| 1 | // This is a part of Chrono. |
| 2 | // See README.md and LICENSE.txt for details. |
| 3 | |
| 4 | //! ISO 8601 date and time with time zone. |
| 5 | |
| 6 | #[cfg (all(feature = "alloc" , not(feature = "std" ), not(test)))] |
| 7 | use alloc::string::String; |
| 8 | use core::borrow::Borrow; |
| 9 | use core::cmp::Ordering; |
| 10 | use core::fmt::Write; |
| 11 | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
| 12 | use core::time::Duration; |
| 13 | use core::{fmt, hash, str}; |
| 14 | #[cfg (feature = "std" )] |
| 15 | use std::time::{SystemTime, UNIX_EPOCH}; |
| 16 | |
| 17 | #[allow (deprecated)] |
| 18 | use crate::Date; |
| 19 | #[cfg (all(feature = "unstable-locales" , feature = "alloc" ))] |
| 20 | use crate::format::Locale; |
| 21 | #[cfg (feature = "alloc" )] |
| 22 | use crate::format::{DelayedFormat, SecondsFormat, write_rfc2822, write_rfc3339}; |
| 23 | use crate::format::{ |
| 24 | Fixed, Item, ParseError, ParseResult, Parsed, StrftimeItems, TOO_LONG, parse, |
| 25 | parse_and_remainder, parse_rfc3339, |
| 26 | }; |
| 27 | use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime}; |
| 28 | #[cfg (feature = "clock" )] |
| 29 | use crate::offset::Local; |
| 30 | use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc}; |
| 31 | use crate::{Datelike, Months, TimeDelta, Timelike, Weekday}; |
| 32 | use crate::{expect, try_opt}; |
| 33 | |
| 34 | #[cfg (any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ))] |
| 35 | use rkyv::{Archive, Deserialize, Serialize}; |
| 36 | |
| 37 | /// documented at re-export site |
| 38 | #[cfg (feature = "serde" )] |
| 39 | pub(super) mod serde; |
| 40 | |
| 41 | #[cfg (test)] |
| 42 | mod tests; |
| 43 | |
| 44 | /// ISO 8601 combined date and time with time zone. |
| 45 | /// |
| 46 | /// There are some constructors implemented here (the `from_*` methods), but |
| 47 | /// the general-purpose constructors are all via the methods on the |
| 48 | /// [`TimeZone`](./offset/trait.TimeZone.html) implementations. |
| 49 | #[derive (Clone)] |
| 50 | #[cfg_attr ( |
| 51 | any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ), |
| 52 | derive(Archive, Deserialize, Serialize), |
| 53 | archive(compare(PartialEq, PartialOrd)) |
| 54 | )] |
| 55 | #[cfg_attr (feature = "rkyv-validation" , archive(check_bytes))] |
| 56 | pub struct DateTime<Tz: TimeZone> { |
| 57 | datetime: NaiveDateTime, |
| 58 | offset: Tz::Offset, |
| 59 | } |
| 60 | |
| 61 | /// The minimum possible `DateTime<Utc>`. |
| 62 | #[deprecated (since = "0.4.20" , note = "Use DateTime::MIN_UTC instead" )] |
| 63 | pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC; |
| 64 | /// The maximum possible `DateTime<Utc>`. |
| 65 | #[deprecated (since = "0.4.20" , note = "Use DateTime::MAX_UTC instead" )] |
| 66 | pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC; |
| 67 | |
| 68 | impl<Tz: TimeZone> DateTime<Tz> { |
| 69 | /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. |
| 70 | /// |
| 71 | /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or |
| 72 | /// passing it through FFI. |
| 73 | /// |
| 74 | /// For regular use you will probably want to use a method such as |
| 75 | /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead. |
| 76 | /// |
| 77 | /// # Example |
| 78 | /// |
| 79 | /// ``` |
| 80 | /// # #[cfg (feature = "clock" )] { |
| 81 | /// use chrono::{DateTime, Local}; |
| 82 | /// |
| 83 | /// let dt = Local::now(); |
| 84 | /// // Get components |
| 85 | /// let naive_utc = dt.naive_utc(); |
| 86 | /// let offset = dt.offset().clone(); |
| 87 | /// // Serialize, pass through FFI... and recreate the `DateTime`: |
| 88 | /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset); |
| 89 | /// assert_eq!(dt, dt_new); |
| 90 | /// # } |
| 91 | /// ``` |
| 92 | #[inline ] |
| 93 | #[must_use ] |
| 94 | pub const fn from_naive_utc_and_offset( |
| 95 | datetime: NaiveDateTime, |
| 96 | offset: Tz::Offset, |
| 97 | ) -> DateTime<Tz> { |
| 98 | DateTime { datetime, offset } |
| 99 | } |
| 100 | |
| 101 | /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. |
| 102 | #[inline ] |
| 103 | #[must_use ] |
| 104 | #[deprecated ( |
| 105 | since = "0.4.27" , |
| 106 | note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead" |
| 107 | )] |
| 108 | pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> { |
| 109 | DateTime { datetime, offset } |
| 110 | } |
| 111 | |
| 112 | /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`. |
| 113 | /// |
| 114 | /// # Panics |
| 115 | /// |
| 116 | /// Panics if the local datetime can't be converted to UTC because it would be out of range. |
| 117 | /// |
| 118 | /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`, |
| 119 | /// and the offset from UTC pushes it beyond that. |
| 120 | #[inline ] |
| 121 | #[must_use ] |
| 122 | #[deprecated ( |
| 123 | since = "0.4.27" , |
| 124 | note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead" |
| 125 | )] |
| 126 | pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> { |
| 127 | let datetime_utc = datetime - offset.fix(); |
| 128 | |
| 129 | DateTime { datetime: datetime_utc, offset } |
| 130 | } |
| 131 | |
| 132 | /// Retrieves the date component with an associated timezone. |
| 133 | /// |
| 134 | /// Unless you are immediately planning on turning this into a `DateTime` |
| 135 | /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method. |
| 136 | /// |
| 137 | /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it, |
| 138 | /// so should be preferred to [`Date`] any time you truly want to operate on dates. |
| 139 | /// |
| 140 | /// # Panics |
| 141 | /// |
| 142 | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
| 143 | /// method will panic if the offset from UTC would push the local date outside of the |
| 144 | /// representable range of a [`Date`]. |
| 145 | #[inline ] |
| 146 | #[deprecated (since = "0.4.23" , note = "Use `date_naive()` instead" )] |
| 147 | #[allow (deprecated)] |
| 148 | #[must_use ] |
| 149 | pub fn date(&self) -> Date<Tz> { |
| 150 | Date::from_utc(self.naive_local().date(), self.offset.clone()) |
| 151 | } |
| 152 | |
| 153 | /// Retrieves the date component. |
| 154 | /// |
| 155 | /// # Panics |
| 156 | /// |
| 157 | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
| 158 | /// method will panic if the offset from UTC would push the local date outside of the |
| 159 | /// representable range of a [`NaiveDate`]. |
| 160 | /// |
| 161 | /// # Example |
| 162 | /// |
| 163 | /// ``` |
| 164 | /// use chrono::prelude::*; |
| 165 | /// |
| 166 | /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); |
| 167 | /// let other: DateTime<FixedOffset> = |
| 168 | /// FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); |
| 169 | /// assert_eq!(date.date_naive(), other.date_naive()); |
| 170 | /// ``` |
| 171 | #[inline ] |
| 172 | #[must_use ] |
| 173 | pub fn date_naive(&self) -> NaiveDate { |
| 174 | self.naive_local().date() |
| 175 | } |
| 176 | |
| 177 | /// Retrieves the time component. |
| 178 | #[inline ] |
| 179 | #[must_use ] |
| 180 | pub fn time(&self) -> NaiveTime { |
| 181 | self.datetime.time() + self.offset.fix() |
| 182 | } |
| 183 | |
| 184 | /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC |
| 185 | /// (aka "UNIX timestamp"). |
| 186 | /// |
| 187 | /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed |
| 188 | /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`]. |
| 189 | /// |
| 190 | /// ``` |
| 191 | /// use chrono::{DateTime, TimeZone, Utc}; |
| 192 | /// |
| 193 | /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap(); |
| 194 | /// assert_eq!(dt.timestamp(), 1431648000); |
| 195 | /// |
| 196 | /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); |
| 197 | /// ``` |
| 198 | #[inline ] |
| 199 | #[must_use ] |
| 200 | pub const fn timestamp(&self) -> i64 { |
| 201 | let gregorian_day = self.datetime.date().num_days_from_ce() as i64; |
| 202 | let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64; |
| 203 | (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight |
| 204 | } |
| 205 | |
| 206 | /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC. |
| 207 | /// |
| 208 | /// # Example |
| 209 | /// |
| 210 | /// ``` |
| 211 | /// use chrono::{NaiveDate, Utc}; |
| 212 | /// |
| 213 | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
| 214 | /// .unwrap() |
| 215 | /// .and_hms_milli_opt(0, 0, 1, 444) |
| 216 | /// .unwrap() |
| 217 | /// .and_local_timezone(Utc) |
| 218 | /// .unwrap(); |
| 219 | /// assert_eq!(dt.timestamp_millis(), 1_444); |
| 220 | /// |
| 221 | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
| 222 | /// .unwrap() |
| 223 | /// .and_hms_milli_opt(1, 46, 40, 555) |
| 224 | /// .unwrap() |
| 225 | /// .and_local_timezone(Utc) |
| 226 | /// .unwrap(); |
| 227 | /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555); |
| 228 | /// ``` |
| 229 | #[inline ] |
| 230 | #[must_use ] |
| 231 | pub const fn timestamp_millis(&self) -> i64 { |
| 232 | let as_ms = self.timestamp() * 1000; |
| 233 | as_ms + self.timestamp_subsec_millis() as i64 |
| 234 | } |
| 235 | |
| 236 | /// Returns the number of non-leap-microseconds since January 1, 1970 UTC. |
| 237 | /// |
| 238 | /// # Example |
| 239 | /// |
| 240 | /// ``` |
| 241 | /// use chrono::{NaiveDate, Utc}; |
| 242 | /// |
| 243 | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
| 244 | /// .unwrap() |
| 245 | /// .and_hms_micro_opt(0, 0, 1, 444) |
| 246 | /// .unwrap() |
| 247 | /// .and_local_timezone(Utc) |
| 248 | /// .unwrap(); |
| 249 | /// assert_eq!(dt.timestamp_micros(), 1_000_444); |
| 250 | /// |
| 251 | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
| 252 | /// .unwrap() |
| 253 | /// .and_hms_micro_opt(1, 46, 40, 555) |
| 254 | /// .unwrap() |
| 255 | /// .and_local_timezone(Utc) |
| 256 | /// .unwrap(); |
| 257 | /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555); |
| 258 | /// ``` |
| 259 | #[inline ] |
| 260 | #[must_use ] |
| 261 | pub const fn timestamp_micros(&self) -> i64 { |
| 262 | let as_us = self.timestamp() * 1_000_000; |
| 263 | as_us + self.timestamp_subsec_micros() as i64 |
| 264 | } |
| 265 | |
| 266 | /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. |
| 267 | /// |
| 268 | /// # Panics |
| 269 | /// |
| 270 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on |
| 271 | /// an out of range `DateTime`. |
| 272 | /// |
| 273 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
| 274 | /// and 2262-04-11T23:47:16.854775807. |
| 275 | #[deprecated (since = "0.4.31" , note = "use `timestamp_nanos_opt()` instead" )] |
| 276 | #[inline ] |
| 277 | #[must_use ] |
| 278 | pub const fn timestamp_nanos(&self) -> i64 { |
| 279 | expect( |
| 280 | self.timestamp_nanos_opt(), |
| 281 | "value can not be represented in a timestamp with nanosecond precision." , |
| 282 | ) |
| 283 | } |
| 284 | |
| 285 | /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. |
| 286 | /// |
| 287 | /// # Errors |
| 288 | /// |
| 289 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns |
| 290 | /// `None` on an out of range `DateTime`. |
| 291 | /// |
| 292 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
| 293 | /// and 2262-04-11T23:47:16.854775807. |
| 294 | /// |
| 295 | /// # Example |
| 296 | /// |
| 297 | /// ``` |
| 298 | /// use chrono::{NaiveDate, Utc}; |
| 299 | /// |
| 300 | /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) |
| 301 | /// .unwrap() |
| 302 | /// .and_hms_nano_opt(0, 0, 1, 444) |
| 303 | /// .unwrap() |
| 304 | /// .and_local_timezone(Utc) |
| 305 | /// .unwrap(); |
| 306 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444)); |
| 307 | /// |
| 308 | /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) |
| 309 | /// .unwrap() |
| 310 | /// .and_hms_nano_opt(1, 46, 40, 555) |
| 311 | /// .unwrap() |
| 312 | /// .and_local_timezone(Utc) |
| 313 | /// .unwrap(); |
| 314 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555)); |
| 315 | /// |
| 316 | /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) |
| 317 | /// .unwrap() |
| 318 | /// .and_hms_nano_opt(0, 12, 43, 145_224_192) |
| 319 | /// .unwrap() |
| 320 | /// .and_local_timezone(Utc) |
| 321 | /// .unwrap(); |
| 322 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808)); |
| 323 | /// |
| 324 | /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) |
| 325 | /// .unwrap() |
| 326 | /// .and_hms_nano_opt(23, 47, 16, 854_775_807) |
| 327 | /// .unwrap() |
| 328 | /// .and_local_timezone(Utc) |
| 329 | /// .unwrap(); |
| 330 | /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807)); |
| 331 | /// |
| 332 | /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) |
| 333 | /// .unwrap() |
| 334 | /// .and_hms_nano_opt(0, 12, 43, 145_224_191) |
| 335 | /// .unwrap() |
| 336 | /// .and_local_timezone(Utc) |
| 337 | /// .unwrap(); |
| 338 | /// assert_eq!(dt.timestamp_nanos_opt(), None); |
| 339 | /// |
| 340 | /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) |
| 341 | /// .unwrap() |
| 342 | /// .and_hms_nano_opt(23, 47, 16, 854_775_808) |
| 343 | /// .unwrap() |
| 344 | /// .and_local_timezone(Utc) |
| 345 | /// .unwrap(); |
| 346 | /// assert_eq!(dt.timestamp_nanos_opt(), None); |
| 347 | /// ``` |
| 348 | #[inline ] |
| 349 | #[must_use ] |
| 350 | pub const fn timestamp_nanos_opt(&self) -> Option<i64> { |
| 351 | let mut timestamp = self.timestamp(); |
| 352 | let mut subsec_nanos = self.timestamp_subsec_nanos() as i64; |
| 353 | // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while |
| 354 | // the final value can be represented as an `i64`. |
| 355 | // As workaround we converting the negative case to: |
| 356 | // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)`` |
| 357 | // |
| 358 | // Also see <https://github.com/chronotope/chrono/issues/1289>. |
| 359 | if timestamp < 0 { |
| 360 | subsec_nanos -= 1_000_000_000; |
| 361 | timestamp += 1; |
| 362 | } |
| 363 | try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos) |
| 364 | } |
| 365 | |
| 366 | /// Returns the number of milliseconds since the last second boundary. |
| 367 | /// |
| 368 | /// In event of a leap second this may exceed 999. |
| 369 | #[inline ] |
| 370 | #[must_use ] |
| 371 | pub const fn timestamp_subsec_millis(&self) -> u32 { |
| 372 | self.timestamp_subsec_nanos() / 1_000_000 |
| 373 | } |
| 374 | |
| 375 | /// Returns the number of microseconds since the last second boundary. |
| 376 | /// |
| 377 | /// In event of a leap second this may exceed 999,999. |
| 378 | #[inline ] |
| 379 | #[must_use ] |
| 380 | pub const fn timestamp_subsec_micros(&self) -> u32 { |
| 381 | self.timestamp_subsec_nanos() / 1_000 |
| 382 | } |
| 383 | |
| 384 | /// Returns the number of nanoseconds since the last second boundary |
| 385 | /// |
| 386 | /// In event of a leap second this may exceed 999,999,999. |
| 387 | #[inline ] |
| 388 | #[must_use ] |
| 389 | pub const fn timestamp_subsec_nanos(&self) -> u32 { |
| 390 | self.datetime.time().nanosecond() |
| 391 | } |
| 392 | |
| 393 | /// Retrieves an associated offset from UTC. |
| 394 | #[inline ] |
| 395 | #[must_use ] |
| 396 | pub const fn offset(&self) -> &Tz::Offset { |
| 397 | &self.offset |
| 398 | } |
| 399 | |
| 400 | /// Retrieves an associated time zone. |
| 401 | #[inline ] |
| 402 | #[must_use ] |
| 403 | pub fn timezone(&self) -> Tz { |
| 404 | TimeZone::from_offset(&self.offset) |
| 405 | } |
| 406 | |
| 407 | /// Changes the associated time zone. |
| 408 | /// The returned `DateTime` references the same instant of time from the perspective of the |
| 409 | /// provided time zone. |
| 410 | #[inline ] |
| 411 | #[must_use ] |
| 412 | pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> { |
| 413 | tz.from_utc_datetime(&self.datetime) |
| 414 | } |
| 415 | |
| 416 | /// Fix the offset from UTC to its current value, dropping the associated timezone information. |
| 417 | /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`. |
| 418 | #[inline ] |
| 419 | #[must_use ] |
| 420 | pub fn fixed_offset(&self) -> DateTime<FixedOffset> { |
| 421 | self.with_timezone(&self.offset().fix()) |
| 422 | } |
| 423 | |
| 424 | /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone |
| 425 | /// information. |
| 426 | #[inline ] |
| 427 | #[must_use ] |
| 428 | pub const fn to_utc(&self) -> DateTime<Utc> { |
| 429 | DateTime { datetime: self.datetime, offset: Utc } |
| 430 | } |
| 431 | |
| 432 | /// Adds given `TimeDelta` to the current date and time. |
| 433 | /// |
| 434 | /// # Errors |
| 435 | /// |
| 436 | /// Returns `None` if the resulting date would be out of range. |
| 437 | #[inline ] |
| 438 | #[must_use ] |
| 439 | pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> { |
| 440 | let datetime = self.datetime.checked_add_signed(rhs)?; |
| 441 | let tz = self.timezone(); |
| 442 | Some(tz.from_utc_datetime(&datetime)) |
| 443 | } |
| 444 | |
| 445 | /// Adds given `Months` to the current date and time. |
| 446 | /// |
| 447 | /// Uses the last day of the month if the day does not exist in the resulting month. |
| 448 | /// |
| 449 | /// See [`NaiveDate::checked_add_months`] for more details on behavior. |
| 450 | /// |
| 451 | /// # Errors |
| 452 | /// |
| 453 | /// Returns `None` if: |
| 454 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 455 | /// daylight saving time transition. |
| 456 | /// - The resulting UTC datetime would be out of range. |
| 457 | /// - The resulting local datetime would be out of range (unless `months` is zero). |
| 458 | #[must_use ] |
| 459 | pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> { |
| 460 | // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate |
| 461 | // the resulting date, with which we can return `Some` even for an out of range local |
| 462 | // datetime. |
| 463 | self.overflowing_naive_local() |
| 464 | .checked_add_months(months)? |
| 465 | .and_local_timezone(Tz::from_offset(&self.offset)) |
| 466 | .single() |
| 467 | } |
| 468 | |
| 469 | /// Subtracts given `TimeDelta` from the current date and time. |
| 470 | /// |
| 471 | /// # Errors |
| 472 | /// |
| 473 | /// Returns `None` if the resulting date would be out of range. |
| 474 | #[inline ] |
| 475 | #[must_use ] |
| 476 | pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> { |
| 477 | let datetime = self.datetime.checked_sub_signed(rhs)?; |
| 478 | let tz = self.timezone(); |
| 479 | Some(tz.from_utc_datetime(&datetime)) |
| 480 | } |
| 481 | |
| 482 | /// Subtracts given `Months` from the current date and time. |
| 483 | /// |
| 484 | /// Uses the last day of the month if the day does not exist in the resulting month. |
| 485 | /// |
| 486 | /// See [`NaiveDate::checked_sub_months`] for more details on behavior. |
| 487 | /// |
| 488 | /// # Errors |
| 489 | /// |
| 490 | /// Returns `None` if: |
| 491 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 492 | /// daylight saving time transition. |
| 493 | /// - The resulting UTC datetime would be out of range. |
| 494 | /// - The resulting local datetime would be out of range (unless `months` is zero). |
| 495 | #[must_use ] |
| 496 | pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> { |
| 497 | // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate |
| 498 | // the resulting date, with which we can return `Some` even for an out of range local |
| 499 | // datetime. |
| 500 | self.overflowing_naive_local() |
| 501 | .checked_sub_months(months)? |
| 502 | .and_local_timezone(Tz::from_offset(&self.offset)) |
| 503 | .single() |
| 504 | } |
| 505 | |
| 506 | /// Add a duration in [`Days`] to the date part of the `DateTime`. |
| 507 | /// |
| 508 | /// # Errors |
| 509 | /// |
| 510 | /// Returns `None` if: |
| 511 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 512 | /// daylight saving time transition. |
| 513 | /// - The resulting UTC datetime would be out of range. |
| 514 | /// - The resulting local datetime would be out of range (unless `days` is zero). |
| 515 | #[must_use ] |
| 516 | pub fn checked_add_days(self, days: Days) -> Option<Self> { |
| 517 | if days == Days::new(0) { |
| 518 | return Some(self); |
| 519 | } |
| 520 | // `NaiveDate::add_days` has a fast path if the result remains within the same year, that |
| 521 | // does not validate the resulting date. This allows us to return `Some` even for an out of |
| 522 | // range local datetime when adding `Days(0)`. |
| 523 | self.overflowing_naive_local() |
| 524 | .checked_add_days(days) |
| 525 | .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) |
| 526 | .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC) |
| 527 | } |
| 528 | |
| 529 | /// Subtract a duration in [`Days`] from the date part of the `DateTime`. |
| 530 | /// |
| 531 | /// # Errors |
| 532 | /// |
| 533 | /// Returns `None` if: |
| 534 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 535 | /// daylight saving time transition. |
| 536 | /// - The resulting UTC datetime would be out of range. |
| 537 | /// - The resulting local datetime would be out of range (unless `days` is zero). |
| 538 | #[must_use ] |
| 539 | pub fn checked_sub_days(self, days: Days) -> Option<Self> { |
| 540 | // `NaiveDate::add_days` has a fast path if the result remains within the same year, that |
| 541 | // does not validate the resulting date. This allows us to return `Some` even for an out of |
| 542 | // range local datetime when adding `Days(0)`. |
| 543 | self.overflowing_naive_local() |
| 544 | .checked_sub_days(days) |
| 545 | .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) |
| 546 | .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC) |
| 547 | } |
| 548 | |
| 549 | /// Subtracts another `DateTime` from the current date and time. |
| 550 | /// This does not overflow or underflow at all. |
| 551 | #[inline ] |
| 552 | #[must_use ] |
| 553 | pub fn signed_duration_since<Tz2: TimeZone>( |
| 554 | self, |
| 555 | rhs: impl Borrow<DateTime<Tz2>>, |
| 556 | ) -> TimeDelta { |
| 557 | self.datetime.signed_duration_since(rhs.borrow().datetime) |
| 558 | } |
| 559 | |
| 560 | /// Returns a view to the naive UTC datetime. |
| 561 | #[inline ] |
| 562 | #[must_use ] |
| 563 | pub const fn naive_utc(&self) -> NaiveDateTime { |
| 564 | self.datetime |
| 565 | } |
| 566 | |
| 567 | /// Returns a view to the naive local datetime. |
| 568 | /// |
| 569 | /// # Panics |
| 570 | /// |
| 571 | /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This |
| 572 | /// method will panic if the offset from UTC would push the local datetime outside of the |
| 573 | /// representable range of a [`NaiveDateTime`]. |
| 574 | #[inline ] |
| 575 | #[must_use ] |
| 576 | pub fn naive_local(&self) -> NaiveDateTime { |
| 577 | self.datetime |
| 578 | .checked_add_offset(self.offset.fix()) |
| 579 | .expect("Local time out of range for `NaiveDateTime`" ) |
| 580 | } |
| 581 | |
| 582 | /// Returns the naive local datetime. |
| 583 | /// |
| 584 | /// This makes use of the buffer space outside of the representable range of values of |
| 585 | /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed |
| 586 | /// outside chrono. |
| 587 | #[inline ] |
| 588 | #[must_use ] |
| 589 | pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime { |
| 590 | self.datetime.overflowing_add_offset(self.offset.fix()) |
| 591 | } |
| 592 | |
| 593 | /// Retrieve the elapsed years from now to the given [`DateTime`]. |
| 594 | /// |
| 595 | /// # Errors |
| 596 | /// |
| 597 | /// Returns `None` if `base > self`. |
| 598 | #[must_use ] |
| 599 | pub fn years_since(&self, base: Self) -> Option<u32> { |
| 600 | let mut years = self.year() - base.year(); |
| 601 | let earlier_time = |
| 602 | (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time()); |
| 603 | |
| 604 | years -= match earlier_time { |
| 605 | true => 1, |
| 606 | false => 0, |
| 607 | }; |
| 608 | |
| 609 | match years >= 0 { |
| 610 | true => Some(years as u32), |
| 611 | false => None, |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`. |
| 616 | /// |
| 617 | /// # Panics |
| 618 | /// |
| 619 | /// Panics if the date can not be represented in this format: the year may not be negative and |
| 620 | /// can not have more than 4 digits. |
| 621 | #[cfg (feature = "alloc" )] |
| 622 | #[must_use ] |
| 623 | pub fn to_rfc2822(&self) -> String { |
| 624 | let mut result = String::with_capacity(32); |
| 625 | write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix()) |
| 626 | .expect("writing rfc2822 datetime to string should never fail" ); |
| 627 | result |
| 628 | } |
| 629 | |
| 630 | /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`. |
| 631 | #[cfg (feature = "alloc" )] |
| 632 | #[must_use ] |
| 633 | pub fn to_rfc3339(&self) -> String { |
| 634 | // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking. |
| 635 | let mut result = String::with_capacity(32); |
| 636 | let naive = self.overflowing_naive_local(); |
| 637 | let offset = self.offset.fix(); |
| 638 | write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false) |
| 639 | .expect("writing rfc3339 datetime to string should never fail" ); |
| 640 | result |
| 641 | } |
| 642 | |
| 643 | /// Return an RFC 3339 and ISO 8601 date and time string with subseconds |
| 644 | /// formatted as per `SecondsFormat`. |
| 645 | /// |
| 646 | /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as |
| 647 | /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses |
| 648 | /// [`Fixed::TimezoneOffsetColon`] |
| 649 | /// |
| 650 | /// # Examples |
| 651 | /// |
| 652 | /// ```rust |
| 653 | /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate}; |
| 654 | /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26) |
| 655 | /// .unwrap() |
| 656 | /// .and_hms_micro_opt(18, 30, 9, 453_829) |
| 657 | /// .unwrap() |
| 658 | /// .and_utc(); |
| 659 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00" ); |
| 660 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z" ); |
| 661 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z" ); |
| 662 | /// |
| 663 | /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap(); |
| 664 | /// let dt = pst |
| 665 | /// .from_local_datetime( |
| 666 | /// &NaiveDate::from_ymd_opt(2018, 1, 26) |
| 667 | /// .unwrap() |
| 668 | /// .and_hms_micro_opt(10, 30, 9, 453_829) |
| 669 | /// .unwrap(), |
| 670 | /// ) |
| 671 | /// .unwrap(); |
| 672 | /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00" ); |
| 673 | /// ``` |
| 674 | #[cfg (feature = "alloc" )] |
| 675 | #[must_use ] |
| 676 | pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String { |
| 677 | let mut result = String::with_capacity(38); |
| 678 | write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z) |
| 679 | .expect("writing rfc3339 datetime to string should never fail" ); |
| 680 | result |
| 681 | } |
| 682 | |
| 683 | /// Set the time to a new fixed time on the existing date. |
| 684 | /// |
| 685 | /// # Errors |
| 686 | /// |
| 687 | /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a |
| 688 | /// `DateTime`, and `with_time` would push the value in UTC out of range. |
| 689 | /// |
| 690 | /// # Example |
| 691 | /// |
| 692 | /// ``` |
| 693 | /// # #[cfg (feature = "clock" )] { |
| 694 | /// use chrono::{Local, NaiveTime}; |
| 695 | /// |
| 696 | /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap(); |
| 697 | /// let today_noon = Local::now().with_time(noon); |
| 698 | /// let today_midnight = Local::now().with_time(NaiveTime::MIN); |
| 699 | /// |
| 700 | /// assert_eq!(today_noon.single().unwrap().time(), noon); |
| 701 | /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN); |
| 702 | /// # } |
| 703 | /// ``` |
| 704 | #[must_use ] |
| 705 | pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> { |
| 706 | self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time)) |
| 707 | } |
| 708 | |
| 709 | /// The minimum possible `DateTime<Utc>`. |
| 710 | pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc }; |
| 711 | /// The maximum possible `DateTime<Utc>`. |
| 712 | pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc }; |
| 713 | } |
| 714 | |
| 715 | impl DateTime<Utc> { |
| 716 | /// Makes a new `DateTime<Utc>` from the number of non-leap seconds |
| 717 | /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp") |
| 718 | /// and the number of nanoseconds since the last whole non-leap second. |
| 719 | /// |
| 720 | /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and |
| 721 | /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos). |
| 722 | /// |
| 723 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
| 724 | /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`]. |
| 725 | /// |
| 726 | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
| 727 | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
| 728 | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
| 729 | /// |
| 730 | /// # Errors |
| 731 | /// |
| 732 | /// Returns `None` on out-of-range number of seconds and/or |
| 733 | /// invalid nanosecond, otherwise returns `Some(DateTime {...})`. |
| 734 | /// |
| 735 | /// # Example |
| 736 | /// |
| 737 | /// ``` |
| 738 | /// use chrono::DateTime; |
| 739 | /// |
| 740 | /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp" ); |
| 741 | /// |
| 742 | /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC" ); |
| 743 | /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); |
| 744 | /// ``` |
| 745 | #[inline ] |
| 746 | #[must_use ] |
| 747 | pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> { |
| 748 | let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY; |
| 749 | let secs = secs.rem_euclid(86_400); |
| 750 | if days < i32::MIN as i64 || days > i32::MAX as i64 { |
| 751 | return None; |
| 752 | } |
| 753 | let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32)); |
| 754 | let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs)); |
| 755 | Some(date.and_time(time).and_utc()) |
| 756 | } |
| 757 | |
| 758 | /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds |
| 759 | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
| 760 | /// |
| 761 | /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis). |
| 762 | /// |
| 763 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
| 764 | /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`]. |
| 765 | /// |
| 766 | /// # Errors |
| 767 | /// |
| 768 | /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`. |
| 769 | /// |
| 770 | /// # Example |
| 771 | /// |
| 772 | /// ``` |
| 773 | /// use chrono::DateTime; |
| 774 | /// |
| 775 | /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp" ); |
| 776 | /// |
| 777 | /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC" ); |
| 778 | /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt); |
| 779 | /// ``` |
| 780 | #[inline ] |
| 781 | #[must_use ] |
| 782 | pub const fn from_timestamp_millis(millis: i64) -> Option<Self> { |
| 783 | let secs = millis.div_euclid(1000); |
| 784 | let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000; |
| 785 | Self::from_timestamp(secs, nsecs) |
| 786 | } |
| 787 | |
| 788 | /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds |
| 789 | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
| 790 | /// |
| 791 | /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros). |
| 792 | /// |
| 793 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
| 794 | /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`]. |
| 795 | /// |
| 796 | /// # Errors |
| 797 | /// |
| 798 | /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` |
| 799 | /// (more than ca. 262,000 years away from common era) |
| 800 | /// |
| 801 | /// # Example |
| 802 | /// |
| 803 | /// ``` |
| 804 | /// use chrono::DateTime; |
| 805 | /// |
| 806 | /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC |
| 807 | /// let dt = DateTime::from_timestamp_micros(timestamp_micros); |
| 808 | /// assert!(dt.is_some()); |
| 809 | /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp" ).timestamp_micros()); |
| 810 | /// |
| 811 | /// // Negative timestamps (before the UNIX epoch) are supported as well. |
| 812 | /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC |
| 813 | /// let dt = DateTime::from_timestamp_micros(timestamp_micros); |
| 814 | /// assert!(dt.is_some()); |
| 815 | /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp" ).timestamp_micros()); |
| 816 | /// ``` |
| 817 | #[inline ] |
| 818 | #[must_use ] |
| 819 | pub const fn from_timestamp_micros(micros: i64) -> Option<Self> { |
| 820 | let secs = micros.div_euclid(1_000_000); |
| 821 | let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; |
| 822 | Self::from_timestamp(secs, nsecs) |
| 823 | } |
| 824 | |
| 825 | /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds |
| 826 | /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). |
| 827 | /// |
| 828 | /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos). |
| 829 | /// |
| 830 | /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use |
| 831 | /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`]. |
| 832 | /// |
| 833 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
| 834 | /// |
| 835 | /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can |
| 836 | /// be represented as a `DateTime` this method never fails. |
| 837 | /// |
| 838 | /// # Example |
| 839 | /// |
| 840 | /// ``` |
| 841 | /// use chrono::DateTime; |
| 842 | /// |
| 843 | /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC |
| 844 | /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); |
| 845 | /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); |
| 846 | /// |
| 847 | /// // Negative timestamps (before the UNIX epoch) are supported as well. |
| 848 | /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC |
| 849 | /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); |
| 850 | /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); |
| 851 | /// ``` |
| 852 | #[inline ] |
| 853 | #[must_use ] |
| 854 | pub const fn from_timestamp_nanos(nanos: i64) -> Self { |
| 855 | let secs = nanos.div_euclid(1_000_000_000); |
| 856 | let nsecs = nanos.rem_euclid(1_000_000_000) as u32; |
| 857 | expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range" ) |
| 858 | } |
| 859 | |
| 860 | /// The Unix Epoch, 1970-01-01 00:00:00 UTC. |
| 861 | pub const UNIX_EPOCH: Self = Self { datetime: NaiveDateTime::UNIX_EPOCH, offset: Utc }; |
| 862 | } |
| 863 | |
| 864 | impl Default for DateTime<Utc> { |
| 865 | fn default() -> Self { |
| 866 | Utc.from_utc_datetime(&NaiveDateTime::default()) |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | #[cfg (feature = "clock" )] |
| 871 | impl Default for DateTime<Local> { |
| 872 | fn default() -> Self { |
| 873 | Local.from_utc_datetime(&NaiveDateTime::default()) |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | impl Default for DateTime<FixedOffset> { |
| 878 | fn default() -> Self { |
| 879 | FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default()) |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | /// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance. |
| 884 | impl From<DateTime<Utc>> for DateTime<FixedOffset> { |
| 885 | /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance. |
| 886 | /// |
| 887 | /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by |
| 888 | /// this will be created with a fixed timezone offset of 0. |
| 889 | fn from(src: DateTime<Utc>) -> Self { |
| 890 | src.with_timezone(&FixedOffset::east_opt(secs:0).unwrap()) |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | /// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance. |
| 895 | #[cfg (feature = "clock" )] |
| 896 | impl From<DateTime<Utc>> for DateTime<Local> { |
| 897 | /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance. |
| 898 | /// |
| 899 | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones. |
| 900 | fn from(src: DateTime<Utc>) -> Self { |
| 901 | src.with_timezone(&Local) |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance. |
| 906 | impl From<DateTime<FixedOffset>> for DateTime<Utc> { |
| 907 | /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance. |
| 908 | /// |
| 909 | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone |
| 910 | /// difference. |
| 911 | fn from(src: DateTime<FixedOffset>) -> Self { |
| 912 | src.with_timezone(&Utc) |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | /// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance. |
| 917 | #[cfg (feature = "clock" )] |
| 918 | impl From<DateTime<FixedOffset>> for DateTime<Local> { |
| 919 | /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance. |
| 920 | /// |
| 921 | /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local |
| 922 | /// time. |
| 923 | fn from(src: DateTime<FixedOffset>) -> Self { |
| 924 | src.with_timezone(&Local) |
| 925 | } |
| 926 | } |
| 927 | |
| 928 | /// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance. |
| 929 | #[cfg (feature = "clock" )] |
| 930 | impl From<DateTime<Local>> for DateTime<Utc> { |
| 931 | /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance. |
| 932 | /// |
| 933 | /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in |
| 934 | /// timezones. |
| 935 | fn from(src: DateTime<Local>) -> Self { |
| 936 | src.with_timezone(&Utc) |
| 937 | } |
| 938 | } |
| 939 | |
| 940 | /// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance. |
| 941 | #[cfg (feature = "clock" )] |
| 942 | impl From<DateTime<Local>> for DateTime<FixedOffset> { |
| 943 | /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance. |
| 944 | /// |
| 945 | /// Conversion is performed via [`DateTime::with_timezone`]. |
| 946 | fn from(src: DateTime<Local>) -> Self { |
| 947 | src.with_timezone(&src.offset().fix()) |
| 948 | } |
| 949 | } |
| 950 | |
| 951 | /// Maps the local datetime to other datetime with given conversion function. |
| 952 | fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>> |
| 953 | where |
| 954 | F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>, |
| 955 | { |
| 956 | fOption>(dt.overflowing_naive_local()) |
| 957 | .and_then(|datetime: NaiveDateTime| dt.timezone().from_local_datetime(&datetime).single()) |
| 958 | .filter(|dt: &DateTime| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC) |
| 959 | } |
| 960 | |
| 961 | impl DateTime<FixedOffset> { |
| 962 | /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value. |
| 963 | /// |
| 964 | /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`) |
| 965 | /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`]. |
| 966 | /// |
| 967 | /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP |
| 968 | /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in |
| 969 | /// 2008. |
| 970 | /// |
| 971 | /// # Support for the obsolete date format |
| 972 | /// |
| 973 | /// - A 2-digit year is interpreted to be a year in 1950-2049. |
| 974 | /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and |
| 975 | /// [Appendix A.5] |
| 976 | /// - Single letter 'military' time zone names are parsed as a `-0000` offset. |
| 977 | /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because |
| 978 | /// the meaning is now ambiguous, the standard says they should be be considered as `-0000` |
| 979 | /// unless there is out-of-band information confirming their meaning. |
| 980 | /// The exception is `Z`, which remains identical to `+0000`. |
| 981 | /// |
| 982 | /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3 |
| 983 | /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5 |
| 984 | /// |
| 985 | /// # Example |
| 986 | /// |
| 987 | /// ``` |
| 988 | /// # use chrono::{DateTime, FixedOffset, TimeZone}; |
| 989 | /// assert_eq!( |
| 990 | /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT" ).unwrap(), |
| 991 | /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() |
| 992 | /// ); |
| 993 | /// ``` |
| 994 | pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> { |
| 995 | const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)]; |
| 996 | let mut parsed = Parsed::new(); |
| 997 | parse(&mut parsed, s, ITEMS.iter())?; |
| 998 | parsed.to_datetime() |
| 999 | } |
| 1000 | |
| 1001 | /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value. |
| 1002 | /// |
| 1003 | /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are |
| 1004 | /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a |
| 1005 | /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide |
| 1006 | /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly |
| 1007 | /// encountered variety of RFC 3339 formats. |
| 1008 | /// |
| 1009 | /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing |
| 1010 | /// values in a wide range of formats, only some of which represent actual date-and-time |
| 1011 | /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are |
| 1012 | /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601 |
| 1013 | /// values (or the other way around). |
| 1014 | pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> { |
| 1015 | let mut parsed = Parsed::new(); |
| 1016 | let (s, _) = parse_rfc3339(&mut parsed, s)?; |
| 1017 | if !s.is_empty() { |
| 1018 | return Err(TOO_LONG); |
| 1019 | } |
| 1020 | parsed.to_datetime() |
| 1021 | } |
| 1022 | |
| 1023 | /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value. |
| 1024 | /// |
| 1025 | /// Note that this method *requires a timezone* in the input string. See |
| 1026 | /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str) |
| 1027 | /// for a version that does not require a timezone in the to-be-parsed str. The returned |
| 1028 | /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone. |
| 1029 | /// |
| 1030 | /// See the [`format::strftime` module](crate::format::strftime) for supported format |
| 1031 | /// sequences. |
| 1032 | /// |
| 1033 | /// # Example |
| 1034 | /// |
| 1035 | /// ```rust |
| 1036 | /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone}; |
| 1037 | /// |
| 1038 | /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000" , "%Y %b %d %H:%M:%S%.3f %z" ); |
| 1039 | /// assert_eq!( |
| 1040 | /// dt, |
| 1041 | /// Ok(FixedOffset::east_opt(0) |
| 1042 | /// .unwrap() |
| 1043 | /// .from_local_datetime( |
| 1044 | /// &NaiveDate::from_ymd_opt(1983, 4, 13) |
| 1045 | /// .unwrap() |
| 1046 | /// .and_hms_milli_opt(12, 9, 14, 274) |
| 1047 | /// .unwrap() |
| 1048 | /// ) |
| 1049 | /// .unwrap()) |
| 1050 | /// ); |
| 1051 | /// ``` |
| 1052 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> { |
| 1053 | let mut parsed = Parsed::new(); |
| 1054 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
| 1055 | parsed.to_datetime() |
| 1056 | } |
| 1057 | |
| 1058 | /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a |
| 1059 | /// slice with the remaining portion of the string. |
| 1060 | /// |
| 1061 | /// Note that this method *requires a timezone* in the input string. See |
| 1062 | /// [`NaiveDateTime::parse_and_remainder`] for a version that does not |
| 1063 | /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`] |
| 1064 | /// reflecting the parsed timezone. |
| 1065 | /// |
| 1066 | /// See the [`format::strftime` module](./format/strftime/index.html) for supported format |
| 1067 | /// sequences. |
| 1068 | /// |
| 1069 | /// Similar to [`parse_from_str`](#method.parse_from_str). |
| 1070 | /// |
| 1071 | /// # Example |
| 1072 | /// |
| 1073 | /// ```rust |
| 1074 | /// # use chrono::{DateTime, FixedOffset, TimeZone}; |
| 1075 | /// let (datetime, remainder) = DateTime::parse_and_remainder( |
| 1076 | /// "2015-02-18 23:16:09 +0200 trailing text" , |
| 1077 | /// "%Y-%m-%d %H:%M:%S %z" , |
| 1078 | /// ) |
| 1079 | /// .unwrap(); |
| 1080 | /// assert_eq!( |
| 1081 | /// datetime, |
| 1082 | /// FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() |
| 1083 | /// ); |
| 1084 | /// assert_eq!(remainder, " trailing text" ); |
| 1085 | /// ``` |
| 1086 | pub fn parse_and_remainder<'a>( |
| 1087 | s: &'a str, |
| 1088 | fmt: &str, |
| 1089 | ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> { |
| 1090 | let mut parsed = Parsed::new(); |
| 1091 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
| 1092 | parsed.to_datetime().map(|d| (d, remainder)) |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | impl<Tz: TimeZone> DateTime<Tz> |
| 1097 | where |
| 1098 | Tz::Offset: fmt::Display, |
| 1099 | { |
| 1100 | /// Formats the combined date and time with the specified formatting items. |
| 1101 | #[cfg (feature = "alloc" )] |
| 1102 | #[inline ] |
| 1103 | #[must_use ] |
| 1104 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
| 1105 | where |
| 1106 | I: Iterator<Item = B> + Clone, |
| 1107 | B: Borrow<Item<'a>>, |
| 1108 | { |
| 1109 | let local = self.overflowing_naive_local(); |
| 1110 | DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items) |
| 1111 | } |
| 1112 | |
| 1113 | /// Formats the combined date and time per the specified format string. |
| 1114 | /// |
| 1115 | /// See the [`crate::format::strftime`] module for the supported escape sequences. |
| 1116 | /// |
| 1117 | /// # Example |
| 1118 | /// ```rust |
| 1119 | /// use chrono::prelude::*; |
| 1120 | /// |
| 1121 | /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap(); |
| 1122 | /// let formatted = format!("{}" , date_time.format("%d/%m/%Y %H:%M" )); |
| 1123 | /// assert_eq!(formatted, "02/04/2017 12:50" ); |
| 1124 | /// ``` |
| 1125 | #[cfg (feature = "alloc" )] |
| 1126 | #[inline ] |
| 1127 | #[must_use ] |
| 1128 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
| 1129 | self.format_with_items(StrftimeItems::new(fmt)) |
| 1130 | } |
| 1131 | |
| 1132 | /// Formats the combined date and time with the specified formatting items and locale. |
| 1133 | #[cfg (all(feature = "unstable-locales" , feature = "alloc" ))] |
| 1134 | #[inline ] |
| 1135 | #[must_use ] |
| 1136 | pub fn format_localized_with_items<'a, I, B>( |
| 1137 | &self, |
| 1138 | items: I, |
| 1139 | locale: Locale, |
| 1140 | ) -> DelayedFormat<I> |
| 1141 | where |
| 1142 | I: Iterator<Item = B> + Clone, |
| 1143 | B: Borrow<Item<'a>>, |
| 1144 | { |
| 1145 | let local = self.overflowing_naive_local(); |
| 1146 | DelayedFormat::new_with_offset_and_locale( |
| 1147 | Some(local.date()), |
| 1148 | Some(local.time()), |
| 1149 | &self.offset, |
| 1150 | items, |
| 1151 | locale, |
| 1152 | ) |
| 1153 | } |
| 1154 | |
| 1155 | /// Formats the combined date and time per the specified format string and |
| 1156 | /// locale. |
| 1157 | /// |
| 1158 | /// See the [`crate::format::strftime`] module on the supported escape |
| 1159 | /// sequences. |
| 1160 | #[cfg (all(feature = "unstable-locales" , feature = "alloc" ))] |
| 1161 | #[inline ] |
| 1162 | #[must_use ] |
| 1163 | pub fn format_localized<'a>( |
| 1164 | &self, |
| 1165 | fmt: &'a str, |
| 1166 | locale: Locale, |
| 1167 | ) -> DelayedFormat<StrftimeItems<'a>> { |
| 1168 | self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale) |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | impl<Tz: TimeZone> Datelike for DateTime<Tz> { |
| 1173 | #[inline ] |
| 1174 | fn year(&self) -> i32 { |
| 1175 | self.overflowing_naive_local().year() |
| 1176 | } |
| 1177 | #[inline ] |
| 1178 | fn month(&self) -> u32 { |
| 1179 | self.overflowing_naive_local().month() |
| 1180 | } |
| 1181 | #[inline ] |
| 1182 | fn month0(&self) -> u32 { |
| 1183 | self.overflowing_naive_local().month0() |
| 1184 | } |
| 1185 | #[inline ] |
| 1186 | fn day(&self) -> u32 { |
| 1187 | self.overflowing_naive_local().day() |
| 1188 | } |
| 1189 | #[inline ] |
| 1190 | fn day0(&self) -> u32 { |
| 1191 | self.overflowing_naive_local().day0() |
| 1192 | } |
| 1193 | #[inline ] |
| 1194 | fn ordinal(&self) -> u32 { |
| 1195 | self.overflowing_naive_local().ordinal() |
| 1196 | } |
| 1197 | #[inline ] |
| 1198 | fn ordinal0(&self) -> u32 { |
| 1199 | self.overflowing_naive_local().ordinal0() |
| 1200 | } |
| 1201 | #[inline ] |
| 1202 | fn weekday(&self) -> Weekday { |
| 1203 | self.overflowing_naive_local().weekday() |
| 1204 | } |
| 1205 | #[inline ] |
| 1206 | fn iso_week(&self) -> IsoWeek { |
| 1207 | self.overflowing_naive_local().iso_week() |
| 1208 | } |
| 1209 | |
| 1210 | #[inline ] |
| 1211 | /// Makes a new `DateTime` with the year number changed, while keeping the same month and day. |
| 1212 | /// |
| 1213 | /// See also the [`NaiveDate::with_year`] method. |
| 1214 | /// |
| 1215 | /// # Errors |
| 1216 | /// |
| 1217 | /// Returns `None` if: |
| 1218 | /// - The resulting date does not exist (February 29 in a non-leap year). |
| 1219 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1220 | /// daylight saving time transition. |
| 1221 | /// - The resulting UTC datetime would be out of range. |
| 1222 | /// - The resulting local datetime would be out of range (unless the year remains the same). |
| 1223 | fn with_year(&self, year: i32) -> Option<DateTime<Tz>> { |
| 1224 | map_local(self, |dt| match dt.year() == year { |
| 1225 | true => Some(dt), |
| 1226 | false => dt.with_year(year), |
| 1227 | }) |
| 1228 | } |
| 1229 | |
| 1230 | /// Makes a new `DateTime` with the month number (starting from 1) changed. |
| 1231 | /// |
| 1232 | /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. |
| 1233 | /// |
| 1234 | /// See also the [`NaiveDate::with_month`] method. |
| 1235 | /// |
| 1236 | /// # Errors |
| 1237 | /// |
| 1238 | /// Returns `None` if: |
| 1239 | /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). |
| 1240 | /// - The value for `month` is invalid. |
| 1241 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1242 | /// daylight saving time transition. |
| 1243 | #[inline ] |
| 1244 | fn with_month(&self, month: u32) -> Option<DateTime<Tz>> { |
| 1245 | map_local(self, |datetime| datetime.with_month(month)) |
| 1246 | } |
| 1247 | |
| 1248 | /// Makes a new `DateTime` with the month number (starting from 0) changed. |
| 1249 | /// |
| 1250 | /// See also the [`NaiveDate::with_month0`] method. |
| 1251 | /// |
| 1252 | /// # Errors |
| 1253 | /// |
| 1254 | /// Returns `None` if: |
| 1255 | /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). |
| 1256 | /// - The value for `month0` is invalid. |
| 1257 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1258 | /// daylight saving time transition. |
| 1259 | #[inline ] |
| 1260 | fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> { |
| 1261 | map_local(self, |datetime| datetime.with_month0(month0)) |
| 1262 | } |
| 1263 | |
| 1264 | /// Makes a new `DateTime` with the day of month (starting from 1) changed. |
| 1265 | /// |
| 1266 | /// See also the [`NaiveDate::with_day`] method. |
| 1267 | /// |
| 1268 | /// # Errors |
| 1269 | /// |
| 1270 | /// Returns `None` if: |
| 1271 | /// - The resulting date does not exist (for example `day(31)` in April). |
| 1272 | /// - The value for `day` is invalid. |
| 1273 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1274 | /// daylight saving time transition. |
| 1275 | #[inline ] |
| 1276 | fn with_day(&self, day: u32) -> Option<DateTime<Tz>> { |
| 1277 | map_local(self, |datetime| datetime.with_day(day)) |
| 1278 | } |
| 1279 | |
| 1280 | /// Makes a new `DateTime` with the day of month (starting from 0) changed. |
| 1281 | /// |
| 1282 | /// See also the [`NaiveDate::with_day0`] method. |
| 1283 | /// |
| 1284 | /// # Errors |
| 1285 | /// |
| 1286 | /// Returns `None` if: |
| 1287 | /// - The resulting date does not exist (for example `day(30)` in April). |
| 1288 | /// - The value for `day0` is invalid. |
| 1289 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1290 | /// daylight saving time transition. |
| 1291 | #[inline ] |
| 1292 | fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> { |
| 1293 | map_local(self, |datetime| datetime.with_day0(day0)) |
| 1294 | } |
| 1295 | |
| 1296 | /// Makes a new `DateTime` with the day of year (starting from 1) changed. |
| 1297 | /// |
| 1298 | /// See also the [`NaiveDate::with_ordinal`] method. |
| 1299 | /// |
| 1300 | /// # Errors |
| 1301 | /// |
| 1302 | /// Returns `None` if: |
| 1303 | /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). |
| 1304 | /// - The value for `ordinal` is invalid. |
| 1305 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1306 | /// daylight saving time transition. |
| 1307 | #[inline ] |
| 1308 | fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> { |
| 1309 | map_local(self, |datetime| datetime.with_ordinal(ordinal)) |
| 1310 | } |
| 1311 | |
| 1312 | /// Makes a new `DateTime` with the day of year (starting from 0) changed. |
| 1313 | /// |
| 1314 | /// See also the [`NaiveDate::with_ordinal0`] method. |
| 1315 | /// |
| 1316 | /// # Errors |
| 1317 | /// |
| 1318 | /// Returns `None` if: |
| 1319 | /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). |
| 1320 | /// - The value for `ordinal0` is invalid. |
| 1321 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1322 | /// daylight saving time transition. |
| 1323 | #[inline ] |
| 1324 | fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> { |
| 1325 | map_local(self, |datetime| datetime.with_ordinal0(ordinal0)) |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | impl<Tz: TimeZone> Timelike for DateTime<Tz> { |
| 1330 | #[inline ] |
| 1331 | fn hour(&self) -> u32 { |
| 1332 | self.overflowing_naive_local().hour() |
| 1333 | } |
| 1334 | #[inline ] |
| 1335 | fn minute(&self) -> u32 { |
| 1336 | self.overflowing_naive_local().minute() |
| 1337 | } |
| 1338 | #[inline ] |
| 1339 | fn second(&self) -> u32 { |
| 1340 | self.overflowing_naive_local().second() |
| 1341 | } |
| 1342 | #[inline ] |
| 1343 | fn nanosecond(&self) -> u32 { |
| 1344 | self.overflowing_naive_local().nanosecond() |
| 1345 | } |
| 1346 | |
| 1347 | /// Makes a new `DateTime` with the hour number changed. |
| 1348 | /// |
| 1349 | /// See also the [`NaiveTime::with_hour`] method. |
| 1350 | /// |
| 1351 | /// # Errors |
| 1352 | /// |
| 1353 | /// Returns `None` if: |
| 1354 | /// - The value for `hour` is invalid. |
| 1355 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1356 | /// daylight saving time transition. |
| 1357 | #[inline ] |
| 1358 | fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> { |
| 1359 | map_local(self, |datetime| datetime.with_hour(hour)) |
| 1360 | } |
| 1361 | |
| 1362 | /// Makes a new `DateTime` with the minute number changed. |
| 1363 | /// |
| 1364 | /// See also the [`NaiveTime::with_minute`] method. |
| 1365 | /// |
| 1366 | /// # Errors |
| 1367 | /// |
| 1368 | /// - The value for `minute` is invalid. |
| 1369 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1370 | /// daylight saving time transition. |
| 1371 | #[inline ] |
| 1372 | fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> { |
| 1373 | map_local(self, |datetime| datetime.with_minute(min)) |
| 1374 | } |
| 1375 | |
| 1376 | /// Makes a new `DateTime` with the second number changed. |
| 1377 | /// |
| 1378 | /// As with the [`second`](#method.second) method, |
| 1379 | /// the input range is restricted to 0 through 59. |
| 1380 | /// |
| 1381 | /// See also the [`NaiveTime::with_second`] method. |
| 1382 | /// |
| 1383 | /// # Errors |
| 1384 | /// |
| 1385 | /// Returns `None` if: |
| 1386 | /// - The value for `second` is invalid. |
| 1387 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1388 | /// daylight saving time transition. |
| 1389 | #[inline ] |
| 1390 | fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> { |
| 1391 | map_local(self, |datetime| datetime.with_second(sec)) |
| 1392 | } |
| 1393 | |
| 1394 | /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed. |
| 1395 | /// |
| 1396 | /// Returns `None` when the resulting `NaiveDateTime` would be invalid. |
| 1397 | /// As with the [`NaiveDateTime::nanosecond`] method, |
| 1398 | /// the input range can exceed 1,000,000,000 for leap seconds. |
| 1399 | /// |
| 1400 | /// See also the [`NaiveTime::with_nanosecond`] method. |
| 1401 | /// |
| 1402 | /// # Errors |
| 1403 | /// |
| 1404 | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
| 1405 | #[inline ] |
| 1406 | fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> { |
| 1407 | map_local(self, |datetime| datetime.with_nanosecond(nano)) |
| 1408 | } |
| 1409 | } |
| 1410 | |
| 1411 | // We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can |
| 1412 | // be `Copy`. Implement it manually if the two types we do have are `Copy`. |
| 1413 | impl<Tz: TimeZone> Copy for DateTime<Tz> |
| 1414 | where |
| 1415 | <Tz as TimeZone>::Offset: Copy, |
| 1416 | NaiveDateTime: Copy, |
| 1417 | { |
| 1418 | } |
| 1419 | |
| 1420 | impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> { |
| 1421 | fn eq(&self, other: &DateTime<Tz2>) -> bool { |
| 1422 | self.datetime == other.datetime |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | impl<Tz: TimeZone> Eq for DateTime<Tz> {} |
| 1427 | |
| 1428 | impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> { |
| 1429 | /// Compare two DateTimes based on their true time, ignoring time zones |
| 1430 | /// |
| 1431 | /// # Example |
| 1432 | /// |
| 1433 | /// ``` |
| 1434 | /// use chrono::prelude::*; |
| 1435 | /// |
| 1436 | /// let earlier = Utc |
| 1437 | /// .with_ymd_and_hms(2015, 5, 15, 2, 0, 0) |
| 1438 | /// .unwrap() |
| 1439 | /// .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap()); |
| 1440 | /// let later = Utc |
| 1441 | /// .with_ymd_and_hms(2015, 5, 15, 3, 0, 0) |
| 1442 | /// .unwrap() |
| 1443 | /// .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap()); |
| 1444 | /// |
| 1445 | /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00" ); |
| 1446 | /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00" ); |
| 1447 | /// |
| 1448 | /// assert!(later > earlier); |
| 1449 | /// ``` |
| 1450 | fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> { |
| 1451 | self.datetime.partial_cmp(&other.datetime) |
| 1452 | } |
| 1453 | } |
| 1454 | |
| 1455 | impl<Tz: TimeZone> Ord for DateTime<Tz> { |
| 1456 | fn cmp(&self, other: &DateTime<Tz>) -> Ordering { |
| 1457 | self.datetime.cmp(&other.datetime) |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | impl<Tz: TimeZone> hash::Hash for DateTime<Tz> { |
| 1462 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
| 1463 | self.datetime.hash(state) |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | /// Add `TimeDelta` to `DateTime`. |
| 1468 | /// |
| 1469 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1470 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1471 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1472 | /// |
| 1473 | /// # Panics |
| 1474 | /// |
| 1475 | /// Panics if the resulting date would be out of range. |
| 1476 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
| 1477 | impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> { |
| 1478 | type Output = DateTime<Tz>; |
| 1479 | |
| 1480 | #[inline ] |
| 1481 | fn add(self, rhs: TimeDelta) -> DateTime<Tz> { |
| 1482 | self.checked_add_signed(rhs).expect(msg:"`DateTime + TimeDelta` overflowed" ) |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | /// Add `std::time::Duration` to `DateTime`. |
| 1487 | /// |
| 1488 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1489 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1490 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1491 | /// |
| 1492 | /// # Panics |
| 1493 | /// |
| 1494 | /// Panics if the resulting date would be out of range. |
| 1495 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
| 1496 | impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> { |
| 1497 | type Output = DateTime<Tz>; |
| 1498 | |
| 1499 | #[inline ] |
| 1500 | fn add(self, rhs: Duration) -> DateTime<Tz> { |
| 1501 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
| 1502 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
| 1503 | self.checked_add_signed(rhs).expect(msg:"`DateTime + TimeDelta` overflowed" ) |
| 1504 | } |
| 1505 | } |
| 1506 | |
| 1507 | /// Add-assign `chrono::Duration` to `DateTime`. |
| 1508 | /// |
| 1509 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1510 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1511 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1512 | /// |
| 1513 | /// # Panics |
| 1514 | /// |
| 1515 | /// Panics if the resulting date would be out of range. |
| 1516 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
| 1517 | impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> { |
| 1518 | #[inline ] |
| 1519 | fn add_assign(&mut self, rhs: TimeDelta) { |
| 1520 | let datetime: NaiveDateTime = |
| 1521 | self.datetime.checked_add_signed(rhs).expect(msg:"`DateTime + TimeDelta` overflowed" ); |
| 1522 | let tz: Tz = self.timezone(); |
| 1523 | *self = tz.from_utc_datetime(&datetime); |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | /// Add-assign `std::time::Duration` to `DateTime`. |
| 1528 | /// |
| 1529 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1530 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
| 1531 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1532 | /// |
| 1533 | /// # Panics |
| 1534 | /// |
| 1535 | /// Panics if the resulting date would be out of range. |
| 1536 | /// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead. |
| 1537 | impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> { |
| 1538 | #[inline ] |
| 1539 | fn add_assign(&mut self, rhs: Duration) { |
| 1540 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
| 1541 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
| 1542 | *self += rhs; |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | /// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged). |
| 1547 | /// |
| 1548 | /// # Panics |
| 1549 | /// |
| 1550 | /// Panics if the resulting date would be out of range. |
| 1551 | impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> { |
| 1552 | type Output = DateTime<Tz>; |
| 1553 | |
| 1554 | #[inline ] |
| 1555 | fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> { |
| 1556 | self.datetime = |
| 1557 | self.naive_utc().checked_add_offset(rhs).expect(msg:"`DateTime + FixedOffset` overflowed" ); |
| 1558 | self |
| 1559 | } |
| 1560 | } |
| 1561 | |
| 1562 | /// Add `Months` to `DateTime`. |
| 1563 | /// |
| 1564 | /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for |
| 1565 | /// details. |
| 1566 | /// |
| 1567 | /// # Panics |
| 1568 | /// |
| 1569 | /// Panics if: |
| 1570 | /// - The resulting date would be out of range. |
| 1571 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1572 | /// daylight saving time transition. |
| 1573 | /// |
| 1574 | /// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead. |
| 1575 | impl<Tz: TimeZone> Add<Months> for DateTime<Tz> { |
| 1576 | type Output = DateTime<Tz>; |
| 1577 | |
| 1578 | fn add(self, rhs: Months) -> Self::Output { |
| 1579 | self.checked_add_months(rhs).expect(msg:"`DateTime + Months` out of range" ) |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | /// Subtract `TimeDelta` from `DateTime`. |
| 1584 | /// |
| 1585 | /// This is the same as the addition with a negated `TimeDelta`. |
| 1586 | /// |
| 1587 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
| 1588 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
| 1589 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1590 | /// |
| 1591 | /// # Panics |
| 1592 | /// |
| 1593 | /// Panics if the resulting date would be out of range. |
| 1594 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
| 1595 | impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> { |
| 1596 | type Output = DateTime<Tz>; |
| 1597 | |
| 1598 | #[inline ] |
| 1599 | fn sub(self, rhs: TimeDelta) -> DateTime<Tz> { |
| 1600 | self.checked_sub_signed(rhs).expect(msg:"`DateTime - TimeDelta` overflowed" ) |
| 1601 | } |
| 1602 | } |
| 1603 | |
| 1604 | /// Subtract `std::time::Duration` from `DateTime`. |
| 1605 | /// |
| 1606 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
| 1607 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
| 1608 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1609 | /// |
| 1610 | /// # Panics |
| 1611 | /// |
| 1612 | /// Panics if the resulting date would be out of range. |
| 1613 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
| 1614 | impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> { |
| 1615 | type Output = DateTime<Tz>; |
| 1616 | |
| 1617 | #[inline ] |
| 1618 | fn sub(self, rhs: Duration) -> DateTime<Tz> { |
| 1619 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
| 1620 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
| 1621 | self.checked_sub_signed(rhs).expect(msg:"`DateTime - TimeDelta` overflowed" ) |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | /// Subtract-assign `TimeDelta` from `DateTime`. |
| 1626 | /// |
| 1627 | /// This is the same as the addition with a negated `TimeDelta`. |
| 1628 | /// |
| 1629 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1630 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
| 1631 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1632 | /// |
| 1633 | /// # Panics |
| 1634 | /// |
| 1635 | /// Panics if the resulting date would be out of range. |
| 1636 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
| 1637 | impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> { |
| 1638 | #[inline ] |
| 1639 | fn sub_assign(&mut self, rhs: TimeDelta) { |
| 1640 | let datetime: NaiveDateTime = |
| 1641 | self.datetime.checked_sub_signed(rhs).expect(msg:"`DateTime - TimeDelta` overflowed" ); |
| 1642 | let tz: Tz = self.timezone(); |
| 1643 | *self = tz.from_utc_datetime(&datetime) |
| 1644 | } |
| 1645 | } |
| 1646 | |
| 1647 | /// Subtract-assign `std::time::Duration` from `DateTime`. |
| 1648 | /// |
| 1649 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
| 1650 | /// second ever**, except when the `DateTime` itself represents a leap second in which case |
| 1651 | /// the assumption becomes that **there is exactly a single leap second ever**. |
| 1652 | /// |
| 1653 | /// # Panics |
| 1654 | /// |
| 1655 | /// Panics if the resulting date would be out of range. |
| 1656 | /// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead. |
| 1657 | impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> { |
| 1658 | #[inline ] |
| 1659 | fn sub_assign(&mut self, rhs: Duration) { |
| 1660 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
| 1661 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
| 1662 | *self -= rhs; |
| 1663 | } |
| 1664 | } |
| 1665 | |
| 1666 | /// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged). |
| 1667 | /// |
| 1668 | /// # Panics |
| 1669 | /// |
| 1670 | /// Panics if the resulting date would be out of range. |
| 1671 | impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> { |
| 1672 | type Output = DateTime<Tz>; |
| 1673 | |
| 1674 | #[inline ] |
| 1675 | fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> { |
| 1676 | self.datetime = |
| 1677 | self.naive_utc().checked_sub_offset(rhs).expect(msg:"`DateTime - FixedOffset` overflowed" ); |
| 1678 | self |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | /// Subtract `Months` from `DateTime`. |
| 1683 | /// |
| 1684 | /// The result will be clamped to valid days in the resulting month, see |
| 1685 | /// [`DateTime<Tz>::checked_sub_months`] for details. |
| 1686 | /// |
| 1687 | /// # Panics |
| 1688 | /// |
| 1689 | /// Panics if: |
| 1690 | /// - The resulting date would be out of range. |
| 1691 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1692 | /// daylight saving time transition. |
| 1693 | /// |
| 1694 | /// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead. |
| 1695 | impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> { |
| 1696 | type Output = DateTime<Tz>; |
| 1697 | |
| 1698 | fn sub(self, rhs: Months) -> Self::Output { |
| 1699 | self.checked_sub_months(rhs).expect(msg:"`DateTime - Months` out of range" ) |
| 1700 | } |
| 1701 | } |
| 1702 | |
| 1703 | impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> { |
| 1704 | type Output = TimeDelta; |
| 1705 | |
| 1706 | #[inline ] |
| 1707 | fn sub(self, rhs: DateTime<Tz>) -> TimeDelta { |
| 1708 | self.signed_duration_since(rhs) |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> { |
| 1713 | type Output = TimeDelta; |
| 1714 | |
| 1715 | #[inline ] |
| 1716 | fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta { |
| 1717 | self.signed_duration_since(rhs) |
| 1718 | } |
| 1719 | } |
| 1720 | |
| 1721 | /// Add `Days` to `NaiveDateTime`. |
| 1722 | /// |
| 1723 | /// # Panics |
| 1724 | /// |
| 1725 | /// Panics if: |
| 1726 | /// - The resulting date would be out of range. |
| 1727 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1728 | /// daylight saving time transition. |
| 1729 | /// |
| 1730 | /// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead. |
| 1731 | impl<Tz: TimeZone> Add<Days> for DateTime<Tz> { |
| 1732 | type Output = DateTime<Tz>; |
| 1733 | |
| 1734 | fn add(self, days: Days) -> Self::Output { |
| 1735 | self.checked_add_days(days).expect(msg:"`DateTime + Days` out of range" ) |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | /// Subtract `Days` from `DateTime`. |
| 1740 | /// |
| 1741 | /// # Panics |
| 1742 | /// |
| 1743 | /// Panics if: |
| 1744 | /// - The resulting date would be out of range. |
| 1745 | /// - The local time at the resulting date does not exist or is ambiguous, for example during a |
| 1746 | /// daylight saving time transition. |
| 1747 | /// |
| 1748 | /// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead. |
| 1749 | impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> { |
| 1750 | type Output = DateTime<Tz>; |
| 1751 | |
| 1752 | fn sub(self, days: Days) -> Self::Output { |
| 1753 | self.checked_sub_days(days).expect(msg:"`DateTime - Days` out of range" ) |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> { |
| 1758 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1759 | self.overflowing_naive_local().fmt(f)?; |
| 1760 | self.offset.fmt(f) |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | // `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because |
| 1765 | // deriving a trait recursively does not propagate trait defined associated types with their own |
| 1766 | // constraints: |
| 1767 | // In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived` |
| 1768 | // cannot be formatted using `{:?}` because it doesn't implement `Debug`. |
| 1769 | // See below for further discussion: |
| 1770 | // * https://github.com/rust-lang/rust/issues/26925 |
| 1771 | // * https://github.com/rkyv/rkyv/issues/333 |
| 1772 | // * https://github.com/dtolnay/syn/issues/370 |
| 1773 | #[cfg (feature = "rkyv-validation" )] |
| 1774 | impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz> |
| 1775 | where |
| 1776 | Tz: Archive, |
| 1777 | <Tz as Archive>::Archived: fmt::Debug, |
| 1778 | <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug, |
| 1779 | <Tz as TimeZone>::Offset: fmt::Debug + Archive, |
| 1780 | { |
| 1781 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1782 | f.debug_struct("ArchivedDateTime" ) |
| 1783 | .field("datetime" , &self.datetime) |
| 1784 | .field("offset" , &self.offset) |
| 1785 | .finish() |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | impl<Tz: TimeZone> fmt::Display for DateTime<Tz> |
| 1790 | where |
| 1791 | Tz::Offset: fmt::Display, |
| 1792 | { |
| 1793 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 1794 | self.overflowing_naive_local().fmt(f)?; |
| 1795 | f.write_char(' ' )?; |
| 1796 | self.offset.fmt(f) |
| 1797 | } |
| 1798 | } |
| 1799 | |
| 1800 | /// Accepts a relaxed form of RFC3339. |
| 1801 | /// A space or a 'T' are accepted as the separator between the date and time |
| 1802 | /// parts. |
| 1803 | /// |
| 1804 | /// All of these examples are equivalent: |
| 1805 | /// ``` |
| 1806 | /// # use chrono::{DateTime, Utc}; |
| 1807 | /// "2012-12-12T12:12:12Z" .parse::<DateTime<Utc>>()?; |
| 1808 | /// "2012-12-12 12:12:12Z" .parse::<DateTime<Utc>>()?; |
| 1809 | /// "2012-12-12 12:12:12+0000" .parse::<DateTime<Utc>>()?; |
| 1810 | /// "2012-12-12 12:12:12+00:00" .parse::<DateTime<Utc>>()?; |
| 1811 | /// # Ok::<(), chrono::ParseError>(()) |
| 1812 | /// ``` |
| 1813 | impl str::FromStr for DateTime<Utc> { |
| 1814 | type Err = ParseError; |
| 1815 | |
| 1816 | fn from_str(s: &str) -> ParseResult<DateTime<Utc>> { |
| 1817 | s.parse::<DateTime<FixedOffset>>().map(|dt: DateTime| dt.with_timezone(&Utc)) |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | /// Accepts a relaxed form of RFC3339. |
| 1822 | /// A space or a 'T' are accepted as the separator between the date and time |
| 1823 | /// parts. |
| 1824 | /// |
| 1825 | /// All of these examples are equivalent: |
| 1826 | /// ``` |
| 1827 | /// # use chrono::{DateTime, Local}; |
| 1828 | /// "2012-12-12T12:12:12Z" .parse::<DateTime<Local>>()?; |
| 1829 | /// "2012-12-12 12:12:12Z" .parse::<DateTime<Local>>()?; |
| 1830 | /// "2012-12-12 12:12:12+0000" .parse::<DateTime<Local>>()?; |
| 1831 | /// "2012-12-12 12:12:12+00:00" .parse::<DateTime<Local>>()?; |
| 1832 | /// # Ok::<(), chrono::ParseError>(()) |
| 1833 | /// ``` |
| 1834 | #[cfg (feature = "clock" )] |
| 1835 | impl str::FromStr for DateTime<Local> { |
| 1836 | type Err = ParseError; |
| 1837 | |
| 1838 | fn from_str(s: &str) -> ParseResult<DateTime<Local>> { |
| 1839 | s.parse::<DateTime<FixedOffset>>().map(|dt: DateTime| dt.with_timezone(&Local)) |
| 1840 | } |
| 1841 | } |
| 1842 | |
| 1843 | #[cfg (feature = "std" )] |
| 1844 | impl From<SystemTime> for DateTime<Utc> { |
| 1845 | fn from(t: SystemTime) -> DateTime<Utc> { |
| 1846 | let (sec: i64, nsec: u32) = match t.duration_since(UNIX_EPOCH) { |
| 1847 | Ok(dur: Duration) => (dur.as_secs() as i64, dur.subsec_nanos()), |
| 1848 | Err(e: SystemTimeError) => { |
| 1849 | // unlikely but should be handled |
| 1850 | let dur: Duration = e.duration(); |
| 1851 | let (sec: i64, nsec: u32) = (dur.as_secs() as i64, dur.subsec_nanos()); |
| 1852 | if nsec == 0 { (-sec, 0) } else { (-sec - 1, 1_000_000_000 - nsec) } |
| 1853 | } |
| 1854 | }; |
| 1855 | Utc.timestamp_opt(secs:sec, nsecs:nsec).unwrap() |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | #[cfg (feature = "clock" )] |
| 1860 | impl From<SystemTime> for DateTime<Local> { |
| 1861 | fn from(t: SystemTime) -> DateTime<Local> { |
| 1862 | DateTime::<Utc>::from(t).with_timezone(&Local) |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | #[cfg (feature = "std" )] |
| 1867 | impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime { |
| 1868 | fn from(dt: DateTime<Tz>) -> SystemTime { |
| 1869 | let sec: i64 = dt.timestamp(); |
| 1870 | let nsec: u32 = dt.timestamp_subsec_nanos(); |
| 1871 | if sec < 0 { |
| 1872 | // unlikely but should be handled |
| 1873 | UNIX_EPOCH - Duration::new(-sec as u64, nanos:0) + Duration::new(secs:0, nanos:nsec) |
| 1874 | } else { |
| 1875 | UNIX_EPOCH + Duration::new(secs:sec as u64, nanos:nsec) |
| 1876 | } |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | #[cfg (all( |
| 1881 | target_arch = "wasm32" , |
| 1882 | feature = "wasmbind" , |
| 1883 | not(any(target_os = "emscripten" , target_os = "wasi" )) |
| 1884 | ))] |
| 1885 | impl From<js_sys::Date> for DateTime<Utc> { |
| 1886 | fn from(date: js_sys::Date) -> DateTime<Utc> { |
| 1887 | DateTime::<Utc>::from(&date) |
| 1888 | } |
| 1889 | } |
| 1890 | |
| 1891 | #[cfg (all( |
| 1892 | target_arch = "wasm32" , |
| 1893 | feature = "wasmbind" , |
| 1894 | not(any(target_os = "emscripten" , target_os = "wasi" )) |
| 1895 | ))] |
| 1896 | impl From<&js_sys::Date> for DateTime<Utc> { |
| 1897 | fn from(date: &js_sys::Date) -> DateTime<Utc> { |
| 1898 | Utc.timestamp_millis_opt(date.get_time() as i64).unwrap() |
| 1899 | } |
| 1900 | } |
| 1901 | |
| 1902 | #[cfg (all( |
| 1903 | target_arch = "wasm32" , |
| 1904 | feature = "wasmbind" , |
| 1905 | not(any(target_os = "emscripten" , target_os = "wasi" )) |
| 1906 | ))] |
| 1907 | impl From<DateTime<Utc>> for js_sys::Date { |
| 1908 | /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy, |
| 1909 | /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000 |
| 1910 | /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS. |
| 1911 | fn from(date: DateTime<Utc>) -> js_sys::Date { |
| 1912 | let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64); |
| 1913 | js_sys::Date::new(&js_millis) |
| 1914 | } |
| 1915 | } |
| 1916 | |
| 1917 | // Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to |
| 1918 | // the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary. |
| 1919 | #[cfg (all(feature = "arbitrary" , feature = "std" ))] |
| 1920 | impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz> |
| 1921 | where |
| 1922 | Tz: TimeZone, |
| 1923 | <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>, |
| 1924 | { |
| 1925 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> { |
| 1926 | let datetime = NaiveDateTime::arbitrary(u)?; |
| 1927 | let offset = <Tz as TimeZone>::Offset::arbitrary(u)?; |
| 1928 | Ok(DateTime::from_naive_utc_and_offset(datetime, offset)) |
| 1929 | } |
| 1930 | } |
| 1931 | |
| 1932 | /// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0. |
| 1933 | /// 4 full leap year cycles until December 31, 1600 4 * 146097 = 584388 |
| 1934 | /// 1 day until January 1, 1601 1 |
| 1935 | /// 369 years until Januari 1, 1970 369 * 365 = 134685 |
| 1936 | /// of which floor(369 / 4) are leap years floor(369 / 4) = 92 |
| 1937 | /// except for 1700, 1800 and 1900 -3 + |
| 1938 | /// -------- |
| 1939 | /// 719163 |
| 1940 | const UNIX_EPOCH_DAY: i64 = 719_163; |
| 1941 | |