics |
| 99 | /// |
| 100 | /// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds. |
| 101 | /// In reality, of course, leap seconds are separated by at least 6 months. |
| 102 | /// We will also use some intuitive concise notations for the explanation. |
| 103 | /// |
| 104 | /// `Time + TimeDelta` |
| 105 | /// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)): |
| 106 | /// |
| 107 | /// - `03:00:00 + 1s = 03:00:01`. |
| 108 | /// - `03:00:59 + 60s = 03:01:59`. |
| 109 | /// - `03:00:59 + 61s = 03:02:00`. |
| 110 | /// - `03:00:59 + 1s = 03:01:00`. |
| 111 | /// - `03:00:60 + 1s = 03:01:00`. |
| 112 | /// Note that the sum is identical to the previous. |
| 113 | /// - `03:00:60 + 60s = 03:01:59`. |
| 114 | /// - `03:00:60 + 61s = 03:02:00`. |
| 115 | /// - `03:00:60.1 + 0.8s = 03:00:60.9`. |
| 116 | /// |
| 117 | /// `Time - TimeDelta` |
| 118 | /// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)): |
| 119 | /// |
| 120 | /// - `03:00:00 - 1s = 02:59:59`. |
| 121 | /// - `03:01:00 - 1s = 03:00:59`. |
| 122 | /// - `03:01:00 - 60s = 03:00:00`. |
| 123 | /// - `03:00:60 - 60s = 03:00:00`. |
| 124 | /// Note that the result is identical to the previous. |
| 125 | /// - `03:00:60.7 - 0.4s = 03:00:60.3`. |
| 126 | /// - `03:00:60.7 - 0.9s = 03:00:59.8`. |
| 127 | /// |
| 128 | /// `Time - Time` |
| 129 | /// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)): |
| 130 | /// |
| 131 | /// - `04:00:00 - 03:00:00 = 3600s`. |
| 132 | /// - `03:01:00 - 03:00:00 = 60s`. |
| 133 | /// - `03:00:60 - 03:00:00 = 60s`. |
| 134 | /// Note that the difference is identical to the previous. |
| 135 | /// - `03:00:60.6 - 03:00:59.4 = 1.2s`. |
| 136 | /// - `03:01:00 - 03:00:59.8 = 0.2s`. |
| 137 | /// - `03:01:00 - 03:00:60.5 = 0.5s`. |
| 138 | /// Note that the difference is larger than the previous, |
| 139 | /// even though the leap second clearly follows the previous whole second. |
| 140 | /// - `04:00:60.9 - 03:00:60.1 = |
| 141 | /// (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) = |
| 142 | /// 60.9s + 3540s + 0.9s = 3601.8s`. |
| 143 | /// |
| 144 | /// In general, |
| 145 | /// |
| 146 | /// - `Time + TimeDelta` unconditionally equals to `TimeDelta + Time`. |
| 147 | /// |
| 148 | /// - `Time - TimeDelta` unconditionally equals to `Time + (-TimeDelta)`. |
| 149 | /// |
| 150 | /// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`. |
| 151 | /// |
| 152 | /// - Associativity does not generally hold, because |
| 153 | /// `(Time + TimeDelta1) - TimeDelta2` no longer equals to `Time + (TimeDelta1 - TimeDelta2)` |
| 154 | /// for two positive durations. |
| 155 | /// |
| 156 | /// - As a special case, `(Time + TimeDelta) - TimeDelta` also does not equal to `Time`. |
| 157 | /// |
| 158 | /// - If you can assume that all durations have the same sign, however, |
| 159 | /// then the associativity holds: |
| 160 | /// `(Time + TimeDelta1) + TimeDelta2` equals to `Time + (TimeDelta1 + TimeDelta2)` |
| 161 | /// for two positive durations. |
| 162 | /// |
| 163 | /// ## Reading And Writing Leap Seconds |
| 164 | /// |
| 165 | /// The "typical" leap seconds on the minute boundary are |
| 166 | /// correctly handled both in the formatting and parsing. |
| 167 | /// The leap second in the human-readable representation |
| 168 | /// will be represented as the second part being 60, as required by ISO 8601. |
| 169 | /// |
| 170 | /// ``` |
| 171 | /// use chrono::NaiveDate; |
| 172 | /// |
| 173 | /// let dt = NaiveDate::from_ymd_opt(2015, 6, 30) |
| 174 | /// .unwrap() |
| 175 | /// .and_hms_milli_opt(23, 59, 59, 1_000) |
| 176 | /// .unwrap() |
| 177 | /// .and_utc(); |
| 178 | /// assert_eq!(format!("{:?}" , dt), "2015-06-30T23:59:60Z" ); |
| 179 | /// ``` |
| 180 | /// |
| 181 | /// There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono. |
| 182 | /// They are allowed for the sake of completeness and consistency; there were several "exotic" time |
| 183 | /// zone offsets with fractional minutes prior to UTC after all. |
| 184 | /// For such cases the human-readable representation is ambiguous and would be read back to the next |
| 185 | /// non-leap second. |
| 186 | /// |
| 187 | /// A `NaiveTime` with a leap second that is not on a minute boundary can only be created from a |
| 188 | /// [`DateTime`](crate::DateTime) with fractional minutes as offset, or using |
| 189 | /// [`Timelike::with_nanosecond()`]. |
| 190 | /// |
| 191 | /// ``` |
| 192 | /// use chrono::{FixedOffset, NaiveDate, TimeZone}; |
| 193 | /// |
| 194 | /// let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36 |
| 195 | /// let leap_sec_2015 = |
| 196 | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
| 197 | /// let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015); |
| 198 | /// assert_eq!(format!("{:?}" , dt1), "2015-06-30T20:19:24-03:40:36" ); |
| 199 | /// assert_eq!(format!("{:?}" , dt1.time()), "20:19:24" ); |
| 200 | /// |
| 201 | /// let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap(); |
| 202 | /// let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec); |
| 203 | /// assert_eq!(format!("{:?}" , dt2), "2015-06-30T20:19:24-03:40:36" ); |
| 204 | /// assert_eq!(format!("{:?}" , dt2.time()), "20:19:24" ); |
| 205 | /// |
| 206 | /// assert!(dt1.time() != dt2.time()); |
| 207 | /// assert!(dt1.time().to_string() == dt2.time().to_string()); |
| 208 | /// ``` |
| 209 | /// |
| 210 | /// Since Chrono alone cannot determine any existence of leap seconds, |
| 211 | /// **there is absolutely no guarantee that the leap second read has actually happened**. |
| 212 | #[derive (PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] |
| 213 | #[cfg_attr ( |
| 214 | any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ), |
| 215 | derive(Archive, Deserialize, Serialize), |
| 216 | archive(compare(PartialEq, PartialOrd)), |
| 217 | archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) |
| 218 | )] |
| 219 | #[cfg_attr (feature = "rkyv-validation" , archive(check_bytes))] |
| 220 | pub struct NaiveTime { |
| 221 | secs: u32, |
| 222 | frac: u32, |
| 223 | } |
| 224 | |
| 225 | #[cfg (feature = "arbitrary" )] |
| 226 | impl arbitrary::Arbitrary<'_> for NaiveTime { |
| 227 | fn arbitrary(u: &mut arbitrary::Unstructured) -> arbitrary::Result<NaiveTime> { |
| 228 | let mins = u.int_in_range(0..=1439)?; |
| 229 | let mut secs = u.int_in_range(0..=60)?; |
| 230 | let mut nano = u.int_in_range(0..=999_999_999)?; |
| 231 | if secs == 60 { |
| 232 | secs = 59; |
| 233 | nano += 1_000_000_000; |
| 234 | } |
| 235 | let time = NaiveTime::from_num_seconds_from_midnight_opt(mins * 60 + secs, nano) |
| 236 | .expect("Could not generate a valid chrono::NaiveTime. It looks like implementation of Arbitrary for NaiveTime is erroneous." ); |
| 237 | Ok(time) |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | impl NaiveTime { |
| 242 | /// Makes a new `NaiveTime` from hour, minute and second. |
| 243 | /// |
| 244 | /// No [leap second](#leap-second-handling) is allowed here; |
| 245 | /// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead. |
| 246 | /// |
| 247 | /// # Panics |
| 248 | /// |
| 249 | /// Panics on invalid hour, minute and/or second. |
| 250 | #[deprecated (since = "0.4.23" , note = "use `from_hms_opt()` instead" )] |
| 251 | #[inline ] |
| 252 | #[must_use ] |
| 253 | pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime { |
| 254 | expect(NaiveTime::from_hms_opt(hour, min, sec), "invalid time" ) |
| 255 | } |
| 256 | |
| 257 | /// Makes a new `NaiveTime` from hour, minute and second. |
| 258 | /// |
| 259 | /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 260 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| 261 | /// |
| 262 | /// # Errors |
| 263 | /// |
| 264 | /// Returns `None` on invalid hour, minute and/or second. |
| 265 | /// |
| 266 | /// # Example |
| 267 | /// |
| 268 | /// ``` |
| 269 | /// use chrono::NaiveTime; |
| 270 | /// |
| 271 | /// let from_hms_opt = NaiveTime::from_hms_opt; |
| 272 | /// |
| 273 | /// assert!(from_hms_opt(0, 0, 0).is_some()); |
| 274 | /// assert!(from_hms_opt(23, 59, 59).is_some()); |
| 275 | /// assert!(from_hms_opt(24, 0, 0).is_none()); |
| 276 | /// assert!(from_hms_opt(23, 60, 0).is_none()); |
| 277 | /// assert!(from_hms_opt(23, 59, 60).is_none()); |
| 278 | /// ``` |
| 279 | #[inline ] |
| 280 | #[must_use ] |
| 281 | pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> { |
| 282 | NaiveTime::from_hms_nano_opt(hour, min, sec, 0) |
| 283 | } |
| 284 | |
| 285 | /// Makes a new `NaiveTime` from hour, minute, second and millisecond. |
| 286 | /// |
| 287 | /// The millisecond part can exceed 1,000 |
| 288 | /// in order to represent the [leap second](#leap-second-handling). |
| 289 | /// |
| 290 | /// # Panics |
| 291 | /// |
| 292 | /// Panics on invalid hour, minute, second and/or millisecond. |
| 293 | #[deprecated (since = "0.4.23" , note = "use `from_hms_milli_opt()` instead" )] |
| 294 | #[inline ] |
| 295 | #[must_use ] |
| 296 | pub const fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime { |
| 297 | expect(NaiveTime::from_hms_milli_opt(hour, min, sec, milli), "invalid time" ) |
| 298 | } |
| 299 | |
| 300 | /// Makes a new `NaiveTime` from hour, minute, second and millisecond. |
| 301 | /// |
| 302 | /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 303 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| 304 | /// |
| 305 | /// # Errors |
| 306 | /// |
| 307 | /// Returns `None` on invalid hour, minute, second and/or millisecond. |
| 308 | /// |
| 309 | /// # Example |
| 310 | /// |
| 311 | /// ``` |
| 312 | /// use chrono::NaiveTime; |
| 313 | /// |
| 314 | /// let from_hmsm_opt = NaiveTime::from_hms_milli_opt; |
| 315 | /// |
| 316 | /// assert!(from_hmsm_opt(0, 0, 0, 0).is_some()); |
| 317 | /// assert!(from_hmsm_opt(23, 59, 59, 999).is_some()); |
| 318 | /// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59 |
| 319 | /// assert!(from_hmsm_opt(24, 0, 0, 0).is_none()); |
| 320 | /// assert!(from_hmsm_opt(23, 60, 0, 0).is_none()); |
| 321 | /// assert!(from_hmsm_opt(23, 59, 60, 0).is_none()); |
| 322 | /// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none()); |
| 323 | /// ``` |
| 324 | #[inline ] |
| 325 | #[must_use ] |
| 326 | pub const fn from_hms_milli_opt( |
| 327 | hour: u32, |
| 328 | min: u32, |
| 329 | sec: u32, |
| 330 | milli: u32, |
| 331 | ) -> Option<NaiveTime> { |
| 332 | let nano = try_opt!(milli.checked_mul(1_000_000)); |
| 333 | NaiveTime::from_hms_nano_opt(hour, min, sec, nano) |
| 334 | } |
| 335 | |
| 336 | /// Makes a new `NaiveTime` from hour, minute, second and microsecond. |
| 337 | /// |
| 338 | /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 339 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| 340 | /// |
| 341 | /// # Panics |
| 342 | /// |
| 343 | /// Panics on invalid hour, minute, second and/or microsecond. |
| 344 | #[deprecated (since = "0.4.23" , note = "use `from_hms_micro_opt()` instead" )] |
| 345 | #[inline ] |
| 346 | #[must_use ] |
| 347 | pub const fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime { |
| 348 | expect(NaiveTime::from_hms_micro_opt(hour, min, sec, micro), "invalid time" ) |
| 349 | } |
| 350 | |
| 351 | /// Makes a new `NaiveTime` from hour, minute, second and microsecond. |
| 352 | /// |
| 353 | /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 354 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| 355 | /// |
| 356 | /// # Errors |
| 357 | /// |
| 358 | /// Returns `None` on invalid hour, minute, second and/or microsecond. |
| 359 | /// |
| 360 | /// # Example |
| 361 | /// |
| 362 | /// ``` |
| 363 | /// use chrono::NaiveTime; |
| 364 | /// |
| 365 | /// let from_hmsu_opt = NaiveTime::from_hms_micro_opt; |
| 366 | /// |
| 367 | /// assert!(from_hmsu_opt(0, 0, 0, 0).is_some()); |
| 368 | /// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some()); |
| 369 | /// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59 |
| 370 | /// assert!(from_hmsu_opt(24, 0, 0, 0).is_none()); |
| 371 | /// assert!(from_hmsu_opt(23, 60, 0, 0).is_none()); |
| 372 | /// assert!(from_hmsu_opt(23, 59, 60, 0).is_none()); |
| 373 | /// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none()); |
| 374 | /// ``` |
| 375 | #[inline ] |
| 376 | #[must_use ] |
| 377 | pub const fn from_hms_micro_opt( |
| 378 | hour: u32, |
| 379 | min: u32, |
| 380 | sec: u32, |
| 381 | micro: u32, |
| 382 | ) -> Option<NaiveTime> { |
| 383 | let nano = try_opt!(micro.checked_mul(1_000)); |
| 384 | NaiveTime::from_hms_nano_opt(hour, min, sec, nano) |
| 385 | } |
| 386 | |
| 387 | /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. |
| 388 | /// |
| 389 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 390 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| 391 | /// |
| 392 | /// # Panics |
| 393 | /// |
| 394 | /// Panics on invalid hour, minute, second and/or nanosecond. |
| 395 | #[deprecated (since = "0.4.23" , note = "use `from_hms_nano_opt()` instead" )] |
| 396 | #[inline ] |
| 397 | #[must_use ] |
| 398 | pub const fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime { |
| 399 | expect(NaiveTime::from_hms_nano_opt(hour, min, sec, nano), "invalid time" ) |
| 400 | } |
| 401 | |
| 402 | /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. |
| 403 | /// |
| 404 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 405 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
| 406 | /// |
| 407 | /// # Errors |
| 408 | /// |
| 409 | /// Returns `None` on invalid hour, minute, second and/or nanosecond. |
| 410 | /// |
| 411 | /// # Example |
| 412 | /// |
| 413 | /// ``` |
| 414 | /// use chrono::NaiveTime; |
| 415 | /// |
| 416 | /// let from_hmsn_opt = NaiveTime::from_hms_nano_opt; |
| 417 | /// |
| 418 | /// assert!(from_hmsn_opt(0, 0, 0, 0).is_some()); |
| 419 | /// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some()); |
| 420 | /// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59 |
| 421 | /// assert!(from_hmsn_opt(24, 0, 0, 0).is_none()); |
| 422 | /// assert!(from_hmsn_opt(23, 60, 0, 0).is_none()); |
| 423 | /// assert!(from_hmsn_opt(23, 59, 60, 0).is_none()); |
| 424 | /// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none()); |
| 425 | /// ``` |
| 426 | #[inline ] |
| 427 | #[must_use ] |
| 428 | pub const fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> { |
| 429 | if (hour >= 24 || min >= 60 || sec >= 60) |
| 430 | || (nano >= 1_000_000_000 && sec != 59) |
| 431 | || nano >= 2_000_000_000 |
| 432 | { |
| 433 | return None; |
| 434 | } |
| 435 | let secs = hour * 3600 + min * 60 + sec; |
| 436 | Some(NaiveTime { secs, frac: nano }) |
| 437 | } |
| 438 | |
| 439 | /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. |
| 440 | /// |
| 441 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 442 | /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. |
| 443 | /// |
| 444 | /// # Panics |
| 445 | /// |
| 446 | /// Panics on invalid number of seconds and/or nanosecond. |
| 447 | #[deprecated (since = "0.4.23" , note = "use `from_num_seconds_from_midnight_opt()` instead" )] |
| 448 | #[inline ] |
| 449 | #[must_use ] |
| 450 | pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime { |
| 451 | expect(NaiveTime::from_num_seconds_from_midnight_opt(secs, nano), "invalid time" ) |
| 452 | } |
| 453 | |
| 454 | /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. |
| 455 | /// |
| 456 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
| 457 | /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. |
| 458 | /// |
| 459 | /// # Errors |
| 460 | /// |
| 461 | /// Returns `None` on invalid number of seconds and/or nanosecond. |
| 462 | /// |
| 463 | /// # Example |
| 464 | /// |
| 465 | /// ``` |
| 466 | /// use chrono::NaiveTime; |
| 467 | /// |
| 468 | /// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt; |
| 469 | /// |
| 470 | /// assert!(from_nsecs_opt(0, 0).is_some()); |
| 471 | /// assert!(from_nsecs_opt(86399, 999_999_999).is_some()); |
| 472 | /// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59 |
| 473 | /// assert!(from_nsecs_opt(86_400, 0).is_none()); |
| 474 | /// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none()); |
| 475 | /// ``` |
| 476 | #[inline ] |
| 477 | #[must_use ] |
| 478 | pub const fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> { |
| 479 | if secs >= 86_400 || nano >= 2_000_000_000 || (nano >= 1_000_000_000 && secs % 60 != 59) { |
| 480 | return None; |
| 481 | } |
| 482 | Some(NaiveTime { secs, frac: nano }) |
| 483 | } |
| 484 | |
| 485 | /// Parses a string with the specified format string and returns a new `NaiveTime`. |
| 486 | /// See the [`format::strftime` module](crate::format::strftime) |
| 487 | /// on the supported escape sequences. |
| 488 | /// |
| 489 | /// # Example |
| 490 | /// |
| 491 | /// ``` |
| 492 | /// use chrono::NaiveTime; |
| 493 | /// |
| 494 | /// let parse_from_str = NaiveTime::parse_from_str; |
| 495 | /// |
| 496 | /// assert_eq!( |
| 497 | /// parse_from_str("23:56:04" , "%H:%M:%S" ), |
| 498 | /// Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap()) |
| 499 | /// ); |
| 500 | /// assert_eq!( |
| 501 | /// parse_from_str("pm012345.6789" , "%p%I%M%S%.f" ), |
| 502 | /// Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap()) |
| 503 | /// ); |
| 504 | /// ``` |
| 505 | /// |
| 506 | /// Date and offset is ignored for the purpose of parsing. |
| 507 | /// |
| 508 | /// ``` |
| 509 | /// # use chrono::NaiveTime; |
| 510 | /// # let parse_from_str = NaiveTime::parse_from_str; |
| 511 | /// assert_eq!( |
| 512 | /// parse_from_str("2014-5-17T12:34:56+09:30" , "%Y-%m-%dT%H:%M:%S%z" ), |
| 513 | /// Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap()) |
| 514 | /// ); |
| 515 | /// ``` |
| 516 | /// |
| 517 | /// [Leap seconds](#leap-second-handling) are correctly handled by |
| 518 | /// treating any time of the form `hh:mm:60` as a leap second. |
| 519 | /// (This equally applies to the formatting, so the round trip is possible.) |
| 520 | /// |
| 521 | /// ``` |
| 522 | /// # use chrono::NaiveTime; |
| 523 | /// # let parse_from_str = NaiveTime::parse_from_str; |
| 524 | /// assert_eq!( |
| 525 | /// parse_from_str("08:59:60.123" , "%H:%M:%S%.f" ), |
| 526 | /// Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap()) |
| 527 | /// ); |
| 528 | /// ``` |
| 529 | /// |
| 530 | /// Missing seconds are assumed to be zero, |
| 531 | /// but out-of-bound times or insufficient fields are errors otherwise. |
| 532 | /// |
| 533 | /// ``` |
| 534 | /// # use chrono::NaiveTime; |
| 535 | /// # let parse_from_str = NaiveTime::parse_from_str; |
| 536 | /// assert_eq!(parse_from_str("7:15" , "%H:%M" ), Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap())); |
| 537 | /// |
| 538 | /// assert!(parse_from_str("04m33s" , "%Mm%Ss" ).is_err()); |
| 539 | /// assert!(parse_from_str("12" , "%H" ).is_err()); |
| 540 | /// assert!(parse_from_str("17:60" , "%H:%M" ).is_err()); |
| 541 | /// assert!(parse_from_str("24:00:00" , "%H:%M:%S" ).is_err()); |
| 542 | /// ``` |
| 543 | /// |
| 544 | /// All parsed fields should be consistent to each other, otherwise it's an error. |
| 545 | /// Here `%H` is for 24-hour clocks, unlike `%I`, |
| 546 | /// and thus can be independently determined without AM/PM. |
| 547 | /// |
| 548 | /// ``` |
| 549 | /// # use chrono::NaiveTime; |
| 550 | /// # let parse_from_str = NaiveTime::parse_from_str; |
| 551 | /// assert!(parse_from_str("13:07 AM" , "%H:%M %p" ).is_err()); |
| 552 | /// ``` |
| 553 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> { |
| 554 | let mut parsed = Parsed::new(); |
| 555 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
| 556 | parsed.to_naive_time() |
| 557 | } |
| 558 | |
| 559 | /// Parses a string from a user-specified format into a new `NaiveTime` value, and a slice with |
| 560 | /// the remaining portion of the string. |
| 561 | /// See the [`format::strftime` module](crate::format::strftime) |
| 562 | /// on the supported escape sequences. |
| 563 | /// |
| 564 | /// Similar to [`parse_from_str`](#method.parse_from_str). |
| 565 | /// |
| 566 | /// # Example |
| 567 | /// |
| 568 | /// ```rust |
| 569 | /// # use chrono::{NaiveTime}; |
| 570 | /// let (time, remainder) = |
| 571 | /// NaiveTime::parse_and_remainder("3h4m33s trailing text" , "%-Hh%-Mm%-Ss" ).unwrap(); |
| 572 | /// assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap()); |
| 573 | /// assert_eq!(remainder, " trailing text" ); |
| 574 | /// ``` |
| 575 | pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveTime, &'a str)> { |
| 576 | let mut parsed = Parsed::new(); |
| 577 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
| 578 | parsed.to_naive_time().map(|t| (t, remainder)) |
| 579 | } |
| 580 | |
| 581 | /// Adds given `TimeDelta` to the current time, and also returns the number of *seconds* |
| 582 | /// in the integral number of days ignored from the addition. |
| 583 | /// |
| 584 | /// # Example |
| 585 | /// |
| 586 | /// ``` |
| 587 | /// use chrono::{NaiveTime, TimeDelta}; |
| 588 | /// |
| 589 | /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); |
| 590 | /// |
| 591 | /// assert_eq!( |
| 592 | /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(11).unwrap()), |
| 593 | /// (from_hms(14, 4, 5), 0) |
| 594 | /// ); |
| 595 | /// assert_eq!( |
| 596 | /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(23).unwrap()), |
| 597 | /// (from_hms(2, 4, 5), 86_400) |
| 598 | /// ); |
| 599 | /// assert_eq!( |
| 600 | /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(-7).unwrap()), |
| 601 | /// (from_hms(20, 4, 5), -86_400) |
| 602 | /// ); |
| 603 | /// ``` |
| 604 | #[must_use ] |
| 605 | pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { |
| 606 | let mut secs = self.secs as i64; |
| 607 | let mut frac = self.frac as i32; |
| 608 | let secs_to_add = rhs.num_seconds(); |
| 609 | let frac_to_add = rhs.subsec_nanos(); |
| 610 | |
| 611 | // Check if `self` is a leap second and adding `rhs` would escape that leap second. |
| 612 | // If that is the case, update `frac` and `secs` to involve no leap second. |
| 613 | // If it stays within the leap second or the second before, and only adds a fractional |
| 614 | // second, just do that and return (this way the rest of the code can ignore leap seconds). |
| 615 | if frac >= 1_000_000_000 { |
| 616 | // check below is adjusted to not overflow an i32: `frac + frac_to_add >= 2_000_000_000` |
| 617 | if secs_to_add > 0 || (frac_to_add > 0 && frac >= 2_000_000_000 - frac_to_add) { |
| 618 | frac -= 1_000_000_000; |
| 619 | } else if secs_to_add < 0 { |
| 620 | frac -= 1_000_000_000; |
| 621 | secs += 1; |
| 622 | } else { |
| 623 | return (NaiveTime { secs: self.secs, frac: (frac + frac_to_add) as u32 }, 0); |
| 624 | } |
| 625 | } |
| 626 | |
| 627 | let mut secs = secs + secs_to_add; |
| 628 | frac += frac_to_add; |
| 629 | |
| 630 | if frac < 0 { |
| 631 | frac += 1_000_000_000; |
| 632 | secs -= 1; |
| 633 | } else if frac >= 1_000_000_000 { |
| 634 | frac -= 1_000_000_000; |
| 635 | secs += 1; |
| 636 | } |
| 637 | |
| 638 | let secs_in_day = secs.rem_euclid(86_400); |
| 639 | let remaining = secs - secs_in_day; |
| 640 | (NaiveTime { secs: secs_in_day as u32, frac: frac as u32 }, remaining) |
| 641 | } |
| 642 | |
| 643 | /// Subtracts given `TimeDelta` from the current time, and also returns the number of *seconds* |
| 644 | /// in the integral number of days ignored from the subtraction. |
| 645 | /// |
| 646 | /// # Example |
| 647 | /// |
| 648 | /// ``` |
| 649 | /// use chrono::{NaiveTime, TimeDelta}; |
| 650 | /// |
| 651 | /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); |
| 652 | /// |
| 653 | /// assert_eq!( |
| 654 | /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(2).unwrap()), |
| 655 | /// (from_hms(1, 4, 5), 0) |
| 656 | /// ); |
| 657 | /// assert_eq!( |
| 658 | /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(17).unwrap()), |
| 659 | /// (from_hms(10, 4, 5), 86_400) |
| 660 | /// ); |
| 661 | /// assert_eq!( |
| 662 | /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(-22).unwrap()), |
| 663 | /// (from_hms(1, 4, 5), -86_400) |
| 664 | /// ); |
| 665 | /// ``` |
| 666 | #[inline ] |
| 667 | #[must_use ] |
| 668 | pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { |
| 669 | let (time, rhs) = self.overflowing_add_signed(rhs.neg()); |
| 670 | (time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000) |
| 671 | } |
| 672 | |
| 673 | /// Subtracts another `NaiveTime` from the current time. |
| 674 | /// Returns a `TimeDelta` within +/- 1 day. |
| 675 | /// This does not overflow or underflow at all. |
| 676 | /// |
| 677 | /// As a part of Chrono's [leap second handling](#leap-second-handling), |
| 678 | /// the subtraction assumes that **there is no leap second ever**, |
| 679 | /// except when any of the `NaiveTime`s themselves represents a leap second |
| 680 | /// in which case the assumption becomes that |
| 681 | /// **there are exactly one (or two) leap second(s) ever**. |
| 682 | /// |
| 683 | /// # Example |
| 684 | /// |
| 685 | /// ``` |
| 686 | /// use chrono::{NaiveTime, TimeDelta}; |
| 687 | /// |
| 688 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| 689 | /// let since = NaiveTime::signed_duration_since; |
| 690 | /// |
| 691 | /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)), TimeDelta::zero()); |
| 692 | /// assert_eq!( |
| 693 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)), |
| 694 | /// TimeDelta::try_milliseconds(25).unwrap() |
| 695 | /// ); |
| 696 | /// assert_eq!( |
| 697 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)), |
| 698 | /// TimeDelta::try_milliseconds(975).unwrap() |
| 699 | /// ); |
| 700 | /// assert_eq!( |
| 701 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)), |
| 702 | /// TimeDelta::try_seconds(7).unwrap() |
| 703 | /// ); |
| 704 | /// assert_eq!( |
| 705 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)), |
| 706 | /// TimeDelta::try_seconds(5 * 60).unwrap() |
| 707 | /// ); |
| 708 | /// assert_eq!( |
| 709 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)), |
| 710 | /// TimeDelta::try_seconds(3 * 3600).unwrap() |
| 711 | /// ); |
| 712 | /// assert_eq!( |
| 713 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)), |
| 714 | /// TimeDelta::try_seconds(-3600).unwrap() |
| 715 | /// ); |
| 716 | /// assert_eq!( |
| 717 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)), |
| 718 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() |
| 719 | /// ); |
| 720 | /// ``` |
| 721 | /// |
| 722 | /// Leap seconds are handled, but the subtraction assumes that |
| 723 | /// there were no other leap seconds happened. |
| 724 | /// |
| 725 | /// ``` |
| 726 | /// # use chrono::{TimeDelta, NaiveTime}; |
| 727 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| 728 | /// # let since = NaiveTime::signed_duration_since; |
| 729 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)), |
| 730 | /// TimeDelta::try_seconds(1).unwrap()); |
| 731 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)), |
| 732 | /// TimeDelta::try_milliseconds(1500).unwrap()); |
| 733 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)), |
| 734 | /// TimeDelta::try_seconds(60).unwrap()); |
| 735 | /// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)), |
| 736 | /// TimeDelta::try_seconds(1).unwrap()); |
| 737 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)), |
| 738 | /// TimeDelta::try_seconds(61).unwrap()); |
| 739 | /// ``` |
| 740 | #[must_use ] |
| 741 | pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta { |
| 742 | // | | :leap| | | | | | | :leap| | |
| 743 | // | | : | | | | | | | : | | |
| 744 | // ----+----+-----*---+----+----+----+----+----+----+-------*-+----+---- |
| 745 | // | `rhs` | | `self` |
| 746 | // |======================================>| | |
| 747 | // | | `self.secs - rhs.secs` |`self.frac` |
| 748 | // |====>| | |======>| |
| 749 | // `rhs.frac`|========================================>| |
| 750 | // | | | `self - rhs` | | |
| 751 | |
| 752 | let mut secs = self.secs as i64 - rhs.secs as i64; |
| 753 | let frac = self.frac as i64 - rhs.frac as i64; |
| 754 | |
| 755 | // `secs` may contain a leap second yet to be counted |
| 756 | if self.secs > rhs.secs && rhs.frac >= 1_000_000_000 { |
| 757 | secs += 1; |
| 758 | } else if self.secs < rhs.secs && self.frac >= 1_000_000_000 { |
| 759 | secs -= 1; |
| 760 | } |
| 761 | |
| 762 | let secs_from_frac = frac.div_euclid(1_000_000_000); |
| 763 | let frac = frac.rem_euclid(1_000_000_000) as u32; |
| 764 | |
| 765 | expect(TimeDelta::new(secs + secs_from_frac, frac), "must be in range" ) |
| 766 | } |
| 767 | |
| 768 | /// Adds given `FixedOffset` to the current time, and returns the number of days that should be |
| 769 | /// added to a date as a result of the offset (either `-1`, `0`, or `1` because the offset is |
| 770 | /// always less than 24h). |
| 771 | /// |
| 772 | /// This method is similar to [`overflowing_add_signed`](#method.overflowing_add_signed), but |
| 773 | /// preserves leap seconds. |
| 774 | pub(super) const fn overflowing_add_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { |
| 775 | let secs = self.secs as i32 + offset.local_minus_utc(); |
| 776 | let days = secs.div_euclid(86_400); |
| 777 | let secs = secs.rem_euclid(86_400); |
| 778 | (NaiveTime { secs: secs as u32, frac: self.frac }, days) |
| 779 | } |
| 780 | |
| 781 | /// Subtracts given `FixedOffset` from the current time, and returns the number of days that |
| 782 | /// should be added to a date as a result of the offset (either `-1`, `0`, or `1` because the |
| 783 | /// offset is always less than 24h). |
| 784 | /// |
| 785 | /// This method is similar to [`overflowing_sub_signed`](#method.overflowing_sub_signed), but |
| 786 | /// preserves leap seconds. |
| 787 | pub(super) const fn overflowing_sub_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { |
| 788 | let secs = self.secs as i32 - offset.local_minus_utc(); |
| 789 | let days = secs.div_euclid(86_400); |
| 790 | let secs = secs.rem_euclid(86_400); |
| 791 | (NaiveTime { secs: secs as u32, frac: self.frac }, days) |
| 792 | } |
| 793 | |
| 794 | /// Formats the time with the specified formatting items. |
| 795 | /// Otherwise it is the same as the ordinary [`format`](#method.format) method. |
| 796 | /// |
| 797 | /// The `Iterator` of items should be `Clone`able, |
| 798 | /// since the resulting `DelayedFormat` value may be formatted multiple times. |
| 799 | /// |
| 800 | /// # Example |
| 801 | /// |
| 802 | /// ``` |
| 803 | /// use chrono::format::strftime::StrftimeItems; |
| 804 | /// use chrono::NaiveTime; |
| 805 | /// |
| 806 | /// let fmt = StrftimeItems::new("%H:%M:%S" ); |
| 807 | /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
| 808 | /// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04" ); |
| 809 | /// assert_eq!(t.format("%H:%M:%S" ).to_string(), "23:56:04" ); |
| 810 | /// ``` |
| 811 | /// |
| 812 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
| 813 | /// |
| 814 | /// ``` |
| 815 | /// # use chrono::NaiveTime; |
| 816 | /// # use chrono::format::strftime::StrftimeItems; |
| 817 | /// # let fmt = StrftimeItems::new("%H:%M:%S" ).clone(); |
| 818 | /// # let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
| 819 | /// assert_eq!(format!("{}" , t.format_with_items(fmt)), "23:56:04" ); |
| 820 | /// ``` |
| 821 | #[cfg (feature = "alloc" )] |
| 822 | #[inline ] |
| 823 | #[must_use ] |
| 824 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
| 825 | where |
| 826 | I: Iterator<Item = B> + Clone, |
| 827 | B: Borrow<Item<'a>>, |
| 828 | { |
| 829 | DelayedFormat::new(None, Some(*self), items) |
| 830 | } |
| 831 | |
| 832 | /// Formats the time with the specified format string. |
| 833 | /// See the [`format::strftime` module](crate::format::strftime) |
| 834 | /// on the supported escape sequences. |
| 835 | /// |
| 836 | /// This returns a `DelayedFormat`, |
| 837 | /// which gets converted to a string only when actual formatting happens. |
| 838 | /// You may use the `to_string` method to get a `String`, |
| 839 | /// or just feed it into `print!` and other formatting macros. |
| 840 | /// (In this way it avoids the redundant memory allocation.) |
| 841 | /// |
| 842 | /// A wrong format string does *not* issue an error immediately. |
| 843 | /// Rather, converting or formatting the `DelayedFormat` fails. |
| 844 | /// You are recommended to immediately use `DelayedFormat` for this reason. |
| 845 | /// |
| 846 | /// # Example |
| 847 | /// |
| 848 | /// ``` |
| 849 | /// use chrono::NaiveTime; |
| 850 | /// |
| 851 | /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 852 | /// assert_eq!(t.format("%H:%M:%S" ).to_string(), "23:56:04" ); |
| 853 | /// assert_eq!(t.format("%H:%M:%S%.6f" ).to_string(), "23:56:04.012345" ); |
| 854 | /// assert_eq!(t.format("%-I:%M %p" ).to_string(), "11:56 PM" ); |
| 855 | /// ``` |
| 856 | /// |
| 857 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
| 858 | /// |
| 859 | /// ``` |
| 860 | /// # use chrono::NaiveTime; |
| 861 | /// # let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 862 | /// assert_eq!(format!("{}" , t.format("%H:%M:%S" )), "23:56:04" ); |
| 863 | /// assert_eq!(format!("{}" , t.format("%H:%M:%S%.6f" )), "23:56:04.012345" ); |
| 864 | /// assert_eq!(format!("{}" , t.format("%-I:%M %p" )), "11:56 PM" ); |
| 865 | /// ``` |
| 866 | #[cfg (feature = "alloc" )] |
| 867 | #[inline ] |
| 868 | #[must_use ] |
| 869 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
| 870 | self.format_with_items(StrftimeItems::new(fmt)) |
| 871 | } |
| 872 | |
| 873 | /// Returns a triple of the hour, minute and second numbers. |
| 874 | pub(crate) fn hms(&self) -> (u32, u32, u32) { |
| 875 | let sec = self.secs % 60; |
| 876 | let mins = self.secs / 60; |
| 877 | let min = mins % 60; |
| 878 | let hour = mins / 60; |
| 879 | (hour, min, sec) |
| 880 | } |
| 881 | |
| 882 | /// Returns the number of non-leap seconds past the last midnight. |
| 883 | // This duplicates `Timelike::num_seconds_from_midnight()`, because trait methods can't be const |
| 884 | // yet. |
| 885 | #[inline ] |
| 886 | pub(crate) const fn num_seconds_from_midnight(&self) -> u32 { |
| 887 | self.secs |
| 888 | } |
| 889 | |
| 890 | /// Returns the number of nanoseconds since the whole non-leap second. |
| 891 | // This duplicates `Timelike::nanosecond()`, because trait methods can't be const yet. |
| 892 | #[inline ] |
| 893 | pub(crate) const fn nanosecond(&self) -> u32 { |
| 894 | self.frac |
| 895 | } |
| 896 | |
| 897 | /// The earliest possible `NaiveTime` |
| 898 | pub const MIN: Self = Self { secs: 0, frac: 0 }; |
| 899 | pub(super) const MAX: Self = Self { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 }; |
| 900 | } |
| 901 | |
| 902 | impl Timelike for NaiveTime { |
| 903 | /// Returns the hour number from 0 to 23. |
| 904 | /// |
| 905 | /// # Example |
| 906 | /// |
| 907 | /// ``` |
| 908 | /// use chrono::{NaiveTime, Timelike}; |
| 909 | /// |
| 910 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0); |
| 911 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23); |
| 912 | /// ``` |
| 913 | #[inline ] |
| 914 | fn hour(&self) -> u32 { |
| 915 | self.hms().0 |
| 916 | } |
| 917 | |
| 918 | /// Returns the minute number from 0 to 59. |
| 919 | /// |
| 920 | /// # Example |
| 921 | /// |
| 922 | /// ``` |
| 923 | /// use chrono::{NaiveTime, Timelike}; |
| 924 | /// |
| 925 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0); |
| 926 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56); |
| 927 | /// ``` |
| 928 | #[inline ] |
| 929 | fn minute(&self) -> u32 { |
| 930 | self.hms().1 |
| 931 | } |
| 932 | |
| 933 | /// Returns the second number from 0 to 59. |
| 934 | /// |
| 935 | /// # Example |
| 936 | /// |
| 937 | /// ``` |
| 938 | /// use chrono::{NaiveTime, Timelike}; |
| 939 | /// |
| 940 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0); |
| 941 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4); |
| 942 | /// ``` |
| 943 | /// |
| 944 | /// This method never returns 60 even when it is a leap second. |
| 945 | /// ([Why?](#leap-second-handling)) |
| 946 | /// Use the proper [formatting method](#method.format) to get a human-readable representation. |
| 947 | /// |
| 948 | /// ``` |
| 949 | /// # #[cfg (feature = "alloc" )] { |
| 950 | /// # use chrono::{NaiveTime, Timelike}; |
| 951 | /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
| 952 | /// assert_eq!(leap.second(), 59); |
| 953 | /// assert_eq!(leap.format("%H:%M:%S" ).to_string(), "23:59:60" ); |
| 954 | /// # } |
| 955 | /// ``` |
| 956 | #[inline ] |
| 957 | fn second(&self) -> u32 { |
| 958 | self.hms().2 |
| 959 | } |
| 960 | |
| 961 | /// Returns the number of nanoseconds since the whole non-leap second. |
| 962 | /// The range from 1,000,000,000 to 1,999,999,999 represents |
| 963 | /// the [leap second](#leap-second-handling). |
| 964 | /// |
| 965 | /// # Example |
| 966 | /// |
| 967 | /// ``` |
| 968 | /// use chrono::{NaiveTime, Timelike}; |
| 969 | /// |
| 970 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0); |
| 971 | /// assert_eq!( |
| 972 | /// NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(), |
| 973 | /// 12_345_678 |
| 974 | /// ); |
| 975 | /// ``` |
| 976 | /// |
| 977 | /// Leap seconds may have seemingly out-of-range return values. |
| 978 | /// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or |
| 979 | /// use the proper [formatting method](#method.format) to get a human-readable representation. |
| 980 | /// |
| 981 | /// ``` |
| 982 | /// # #[cfg (feature = "alloc" )] { |
| 983 | /// # use chrono::{NaiveTime, Timelike}; |
| 984 | /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
| 985 | /// assert_eq!(leap.nanosecond(), 1_000_000_000); |
| 986 | /// assert_eq!(leap.format("%H:%M:%S%.9f" ).to_string(), "23:59:60.000000000" ); |
| 987 | /// # } |
| 988 | /// ``` |
| 989 | #[inline ] |
| 990 | fn nanosecond(&self) -> u32 { |
| 991 | self.frac |
| 992 | } |
| 993 | |
| 994 | /// Makes a new `NaiveTime` with the hour number changed. |
| 995 | /// |
| 996 | /// # Errors |
| 997 | /// |
| 998 | /// Returns `None` if the value for `hour` is invalid. |
| 999 | /// |
| 1000 | /// # Example |
| 1001 | /// |
| 1002 | /// ``` |
| 1003 | /// use chrono::{NaiveTime, Timelike}; |
| 1004 | /// |
| 1005 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 1006 | /// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap())); |
| 1007 | /// assert_eq!(dt.with_hour(24), None); |
| 1008 | /// ``` |
| 1009 | #[inline ] |
| 1010 | fn with_hour(&self, hour: u32) -> Option<NaiveTime> { |
| 1011 | if hour >= 24 { |
| 1012 | return None; |
| 1013 | } |
| 1014 | let secs = hour * 3600 + self.secs % 3600; |
| 1015 | Some(NaiveTime { secs, ..*self }) |
| 1016 | } |
| 1017 | |
| 1018 | /// Makes a new `NaiveTime` with the minute number changed. |
| 1019 | /// |
| 1020 | /// # Errors |
| 1021 | /// |
| 1022 | /// Returns `None` if the value for `minute` is invalid. |
| 1023 | /// |
| 1024 | /// # Example |
| 1025 | /// |
| 1026 | /// ``` |
| 1027 | /// use chrono::{NaiveTime, Timelike}; |
| 1028 | /// |
| 1029 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 1030 | /// assert_eq!( |
| 1031 | /// dt.with_minute(45), |
| 1032 | /// Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap()) |
| 1033 | /// ); |
| 1034 | /// assert_eq!(dt.with_minute(60), None); |
| 1035 | /// ``` |
| 1036 | #[inline ] |
| 1037 | fn with_minute(&self, min: u32) -> Option<NaiveTime> { |
| 1038 | if min >= 60 { |
| 1039 | return None; |
| 1040 | } |
| 1041 | let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60; |
| 1042 | Some(NaiveTime { secs, ..*self }) |
| 1043 | } |
| 1044 | |
| 1045 | /// Makes a new `NaiveTime` with the second number changed. |
| 1046 | /// |
| 1047 | /// As with the [`second`](#method.second) method, |
| 1048 | /// the input range is restricted to 0 through 59. |
| 1049 | /// |
| 1050 | /// # Errors |
| 1051 | /// |
| 1052 | /// Returns `None` if the value for `second` is invalid. |
| 1053 | /// |
| 1054 | /// # Example |
| 1055 | /// |
| 1056 | /// ``` |
| 1057 | /// use chrono::{NaiveTime, Timelike}; |
| 1058 | /// |
| 1059 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 1060 | /// assert_eq!( |
| 1061 | /// dt.with_second(17), |
| 1062 | /// Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap()) |
| 1063 | /// ); |
| 1064 | /// assert_eq!(dt.with_second(60), None); |
| 1065 | /// ``` |
| 1066 | #[inline ] |
| 1067 | fn with_second(&self, sec: u32) -> Option<NaiveTime> { |
| 1068 | if sec >= 60 { |
| 1069 | return None; |
| 1070 | } |
| 1071 | let secs = self.secs / 60 * 60 + sec; |
| 1072 | Some(NaiveTime { secs, ..*self }) |
| 1073 | } |
| 1074 | |
| 1075 | /// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed. |
| 1076 | /// |
| 1077 | /// As with the [`nanosecond`](#method.nanosecond) method, |
| 1078 | /// the input range can exceed 1,000,000,000 for leap seconds. |
| 1079 | /// |
| 1080 | /// # Errors |
| 1081 | /// |
| 1082 | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
| 1083 | /// |
| 1084 | /// # Example |
| 1085 | /// |
| 1086 | /// ``` |
| 1087 | /// use chrono::{NaiveTime, Timelike}; |
| 1088 | /// |
| 1089 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 1090 | /// assert_eq!( |
| 1091 | /// dt.with_nanosecond(333_333_333), |
| 1092 | /// Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap()) |
| 1093 | /// ); |
| 1094 | /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); |
| 1095 | /// ``` |
| 1096 | /// |
| 1097 | /// Leap seconds can theoretically follow *any* whole second. |
| 1098 | /// The following would be a proper leap second at the time zone offset of UTC-00:03:57 |
| 1099 | /// (there are several historical examples comparable to this "non-sense" offset), |
| 1100 | /// and therefore is allowed. |
| 1101 | /// |
| 1102 | /// ``` |
| 1103 | /// # use chrono::{NaiveTime, Timelike}; |
| 1104 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 1105 | /// let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap(); |
| 1106 | /// assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333); |
| 1107 | /// ``` |
| 1108 | #[inline ] |
| 1109 | fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> { |
| 1110 | if nano >= 2_000_000_000 { |
| 1111 | return None; |
| 1112 | } |
| 1113 | Some(NaiveTime { frac: nano, ..*self }) |
| 1114 | } |
| 1115 | |
| 1116 | /// Returns the number of non-leap seconds past the last midnight. |
| 1117 | /// |
| 1118 | /// # Example |
| 1119 | /// |
| 1120 | /// ``` |
| 1121 | /// use chrono::{NaiveTime, Timelike}; |
| 1122 | /// |
| 1123 | /// assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(), 3723); |
| 1124 | /// assert_eq!( |
| 1125 | /// NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(), |
| 1126 | /// 86164 |
| 1127 | /// ); |
| 1128 | /// assert_eq!( |
| 1129 | /// NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(), |
| 1130 | /// 86399 |
| 1131 | /// ); |
| 1132 | /// ``` |
| 1133 | #[inline ] |
| 1134 | fn num_seconds_from_midnight(&self) -> u32 { |
| 1135 | self.secs // do not repeat the calculation! |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | /// Add `TimeDelta` to `NaiveTime`. |
| 1140 | /// |
| 1141 | /// This wraps around and never overflows or underflows. |
| 1142 | /// In particular the addition ignores integral number of days. |
| 1143 | /// |
| 1144 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1145 | /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the |
| 1146 | /// assumption becomes that **there is exactly a single leap second ever**. |
| 1147 | /// |
| 1148 | /// # Example |
| 1149 | /// |
| 1150 | /// ``` |
| 1151 | /// use chrono::{NaiveTime, TimeDelta}; |
| 1152 | /// |
| 1153 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1154 | /// |
| 1155 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); |
| 1156 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 8, 0)); |
| 1157 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-1).unwrap(), from_hmsm(3, 5, 6, 0)); |
| 1158 | /// assert_eq!( |
| 1159 | /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(60 + 4).unwrap(), |
| 1160 | /// from_hmsm(3, 6, 11, 0) |
| 1161 | /// ); |
| 1162 | /// assert_eq!( |
| 1163 | /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(7 * 60 * 60 - 6 * 60).unwrap(), |
| 1164 | /// from_hmsm(9, 59, 7, 0) |
| 1165 | /// ); |
| 1166 | /// assert_eq!( |
| 1167 | /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_milliseconds(80).unwrap(), |
| 1168 | /// from_hmsm(3, 5, 7, 80) |
| 1169 | /// ); |
| 1170 | /// assert_eq!( |
| 1171 | /// from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(280).unwrap(), |
| 1172 | /// from_hmsm(3, 5, 8, 230) |
| 1173 | /// ); |
| 1174 | /// assert_eq!( |
| 1175 | /// from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(-980).unwrap(), |
| 1176 | /// from_hmsm(3, 5, 6, 970) |
| 1177 | /// ); |
| 1178 | /// ``` |
| 1179 | /// |
| 1180 | /// The addition wraps around. |
| 1181 | /// |
| 1182 | /// ``` |
| 1183 | /// # use chrono::{TimeDelta, NaiveTime}; |
| 1184 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| 1185 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(22*60*60).unwrap(), from_hmsm(1, 5, 7, 0)); |
| 1186 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); |
| 1187 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); |
| 1188 | /// ``` |
| 1189 | /// |
| 1190 | /// Leap seconds are handled, but the addition assumes that it is the only leap second happened. |
| 1191 | /// |
| 1192 | /// ``` |
| 1193 | /// # use chrono::{TimeDelta, NaiveTime}; |
| 1194 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| 1195 | /// let leap = from_hmsm(3, 5, 59, 1_300); |
| 1196 | /// assert_eq!(leap + TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); |
| 1197 | /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), from_hmsm(3, 5, 59, 800)); |
| 1198 | /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 1_800)); |
| 1199 | /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), from_hmsm(3, 6, 0, 100)); |
| 1200 | /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), from_hmsm(3, 6, 9, 300)); |
| 1201 | /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), from_hmsm(3, 5, 50, 300)); |
| 1202 | /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), from_hmsm(3, 5, 59, 300)); |
| 1203 | /// ``` |
| 1204 | /// |
| 1205 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
| 1206 | impl Add<TimeDelta> for NaiveTime { |
| 1207 | type Output = NaiveTime; |
| 1208 | |
| 1209 | #[inline ] |
| 1210 | fn add(self, rhs: TimeDelta) -> NaiveTime { |
| 1211 | self.overflowing_add_signed(rhs).0 |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | /// Add-assign `TimeDelta` to `NaiveTime`. |
| 1216 | /// |
| 1217 | /// This wraps around and never overflows or underflows. |
| 1218 | /// In particular the addition ignores integral number of days. |
| 1219 | impl AddAssign<TimeDelta> for NaiveTime { |
| 1220 | #[inline ] |
| 1221 | fn add_assign(&mut self, rhs: TimeDelta) { |
| 1222 | *self = self.add(rhs); |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | /// Add `std::time::Duration` to `NaiveTime`. |
| 1227 | /// |
| 1228 | /// This wraps around and never overflows or underflows. |
| 1229 | /// In particular the addition ignores integral number of days. |
| 1230 | impl Add<Duration> for NaiveTime { |
| 1231 | type Output = NaiveTime; |
| 1232 | |
| 1233 | #[inline ] |
| 1234 | fn add(self, rhs: Duration) -> NaiveTime { |
| 1235 | // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid |
| 1236 | // overflow during the conversion to `TimeDelta`. |
| 1237 | // But we limit to double that just in case `self` is a leap-second. |
| 1238 | let secs: u64 = rhs.as_secs() % (2 * 24 * 60 * 60); |
| 1239 | let d: TimeDelta = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); |
| 1240 | self.overflowing_add_signed(d).0 |
| 1241 | } |
| 1242 | } |
| 1243 | |
| 1244 | /// Add-assign `std::time::Duration` to `NaiveTime`. |
| 1245 | /// |
| 1246 | /// This wraps around and never overflows or underflows. |
| 1247 | /// In particular the addition ignores integral number of days. |
| 1248 | impl AddAssign<Duration> for NaiveTime { |
| 1249 | #[inline ] |
| 1250 | fn add_assign(&mut self, rhs: Duration) { |
| 1251 | *self = *self + rhs; |
| 1252 | } |
| 1253 | } |
| 1254 | |
| 1255 | /// Add `FixedOffset` to `NaiveTime`. |
| 1256 | /// |
| 1257 | /// This wraps around and never overflows or underflows. |
| 1258 | /// In particular the addition ignores integral number of days. |
| 1259 | impl Add<FixedOffset> for NaiveTime { |
| 1260 | type Output = NaiveTime; |
| 1261 | |
| 1262 | #[inline ] |
| 1263 | fn add(self, rhs: FixedOffset) -> NaiveTime { |
| 1264 | self.overflowing_add_offset(rhs).0 |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | /// Subtract `TimeDelta` from `NaiveTime`. |
| 1269 | /// |
| 1270 | /// This wraps around and never overflows or underflows. |
| 1271 | /// In particular the subtraction ignores integral number of days. |
| 1272 | /// This is the same as addition with a negated `TimeDelta`. |
| 1273 | /// |
| 1274 | /// As a part of Chrono's [leap second handling], the subtraction assumes that **there is no leap |
| 1275 | /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the |
| 1276 | /// assumption becomes that **there is exactly a single leap second ever**. |
| 1277 | /// |
| 1278 | /// # Example |
| 1279 | /// |
| 1280 | /// ``` |
| 1281 | /// use chrono::{NaiveTime, TimeDelta}; |
| 1282 | /// |
| 1283 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1284 | /// |
| 1285 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); |
| 1286 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 6, 0)); |
| 1287 | /// assert_eq!( |
| 1288 | /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(60 + 5).unwrap(), |
| 1289 | /// from_hmsm(3, 4, 2, 0) |
| 1290 | /// ); |
| 1291 | /// assert_eq!( |
| 1292 | /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(2 * 60 * 60 + 6 * 60).unwrap(), |
| 1293 | /// from_hmsm(0, 59, 7, 0) |
| 1294 | /// ); |
| 1295 | /// assert_eq!( |
| 1296 | /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_milliseconds(80).unwrap(), |
| 1297 | /// from_hmsm(3, 5, 6, 920) |
| 1298 | /// ); |
| 1299 | /// assert_eq!( |
| 1300 | /// from_hmsm(3, 5, 7, 950) - TimeDelta::try_milliseconds(280).unwrap(), |
| 1301 | /// from_hmsm(3, 5, 7, 670) |
| 1302 | /// ); |
| 1303 | /// ``` |
| 1304 | /// |
| 1305 | /// The subtraction wraps around. |
| 1306 | /// |
| 1307 | /// ``` |
| 1308 | /// # use chrono::{TimeDelta, NaiveTime}; |
| 1309 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| 1310 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); |
| 1311 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); |
| 1312 | /// ``` |
| 1313 | /// |
| 1314 | /// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened. |
| 1315 | /// |
| 1316 | /// ``` |
| 1317 | /// # use chrono::{TimeDelta, NaiveTime}; |
| 1318 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| 1319 | /// let leap = from_hmsm(3, 5, 59, 1_300); |
| 1320 | /// assert_eq!(leap - TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); |
| 1321 | /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), from_hmsm(3, 5, 59, 1_100)); |
| 1322 | /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 800)); |
| 1323 | /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), from_hmsm(3, 5, 0, 300)); |
| 1324 | /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), from_hmsm(3, 6, 0, 300)); |
| 1325 | /// ``` |
| 1326 | /// |
| 1327 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
| 1328 | impl Sub<TimeDelta> for NaiveTime { |
| 1329 | type Output = NaiveTime; |
| 1330 | |
| 1331 | #[inline ] |
| 1332 | fn sub(self, rhs: TimeDelta) -> NaiveTime { |
| 1333 | self.overflowing_sub_signed(rhs).0 |
| 1334 | } |
| 1335 | } |
| 1336 | |
| 1337 | /// Subtract-assign `TimeDelta` from `NaiveTime`. |
| 1338 | /// |
| 1339 | /// This wraps around and never overflows or underflows. |
| 1340 | /// In particular the subtraction ignores integral number of days. |
| 1341 | impl SubAssign<TimeDelta> for NaiveTime { |
| 1342 | #[inline ] |
| 1343 | fn sub_assign(&mut self, rhs: TimeDelta) { |
| 1344 | *self = self.sub(rhs); |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | /// Subtract `std::time::Duration` from `NaiveTime`. |
| 1349 | /// |
| 1350 | /// This wraps around and never overflows or underflows. |
| 1351 | /// In particular the subtraction ignores integral number of days. |
| 1352 | impl Sub<Duration> for NaiveTime { |
| 1353 | type Output = NaiveTime; |
| 1354 | |
| 1355 | #[inline ] |
| 1356 | fn sub(self, rhs: Duration) -> NaiveTime { |
| 1357 | // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid |
| 1358 | // overflow during the conversion to `TimeDelta`. |
| 1359 | // But we limit to double that just in case `self` is a leap-second. |
| 1360 | let secs: u64 = rhs.as_secs() % (2 * 24 * 60 * 60); |
| 1361 | let d: TimeDelta = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); |
| 1362 | self.overflowing_sub_signed(d).0 |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | /// Subtract-assign `std::time::Duration` from `NaiveTime`. |
| 1367 | /// |
| 1368 | /// This wraps around and never overflows or underflows. |
| 1369 | /// In particular the subtraction ignores integral number of days. |
| 1370 | impl SubAssign<Duration> for NaiveTime { |
| 1371 | #[inline ] |
| 1372 | fn sub_assign(&mut self, rhs: Duration) { |
| 1373 | *self = *self - rhs; |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | /// Subtract `FixedOffset` from `NaiveTime`. |
| 1378 | /// |
| 1379 | /// This wraps around and never overflows or underflows. |
| 1380 | /// In particular the subtraction ignores integral number of days. |
| 1381 | impl Sub<FixedOffset> for NaiveTime { |
| 1382 | type Output = NaiveTime; |
| 1383 | |
| 1384 | #[inline ] |
| 1385 | fn sub(self, rhs: FixedOffset) -> NaiveTime { |
| 1386 | self.overflowing_sub_offset(rhs).0 |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | /// Subtracts another `NaiveTime` from the current time. |
| 1391 | /// Returns a `TimeDelta` within +/- 1 day. |
| 1392 | /// This does not overflow or underflow at all. |
| 1393 | /// |
| 1394 | /// As a part of Chrono's [leap second handling](#leap-second-handling), |
| 1395 | /// the subtraction assumes that **there is no leap second ever**, |
| 1396 | /// except when any of the `NaiveTime`s themselves represents a leap second |
| 1397 | /// in which case the assumption becomes that |
| 1398 | /// **there are exactly one (or two) leap second(s) ever**. |
| 1399 | /// |
| 1400 | /// The implementation is a wrapper around |
| 1401 | /// [`NaiveTime::signed_duration_since`](#method.signed_duration_since). |
| 1402 | /// |
| 1403 | /// # Example |
| 1404 | /// |
| 1405 | /// ``` |
| 1406 | /// use chrono::{NaiveTime, TimeDelta}; |
| 1407 | /// |
| 1408 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
| 1409 | /// |
| 1410 | /// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero()); |
| 1411 | /// assert_eq!( |
| 1412 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), |
| 1413 | /// TimeDelta::try_milliseconds(25).unwrap() |
| 1414 | /// ); |
| 1415 | /// assert_eq!( |
| 1416 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), |
| 1417 | /// TimeDelta::try_milliseconds(975).unwrap() |
| 1418 | /// ); |
| 1419 | /// assert_eq!( |
| 1420 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), |
| 1421 | /// TimeDelta::try_seconds(7).unwrap() |
| 1422 | /// ); |
| 1423 | /// assert_eq!( |
| 1424 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), |
| 1425 | /// TimeDelta::try_seconds(5 * 60).unwrap() |
| 1426 | /// ); |
| 1427 | /// assert_eq!( |
| 1428 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), |
| 1429 | /// TimeDelta::try_seconds(3 * 3600).unwrap() |
| 1430 | /// ); |
| 1431 | /// assert_eq!( |
| 1432 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), |
| 1433 | /// TimeDelta::try_seconds(-3600).unwrap() |
| 1434 | /// ); |
| 1435 | /// assert_eq!( |
| 1436 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800), |
| 1437 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() |
| 1438 | /// ); |
| 1439 | /// ``` |
| 1440 | /// |
| 1441 | /// Leap seconds are handled, but the subtraction assumes that |
| 1442 | /// there were no other leap seconds happened. |
| 1443 | /// |
| 1444 | /// ``` |
| 1445 | /// # use chrono::{TimeDelta, NaiveTime}; |
| 1446 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
| 1447 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::try_seconds(1).unwrap()); |
| 1448 | /// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0), |
| 1449 | /// TimeDelta::try_milliseconds(1500).unwrap()); |
| 1450 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::try_seconds(60).unwrap()); |
| 1451 | /// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::try_seconds(1).unwrap()); |
| 1452 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000), |
| 1453 | /// TimeDelta::try_seconds(61).unwrap()); |
| 1454 | /// ``` |
| 1455 | impl Sub<NaiveTime> for NaiveTime { |
| 1456 | type Output = TimeDelta; |
| 1457 | |
| 1458 | #[inline ] |
| 1459 | fn sub(self, rhs: NaiveTime) -> TimeDelta { |
| 1460 | self.signed_duration_since(rhs) |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | /// The `Debug` output of the naive time `t` is the same as |
| 1465 | /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). |
| 1466 | /// |
| 1467 | /// The string printed can be readily parsed via the `parse` method on `str`. |
| 1468 | /// |
| 1469 | /// It should be noted that, for leap seconds not on the minute boundary, |
| 1470 | /// it may print a representation not distinguishable from non-leap seconds. |
| 1471 | /// This doesn't matter in practice, since such leap seconds never happened. |
| 1472 | /// (By the time of the first leap second on 1972-06-30, |
| 1473 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
| 1474 | /// |
| 1475 | /// # Example |
| 1476 | /// |
| 1477 | /// ``` |
| 1478 | /// use chrono::NaiveTime; |
| 1479 | /// |
| 1480 | /// assert_eq!(format!("{:?}" , NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04" ); |
| 1481 | /// assert_eq!( |
| 1482 | /// format!("{:?}" , NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), |
| 1483 | /// "23:56:04.012" |
| 1484 | /// ); |
| 1485 | /// assert_eq!( |
| 1486 | /// format!("{:?}" , NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), |
| 1487 | /// "23:56:04.001234" |
| 1488 | /// ); |
| 1489 | /// assert_eq!( |
| 1490 | /// format!("{:?}" , NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), |
| 1491 | /// "23:56:04.000123456" |
| 1492 | /// ); |
| 1493 | /// ``` |
| 1494 | /// |
| 1495 | /// Leap seconds may also be used. |
| 1496 | /// |
| 1497 | /// ``` |
| 1498 | /// # use chrono::NaiveTime; |
| 1499 | /// assert_eq!( |
| 1500 | /// format!("{:?}" , NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), |
| 1501 | /// "06:59:60.500" |
| 1502 | /// ); |
| 1503 | /// ``` |
| 1504 | impl fmt::Debug for NaiveTime { |
| 1505 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1506 | let (hour, min, sec) = self.hms(); |
| 1507 | let (sec, nano) = if self.frac >= 1_000_000_000 { |
| 1508 | (sec + 1, self.frac - 1_000_000_000) |
| 1509 | } else { |
| 1510 | (sec, self.frac) |
| 1511 | }; |
| 1512 | |
| 1513 | use core::fmt::Write; |
| 1514 | write_hundreds(f, hour as u8)?; |
| 1515 | f.write_char(':' )?; |
| 1516 | write_hundreds(f, min as u8)?; |
| 1517 | f.write_char(':' )?; |
| 1518 | write_hundreds(f, sec as u8)?; |
| 1519 | |
| 1520 | if nano == 0 { |
| 1521 | Ok(()) |
| 1522 | } else if nano % 1_000_000 == 0 { |
| 1523 | write!(f, ". {:03}" , nano / 1_000_000) |
| 1524 | } else if nano % 1_000 == 0 { |
| 1525 | write!(f, ". {:06}" , nano / 1_000) |
| 1526 | } else { |
| 1527 | write!(f, ". {:09}" , nano) |
| 1528 | } |
| 1529 | } |
| 1530 | } |
| 1531 | |
| 1532 | /// The `Display` output of the naive time `t` is the same as |
| 1533 | /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). |
| 1534 | /// |
| 1535 | /// The string printed can be readily parsed via the `parse` method on `str`. |
| 1536 | /// |
| 1537 | /// It should be noted that, for leap seconds not on the minute boundary, |
| 1538 | /// it may print a representation not distinguishable from non-leap seconds. |
| 1539 | /// This doesn't matter in practice, since such leap seconds never happened. |
| 1540 | /// (By the time of the first leap second on 1972-06-30, |
| 1541 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
| 1542 | /// |
| 1543 | /// # Example |
| 1544 | /// |
| 1545 | /// ``` |
| 1546 | /// use chrono::NaiveTime; |
| 1547 | /// |
| 1548 | /// assert_eq!(format!("{}" , NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04" ); |
| 1549 | /// assert_eq!( |
| 1550 | /// format!("{}" , NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), |
| 1551 | /// "23:56:04.012" |
| 1552 | /// ); |
| 1553 | /// assert_eq!( |
| 1554 | /// format!("{}" , NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), |
| 1555 | /// "23:56:04.001234" |
| 1556 | /// ); |
| 1557 | /// assert_eq!( |
| 1558 | /// format!("{}" , NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), |
| 1559 | /// "23:56:04.000123456" |
| 1560 | /// ); |
| 1561 | /// ``` |
| 1562 | /// |
| 1563 | /// Leap seconds may also be used. |
| 1564 | /// |
| 1565 | /// ``` |
| 1566 | /// # use chrono::NaiveTime; |
| 1567 | /// assert_eq!( |
| 1568 | /// format!("{}" , NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), |
| 1569 | /// "06:59:60.500" |
| 1570 | /// ); |
| 1571 | /// ``` |
| 1572 | impl fmt::Display for NaiveTime { |
| 1573 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1574 | fmt::Debug::fmt(self, f) |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | /// Parsing a `str` into a `NaiveTime` uses the same format, |
| 1579 | /// [`%H:%M:%S%.f`](crate::format::strftime), as in `Debug` and `Display`. |
| 1580 | /// |
| 1581 | /// # Example |
| 1582 | /// |
| 1583 | /// ``` |
| 1584 | /// use chrono::NaiveTime; |
| 1585 | /// |
| 1586 | /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
| 1587 | /// assert_eq!("23:56:04" .parse::<NaiveTime>(), Ok(t)); |
| 1588 | /// |
| 1589 | /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
| 1590 | /// assert_eq!("23:56:4.012345678" .parse::<NaiveTime>(), Ok(t)); |
| 1591 | /// |
| 1592 | /// let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second |
| 1593 | /// assert_eq!("23:59:60.23456789" .parse::<NaiveTime>(), Ok(t)); |
| 1594 | /// |
| 1595 | /// // Seconds are optional |
| 1596 | /// let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap(); |
| 1597 | /// assert_eq!("23:56" .parse::<NaiveTime>(), Ok(t)); |
| 1598 | /// |
| 1599 | /// assert!("foo" .parse::<NaiveTime>().is_err()); |
| 1600 | /// ``` |
| 1601 | impl str::FromStr for NaiveTime { |
| 1602 | type Err = ParseError; |
| 1603 | |
| 1604 | fn from_str(s: &str) -> ParseResult<NaiveTime> { |
| 1605 | const HOUR_AND_MINUTE: &[Item<'static>] = &[ |
| 1606 | Item::Numeric(Numeric::Hour, Pad::Zero), |
| 1607 | Item::Space("" ), |
| 1608 | Item::Literal(":" ), |
| 1609 | Item::Numeric(Numeric::Minute, Pad::Zero), |
| 1610 | ]; |
| 1611 | const SECOND_AND_NANOS: &[Item<'static>] = &[ |
| 1612 | Item::Space("" ), |
| 1613 | Item::Literal(":" ), |
| 1614 | Item::Numeric(Numeric::Second, Pad::Zero), |
| 1615 | Item::Fixed(Fixed::Nanosecond), |
| 1616 | Item::Space("" ), |
| 1617 | ]; |
| 1618 | const TRAILING_WHITESPACE: [Item<'static>; 1] = [Item::Space("" )]; |
| 1619 | |
| 1620 | let mut parsed = Parsed::new(); |
| 1621 | let s = parse_and_remainder(&mut parsed, s, HOUR_AND_MINUTE.iter())?; |
| 1622 | // Seconds are optional, don't fail if parsing them doesn't succeed. |
| 1623 | let s = parse_and_remainder(&mut parsed, s, SECOND_AND_NANOS.iter()).unwrap_or(s); |
| 1624 | parse(&mut parsed, s, TRAILING_WHITESPACE.iter())?; |
| 1625 | parsed.to_naive_time() |
| 1626 | } |
| 1627 | } |
| 1628 | |
| 1629 | /// The default value for a NaiveTime is midnight, 00:00:00 exactly. |
| 1630 | /// |
| 1631 | /// # Example |
| 1632 | /// |
| 1633 | /// ```rust |
| 1634 | /// use chrono::NaiveTime; |
| 1635 | /// |
| 1636 | /// let default_time = NaiveTime::default(); |
| 1637 | /// assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap()); |
| 1638 | /// ``` |
| 1639 | impl Default for NaiveTime { |
| 1640 | fn default() -> Self { |
| 1641 | NaiveTime::from_hms_opt(hour:0, min:0, sec:0).unwrap() |
| 1642 | } |
| 1643 | } |
| 1644 | |