1 | // This is a part of Chrono. |
2 | // See README.md and LICENSE.txt for details. |
3 | |
4 | //! ISO 8601 time without timezone. |
5 | |
6 | #[cfg (feature = "alloc" )] |
7 | use core::borrow::Borrow; |
8 | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
9 | use core::time::Duration; |
10 | use core::{fmt, str}; |
11 | |
12 | #[cfg (any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ))] |
13 | use rkyv::{Archive, Deserialize, Serialize}; |
14 | |
15 | #[cfg (feature = "alloc" )] |
16 | use crate::format::DelayedFormat; |
17 | use crate::format::{ |
18 | Fixed, Item, Numeric, Pad, ParseError, ParseResult, Parsed, StrftimeItems, parse, |
19 | parse_and_remainder, write_hundreds, |
20 | }; |
21 | use crate::{FixedOffset, TimeDelta, Timelike}; |
22 | use crate::{expect, try_opt}; |
23 | |
24 | #[cfg (feature = "serde" )] |
25 | mod serde; |
26 | |
27 | #[cfg (test)] |
28 | mod tests; |
29 | |
30 | /// ISO 8601 time without timezone. |
31 | /// Allows for the nanosecond precision and optional leap second representation. |
32 | /// |
33 | /// # Leap Second Handling |
34 | /// |
35 | /// Since 1960s, the manmade atomic clock has been so accurate that |
36 | /// it is much more accurate than Earth's own motion. |
37 | /// It became desirable to define the civil time in terms of the atomic clock, |
38 | /// but that risks the desynchronization of the civil time from Earth. |
39 | /// To account for this, the designers of the Coordinated Universal Time (UTC) |
40 | /// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time. |
41 | /// When the mean solar day is longer than the ideal (86,400 seconds), |
42 | /// the error slowly accumulates and it is necessary to add a **leap second** |
43 | /// to slow the UTC down a bit. |
44 | /// (We may also remove a second to speed the UTC up a bit, but it never happened.) |
45 | /// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC. |
46 | /// |
47 | /// Fast forward to the 21st century, |
48 | /// we have seen 26 leap seconds from January 1972 to December 2015. |
49 | /// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds. |
50 | /// But those 26 seconds, and possibly more in the future, are never predictable, |
51 | /// and whether to add a leap second or not is known only before 6 months. |
52 | /// Internet-based clocks (via NTP) do account for known leap seconds, |
53 | /// but the system API normally doesn't (and often can't, with no network connection) |
54 | /// and there is no reliable way to retrieve leap second information. |
55 | /// |
56 | /// Chrono does not try to accurately implement leap seconds; it is impossible. |
57 | /// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.** |
58 | /// Various operations will ignore any possible leap second(s) |
59 | /// except when any of the operands were actually leap seconds. |
60 | /// |
61 | /// If you cannot tolerate this behavior, |
62 | /// you must use a separate `TimeZone` for the International Atomic Time (TAI). |
63 | /// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC. |
64 | /// Chrono does not yet provide such implementation, but it is planned. |
65 | /// |
66 | /// ## Representing Leap Seconds |
67 | /// |
68 | /// The leap second is indicated via fractional seconds more than 1 second. |
69 | /// This makes possible to treat a leap second as the prior non-leap second |
70 | /// if you don't care about sub-second accuracy. |
71 | /// You should use the proper formatting to get the raw leap second. |
72 | /// |
73 | /// All methods accepting fractional seconds will accept such values. |
74 | /// |
75 | /// ``` |
76 | /// use chrono::{NaiveDate, NaiveTime}; |
77 | /// |
78 | /// let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap(); |
79 | /// |
80 | /// let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1) |
81 | /// .unwrap() |
82 | /// .and_hms_micro_opt(8, 59, 59, 1_000_000) |
83 | /// .unwrap(); |
84 | /// |
85 | /// let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30) |
86 | /// .unwrap() |
87 | /// .and_hms_nano_opt(23, 59, 59, 1_000_000_000) |
88 | /// .unwrap() |
89 | /// .and_utc(); |
90 | /// # let _ = (t, dt1, dt2); |
91 | /// ``` |
92 | /// |
93 | /// Note that the leap second can happen anytime given an appropriate time zone; |
94 | /// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed. |
95 | /// Practically speaking, though, by the time of the first leap second on 1972-06-30, |
96 | /// every time zone offset around the world has standardized to the 5-minute alignment. |
97 | /// |
98 | /// ## Date And Time Arithmetics |
99 | /// |
100 | /// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds. |
101 | /// In reality, of course, leap seconds are separated by at least 6 months. |
102 | /// We will also use some intuitive concise notations for the explanation. |
103 | /// |
104 | /// `Time + TimeDelta` |
105 | /// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)): |
106 | /// |
107 | /// - `03:00:00 + 1s = 03:00:01`. |
108 | /// - `03:00:59 + 60s = 03:01:59`. |
109 | /// - `03:00:59 + 61s = 03:02:00`. |
110 | /// - `03:00:59 + 1s = 03:01:00`. |
111 | /// - `03:00:60 + 1s = 03:01:00`. |
112 | /// Note that the sum is identical to the previous. |
113 | /// - `03:00:60 + 60s = 03:01:59`. |
114 | /// - `03:00:60 + 61s = 03:02:00`. |
115 | /// - `03:00:60.1 + 0.8s = 03:00:60.9`. |
116 | /// |
117 | /// `Time - TimeDelta` |
118 | /// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)): |
119 | /// |
120 | /// - `03:00:00 - 1s = 02:59:59`. |
121 | /// - `03:01:00 - 1s = 03:00:59`. |
122 | /// - `03:01:00 - 60s = 03:00:00`. |
123 | /// - `03:00:60 - 60s = 03:00:00`. |
124 | /// Note that the result is identical to the previous. |
125 | /// - `03:00:60.7 - 0.4s = 03:00:60.3`. |
126 | /// - `03:00:60.7 - 0.9s = 03:00:59.8`. |
127 | /// |
128 | /// `Time - Time` |
129 | /// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)): |
130 | /// |
131 | /// - `04:00:00 - 03:00:00 = 3600s`. |
132 | /// - `03:01:00 - 03:00:00 = 60s`. |
133 | /// - `03:00:60 - 03:00:00 = 60s`. |
134 | /// Note that the difference is identical to the previous. |
135 | /// - `03:00:60.6 - 03:00:59.4 = 1.2s`. |
136 | /// - `03:01:00 - 03:00:59.8 = 0.2s`. |
137 | /// - `03:01:00 - 03:00:60.5 = 0.5s`. |
138 | /// Note that the difference is larger than the previous, |
139 | /// even though the leap second clearly follows the previous whole second. |
140 | /// - `04:00:60.9 - 03:00:60.1 = |
141 | /// (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) = |
142 | /// 60.9s + 3540s + 0.9s = 3601.8s`. |
143 | /// |
144 | /// In general, |
145 | /// |
146 | /// - `Time + TimeDelta` unconditionally equals to `TimeDelta + Time`. |
147 | /// |
148 | /// - `Time - TimeDelta` unconditionally equals to `Time + (-TimeDelta)`. |
149 | /// |
150 | /// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`. |
151 | /// |
152 | /// - Associativity does not generally hold, because |
153 | /// `(Time + TimeDelta1) - TimeDelta2` no longer equals to `Time + (TimeDelta1 - TimeDelta2)` |
154 | /// for two positive durations. |
155 | /// |
156 | /// - As a special case, `(Time + TimeDelta) - TimeDelta` also does not equal to `Time`. |
157 | /// |
158 | /// - If you can assume that all durations have the same sign, however, |
159 | /// then the associativity holds: |
160 | /// `(Time + TimeDelta1) + TimeDelta2` equals to `Time + (TimeDelta1 + TimeDelta2)` |
161 | /// for two positive durations. |
162 | /// |
163 | /// ## Reading And Writing Leap Seconds |
164 | /// |
165 | /// The "typical" leap seconds on the minute boundary are |
166 | /// correctly handled both in the formatting and parsing. |
167 | /// The leap second in the human-readable representation |
168 | /// will be represented as the second part being 60, as required by ISO 8601. |
169 | /// |
170 | /// ``` |
171 | /// use chrono::NaiveDate; |
172 | /// |
173 | /// let dt = NaiveDate::from_ymd_opt(2015, 6, 30) |
174 | /// .unwrap() |
175 | /// .and_hms_milli_opt(23, 59, 59, 1_000) |
176 | /// .unwrap() |
177 | /// .and_utc(); |
178 | /// assert_eq!(format!("{:?}" , dt), "2015-06-30T23:59:60Z" ); |
179 | /// ``` |
180 | /// |
181 | /// There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono. |
182 | /// They are allowed for the sake of completeness and consistency; there were several "exotic" time |
183 | /// zone offsets with fractional minutes prior to UTC after all. |
184 | /// For such cases the human-readable representation is ambiguous and would be read back to the next |
185 | /// non-leap second. |
186 | /// |
187 | /// A `NaiveTime` with a leap second that is not on a minute boundary can only be created from a |
188 | /// [`DateTime`](crate::DateTime) with fractional minutes as offset, or using |
189 | /// [`Timelike::with_nanosecond()`]. |
190 | /// |
191 | /// ``` |
192 | /// use chrono::{FixedOffset, NaiveDate, TimeZone}; |
193 | /// |
194 | /// let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36 |
195 | /// let leap_sec_2015 = |
196 | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
197 | /// let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015); |
198 | /// assert_eq!(format!("{:?}" , dt1), "2015-06-30T20:19:24-03:40:36" ); |
199 | /// assert_eq!(format!("{:?}" , dt1.time()), "20:19:24" ); |
200 | /// |
201 | /// let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap(); |
202 | /// let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec); |
203 | /// assert_eq!(format!("{:?}" , dt2), "2015-06-30T20:19:24-03:40:36" ); |
204 | /// assert_eq!(format!("{:?}" , dt2.time()), "20:19:24" ); |
205 | /// |
206 | /// assert!(dt1.time() != dt2.time()); |
207 | /// assert!(dt1.time().to_string() == dt2.time().to_string()); |
208 | /// ``` |
209 | /// |
210 | /// Since Chrono alone cannot determine any existence of leap seconds, |
211 | /// **there is absolutely no guarantee that the leap second read has actually happened**. |
212 | #[derive (PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] |
213 | #[cfg_attr ( |
214 | any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ), |
215 | derive(Archive, Deserialize, Serialize), |
216 | archive(compare(PartialEq, PartialOrd)), |
217 | archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) |
218 | )] |
219 | #[cfg_attr (feature = "rkyv-validation" , archive(check_bytes))] |
220 | pub struct NaiveTime { |
221 | secs: u32, |
222 | frac: u32, |
223 | } |
224 | |
225 | #[cfg (feature = "arbitrary" )] |
226 | impl arbitrary::Arbitrary<'_> for NaiveTime { |
227 | fn arbitrary(u: &mut arbitrary::Unstructured) -> arbitrary::Result<NaiveTime> { |
228 | let mins = u.int_in_range(0..=1439)?; |
229 | let mut secs = u.int_in_range(0..=60)?; |
230 | let mut nano = u.int_in_range(0..=999_999_999)?; |
231 | if secs == 60 { |
232 | secs = 59; |
233 | nano += 1_000_000_000; |
234 | } |
235 | let time = NaiveTime::from_num_seconds_from_midnight_opt(mins * 60 + secs, nano) |
236 | .expect("Could not generate a valid chrono::NaiveTime. It looks like implementation of Arbitrary for NaiveTime is erroneous." ); |
237 | Ok(time) |
238 | } |
239 | } |
240 | |
241 | impl NaiveTime { |
242 | /// Makes a new `NaiveTime` from hour, minute and second. |
243 | /// |
244 | /// No [leap second](#leap-second-handling) is allowed here; |
245 | /// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead. |
246 | /// |
247 | /// # Panics |
248 | /// |
249 | /// Panics on invalid hour, minute and/or second. |
250 | #[deprecated (since = "0.4.23" , note = "use `from_hms_opt()` instead" )] |
251 | #[inline ] |
252 | #[must_use ] |
253 | pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime { |
254 | expect(NaiveTime::from_hms_opt(hour, min, sec), "invalid time" ) |
255 | } |
256 | |
257 | /// Makes a new `NaiveTime` from hour, minute and second. |
258 | /// |
259 | /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a |
260 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
261 | /// |
262 | /// # Errors |
263 | /// |
264 | /// Returns `None` on invalid hour, minute and/or second. |
265 | /// |
266 | /// # Example |
267 | /// |
268 | /// ``` |
269 | /// use chrono::NaiveTime; |
270 | /// |
271 | /// let from_hms_opt = NaiveTime::from_hms_opt; |
272 | /// |
273 | /// assert!(from_hms_opt(0, 0, 0).is_some()); |
274 | /// assert!(from_hms_opt(23, 59, 59).is_some()); |
275 | /// assert!(from_hms_opt(24, 0, 0).is_none()); |
276 | /// assert!(from_hms_opt(23, 60, 0).is_none()); |
277 | /// assert!(from_hms_opt(23, 59, 60).is_none()); |
278 | /// ``` |
279 | #[inline ] |
280 | #[must_use ] |
281 | pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> { |
282 | NaiveTime::from_hms_nano_opt(hour, min, sec, 0) |
283 | } |
284 | |
285 | /// Makes a new `NaiveTime` from hour, minute, second and millisecond. |
286 | /// |
287 | /// The millisecond part can exceed 1,000 |
288 | /// in order to represent the [leap second](#leap-second-handling). |
289 | /// |
290 | /// # Panics |
291 | /// |
292 | /// Panics on invalid hour, minute, second and/or millisecond. |
293 | #[deprecated (since = "0.4.23" , note = "use `from_hms_milli_opt()` instead" )] |
294 | #[inline ] |
295 | #[must_use ] |
296 | pub const fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime { |
297 | expect(NaiveTime::from_hms_milli_opt(hour, min, sec, milli), "invalid time" ) |
298 | } |
299 | |
300 | /// Makes a new `NaiveTime` from hour, minute, second and millisecond. |
301 | /// |
302 | /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a |
303 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
304 | /// |
305 | /// # Errors |
306 | /// |
307 | /// Returns `None` on invalid hour, minute, second and/or millisecond. |
308 | /// |
309 | /// # Example |
310 | /// |
311 | /// ``` |
312 | /// use chrono::NaiveTime; |
313 | /// |
314 | /// let from_hmsm_opt = NaiveTime::from_hms_milli_opt; |
315 | /// |
316 | /// assert!(from_hmsm_opt(0, 0, 0, 0).is_some()); |
317 | /// assert!(from_hmsm_opt(23, 59, 59, 999).is_some()); |
318 | /// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59 |
319 | /// assert!(from_hmsm_opt(24, 0, 0, 0).is_none()); |
320 | /// assert!(from_hmsm_opt(23, 60, 0, 0).is_none()); |
321 | /// assert!(from_hmsm_opt(23, 59, 60, 0).is_none()); |
322 | /// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none()); |
323 | /// ``` |
324 | #[inline ] |
325 | #[must_use ] |
326 | pub const fn from_hms_milli_opt( |
327 | hour: u32, |
328 | min: u32, |
329 | sec: u32, |
330 | milli: u32, |
331 | ) -> Option<NaiveTime> { |
332 | let nano = try_opt!(milli.checked_mul(1_000_000)); |
333 | NaiveTime::from_hms_nano_opt(hour, min, sec, nano) |
334 | } |
335 | |
336 | /// Makes a new `NaiveTime` from hour, minute, second and microsecond. |
337 | /// |
338 | /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a |
339 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
340 | /// |
341 | /// # Panics |
342 | /// |
343 | /// Panics on invalid hour, minute, second and/or microsecond. |
344 | #[deprecated (since = "0.4.23" , note = "use `from_hms_micro_opt()` instead" )] |
345 | #[inline ] |
346 | #[must_use ] |
347 | pub const fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime { |
348 | expect(NaiveTime::from_hms_micro_opt(hour, min, sec, micro), "invalid time" ) |
349 | } |
350 | |
351 | /// Makes a new `NaiveTime` from hour, minute, second and microsecond. |
352 | /// |
353 | /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a |
354 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
355 | /// |
356 | /// # Errors |
357 | /// |
358 | /// Returns `None` on invalid hour, minute, second and/or microsecond. |
359 | /// |
360 | /// # Example |
361 | /// |
362 | /// ``` |
363 | /// use chrono::NaiveTime; |
364 | /// |
365 | /// let from_hmsu_opt = NaiveTime::from_hms_micro_opt; |
366 | /// |
367 | /// assert!(from_hmsu_opt(0, 0, 0, 0).is_some()); |
368 | /// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some()); |
369 | /// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59 |
370 | /// assert!(from_hmsu_opt(24, 0, 0, 0).is_none()); |
371 | /// assert!(from_hmsu_opt(23, 60, 0, 0).is_none()); |
372 | /// assert!(from_hmsu_opt(23, 59, 60, 0).is_none()); |
373 | /// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none()); |
374 | /// ``` |
375 | #[inline ] |
376 | #[must_use ] |
377 | pub const fn from_hms_micro_opt( |
378 | hour: u32, |
379 | min: u32, |
380 | sec: u32, |
381 | micro: u32, |
382 | ) -> Option<NaiveTime> { |
383 | let nano = try_opt!(micro.checked_mul(1_000)); |
384 | NaiveTime::from_hms_nano_opt(hour, min, sec, nano) |
385 | } |
386 | |
387 | /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. |
388 | /// |
389 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
390 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
391 | /// |
392 | /// # Panics |
393 | /// |
394 | /// Panics on invalid hour, minute, second and/or nanosecond. |
395 | #[deprecated (since = "0.4.23" , note = "use `from_hms_nano_opt()` instead" )] |
396 | #[inline ] |
397 | #[must_use ] |
398 | pub const fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime { |
399 | expect(NaiveTime::from_hms_nano_opt(hour, min, sec, nano), "invalid time" ) |
400 | } |
401 | |
402 | /// Makes a new `NaiveTime` from hour, minute, second and nanosecond. |
403 | /// |
404 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
405 | /// [leap second](#leap-second-handling), but only when `sec == 59`. |
406 | /// |
407 | /// # Errors |
408 | /// |
409 | /// Returns `None` on invalid hour, minute, second and/or nanosecond. |
410 | /// |
411 | /// # Example |
412 | /// |
413 | /// ``` |
414 | /// use chrono::NaiveTime; |
415 | /// |
416 | /// let from_hmsn_opt = NaiveTime::from_hms_nano_opt; |
417 | /// |
418 | /// assert!(from_hmsn_opt(0, 0, 0, 0).is_some()); |
419 | /// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some()); |
420 | /// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59 |
421 | /// assert!(from_hmsn_opt(24, 0, 0, 0).is_none()); |
422 | /// assert!(from_hmsn_opt(23, 60, 0, 0).is_none()); |
423 | /// assert!(from_hmsn_opt(23, 59, 60, 0).is_none()); |
424 | /// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none()); |
425 | /// ``` |
426 | #[inline ] |
427 | #[must_use ] |
428 | pub const fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> { |
429 | if (hour >= 24 || min >= 60 || sec >= 60) |
430 | || (nano >= 1_000_000_000 && sec != 59) |
431 | || nano >= 2_000_000_000 |
432 | { |
433 | return None; |
434 | } |
435 | let secs = hour * 3600 + min * 60 + sec; |
436 | Some(NaiveTime { secs, frac: nano }) |
437 | } |
438 | |
439 | /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. |
440 | /// |
441 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
442 | /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. |
443 | /// |
444 | /// # Panics |
445 | /// |
446 | /// Panics on invalid number of seconds and/or nanosecond. |
447 | #[deprecated (since = "0.4.23" , note = "use `from_num_seconds_from_midnight_opt()` instead" )] |
448 | #[inline ] |
449 | #[must_use ] |
450 | pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime { |
451 | expect(NaiveTime::from_num_seconds_from_midnight_opt(secs, nano), "invalid time" ) |
452 | } |
453 | |
454 | /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond. |
455 | /// |
456 | /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a |
457 | /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`. |
458 | /// |
459 | /// # Errors |
460 | /// |
461 | /// Returns `None` on invalid number of seconds and/or nanosecond. |
462 | /// |
463 | /// # Example |
464 | /// |
465 | /// ``` |
466 | /// use chrono::NaiveTime; |
467 | /// |
468 | /// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt; |
469 | /// |
470 | /// assert!(from_nsecs_opt(0, 0).is_some()); |
471 | /// assert!(from_nsecs_opt(86399, 999_999_999).is_some()); |
472 | /// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59 |
473 | /// assert!(from_nsecs_opt(86_400, 0).is_none()); |
474 | /// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none()); |
475 | /// ``` |
476 | #[inline ] |
477 | #[must_use ] |
478 | pub const fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> { |
479 | if secs >= 86_400 || nano >= 2_000_000_000 || (nano >= 1_000_000_000 && secs % 60 != 59) { |
480 | return None; |
481 | } |
482 | Some(NaiveTime { secs, frac: nano }) |
483 | } |
484 | |
485 | /// Parses a string with the specified format string and returns a new `NaiveTime`. |
486 | /// See the [`format::strftime` module](crate::format::strftime) |
487 | /// on the supported escape sequences. |
488 | /// |
489 | /// # Example |
490 | /// |
491 | /// ``` |
492 | /// use chrono::NaiveTime; |
493 | /// |
494 | /// let parse_from_str = NaiveTime::parse_from_str; |
495 | /// |
496 | /// assert_eq!( |
497 | /// parse_from_str("23:56:04" , "%H:%M:%S" ), |
498 | /// Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap()) |
499 | /// ); |
500 | /// assert_eq!( |
501 | /// parse_from_str("pm012345.6789" , "%p%I%M%S%.f" ), |
502 | /// Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap()) |
503 | /// ); |
504 | /// ``` |
505 | /// |
506 | /// Date and offset is ignored for the purpose of parsing. |
507 | /// |
508 | /// ``` |
509 | /// # use chrono::NaiveTime; |
510 | /// # let parse_from_str = NaiveTime::parse_from_str; |
511 | /// assert_eq!( |
512 | /// parse_from_str("2014-5-17T12:34:56+09:30" , "%Y-%m-%dT%H:%M:%S%z" ), |
513 | /// Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap()) |
514 | /// ); |
515 | /// ``` |
516 | /// |
517 | /// [Leap seconds](#leap-second-handling) are correctly handled by |
518 | /// treating any time of the form `hh:mm:60` as a leap second. |
519 | /// (This equally applies to the formatting, so the round trip is possible.) |
520 | /// |
521 | /// ``` |
522 | /// # use chrono::NaiveTime; |
523 | /// # let parse_from_str = NaiveTime::parse_from_str; |
524 | /// assert_eq!( |
525 | /// parse_from_str("08:59:60.123" , "%H:%M:%S%.f" ), |
526 | /// Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap()) |
527 | /// ); |
528 | /// ``` |
529 | /// |
530 | /// Missing seconds are assumed to be zero, |
531 | /// but out-of-bound times or insufficient fields are errors otherwise. |
532 | /// |
533 | /// ``` |
534 | /// # use chrono::NaiveTime; |
535 | /// # let parse_from_str = NaiveTime::parse_from_str; |
536 | /// assert_eq!(parse_from_str("7:15" , "%H:%M" ), Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap())); |
537 | /// |
538 | /// assert!(parse_from_str("04m33s" , "%Mm%Ss" ).is_err()); |
539 | /// assert!(parse_from_str("12" , "%H" ).is_err()); |
540 | /// assert!(parse_from_str("17:60" , "%H:%M" ).is_err()); |
541 | /// assert!(parse_from_str("24:00:00" , "%H:%M:%S" ).is_err()); |
542 | /// ``` |
543 | /// |
544 | /// All parsed fields should be consistent to each other, otherwise it's an error. |
545 | /// Here `%H` is for 24-hour clocks, unlike `%I`, |
546 | /// and thus can be independently determined without AM/PM. |
547 | /// |
548 | /// ``` |
549 | /// # use chrono::NaiveTime; |
550 | /// # let parse_from_str = NaiveTime::parse_from_str; |
551 | /// assert!(parse_from_str("13:07 AM" , "%H:%M %p" ).is_err()); |
552 | /// ``` |
553 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> { |
554 | let mut parsed = Parsed::new(); |
555 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
556 | parsed.to_naive_time() |
557 | } |
558 | |
559 | /// Parses a string from a user-specified format into a new `NaiveTime` value, and a slice with |
560 | /// the remaining portion of the string. |
561 | /// See the [`format::strftime` module](crate::format::strftime) |
562 | /// on the supported escape sequences. |
563 | /// |
564 | /// Similar to [`parse_from_str`](#method.parse_from_str). |
565 | /// |
566 | /// # Example |
567 | /// |
568 | /// ```rust |
569 | /// # use chrono::{NaiveTime}; |
570 | /// let (time, remainder) = |
571 | /// NaiveTime::parse_and_remainder("3h4m33s trailing text" , "%-Hh%-Mm%-Ss" ).unwrap(); |
572 | /// assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap()); |
573 | /// assert_eq!(remainder, " trailing text" ); |
574 | /// ``` |
575 | pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveTime, &'a str)> { |
576 | let mut parsed = Parsed::new(); |
577 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
578 | parsed.to_naive_time().map(|t| (t, remainder)) |
579 | } |
580 | |
581 | /// Adds given `TimeDelta` to the current time, and also returns the number of *seconds* |
582 | /// in the integral number of days ignored from the addition. |
583 | /// |
584 | /// # Example |
585 | /// |
586 | /// ``` |
587 | /// use chrono::{NaiveTime, TimeDelta}; |
588 | /// |
589 | /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); |
590 | /// |
591 | /// assert_eq!( |
592 | /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(11).unwrap()), |
593 | /// (from_hms(14, 4, 5), 0) |
594 | /// ); |
595 | /// assert_eq!( |
596 | /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(23).unwrap()), |
597 | /// (from_hms(2, 4, 5), 86_400) |
598 | /// ); |
599 | /// assert_eq!( |
600 | /// from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::try_hours(-7).unwrap()), |
601 | /// (from_hms(20, 4, 5), -86_400) |
602 | /// ); |
603 | /// ``` |
604 | #[must_use ] |
605 | pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { |
606 | let mut secs = self.secs as i64; |
607 | let mut frac = self.frac as i32; |
608 | let secs_to_add = rhs.num_seconds(); |
609 | let frac_to_add = rhs.subsec_nanos(); |
610 | |
611 | // Check if `self` is a leap second and adding `rhs` would escape that leap second. |
612 | // If that is the case, update `frac` and `secs` to involve no leap second. |
613 | // If it stays within the leap second or the second before, and only adds a fractional |
614 | // second, just do that and return (this way the rest of the code can ignore leap seconds). |
615 | if frac >= 1_000_000_000 { |
616 | // check below is adjusted to not overflow an i32: `frac + frac_to_add >= 2_000_000_000` |
617 | if secs_to_add > 0 || (frac_to_add > 0 && frac >= 2_000_000_000 - frac_to_add) { |
618 | frac -= 1_000_000_000; |
619 | } else if secs_to_add < 0 { |
620 | frac -= 1_000_000_000; |
621 | secs += 1; |
622 | } else { |
623 | return (NaiveTime { secs: self.secs, frac: (frac + frac_to_add) as u32 }, 0); |
624 | } |
625 | } |
626 | |
627 | let mut secs = secs + secs_to_add; |
628 | frac += frac_to_add; |
629 | |
630 | if frac < 0 { |
631 | frac += 1_000_000_000; |
632 | secs -= 1; |
633 | } else if frac >= 1_000_000_000 { |
634 | frac -= 1_000_000_000; |
635 | secs += 1; |
636 | } |
637 | |
638 | let secs_in_day = secs.rem_euclid(86_400); |
639 | let remaining = secs - secs_in_day; |
640 | (NaiveTime { secs: secs_in_day as u32, frac: frac as u32 }, remaining) |
641 | } |
642 | |
643 | /// Subtracts given `TimeDelta` from the current time, and also returns the number of *seconds* |
644 | /// in the integral number of days ignored from the subtraction. |
645 | /// |
646 | /// # Example |
647 | /// |
648 | /// ``` |
649 | /// use chrono::{NaiveTime, TimeDelta}; |
650 | /// |
651 | /// let from_hms = |h, m, s| NaiveTime::from_hms_opt(h, m, s).unwrap(); |
652 | /// |
653 | /// assert_eq!( |
654 | /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(2).unwrap()), |
655 | /// (from_hms(1, 4, 5), 0) |
656 | /// ); |
657 | /// assert_eq!( |
658 | /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(17).unwrap()), |
659 | /// (from_hms(10, 4, 5), 86_400) |
660 | /// ); |
661 | /// assert_eq!( |
662 | /// from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::try_hours(-22).unwrap()), |
663 | /// (from_hms(1, 4, 5), -86_400) |
664 | /// ); |
665 | /// ``` |
666 | #[inline ] |
667 | #[must_use ] |
668 | pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) { |
669 | let (time, rhs) = self.overflowing_add_signed(rhs.neg()); |
670 | (time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000) |
671 | } |
672 | |
673 | /// Subtracts another `NaiveTime` from the current time. |
674 | /// Returns a `TimeDelta` within +/- 1 day. |
675 | /// This does not overflow or underflow at all. |
676 | /// |
677 | /// As a part of Chrono's [leap second handling](#leap-second-handling), |
678 | /// the subtraction assumes that **there is no leap second ever**, |
679 | /// except when any of the `NaiveTime`s themselves represents a leap second |
680 | /// in which case the assumption becomes that |
681 | /// **there are exactly one (or two) leap second(s) ever**. |
682 | /// |
683 | /// # Example |
684 | /// |
685 | /// ``` |
686 | /// use chrono::{NaiveTime, TimeDelta}; |
687 | /// |
688 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
689 | /// let since = NaiveTime::signed_duration_since; |
690 | /// |
691 | /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)), TimeDelta::zero()); |
692 | /// assert_eq!( |
693 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)), |
694 | /// TimeDelta::try_milliseconds(25).unwrap() |
695 | /// ); |
696 | /// assert_eq!( |
697 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)), |
698 | /// TimeDelta::try_milliseconds(975).unwrap() |
699 | /// ); |
700 | /// assert_eq!( |
701 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)), |
702 | /// TimeDelta::try_seconds(7).unwrap() |
703 | /// ); |
704 | /// assert_eq!( |
705 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)), |
706 | /// TimeDelta::try_seconds(5 * 60).unwrap() |
707 | /// ); |
708 | /// assert_eq!( |
709 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)), |
710 | /// TimeDelta::try_seconds(3 * 3600).unwrap() |
711 | /// ); |
712 | /// assert_eq!( |
713 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)), |
714 | /// TimeDelta::try_seconds(-3600).unwrap() |
715 | /// ); |
716 | /// assert_eq!( |
717 | /// since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)), |
718 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() |
719 | /// ); |
720 | /// ``` |
721 | /// |
722 | /// Leap seconds are handled, but the subtraction assumes that |
723 | /// there were no other leap seconds happened. |
724 | /// |
725 | /// ``` |
726 | /// # use chrono::{TimeDelta, NaiveTime}; |
727 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
728 | /// # let since = NaiveTime::signed_duration_since; |
729 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)), |
730 | /// TimeDelta::try_seconds(1).unwrap()); |
731 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)), |
732 | /// TimeDelta::try_milliseconds(1500).unwrap()); |
733 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)), |
734 | /// TimeDelta::try_seconds(60).unwrap()); |
735 | /// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)), |
736 | /// TimeDelta::try_seconds(1).unwrap()); |
737 | /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)), |
738 | /// TimeDelta::try_seconds(61).unwrap()); |
739 | /// ``` |
740 | #[must_use ] |
741 | pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta { |
742 | // | | :leap| | | | | | | :leap| | |
743 | // | | : | | | | | | | : | | |
744 | // ----+----+-----*---+----+----+----+----+----+----+-------*-+----+---- |
745 | // | `rhs` | | `self` |
746 | // |======================================>| | |
747 | // | | `self.secs - rhs.secs` |`self.frac` |
748 | // |====>| | |======>| |
749 | // `rhs.frac`|========================================>| |
750 | // | | | `self - rhs` | | |
751 | |
752 | let mut secs = self.secs as i64 - rhs.secs as i64; |
753 | let frac = self.frac as i64 - rhs.frac as i64; |
754 | |
755 | // `secs` may contain a leap second yet to be counted |
756 | if self.secs > rhs.secs && rhs.frac >= 1_000_000_000 { |
757 | secs += 1; |
758 | } else if self.secs < rhs.secs && self.frac >= 1_000_000_000 { |
759 | secs -= 1; |
760 | } |
761 | |
762 | let secs_from_frac = frac.div_euclid(1_000_000_000); |
763 | let frac = frac.rem_euclid(1_000_000_000) as u32; |
764 | |
765 | expect(TimeDelta::new(secs + secs_from_frac, frac), "must be in range" ) |
766 | } |
767 | |
768 | /// Adds given `FixedOffset` to the current time, and returns the number of days that should be |
769 | /// added to a date as a result of the offset (either `-1`, `0`, or `1` because the offset is |
770 | /// always less than 24h). |
771 | /// |
772 | /// This method is similar to [`overflowing_add_signed`](#method.overflowing_add_signed), but |
773 | /// preserves leap seconds. |
774 | pub(super) const fn overflowing_add_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { |
775 | let secs = self.secs as i32 + offset.local_minus_utc(); |
776 | let days = secs.div_euclid(86_400); |
777 | let secs = secs.rem_euclid(86_400); |
778 | (NaiveTime { secs: secs as u32, frac: self.frac }, days) |
779 | } |
780 | |
781 | /// Subtracts given `FixedOffset` from the current time, and returns the number of days that |
782 | /// should be added to a date as a result of the offset (either `-1`, `0`, or `1` because the |
783 | /// offset is always less than 24h). |
784 | /// |
785 | /// This method is similar to [`overflowing_sub_signed`](#method.overflowing_sub_signed), but |
786 | /// preserves leap seconds. |
787 | pub(super) const fn overflowing_sub_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) { |
788 | let secs = self.secs as i32 - offset.local_minus_utc(); |
789 | let days = secs.div_euclid(86_400); |
790 | let secs = secs.rem_euclid(86_400); |
791 | (NaiveTime { secs: secs as u32, frac: self.frac }, days) |
792 | } |
793 | |
794 | /// Formats the time with the specified formatting items. |
795 | /// Otherwise it is the same as the ordinary [`format`](#method.format) method. |
796 | /// |
797 | /// The `Iterator` of items should be `Clone`able, |
798 | /// since the resulting `DelayedFormat` value may be formatted multiple times. |
799 | /// |
800 | /// # Example |
801 | /// |
802 | /// ``` |
803 | /// use chrono::format::strftime::StrftimeItems; |
804 | /// use chrono::NaiveTime; |
805 | /// |
806 | /// let fmt = StrftimeItems::new("%H:%M:%S" ); |
807 | /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
808 | /// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04" ); |
809 | /// assert_eq!(t.format("%H:%M:%S" ).to_string(), "23:56:04" ); |
810 | /// ``` |
811 | /// |
812 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
813 | /// |
814 | /// ``` |
815 | /// # use chrono::NaiveTime; |
816 | /// # use chrono::format::strftime::StrftimeItems; |
817 | /// # let fmt = StrftimeItems::new("%H:%M:%S" ).clone(); |
818 | /// # let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
819 | /// assert_eq!(format!("{}" , t.format_with_items(fmt)), "23:56:04" ); |
820 | /// ``` |
821 | #[cfg (feature = "alloc" )] |
822 | #[inline ] |
823 | #[must_use ] |
824 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
825 | where |
826 | I: Iterator<Item = B> + Clone, |
827 | B: Borrow<Item<'a>>, |
828 | { |
829 | DelayedFormat::new(None, Some(*self), items) |
830 | } |
831 | |
832 | /// Formats the time with the specified format string. |
833 | /// See the [`format::strftime` module](crate::format::strftime) |
834 | /// on the supported escape sequences. |
835 | /// |
836 | /// This returns a `DelayedFormat`, |
837 | /// which gets converted to a string only when actual formatting happens. |
838 | /// You may use the `to_string` method to get a `String`, |
839 | /// or just feed it into `print!` and other formatting macros. |
840 | /// (In this way it avoids the redundant memory allocation.) |
841 | /// |
842 | /// A wrong format string does *not* issue an error immediately. |
843 | /// Rather, converting or formatting the `DelayedFormat` fails. |
844 | /// You are recommended to immediately use `DelayedFormat` for this reason. |
845 | /// |
846 | /// # Example |
847 | /// |
848 | /// ``` |
849 | /// use chrono::NaiveTime; |
850 | /// |
851 | /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
852 | /// assert_eq!(t.format("%H:%M:%S" ).to_string(), "23:56:04" ); |
853 | /// assert_eq!(t.format("%H:%M:%S%.6f" ).to_string(), "23:56:04.012345" ); |
854 | /// assert_eq!(t.format("%-I:%M %p" ).to_string(), "11:56 PM" ); |
855 | /// ``` |
856 | /// |
857 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
858 | /// |
859 | /// ``` |
860 | /// # use chrono::NaiveTime; |
861 | /// # let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
862 | /// assert_eq!(format!("{}" , t.format("%H:%M:%S" )), "23:56:04" ); |
863 | /// assert_eq!(format!("{}" , t.format("%H:%M:%S%.6f" )), "23:56:04.012345" ); |
864 | /// assert_eq!(format!("{}" , t.format("%-I:%M %p" )), "11:56 PM" ); |
865 | /// ``` |
866 | #[cfg (feature = "alloc" )] |
867 | #[inline ] |
868 | #[must_use ] |
869 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
870 | self.format_with_items(StrftimeItems::new(fmt)) |
871 | } |
872 | |
873 | /// Returns a triple of the hour, minute and second numbers. |
874 | pub(crate) fn hms(&self) -> (u32, u32, u32) { |
875 | let sec = self.secs % 60; |
876 | let mins = self.secs / 60; |
877 | let min = mins % 60; |
878 | let hour = mins / 60; |
879 | (hour, min, sec) |
880 | } |
881 | |
882 | /// Returns the number of non-leap seconds past the last midnight. |
883 | // This duplicates `Timelike::num_seconds_from_midnight()`, because trait methods can't be const |
884 | // yet. |
885 | #[inline ] |
886 | pub(crate) const fn num_seconds_from_midnight(&self) -> u32 { |
887 | self.secs |
888 | } |
889 | |
890 | /// Returns the number of nanoseconds since the whole non-leap second. |
891 | // This duplicates `Timelike::nanosecond()`, because trait methods can't be const yet. |
892 | #[inline ] |
893 | pub(crate) const fn nanosecond(&self) -> u32 { |
894 | self.frac |
895 | } |
896 | |
897 | /// The earliest possible `NaiveTime` |
898 | pub const MIN: Self = Self { secs: 0, frac: 0 }; |
899 | pub(super) const MAX: Self = Self { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 }; |
900 | } |
901 | |
902 | impl Timelike for NaiveTime { |
903 | /// Returns the hour number from 0 to 23. |
904 | /// |
905 | /// # Example |
906 | /// |
907 | /// ``` |
908 | /// use chrono::{NaiveTime, Timelike}; |
909 | /// |
910 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0); |
911 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23); |
912 | /// ``` |
913 | #[inline ] |
914 | fn hour(&self) -> u32 { |
915 | self.hms().0 |
916 | } |
917 | |
918 | /// Returns the minute number from 0 to 59. |
919 | /// |
920 | /// # Example |
921 | /// |
922 | /// ``` |
923 | /// use chrono::{NaiveTime, Timelike}; |
924 | /// |
925 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0); |
926 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56); |
927 | /// ``` |
928 | #[inline ] |
929 | fn minute(&self) -> u32 { |
930 | self.hms().1 |
931 | } |
932 | |
933 | /// Returns the second number from 0 to 59. |
934 | /// |
935 | /// # Example |
936 | /// |
937 | /// ``` |
938 | /// use chrono::{NaiveTime, Timelike}; |
939 | /// |
940 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0); |
941 | /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4); |
942 | /// ``` |
943 | /// |
944 | /// This method never returns 60 even when it is a leap second. |
945 | /// ([Why?](#leap-second-handling)) |
946 | /// Use the proper [formatting method](#method.format) to get a human-readable representation. |
947 | /// |
948 | /// ``` |
949 | /// # #[cfg (feature = "alloc" )] { |
950 | /// # use chrono::{NaiveTime, Timelike}; |
951 | /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
952 | /// assert_eq!(leap.second(), 59); |
953 | /// assert_eq!(leap.format("%H:%M:%S" ).to_string(), "23:59:60" ); |
954 | /// # } |
955 | /// ``` |
956 | #[inline ] |
957 | fn second(&self) -> u32 { |
958 | self.hms().2 |
959 | } |
960 | |
961 | /// Returns the number of nanoseconds since the whole non-leap second. |
962 | /// The range from 1,000,000,000 to 1,999,999,999 represents |
963 | /// the [leap second](#leap-second-handling). |
964 | /// |
965 | /// # Example |
966 | /// |
967 | /// ``` |
968 | /// use chrono::{NaiveTime, Timelike}; |
969 | /// |
970 | /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0); |
971 | /// assert_eq!( |
972 | /// NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(), |
973 | /// 12_345_678 |
974 | /// ); |
975 | /// ``` |
976 | /// |
977 | /// Leap seconds may have seemingly out-of-range return values. |
978 | /// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or |
979 | /// use the proper [formatting method](#method.format) to get a human-readable representation. |
980 | /// |
981 | /// ``` |
982 | /// # #[cfg (feature = "alloc" )] { |
983 | /// # use chrono::{NaiveTime, Timelike}; |
984 | /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap(); |
985 | /// assert_eq!(leap.nanosecond(), 1_000_000_000); |
986 | /// assert_eq!(leap.format("%H:%M:%S%.9f" ).to_string(), "23:59:60.000000000" ); |
987 | /// # } |
988 | /// ``` |
989 | #[inline ] |
990 | fn nanosecond(&self) -> u32 { |
991 | self.frac |
992 | } |
993 | |
994 | /// Makes a new `NaiveTime` with the hour number changed. |
995 | /// |
996 | /// # Errors |
997 | /// |
998 | /// Returns `None` if the value for `hour` is invalid. |
999 | /// |
1000 | /// # Example |
1001 | /// |
1002 | /// ``` |
1003 | /// use chrono::{NaiveTime, Timelike}; |
1004 | /// |
1005 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
1006 | /// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap())); |
1007 | /// assert_eq!(dt.with_hour(24), None); |
1008 | /// ``` |
1009 | #[inline ] |
1010 | fn with_hour(&self, hour: u32) -> Option<NaiveTime> { |
1011 | if hour >= 24 { |
1012 | return None; |
1013 | } |
1014 | let secs = hour * 3600 + self.secs % 3600; |
1015 | Some(NaiveTime { secs, ..*self }) |
1016 | } |
1017 | |
1018 | /// Makes a new `NaiveTime` with the minute number changed. |
1019 | /// |
1020 | /// # Errors |
1021 | /// |
1022 | /// Returns `None` if the value for `minute` is invalid. |
1023 | /// |
1024 | /// # Example |
1025 | /// |
1026 | /// ``` |
1027 | /// use chrono::{NaiveTime, Timelike}; |
1028 | /// |
1029 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
1030 | /// assert_eq!( |
1031 | /// dt.with_minute(45), |
1032 | /// Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap()) |
1033 | /// ); |
1034 | /// assert_eq!(dt.with_minute(60), None); |
1035 | /// ``` |
1036 | #[inline ] |
1037 | fn with_minute(&self, min: u32) -> Option<NaiveTime> { |
1038 | if min >= 60 { |
1039 | return None; |
1040 | } |
1041 | let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60; |
1042 | Some(NaiveTime { secs, ..*self }) |
1043 | } |
1044 | |
1045 | /// Makes a new `NaiveTime` with the second number changed. |
1046 | /// |
1047 | /// As with the [`second`](#method.second) method, |
1048 | /// the input range is restricted to 0 through 59. |
1049 | /// |
1050 | /// # Errors |
1051 | /// |
1052 | /// Returns `None` if the value for `second` is invalid. |
1053 | /// |
1054 | /// # Example |
1055 | /// |
1056 | /// ``` |
1057 | /// use chrono::{NaiveTime, Timelike}; |
1058 | /// |
1059 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
1060 | /// assert_eq!( |
1061 | /// dt.with_second(17), |
1062 | /// Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap()) |
1063 | /// ); |
1064 | /// assert_eq!(dt.with_second(60), None); |
1065 | /// ``` |
1066 | #[inline ] |
1067 | fn with_second(&self, sec: u32) -> Option<NaiveTime> { |
1068 | if sec >= 60 { |
1069 | return None; |
1070 | } |
1071 | let secs = self.secs / 60 * 60 + sec; |
1072 | Some(NaiveTime { secs, ..*self }) |
1073 | } |
1074 | |
1075 | /// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed. |
1076 | /// |
1077 | /// As with the [`nanosecond`](#method.nanosecond) method, |
1078 | /// the input range can exceed 1,000,000,000 for leap seconds. |
1079 | /// |
1080 | /// # Errors |
1081 | /// |
1082 | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
1083 | /// |
1084 | /// # Example |
1085 | /// |
1086 | /// ``` |
1087 | /// use chrono::{NaiveTime, Timelike}; |
1088 | /// |
1089 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
1090 | /// assert_eq!( |
1091 | /// dt.with_nanosecond(333_333_333), |
1092 | /// Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap()) |
1093 | /// ); |
1094 | /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); |
1095 | /// ``` |
1096 | /// |
1097 | /// Leap seconds can theoretically follow *any* whole second. |
1098 | /// The following would be a proper leap second at the time zone offset of UTC-00:03:57 |
1099 | /// (there are several historical examples comparable to this "non-sense" offset), |
1100 | /// and therefore is allowed. |
1101 | /// |
1102 | /// ``` |
1103 | /// # use chrono::{NaiveTime, Timelike}; |
1104 | /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
1105 | /// let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap(); |
1106 | /// assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333); |
1107 | /// ``` |
1108 | #[inline ] |
1109 | fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> { |
1110 | if nano >= 2_000_000_000 { |
1111 | return None; |
1112 | } |
1113 | Some(NaiveTime { frac: nano, ..*self }) |
1114 | } |
1115 | |
1116 | /// Returns the number of non-leap seconds past the last midnight. |
1117 | /// |
1118 | /// # Example |
1119 | /// |
1120 | /// ``` |
1121 | /// use chrono::{NaiveTime, Timelike}; |
1122 | /// |
1123 | /// assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(), 3723); |
1124 | /// assert_eq!( |
1125 | /// NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(), |
1126 | /// 86164 |
1127 | /// ); |
1128 | /// assert_eq!( |
1129 | /// NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(), |
1130 | /// 86399 |
1131 | /// ); |
1132 | /// ``` |
1133 | #[inline ] |
1134 | fn num_seconds_from_midnight(&self) -> u32 { |
1135 | self.secs // do not repeat the calculation! |
1136 | } |
1137 | } |
1138 | |
1139 | /// Add `TimeDelta` to `NaiveTime`. |
1140 | /// |
1141 | /// This wraps around and never overflows or underflows. |
1142 | /// In particular the addition ignores integral number of days. |
1143 | /// |
1144 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1145 | /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the |
1146 | /// assumption becomes that **there is exactly a single leap second ever**. |
1147 | /// |
1148 | /// # Example |
1149 | /// |
1150 | /// ``` |
1151 | /// use chrono::{NaiveTime, TimeDelta}; |
1152 | /// |
1153 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
1154 | /// |
1155 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); |
1156 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 8, 0)); |
1157 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-1).unwrap(), from_hmsm(3, 5, 6, 0)); |
1158 | /// assert_eq!( |
1159 | /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(60 + 4).unwrap(), |
1160 | /// from_hmsm(3, 6, 11, 0) |
1161 | /// ); |
1162 | /// assert_eq!( |
1163 | /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(7 * 60 * 60 - 6 * 60).unwrap(), |
1164 | /// from_hmsm(9, 59, 7, 0) |
1165 | /// ); |
1166 | /// assert_eq!( |
1167 | /// from_hmsm(3, 5, 7, 0) + TimeDelta::try_milliseconds(80).unwrap(), |
1168 | /// from_hmsm(3, 5, 7, 80) |
1169 | /// ); |
1170 | /// assert_eq!( |
1171 | /// from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(280).unwrap(), |
1172 | /// from_hmsm(3, 5, 8, 230) |
1173 | /// ); |
1174 | /// assert_eq!( |
1175 | /// from_hmsm(3, 5, 7, 950) + TimeDelta::try_milliseconds(-980).unwrap(), |
1176 | /// from_hmsm(3, 5, 6, 970) |
1177 | /// ); |
1178 | /// ``` |
1179 | /// |
1180 | /// The addition wraps around. |
1181 | /// |
1182 | /// ``` |
1183 | /// # use chrono::{TimeDelta, NaiveTime}; |
1184 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
1185 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(22*60*60).unwrap(), from_hmsm(1, 5, 7, 0)); |
1186 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_seconds(-8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); |
1187 | /// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); |
1188 | /// ``` |
1189 | /// |
1190 | /// Leap seconds are handled, but the addition assumes that it is the only leap second happened. |
1191 | /// |
1192 | /// ``` |
1193 | /// # use chrono::{TimeDelta, NaiveTime}; |
1194 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
1195 | /// let leap = from_hmsm(3, 5, 59, 1_300); |
1196 | /// assert_eq!(leap + TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); |
1197 | /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), from_hmsm(3, 5, 59, 800)); |
1198 | /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 1_800)); |
1199 | /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), from_hmsm(3, 6, 0, 100)); |
1200 | /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), from_hmsm(3, 6, 9, 300)); |
1201 | /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), from_hmsm(3, 5, 50, 300)); |
1202 | /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), from_hmsm(3, 5, 59, 300)); |
1203 | /// ``` |
1204 | /// |
1205 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
1206 | impl Add<TimeDelta> for NaiveTime { |
1207 | type Output = NaiveTime; |
1208 | |
1209 | #[inline ] |
1210 | fn add(self, rhs: TimeDelta) -> NaiveTime { |
1211 | self.overflowing_add_signed(rhs).0 |
1212 | } |
1213 | } |
1214 | |
1215 | /// Add-assign `TimeDelta` to `NaiveTime`. |
1216 | /// |
1217 | /// This wraps around and never overflows or underflows. |
1218 | /// In particular the addition ignores integral number of days. |
1219 | impl AddAssign<TimeDelta> for NaiveTime { |
1220 | #[inline ] |
1221 | fn add_assign(&mut self, rhs: TimeDelta) { |
1222 | *self = self.add(rhs); |
1223 | } |
1224 | } |
1225 | |
1226 | /// Add `std::time::Duration` to `NaiveTime`. |
1227 | /// |
1228 | /// This wraps around and never overflows or underflows. |
1229 | /// In particular the addition ignores integral number of days. |
1230 | impl Add<Duration> for NaiveTime { |
1231 | type Output = NaiveTime; |
1232 | |
1233 | #[inline ] |
1234 | fn add(self, rhs: Duration) -> NaiveTime { |
1235 | // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid |
1236 | // overflow during the conversion to `TimeDelta`. |
1237 | // But we limit to double that just in case `self` is a leap-second. |
1238 | let secs: u64 = rhs.as_secs() % (2 * 24 * 60 * 60); |
1239 | let d: TimeDelta = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); |
1240 | self.overflowing_add_signed(d).0 |
1241 | } |
1242 | } |
1243 | |
1244 | /// Add-assign `std::time::Duration` to `NaiveTime`. |
1245 | /// |
1246 | /// This wraps around and never overflows or underflows. |
1247 | /// In particular the addition ignores integral number of days. |
1248 | impl AddAssign<Duration> for NaiveTime { |
1249 | #[inline ] |
1250 | fn add_assign(&mut self, rhs: Duration) { |
1251 | *self = *self + rhs; |
1252 | } |
1253 | } |
1254 | |
1255 | /// Add `FixedOffset` to `NaiveTime`. |
1256 | /// |
1257 | /// This wraps around and never overflows or underflows. |
1258 | /// In particular the addition ignores integral number of days. |
1259 | impl Add<FixedOffset> for NaiveTime { |
1260 | type Output = NaiveTime; |
1261 | |
1262 | #[inline ] |
1263 | fn add(self, rhs: FixedOffset) -> NaiveTime { |
1264 | self.overflowing_add_offset(rhs).0 |
1265 | } |
1266 | } |
1267 | |
1268 | /// Subtract `TimeDelta` from `NaiveTime`. |
1269 | /// |
1270 | /// This wraps around and never overflows or underflows. |
1271 | /// In particular the subtraction ignores integral number of days. |
1272 | /// This is the same as addition with a negated `TimeDelta`. |
1273 | /// |
1274 | /// As a part of Chrono's [leap second handling], the subtraction assumes that **there is no leap |
1275 | /// second ever**, except when the `NaiveTime` itself represents a leap second in which case the |
1276 | /// assumption becomes that **there is exactly a single leap second ever**. |
1277 | /// |
1278 | /// # Example |
1279 | /// |
1280 | /// ``` |
1281 | /// use chrono::{NaiveTime, TimeDelta}; |
1282 | /// |
1283 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
1284 | /// |
1285 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(), from_hmsm(3, 5, 7, 0)); |
1286 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(1).unwrap(), from_hmsm(3, 5, 6, 0)); |
1287 | /// assert_eq!( |
1288 | /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(60 + 5).unwrap(), |
1289 | /// from_hmsm(3, 4, 2, 0) |
1290 | /// ); |
1291 | /// assert_eq!( |
1292 | /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(2 * 60 * 60 + 6 * 60).unwrap(), |
1293 | /// from_hmsm(0, 59, 7, 0) |
1294 | /// ); |
1295 | /// assert_eq!( |
1296 | /// from_hmsm(3, 5, 7, 0) - TimeDelta::try_milliseconds(80).unwrap(), |
1297 | /// from_hmsm(3, 5, 6, 920) |
1298 | /// ); |
1299 | /// assert_eq!( |
1300 | /// from_hmsm(3, 5, 7, 950) - TimeDelta::try_milliseconds(280).unwrap(), |
1301 | /// from_hmsm(3, 5, 7, 670) |
1302 | /// ); |
1303 | /// ``` |
1304 | /// |
1305 | /// The subtraction wraps around. |
1306 | /// |
1307 | /// ``` |
1308 | /// # use chrono::{TimeDelta, NaiveTime}; |
1309 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
1310 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_seconds(8*60*60).unwrap(), from_hmsm(19, 5, 7, 0)); |
1311 | /// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::try_days(800).unwrap(), from_hmsm(3, 5, 7, 0)); |
1312 | /// ``` |
1313 | /// |
1314 | /// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened. |
1315 | /// |
1316 | /// ``` |
1317 | /// # use chrono::{TimeDelta, NaiveTime}; |
1318 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
1319 | /// let leap = from_hmsm(3, 5, 59, 1_300); |
1320 | /// assert_eq!(leap - TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300)); |
1321 | /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), from_hmsm(3, 5, 59, 1_100)); |
1322 | /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), from_hmsm(3, 5, 59, 800)); |
1323 | /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), from_hmsm(3, 5, 0, 300)); |
1324 | /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), from_hmsm(3, 6, 0, 300)); |
1325 | /// ``` |
1326 | /// |
1327 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
1328 | impl Sub<TimeDelta> for NaiveTime { |
1329 | type Output = NaiveTime; |
1330 | |
1331 | #[inline ] |
1332 | fn sub(self, rhs: TimeDelta) -> NaiveTime { |
1333 | self.overflowing_sub_signed(rhs).0 |
1334 | } |
1335 | } |
1336 | |
1337 | /// Subtract-assign `TimeDelta` from `NaiveTime`. |
1338 | /// |
1339 | /// This wraps around and never overflows or underflows. |
1340 | /// In particular the subtraction ignores integral number of days. |
1341 | impl SubAssign<TimeDelta> for NaiveTime { |
1342 | #[inline ] |
1343 | fn sub_assign(&mut self, rhs: TimeDelta) { |
1344 | *self = self.sub(rhs); |
1345 | } |
1346 | } |
1347 | |
1348 | /// Subtract `std::time::Duration` from `NaiveTime`. |
1349 | /// |
1350 | /// This wraps around and never overflows or underflows. |
1351 | /// In particular the subtraction ignores integral number of days. |
1352 | impl Sub<Duration> for NaiveTime { |
1353 | type Output = NaiveTime; |
1354 | |
1355 | #[inline ] |
1356 | fn sub(self, rhs: Duration) -> NaiveTime { |
1357 | // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid |
1358 | // overflow during the conversion to `TimeDelta`. |
1359 | // But we limit to double that just in case `self` is a leap-second. |
1360 | let secs: u64 = rhs.as_secs() % (2 * 24 * 60 * 60); |
1361 | let d: TimeDelta = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap(); |
1362 | self.overflowing_sub_signed(d).0 |
1363 | } |
1364 | } |
1365 | |
1366 | /// Subtract-assign `std::time::Duration` from `NaiveTime`. |
1367 | /// |
1368 | /// This wraps around and never overflows or underflows. |
1369 | /// In particular the subtraction ignores integral number of days. |
1370 | impl SubAssign<Duration> for NaiveTime { |
1371 | #[inline ] |
1372 | fn sub_assign(&mut self, rhs: Duration) { |
1373 | *self = *self - rhs; |
1374 | } |
1375 | } |
1376 | |
1377 | /// Subtract `FixedOffset` from `NaiveTime`. |
1378 | /// |
1379 | /// This wraps around and never overflows or underflows. |
1380 | /// In particular the subtraction ignores integral number of days. |
1381 | impl Sub<FixedOffset> for NaiveTime { |
1382 | type Output = NaiveTime; |
1383 | |
1384 | #[inline ] |
1385 | fn sub(self, rhs: FixedOffset) -> NaiveTime { |
1386 | self.overflowing_sub_offset(rhs).0 |
1387 | } |
1388 | } |
1389 | |
1390 | /// Subtracts another `NaiveTime` from the current time. |
1391 | /// Returns a `TimeDelta` within +/- 1 day. |
1392 | /// This does not overflow or underflow at all. |
1393 | /// |
1394 | /// As a part of Chrono's [leap second handling](#leap-second-handling), |
1395 | /// the subtraction assumes that **there is no leap second ever**, |
1396 | /// except when any of the `NaiveTime`s themselves represents a leap second |
1397 | /// in which case the assumption becomes that |
1398 | /// **there are exactly one (or two) leap second(s) ever**. |
1399 | /// |
1400 | /// The implementation is a wrapper around |
1401 | /// [`NaiveTime::signed_duration_since`](#method.signed_duration_since). |
1402 | /// |
1403 | /// # Example |
1404 | /// |
1405 | /// ``` |
1406 | /// use chrono::{NaiveTime, TimeDelta}; |
1407 | /// |
1408 | /// let from_hmsm = |h, m, s, milli| NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap(); |
1409 | /// |
1410 | /// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero()); |
1411 | /// assert_eq!( |
1412 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), |
1413 | /// TimeDelta::try_milliseconds(25).unwrap() |
1414 | /// ); |
1415 | /// assert_eq!( |
1416 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), |
1417 | /// TimeDelta::try_milliseconds(975).unwrap() |
1418 | /// ); |
1419 | /// assert_eq!( |
1420 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), |
1421 | /// TimeDelta::try_seconds(7).unwrap() |
1422 | /// ); |
1423 | /// assert_eq!( |
1424 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), |
1425 | /// TimeDelta::try_seconds(5 * 60).unwrap() |
1426 | /// ); |
1427 | /// assert_eq!( |
1428 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), |
1429 | /// TimeDelta::try_seconds(3 * 3600).unwrap() |
1430 | /// ); |
1431 | /// assert_eq!( |
1432 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), |
1433 | /// TimeDelta::try_seconds(-3600).unwrap() |
1434 | /// ); |
1435 | /// assert_eq!( |
1436 | /// from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800), |
1437 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() + TimeDelta::try_milliseconds(100).unwrap() |
1438 | /// ); |
1439 | /// ``` |
1440 | /// |
1441 | /// Leap seconds are handled, but the subtraction assumes that |
1442 | /// there were no other leap seconds happened. |
1443 | /// |
1444 | /// ``` |
1445 | /// # use chrono::{TimeDelta, NaiveTime}; |
1446 | /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() }; |
1447 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::try_seconds(1).unwrap()); |
1448 | /// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0), |
1449 | /// TimeDelta::try_milliseconds(1500).unwrap()); |
1450 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::try_seconds(60).unwrap()); |
1451 | /// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::try_seconds(1).unwrap()); |
1452 | /// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000), |
1453 | /// TimeDelta::try_seconds(61).unwrap()); |
1454 | /// ``` |
1455 | impl Sub<NaiveTime> for NaiveTime { |
1456 | type Output = TimeDelta; |
1457 | |
1458 | #[inline ] |
1459 | fn sub(self, rhs: NaiveTime) -> TimeDelta { |
1460 | self.signed_duration_since(rhs) |
1461 | } |
1462 | } |
1463 | |
1464 | /// The `Debug` output of the naive time `t` is the same as |
1465 | /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). |
1466 | /// |
1467 | /// The string printed can be readily parsed via the `parse` method on `str`. |
1468 | /// |
1469 | /// It should be noted that, for leap seconds not on the minute boundary, |
1470 | /// it may print a representation not distinguishable from non-leap seconds. |
1471 | /// This doesn't matter in practice, since such leap seconds never happened. |
1472 | /// (By the time of the first leap second on 1972-06-30, |
1473 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
1474 | /// |
1475 | /// # Example |
1476 | /// |
1477 | /// ``` |
1478 | /// use chrono::NaiveTime; |
1479 | /// |
1480 | /// assert_eq!(format!("{:?}" , NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04" ); |
1481 | /// assert_eq!( |
1482 | /// format!("{:?}" , NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), |
1483 | /// "23:56:04.012" |
1484 | /// ); |
1485 | /// assert_eq!( |
1486 | /// format!("{:?}" , NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), |
1487 | /// "23:56:04.001234" |
1488 | /// ); |
1489 | /// assert_eq!( |
1490 | /// format!("{:?}" , NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), |
1491 | /// "23:56:04.000123456" |
1492 | /// ); |
1493 | /// ``` |
1494 | /// |
1495 | /// Leap seconds may also be used. |
1496 | /// |
1497 | /// ``` |
1498 | /// # use chrono::NaiveTime; |
1499 | /// assert_eq!( |
1500 | /// format!("{:?}" , NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), |
1501 | /// "06:59:60.500" |
1502 | /// ); |
1503 | /// ``` |
1504 | impl fmt::Debug for NaiveTime { |
1505 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1506 | let (hour, min, sec) = self.hms(); |
1507 | let (sec, nano) = if self.frac >= 1_000_000_000 { |
1508 | (sec + 1, self.frac - 1_000_000_000) |
1509 | } else { |
1510 | (sec, self.frac) |
1511 | }; |
1512 | |
1513 | use core::fmt::Write; |
1514 | write_hundreds(f, hour as u8)?; |
1515 | f.write_char(':' )?; |
1516 | write_hundreds(f, min as u8)?; |
1517 | f.write_char(':' )?; |
1518 | write_hundreds(f, sec as u8)?; |
1519 | |
1520 | if nano == 0 { |
1521 | Ok(()) |
1522 | } else if nano % 1_000_000 == 0 { |
1523 | write!(f, ". {:03}" , nano / 1_000_000) |
1524 | } else if nano % 1_000 == 0 { |
1525 | write!(f, ". {:06}" , nano / 1_000) |
1526 | } else { |
1527 | write!(f, ". {:09}" , nano) |
1528 | } |
1529 | } |
1530 | } |
1531 | |
1532 | /// The `Display` output of the naive time `t` is the same as |
1533 | /// [`t.format("%H:%M:%S%.f")`](crate::format::strftime). |
1534 | /// |
1535 | /// The string printed can be readily parsed via the `parse` method on `str`. |
1536 | /// |
1537 | /// It should be noted that, for leap seconds not on the minute boundary, |
1538 | /// it may print a representation not distinguishable from non-leap seconds. |
1539 | /// This doesn't matter in practice, since such leap seconds never happened. |
1540 | /// (By the time of the first leap second on 1972-06-30, |
1541 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
1542 | /// |
1543 | /// # Example |
1544 | /// |
1545 | /// ``` |
1546 | /// use chrono::NaiveTime; |
1547 | /// |
1548 | /// assert_eq!(format!("{}" , NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04" ); |
1549 | /// assert_eq!( |
1550 | /// format!("{}" , NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), |
1551 | /// "23:56:04.012" |
1552 | /// ); |
1553 | /// assert_eq!( |
1554 | /// format!("{}" , NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), |
1555 | /// "23:56:04.001234" |
1556 | /// ); |
1557 | /// assert_eq!( |
1558 | /// format!("{}" , NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), |
1559 | /// "23:56:04.000123456" |
1560 | /// ); |
1561 | /// ``` |
1562 | /// |
1563 | /// Leap seconds may also be used. |
1564 | /// |
1565 | /// ``` |
1566 | /// # use chrono::NaiveTime; |
1567 | /// assert_eq!( |
1568 | /// format!("{}" , NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), |
1569 | /// "06:59:60.500" |
1570 | /// ); |
1571 | /// ``` |
1572 | impl fmt::Display for NaiveTime { |
1573 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1574 | fmt::Debug::fmt(self, f) |
1575 | } |
1576 | } |
1577 | |
1578 | /// Parsing a `str` into a `NaiveTime` uses the same format, |
1579 | /// [`%H:%M:%S%.f`](crate::format::strftime), as in `Debug` and `Display`. |
1580 | /// |
1581 | /// # Example |
1582 | /// |
1583 | /// ``` |
1584 | /// use chrono::NaiveTime; |
1585 | /// |
1586 | /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap(); |
1587 | /// assert_eq!("23:56:04" .parse::<NaiveTime>(), Ok(t)); |
1588 | /// |
1589 | /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap(); |
1590 | /// assert_eq!("23:56:4.012345678" .parse::<NaiveTime>(), Ok(t)); |
1591 | /// |
1592 | /// let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second |
1593 | /// assert_eq!("23:59:60.23456789" .parse::<NaiveTime>(), Ok(t)); |
1594 | /// |
1595 | /// // Seconds are optional |
1596 | /// let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap(); |
1597 | /// assert_eq!("23:56" .parse::<NaiveTime>(), Ok(t)); |
1598 | /// |
1599 | /// assert!("foo" .parse::<NaiveTime>().is_err()); |
1600 | /// ``` |
1601 | impl str::FromStr for NaiveTime { |
1602 | type Err = ParseError; |
1603 | |
1604 | fn from_str(s: &str) -> ParseResult<NaiveTime> { |
1605 | const HOUR_AND_MINUTE: &[Item<'static>] = &[ |
1606 | Item::Numeric(Numeric::Hour, Pad::Zero), |
1607 | Item::Space("" ), |
1608 | Item::Literal(":" ), |
1609 | Item::Numeric(Numeric::Minute, Pad::Zero), |
1610 | ]; |
1611 | const SECOND_AND_NANOS: &[Item<'static>] = &[ |
1612 | Item::Space("" ), |
1613 | Item::Literal(":" ), |
1614 | Item::Numeric(Numeric::Second, Pad::Zero), |
1615 | Item::Fixed(Fixed::Nanosecond), |
1616 | Item::Space("" ), |
1617 | ]; |
1618 | const TRAILING_WHITESPACE: [Item<'static>; 1] = [Item::Space("" )]; |
1619 | |
1620 | let mut parsed = Parsed::new(); |
1621 | let s = parse_and_remainder(&mut parsed, s, HOUR_AND_MINUTE.iter())?; |
1622 | // Seconds are optional, don't fail if parsing them doesn't succeed. |
1623 | let s = parse_and_remainder(&mut parsed, s, SECOND_AND_NANOS.iter()).unwrap_or(s); |
1624 | parse(&mut parsed, s, TRAILING_WHITESPACE.iter())?; |
1625 | parsed.to_naive_time() |
1626 | } |
1627 | } |
1628 | |
1629 | /// The default value for a NaiveTime is midnight, 00:00:00 exactly. |
1630 | /// |
1631 | /// # Example |
1632 | /// |
1633 | /// ```rust |
1634 | /// use chrono::NaiveTime; |
1635 | /// |
1636 | /// let default_time = NaiveTime::default(); |
1637 | /// assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap()); |
1638 | /// ``` |
1639 | impl Default for NaiveTime { |
1640 | fn default() -> Self { |
1641 | NaiveTime::from_hms_opt(hour:0, min:0, sec:0).unwrap() |
1642 | } |
1643 | } |
1644 | |