1 | // This is a part of Chrono. |
2 | // See README.md and LICENSE.txt for details. |
3 | |
4 | //! ISO 8601 date and time without timezone. |
5 | |
6 | #[cfg (feature = "alloc" )] |
7 | use core::borrow::Borrow; |
8 | use core::fmt::Write; |
9 | use core::ops::{Add, AddAssign, Sub, SubAssign}; |
10 | use core::time::Duration; |
11 | use core::{fmt, str}; |
12 | |
13 | #[cfg (any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ))] |
14 | use rkyv::{Archive, Deserialize, Serialize}; |
15 | |
16 | #[cfg (feature = "alloc" )] |
17 | use crate::format::DelayedFormat; |
18 | use crate::format::{Fixed, Item, Numeric, Pad}; |
19 | use crate::format::{ParseError, ParseResult, Parsed, StrftimeItems, parse, parse_and_remainder}; |
20 | use crate::naive::{Days, IsoWeek, NaiveDate, NaiveTime}; |
21 | use crate::offset::Utc; |
22 | use crate::time_delta::NANOS_PER_SEC; |
23 | use crate::{ |
24 | DateTime, Datelike, FixedOffset, MappedLocalTime, Months, TimeDelta, TimeZone, Timelike, |
25 | Weekday, expect, try_opt, |
26 | }; |
27 | |
28 | /// Tools to help serializing/deserializing `NaiveDateTime`s |
29 | #[cfg (feature = "serde" )] |
30 | pub(crate) mod serde; |
31 | |
32 | #[cfg (test)] |
33 | mod tests; |
34 | |
35 | /// The minimum possible `NaiveDateTime`. |
36 | #[deprecated (since = "0.4.20" , note = "Use NaiveDateTime::MIN instead" )] |
37 | pub const MIN_DATETIME: NaiveDateTime = NaiveDateTime::MIN; |
38 | /// The maximum possible `NaiveDateTime`. |
39 | #[deprecated (since = "0.4.20" , note = "Use NaiveDateTime::MAX instead" )] |
40 | pub const MAX_DATETIME: NaiveDateTime = NaiveDateTime::MAX; |
41 | |
42 | /// ISO 8601 combined date and time without timezone. |
43 | /// |
44 | /// # Example |
45 | /// |
46 | /// `NaiveDateTime` is commonly created from [`NaiveDate`]. |
47 | /// |
48 | /// ``` |
49 | /// use chrono::{NaiveDate, NaiveDateTime}; |
50 | /// |
51 | /// let dt: NaiveDateTime = |
52 | /// NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
53 | /// # let _ = dt; |
54 | /// ``` |
55 | /// |
56 | /// You can use typical [date-like](Datelike) and [time-like](Timelike) methods, |
57 | /// provided that relevant traits are in the scope. |
58 | /// |
59 | /// ``` |
60 | /// # use chrono::{NaiveDate, NaiveDateTime}; |
61 | /// # let dt: NaiveDateTime = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
62 | /// use chrono::{Datelike, Timelike, Weekday}; |
63 | /// |
64 | /// assert_eq!(dt.weekday(), Weekday::Fri); |
65 | /// assert_eq!(dt.num_seconds_from_midnight(), 33011); |
66 | /// ``` |
67 | #[derive (PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)] |
68 | #[cfg_attr ( |
69 | any(feature = "rkyv" , feature = "rkyv-16" , feature = "rkyv-32" , feature = "rkyv-64" ), |
70 | derive(Archive, Deserialize, Serialize), |
71 | archive(compare(PartialEq, PartialOrd)), |
72 | archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash)) |
73 | )] |
74 | #[cfg_attr (feature = "rkyv-validation" , archive(check_bytes))] |
75 | #[cfg_attr (all(feature = "arbitrary" , feature = "std" ), derive(arbitrary::Arbitrary))] |
76 | pub struct NaiveDateTime { |
77 | date: NaiveDate, |
78 | time: NaiveTime, |
79 | } |
80 | |
81 | impl NaiveDateTime { |
82 | /// Makes a new `NaiveDateTime` from date and time components. |
83 | /// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time) |
84 | /// and many other helper constructors on `NaiveDate`. |
85 | /// |
86 | /// # Example |
87 | /// |
88 | /// ``` |
89 | /// use chrono::{NaiveDate, NaiveDateTime, NaiveTime}; |
90 | /// |
91 | /// let d = NaiveDate::from_ymd_opt(2015, 6, 3).unwrap(); |
92 | /// let t = NaiveTime::from_hms_milli_opt(12, 34, 56, 789).unwrap(); |
93 | /// |
94 | /// let dt = NaiveDateTime::new(d, t); |
95 | /// assert_eq!(dt.date(), d); |
96 | /// assert_eq!(dt.time(), t); |
97 | /// ``` |
98 | #[inline ] |
99 | pub const fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime { |
100 | NaiveDateTime { date, time } |
101 | } |
102 | |
103 | /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, |
104 | /// from the number of non-leap seconds |
105 | /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") |
106 | /// and the number of nanoseconds since the last whole non-leap second. |
107 | /// |
108 | /// For a non-naive version of this function see [`TimeZone::timestamp`]. |
109 | /// |
110 | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
111 | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
112 | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
113 | /// |
114 | /// # Panics |
115 | /// |
116 | /// Panics if the number of seconds would be out of range for a `NaiveDateTime` (more than |
117 | /// ca. 262,000 years away from common era), and panics on an invalid nanosecond (2 seconds or |
118 | /// more). |
119 | #[deprecated (since = "0.4.23" , note = "use `DateTime::from_timestamp` instead" )] |
120 | #[inline ] |
121 | #[must_use ] |
122 | pub const fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime { |
123 | let datetime = |
124 | expect(DateTime::from_timestamp(secs, nsecs), "invalid or out-of-range datetime" ); |
125 | datetime.naive_utc() |
126 | } |
127 | |
128 | /// Creates a new [NaiveDateTime] from milliseconds since the UNIX epoch. |
129 | /// |
130 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
131 | /// |
132 | /// # Errors |
133 | /// |
134 | /// Returns `None` if the number of milliseconds would be out of range for a `NaiveDateTime` |
135 | /// (more than ca. 262,000 years away from common era) |
136 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp_millis` instead" )] |
137 | #[inline ] |
138 | #[must_use ] |
139 | pub const fn from_timestamp_millis(millis: i64) -> Option<NaiveDateTime> { |
140 | Some(try_opt!(DateTime::from_timestamp_millis(millis)).naive_utc()) |
141 | } |
142 | |
143 | /// Creates a new [NaiveDateTime] from microseconds since the UNIX epoch. |
144 | /// |
145 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
146 | /// |
147 | /// # Errors |
148 | /// |
149 | /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` |
150 | /// (more than ca. 262,000 years away from common era) |
151 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp_micros` instead" )] |
152 | #[inline ] |
153 | #[must_use ] |
154 | pub const fn from_timestamp_micros(micros: i64) -> Option<NaiveDateTime> { |
155 | let secs = micros.div_euclid(1_000_000); |
156 | let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; |
157 | Some(try_opt!(DateTime::<Utc>::from_timestamp(secs, nsecs)).naive_utc()) |
158 | } |
159 | |
160 | /// Creates a new [NaiveDateTime] from nanoseconds since the UNIX epoch. |
161 | /// |
162 | /// The UNIX epoch starts on midnight, January 1, 1970, UTC. |
163 | /// |
164 | /// # Errors |
165 | /// |
166 | /// Returns `None` if the number of nanoseconds would be out of range for a `NaiveDateTime` |
167 | /// (more than ca. 262,000 years away from common era) |
168 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp_nanos` instead" )] |
169 | #[inline ] |
170 | #[must_use ] |
171 | pub const fn from_timestamp_nanos(nanos: i64) -> Option<NaiveDateTime> { |
172 | let secs = nanos.div_euclid(NANOS_PER_SEC as i64); |
173 | let nsecs = nanos.rem_euclid(NANOS_PER_SEC as i64) as u32; |
174 | Some(try_opt!(DateTime::from_timestamp(secs, nsecs)).naive_utc()) |
175 | } |
176 | |
177 | /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, |
178 | /// from the number of non-leap seconds |
179 | /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") |
180 | /// and the number of nanoseconds since the last whole non-leap second. |
181 | /// |
182 | /// The nanosecond part can exceed 1,000,000,000 in order to represent a |
183 | /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. |
184 | /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) |
185 | /// |
186 | /// # Errors |
187 | /// |
188 | /// Returns `None` if the number of seconds would be out of range for a `NaiveDateTime` (more |
189 | /// than ca. 262,000 years away from common era), and panics on an invalid nanosecond |
190 | /// (2 seconds or more). |
191 | #[deprecated (since = "0.4.35" , note = "use `DateTime::from_timestamp` instead" )] |
192 | #[inline ] |
193 | #[must_use ] |
194 | pub const fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option<NaiveDateTime> { |
195 | Some(try_opt!(DateTime::from_timestamp(secs, nsecs)).naive_utc()) |
196 | } |
197 | |
198 | /// Parses a string with the specified format string and returns a new `NaiveDateTime`. |
199 | /// See the [`format::strftime` module](crate::format::strftime) |
200 | /// on the supported escape sequences. |
201 | /// |
202 | /// # Example |
203 | /// |
204 | /// ``` |
205 | /// use chrono::{NaiveDate, NaiveDateTime}; |
206 | /// |
207 | /// let parse_from_str = NaiveDateTime::parse_from_str; |
208 | /// |
209 | /// assert_eq!( |
210 | /// parse_from_str("2015-09-05 23:56:04" , "%Y-%m-%d %H:%M:%S" ), |
211 | /// Ok(NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap()) |
212 | /// ); |
213 | /// assert_eq!( |
214 | /// parse_from_str("5sep2015pm012345.6789" , "%d%b%Y%p%I%M%S%.f" ), |
215 | /// Ok(NaiveDate::from_ymd_opt(2015, 9, 5) |
216 | /// .unwrap() |
217 | /// .and_hms_micro_opt(13, 23, 45, 678_900) |
218 | /// .unwrap()) |
219 | /// ); |
220 | /// ``` |
221 | /// |
222 | /// Offset is ignored for the purpose of parsing. |
223 | /// |
224 | /// ``` |
225 | /// # use chrono::{NaiveDateTime, NaiveDate}; |
226 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
227 | /// assert_eq!( |
228 | /// parse_from_str("2014-5-17T12:34:56+09:30" , "%Y-%m-%dT%H:%M:%S%z" ), |
229 | /// Ok(NaiveDate::from_ymd_opt(2014, 5, 17).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
230 | /// ); |
231 | /// ``` |
232 | /// |
233 | /// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by |
234 | /// treating any time of the form `hh:mm:60` as a leap second. |
235 | /// (This equally applies to the formatting, so the round trip is possible.) |
236 | /// |
237 | /// ``` |
238 | /// # use chrono::{NaiveDateTime, NaiveDate}; |
239 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
240 | /// assert_eq!( |
241 | /// parse_from_str("2015-07-01 08:59:60.123" , "%Y-%m-%d %H:%M:%S%.f" ), |
242 | /// Ok(NaiveDate::from_ymd_opt(2015, 7, 1) |
243 | /// .unwrap() |
244 | /// .and_hms_milli_opt(8, 59, 59, 1_123) |
245 | /// .unwrap()) |
246 | /// ); |
247 | /// ``` |
248 | /// |
249 | /// Missing seconds are assumed to be zero, |
250 | /// but out-of-bound times or insufficient fields are errors otherwise. |
251 | /// |
252 | /// ``` |
253 | /// # use chrono::{NaiveDateTime, NaiveDate}; |
254 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
255 | /// assert_eq!( |
256 | /// parse_from_str("94/9/4 7:15" , "%y/%m/%d %H:%M" ), |
257 | /// Ok(NaiveDate::from_ymd_opt(1994, 9, 4).unwrap().and_hms_opt(7, 15, 0).unwrap()) |
258 | /// ); |
259 | /// |
260 | /// assert!(parse_from_str("04m33s" , "%Mm%Ss" ).is_err()); |
261 | /// assert!(parse_from_str("94/9/4 12" , "%y/%m/%d %H" ).is_err()); |
262 | /// assert!(parse_from_str("94/9/4 17:60" , "%y/%m/%d %H:%M" ).is_err()); |
263 | /// assert!(parse_from_str("94/9/4 24:00:00" , "%y/%m/%d %H:%M:%S" ).is_err()); |
264 | /// ``` |
265 | /// |
266 | /// All parsed fields should be consistent to each other, otherwise it's an error. |
267 | /// |
268 | /// ``` |
269 | /// # use chrono::NaiveDateTime; |
270 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
271 | /// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s" ; |
272 | /// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999" , fmt).is_ok()); |
273 | /// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1" , fmt).is_err()); |
274 | /// ``` |
275 | /// |
276 | /// Years before 1 BCE or after 9999 CE, require an initial sign |
277 | /// |
278 | ///``` |
279 | /// # use chrono::NaiveDateTime; |
280 | /// # let parse_from_str = NaiveDateTime::parse_from_str; |
281 | /// let fmt = "%Y-%m-%d %H:%M:%S" ; |
282 | /// assert!(parse_from_str("10000-09-09 01:46:39" , fmt).is_err()); |
283 | /// assert!(parse_from_str("+10000-09-09 01:46:39" , fmt).is_ok()); |
284 | /// ``` |
285 | pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDateTime> { |
286 | let mut parsed = Parsed::new(); |
287 | parse(&mut parsed, s, StrftimeItems::new(fmt))?; |
288 | parsed.to_naive_datetime_with_offset(0) // no offset adjustment |
289 | } |
290 | |
291 | /// Parses a string with the specified format string and returns a new `NaiveDateTime`, and a |
292 | /// slice with the remaining portion of the string. |
293 | /// See the [`format::strftime` module](crate::format::strftime) |
294 | /// on the supported escape sequences. |
295 | /// |
296 | /// Similar to [`parse_from_str`](#method.parse_from_str). |
297 | /// |
298 | /// # Example |
299 | /// |
300 | /// ```rust |
301 | /// # use chrono::{NaiveDate, NaiveDateTime}; |
302 | /// let (datetime, remainder) = NaiveDateTime::parse_and_remainder( |
303 | /// "2015-02-18 23:16:09 trailing text" , |
304 | /// "%Y-%m-%d %H:%M:%S" , |
305 | /// ) |
306 | /// .unwrap(); |
307 | /// assert_eq!( |
308 | /// datetime, |
309 | /// NaiveDate::from_ymd_opt(2015, 2, 18).unwrap().and_hms_opt(23, 16, 9).unwrap() |
310 | /// ); |
311 | /// assert_eq!(remainder, " trailing text" ); |
312 | /// ``` |
313 | pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveDateTime, &'a str)> { |
314 | let mut parsed = Parsed::new(); |
315 | let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; |
316 | parsed.to_naive_datetime_with_offset(0).map(|d| (d, remainder)) // no offset adjustment |
317 | } |
318 | |
319 | /// Retrieves a date component. |
320 | /// |
321 | /// # Example |
322 | /// |
323 | /// ``` |
324 | /// use chrono::NaiveDate; |
325 | /// |
326 | /// let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
327 | /// assert_eq!(dt.date(), NaiveDate::from_ymd_opt(2016, 7, 8).unwrap()); |
328 | /// ``` |
329 | #[inline ] |
330 | pub const fn date(&self) -> NaiveDate { |
331 | self.date |
332 | } |
333 | |
334 | /// Retrieves a time component. |
335 | /// |
336 | /// # Example |
337 | /// |
338 | /// ``` |
339 | /// use chrono::{NaiveDate, NaiveTime}; |
340 | /// |
341 | /// let dt = NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(9, 10, 11).unwrap(); |
342 | /// assert_eq!(dt.time(), NaiveTime::from_hms_opt(9, 10, 11).unwrap()); |
343 | /// ``` |
344 | #[inline ] |
345 | pub const fn time(&self) -> NaiveTime { |
346 | self.time |
347 | } |
348 | |
349 | /// Returns the number of non-leap seconds since the midnight on January 1, 1970. |
350 | /// |
351 | /// Note that this does *not* account for the timezone! |
352 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
353 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp()` instead" )] |
354 | #[inline ] |
355 | #[must_use ] |
356 | pub const fn timestamp(&self) -> i64 { |
357 | self.and_utc().timestamp() |
358 | } |
359 | |
360 | /// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970. |
361 | /// |
362 | /// Note that this does *not* account for the timezone! |
363 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
364 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_millis()` instead" )] |
365 | #[inline ] |
366 | #[must_use ] |
367 | pub const fn timestamp_millis(&self) -> i64 { |
368 | self.and_utc().timestamp_millis() |
369 | } |
370 | |
371 | /// Returns the number of non-leap *microseconds* since midnight on January 1, 1970. |
372 | /// |
373 | /// Note that this does *not* account for the timezone! |
374 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
375 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_micros()` instead" )] |
376 | #[inline ] |
377 | #[must_use ] |
378 | pub const fn timestamp_micros(&self) -> i64 { |
379 | self.and_utc().timestamp_micros() |
380 | } |
381 | |
382 | /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. |
383 | /// |
384 | /// Note that this does *not* account for the timezone! |
385 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
386 | /// |
387 | /// # Panics |
388 | /// |
389 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on |
390 | /// an out of range `NaiveDateTime`. |
391 | /// |
392 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
393 | /// and 2262-04-11T23:47:16.854775807. |
394 | #[deprecated (since = "0.4.31" , note = "use `.and_utc().timestamp_nanos_opt()` instead" )] |
395 | #[inline ] |
396 | #[must_use ] |
397 | #[allow (deprecated)] |
398 | pub const fn timestamp_nanos(&self) -> i64 { |
399 | self.and_utc().timestamp_nanos() |
400 | } |
401 | |
402 | /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. |
403 | /// |
404 | /// Note that this does *not* account for the timezone! |
405 | /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. |
406 | /// |
407 | /// # Errors |
408 | /// |
409 | /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns |
410 | /// `None` on an out of range `NaiveDateTime`. |
411 | /// |
412 | /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 |
413 | /// and 2262-04-11T23:47:16.854775807. |
414 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_nanos_opt()` instead" )] |
415 | #[inline ] |
416 | #[must_use ] |
417 | pub const fn timestamp_nanos_opt(&self) -> Option<i64> { |
418 | self.and_utc().timestamp_nanos_opt() |
419 | } |
420 | |
421 | /// Returns the number of milliseconds since the last whole non-leap second. |
422 | /// |
423 | /// The return value ranges from 0 to 999, |
424 | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999. |
425 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_subsec_millis()` instead" )] |
426 | #[inline ] |
427 | #[must_use ] |
428 | pub const fn timestamp_subsec_millis(&self) -> u32 { |
429 | self.and_utc().timestamp_subsec_millis() |
430 | } |
431 | |
432 | /// Returns the number of microseconds since the last whole non-leap second. |
433 | /// |
434 | /// The return value ranges from 0 to 999,999, |
435 | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999. |
436 | #[deprecated (since = "0.4.35" , note = "use `.and_utc().timestamp_subsec_micros()` instead" )] |
437 | #[inline ] |
438 | #[must_use ] |
439 | pub const fn timestamp_subsec_micros(&self) -> u32 { |
440 | self.and_utc().timestamp_subsec_micros() |
441 | } |
442 | |
443 | /// Returns the number of nanoseconds since the last whole non-leap second. |
444 | /// |
445 | /// The return value ranges from 0 to 999,999,999, |
446 | /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999. |
447 | #[deprecated (since = "0.4.36" , note = "use `.and_utc().timestamp_subsec_nanos()` instead" )] |
448 | pub const fn timestamp_subsec_nanos(&self) -> u32 { |
449 | self.and_utc().timestamp_subsec_nanos() |
450 | } |
451 | |
452 | /// Adds given `TimeDelta` to the current date and time. |
453 | /// |
454 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
455 | /// the addition assumes that **there is no leap second ever**, |
456 | /// except when the `NaiveDateTime` itself represents a leap second |
457 | /// in which case the assumption becomes that **there is exactly a single leap second ever**. |
458 | /// |
459 | /// # Errors |
460 | /// |
461 | /// Returns `None` if the resulting date would be out of range. |
462 | /// |
463 | /// # Example |
464 | /// |
465 | /// ``` |
466 | /// use chrono::{NaiveDate, TimeDelta}; |
467 | /// |
468 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
469 | /// |
470 | /// let d = from_ymd(2016, 7, 8); |
471 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
472 | /// assert_eq!(hms(3, 5, 7).checked_add_signed(TimeDelta::zero()), Some(hms(3, 5, 7))); |
473 | /// assert_eq!( |
474 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(1).unwrap()), |
475 | /// Some(hms(3, 5, 8)) |
476 | /// ); |
477 | /// assert_eq!( |
478 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(-1).unwrap()), |
479 | /// Some(hms(3, 5, 6)) |
480 | /// ); |
481 | /// assert_eq!( |
482 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(3600 + 60).unwrap()), |
483 | /// Some(hms(4, 6, 7)) |
484 | /// ); |
485 | /// assert_eq!( |
486 | /// hms(3, 5, 7).checked_add_signed(TimeDelta::try_seconds(86_400).unwrap()), |
487 | /// Some(from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap()) |
488 | /// ); |
489 | /// |
490 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
491 | /// assert_eq!( |
492 | /// hmsm(3, 5, 7, 980).checked_add_signed(TimeDelta::try_milliseconds(450).unwrap()), |
493 | /// Some(hmsm(3, 5, 8, 430)) |
494 | /// ); |
495 | /// ``` |
496 | /// |
497 | /// Overflow returns `None`. |
498 | /// |
499 | /// ``` |
500 | /// # use chrono::{TimeDelta, NaiveDate}; |
501 | /// # let hms = |h, m, s| NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(h, m, s).unwrap(); |
502 | /// assert_eq!(hms(3, 5, 7).checked_add_signed(TimeDelta::try_days(1_000_000_000).unwrap()), None); |
503 | /// ``` |
504 | /// |
505 | /// Leap seconds are handled, |
506 | /// but the addition assumes that it is the only leap second happened. |
507 | /// |
508 | /// ``` |
509 | /// # use chrono::{TimeDelta, NaiveDate}; |
510 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
511 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
512 | /// let leap = hmsm(3, 5, 59, 1_300); |
513 | /// assert_eq!(leap.checked_add_signed(TimeDelta::zero()), |
514 | /// Some(hmsm(3, 5, 59, 1_300))); |
515 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(-500).unwrap()), |
516 | /// Some(hmsm(3, 5, 59, 800))); |
517 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(500).unwrap()), |
518 | /// Some(hmsm(3, 5, 59, 1_800))); |
519 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_milliseconds(800).unwrap()), |
520 | /// Some(hmsm(3, 6, 0, 100))); |
521 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_seconds(10).unwrap()), |
522 | /// Some(hmsm(3, 6, 9, 300))); |
523 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_seconds(-10).unwrap()), |
524 | /// Some(hmsm(3, 5, 50, 300))); |
525 | /// assert_eq!(leap.checked_add_signed(TimeDelta::try_days(1).unwrap()), |
526 | /// Some(from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap())); |
527 | /// ``` |
528 | #[must_use ] |
529 | pub const fn checked_add_signed(self, rhs: TimeDelta) -> Option<NaiveDateTime> { |
530 | let (time, remainder) = self.time.overflowing_add_signed(rhs); |
531 | let remainder = try_opt!(TimeDelta::try_seconds(remainder)); |
532 | let date = try_opt!(self.date.checked_add_signed(remainder)); |
533 | Some(NaiveDateTime { date, time }) |
534 | } |
535 | |
536 | /// Adds given `Months` to the current date and time. |
537 | /// |
538 | /// Uses the last day of the month if the day does not exist in the resulting month. |
539 | /// |
540 | /// # Errors |
541 | /// |
542 | /// Returns `None` if the resulting date would be out of range. |
543 | /// |
544 | /// # Example |
545 | /// |
546 | /// ``` |
547 | /// use chrono::{Months, NaiveDate}; |
548 | /// |
549 | /// assert_eq!( |
550 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
551 | /// .unwrap() |
552 | /// .and_hms_opt(1, 0, 0) |
553 | /// .unwrap() |
554 | /// .checked_add_months(Months::new(1)), |
555 | /// Some(NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()) |
556 | /// ); |
557 | /// |
558 | /// assert_eq!( |
559 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
560 | /// .unwrap() |
561 | /// .and_hms_opt(1, 0, 0) |
562 | /// .unwrap() |
563 | /// .checked_add_months(Months::new(core::i32::MAX as u32 + 1)), |
564 | /// None |
565 | /// ); |
566 | /// ``` |
567 | #[must_use ] |
568 | pub const fn checked_add_months(self, rhs: Months) -> Option<NaiveDateTime> { |
569 | Some(Self { date: try_opt!(self.date.checked_add_months(rhs)), time: self.time }) |
570 | } |
571 | |
572 | /// Adds given `FixedOffset` to the current datetime. |
573 | /// Returns `None` if the result would be outside the valid range for [`NaiveDateTime`]. |
574 | /// |
575 | /// This method is similar to [`checked_add_signed`](#method.checked_add_offset), but preserves |
576 | /// leap seconds. |
577 | #[must_use ] |
578 | pub const fn checked_add_offset(self, rhs: FixedOffset) -> Option<NaiveDateTime> { |
579 | let (time, days) = self.time.overflowing_add_offset(rhs); |
580 | let date = match days { |
581 | -1 => try_opt!(self.date.pred_opt()), |
582 | 1 => try_opt!(self.date.succ_opt()), |
583 | _ => self.date, |
584 | }; |
585 | Some(NaiveDateTime { date, time }) |
586 | } |
587 | |
588 | /// Subtracts given `FixedOffset` from the current datetime. |
589 | /// Returns `None` if the result would be outside the valid range for [`NaiveDateTime`]. |
590 | /// |
591 | /// This method is similar to [`checked_sub_signed`](#method.checked_sub_signed), but preserves |
592 | /// leap seconds. |
593 | pub const fn checked_sub_offset(self, rhs: FixedOffset) -> Option<NaiveDateTime> { |
594 | let (time, days) = self.time.overflowing_sub_offset(rhs); |
595 | let date = match days { |
596 | -1 => try_opt!(self.date.pred_opt()), |
597 | 1 => try_opt!(self.date.succ_opt()), |
598 | _ => self.date, |
599 | }; |
600 | Some(NaiveDateTime { date, time }) |
601 | } |
602 | |
603 | /// Adds given `FixedOffset` to the current datetime. |
604 | /// The resulting value may be outside the valid range of [`NaiveDateTime`]. |
605 | /// |
606 | /// This can be useful for intermediate values, but the resulting out-of-range `NaiveDate` |
607 | /// should not be exposed to library users. |
608 | #[must_use ] |
609 | pub(crate) fn overflowing_add_offset(self, rhs: FixedOffset) -> NaiveDateTime { |
610 | let (time, days) = self.time.overflowing_add_offset(rhs); |
611 | let date = match days { |
612 | -1 => self.date.pred_opt().unwrap_or(NaiveDate::BEFORE_MIN), |
613 | 1 => self.date.succ_opt().unwrap_or(NaiveDate::AFTER_MAX), |
614 | _ => self.date, |
615 | }; |
616 | NaiveDateTime { date, time } |
617 | } |
618 | |
619 | /// Subtracts given `FixedOffset` from the current datetime. |
620 | /// The resulting value may be outside the valid range of [`NaiveDateTime`]. |
621 | /// |
622 | /// This can be useful for intermediate values, but the resulting out-of-range `NaiveDate` |
623 | /// should not be exposed to library users. |
624 | #[must_use ] |
625 | #[allow (unused)] // currently only used in `Local` but not on all platforms |
626 | pub(crate) fn overflowing_sub_offset(self, rhs: FixedOffset) -> NaiveDateTime { |
627 | let (time, days) = self.time.overflowing_sub_offset(rhs); |
628 | let date = match days { |
629 | -1 => self.date.pred_opt().unwrap_or(NaiveDate::BEFORE_MIN), |
630 | 1 => self.date.succ_opt().unwrap_or(NaiveDate::AFTER_MAX), |
631 | _ => self.date, |
632 | }; |
633 | NaiveDateTime { date, time } |
634 | } |
635 | |
636 | /// Subtracts given `TimeDelta` from the current date and time. |
637 | /// |
638 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
639 | /// the subtraction assumes that **there is no leap second ever**, |
640 | /// except when the `NaiveDateTime` itself represents a leap second |
641 | /// in which case the assumption becomes that **there is exactly a single leap second ever**. |
642 | /// |
643 | /// # Errors |
644 | /// |
645 | /// Returns `None` if the resulting date would be out of range. |
646 | /// |
647 | /// # Example |
648 | /// |
649 | /// ``` |
650 | /// use chrono::{NaiveDate, TimeDelta}; |
651 | /// |
652 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
653 | /// |
654 | /// let d = from_ymd(2016, 7, 8); |
655 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
656 | /// assert_eq!(hms(3, 5, 7).checked_sub_signed(TimeDelta::zero()), Some(hms(3, 5, 7))); |
657 | /// assert_eq!( |
658 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(1).unwrap()), |
659 | /// Some(hms(3, 5, 6)) |
660 | /// ); |
661 | /// assert_eq!( |
662 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(-1).unwrap()), |
663 | /// Some(hms(3, 5, 8)) |
664 | /// ); |
665 | /// assert_eq!( |
666 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(3600 + 60).unwrap()), |
667 | /// Some(hms(2, 4, 7)) |
668 | /// ); |
669 | /// assert_eq!( |
670 | /// hms(3, 5, 7).checked_sub_signed(TimeDelta::try_seconds(86_400).unwrap()), |
671 | /// Some(from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap()) |
672 | /// ); |
673 | /// |
674 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
675 | /// assert_eq!( |
676 | /// hmsm(3, 5, 7, 450).checked_sub_signed(TimeDelta::try_milliseconds(670).unwrap()), |
677 | /// Some(hmsm(3, 5, 6, 780)) |
678 | /// ); |
679 | /// ``` |
680 | /// |
681 | /// Overflow returns `None`. |
682 | /// |
683 | /// ``` |
684 | /// # use chrono::{TimeDelta, NaiveDate}; |
685 | /// # let hms = |h, m, s| NaiveDate::from_ymd_opt(2016, 7, 8).unwrap().and_hms_opt(h, m, s).unwrap(); |
686 | /// assert_eq!(hms(3, 5, 7).checked_sub_signed(TimeDelta::try_days(1_000_000_000).unwrap()), None); |
687 | /// ``` |
688 | /// |
689 | /// Leap seconds are handled, |
690 | /// but the subtraction assumes that it is the only leap second happened. |
691 | /// |
692 | /// ``` |
693 | /// # use chrono::{TimeDelta, NaiveDate}; |
694 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
695 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
696 | /// let leap = hmsm(3, 5, 59, 1_300); |
697 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::zero()), |
698 | /// Some(hmsm(3, 5, 59, 1_300))); |
699 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_milliseconds(200).unwrap()), |
700 | /// Some(hmsm(3, 5, 59, 1_100))); |
701 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_milliseconds(500).unwrap()), |
702 | /// Some(hmsm(3, 5, 59, 800))); |
703 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_seconds(60).unwrap()), |
704 | /// Some(hmsm(3, 5, 0, 300))); |
705 | /// assert_eq!(leap.checked_sub_signed(TimeDelta::try_days(1).unwrap()), |
706 | /// Some(from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap())); |
707 | /// ``` |
708 | #[must_use ] |
709 | pub const fn checked_sub_signed(self, rhs: TimeDelta) -> Option<NaiveDateTime> { |
710 | let (time, remainder) = self.time.overflowing_sub_signed(rhs); |
711 | let remainder = try_opt!(TimeDelta::try_seconds(remainder)); |
712 | let date = try_opt!(self.date.checked_sub_signed(remainder)); |
713 | Some(NaiveDateTime { date, time }) |
714 | } |
715 | |
716 | /// Subtracts given `Months` from the current date and time. |
717 | /// |
718 | /// Uses the last day of the month if the day does not exist in the resulting month. |
719 | /// |
720 | /// # Errors |
721 | /// |
722 | /// Returns `None` if the resulting date would be out of range. |
723 | /// |
724 | /// # Example |
725 | /// |
726 | /// ``` |
727 | /// use chrono::{Months, NaiveDate}; |
728 | /// |
729 | /// assert_eq!( |
730 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
731 | /// .unwrap() |
732 | /// .and_hms_opt(1, 0, 0) |
733 | /// .unwrap() |
734 | /// .checked_sub_months(Months::new(1)), |
735 | /// Some(NaiveDate::from_ymd_opt(2013, 12, 1).unwrap().and_hms_opt(1, 0, 0).unwrap()) |
736 | /// ); |
737 | /// |
738 | /// assert_eq!( |
739 | /// NaiveDate::from_ymd_opt(2014, 1, 1) |
740 | /// .unwrap() |
741 | /// .and_hms_opt(1, 0, 0) |
742 | /// .unwrap() |
743 | /// .checked_sub_months(Months::new(core::i32::MAX as u32 + 1)), |
744 | /// None |
745 | /// ); |
746 | /// ``` |
747 | #[must_use ] |
748 | pub const fn checked_sub_months(self, rhs: Months) -> Option<NaiveDateTime> { |
749 | Some(Self { date: try_opt!(self.date.checked_sub_months(rhs)), time: self.time }) |
750 | } |
751 | |
752 | /// Add a duration in [`Days`] to the date part of the `NaiveDateTime` |
753 | /// |
754 | /// Returns `None` if the resulting date would be out of range. |
755 | #[must_use ] |
756 | pub const fn checked_add_days(self, days: Days) -> Option<Self> { |
757 | Some(Self { date: try_opt!(self.date.checked_add_days(days)), ..self }) |
758 | } |
759 | |
760 | /// Subtract a duration in [`Days`] from the date part of the `NaiveDateTime` |
761 | /// |
762 | /// Returns `None` if the resulting date would be out of range. |
763 | #[must_use ] |
764 | pub const fn checked_sub_days(self, days: Days) -> Option<Self> { |
765 | Some(Self { date: try_opt!(self.date.checked_sub_days(days)), ..self }) |
766 | } |
767 | |
768 | /// Subtracts another `NaiveDateTime` from the current date and time. |
769 | /// This does not overflow or underflow at all. |
770 | /// |
771 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
772 | /// the subtraction assumes that **there is no leap second ever**, |
773 | /// except when any of the `NaiveDateTime`s themselves represents a leap second |
774 | /// in which case the assumption becomes that |
775 | /// **there are exactly one (or two) leap second(s) ever**. |
776 | /// |
777 | /// # Example |
778 | /// |
779 | /// ``` |
780 | /// use chrono::{NaiveDate, TimeDelta}; |
781 | /// |
782 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
783 | /// |
784 | /// let d = from_ymd(2016, 7, 8); |
785 | /// assert_eq!( |
786 | /// d.and_hms_opt(3, 5, 7).unwrap().signed_duration_since(d.and_hms_opt(2, 4, 6).unwrap()), |
787 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() |
788 | /// ); |
789 | /// |
790 | /// // July 8 is 190th day in the year 2016 |
791 | /// let d0 = from_ymd(2016, 1, 1); |
792 | /// assert_eq!( |
793 | /// d.and_hms_milli_opt(0, 7, 6, 500) |
794 | /// .unwrap() |
795 | /// .signed_duration_since(d0.and_hms_opt(0, 0, 0).unwrap()), |
796 | /// TimeDelta::try_seconds(189 * 86_400 + 7 * 60 + 6).unwrap() |
797 | /// + TimeDelta::try_milliseconds(500).unwrap() |
798 | /// ); |
799 | /// ``` |
800 | /// |
801 | /// Leap seconds are handled, but the subtraction assumes that |
802 | /// there were no other leap seconds happened. |
803 | /// |
804 | /// ``` |
805 | /// # use chrono::{TimeDelta, NaiveDate}; |
806 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
807 | /// let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
808 | /// assert_eq!( |
809 | /// leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap()), |
810 | /// TimeDelta::try_seconds(3600).unwrap() + TimeDelta::try_milliseconds(500).unwrap() |
811 | /// ); |
812 | /// assert_eq!( |
813 | /// from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap().signed_duration_since(leap), |
814 | /// TimeDelta::try_seconds(3600).unwrap() - TimeDelta::try_milliseconds(500).unwrap() |
815 | /// ); |
816 | /// ``` |
817 | #[must_use ] |
818 | pub const fn signed_duration_since(self, rhs: NaiveDateTime) -> TimeDelta { |
819 | expect( |
820 | self.date |
821 | .signed_duration_since(rhs.date) |
822 | .checked_add(&self.time.signed_duration_since(rhs.time)), |
823 | "always in range" , |
824 | ) |
825 | } |
826 | |
827 | /// Formats the combined date and time with the specified formatting items. |
828 | /// Otherwise it is the same as the ordinary [`format`](#method.format) method. |
829 | /// |
830 | /// The `Iterator` of items should be `Clone`able, |
831 | /// since the resulting `DelayedFormat` value may be formatted multiple times. |
832 | /// |
833 | /// # Example |
834 | /// |
835 | /// ``` |
836 | /// use chrono::format::strftime::StrftimeItems; |
837 | /// use chrono::NaiveDate; |
838 | /// |
839 | /// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S" ); |
840 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
841 | /// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04" ); |
842 | /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S" ).to_string(), "2015-09-05 23:56:04" ); |
843 | /// ``` |
844 | /// |
845 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
846 | /// |
847 | /// ``` |
848 | /// # use chrono::NaiveDate; |
849 | /// # use chrono::format::strftime::StrftimeItems; |
850 | /// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S" ).clone(); |
851 | /// # let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
852 | /// assert_eq!(format!("{}" , dt.format_with_items(fmt)), "2015-09-05 23:56:04" ); |
853 | /// ``` |
854 | #[cfg (feature = "alloc" )] |
855 | #[inline ] |
856 | #[must_use ] |
857 | pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> |
858 | where |
859 | I: Iterator<Item = B> + Clone, |
860 | B: Borrow<Item<'a>>, |
861 | { |
862 | DelayedFormat::new(Some(self.date), Some(self.time), items) |
863 | } |
864 | |
865 | /// Formats the combined date and time with the specified format string. |
866 | /// See the [`format::strftime` module](crate::format::strftime) |
867 | /// on the supported escape sequences. |
868 | /// |
869 | /// This returns a `DelayedFormat`, |
870 | /// which gets converted to a string only when actual formatting happens. |
871 | /// You may use the `to_string` method to get a `String`, |
872 | /// or just feed it into `print!` and other formatting macros. |
873 | /// (In this way it avoids the redundant memory allocation.) |
874 | /// |
875 | /// A wrong format string does *not* issue an error immediately. |
876 | /// Rather, converting or formatting the `DelayedFormat` fails. |
877 | /// You are recommended to immediately use `DelayedFormat` for this reason. |
878 | /// |
879 | /// # Example |
880 | /// |
881 | /// ``` |
882 | /// use chrono::NaiveDate; |
883 | /// |
884 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
885 | /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S" ).to_string(), "2015-09-05 23:56:04" ); |
886 | /// assert_eq!(dt.format("around %l %p on %b %-d" ).to_string(), "around 11 PM on Sep 5" ); |
887 | /// ``` |
888 | /// |
889 | /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. |
890 | /// |
891 | /// ``` |
892 | /// # use chrono::NaiveDate; |
893 | /// # let dt = NaiveDate::from_ymd_opt(2015, 9, 5).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
894 | /// assert_eq!(format!("{}" , dt.format("%Y-%m-%d %H:%M:%S" )), "2015-09-05 23:56:04" ); |
895 | /// assert_eq!(format!("{}" , dt.format("around %l %p on %b %-d" )), "around 11 PM on Sep 5" ); |
896 | /// ``` |
897 | #[cfg (feature = "alloc" )] |
898 | #[inline ] |
899 | #[must_use ] |
900 | pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> { |
901 | self.format_with_items(StrftimeItems::new(fmt)) |
902 | } |
903 | |
904 | /// Converts the `NaiveDateTime` into a timezone-aware `DateTime<Tz>` with the provided |
905 | /// time zone. |
906 | /// |
907 | /// # Example |
908 | /// |
909 | /// ``` |
910 | /// use chrono::{FixedOffset, NaiveDate}; |
911 | /// let hour = 3600; |
912 | /// let tz = FixedOffset::east_opt(5 * hour).unwrap(); |
913 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 5) |
914 | /// .unwrap() |
915 | /// .and_hms_opt(23, 56, 4) |
916 | /// .unwrap() |
917 | /// .and_local_timezone(tz) |
918 | /// .unwrap(); |
919 | /// assert_eq!(dt.timezone(), tz); |
920 | /// ``` |
921 | #[must_use ] |
922 | pub fn and_local_timezone<Tz: TimeZone>(&self, tz: Tz) -> MappedLocalTime<DateTime<Tz>> { |
923 | tz.from_local_datetime(self) |
924 | } |
925 | |
926 | /// Converts the `NaiveDateTime` into the timezone-aware `DateTime<Utc>`. |
927 | /// |
928 | /// # Example |
929 | /// |
930 | /// ``` |
931 | /// use chrono::{NaiveDate, Utc}; |
932 | /// let dt = |
933 | /// NaiveDate::from_ymd_opt(2023, 1, 30).unwrap().and_hms_opt(19, 32, 33).unwrap().and_utc(); |
934 | /// assert_eq!(dt.timezone(), Utc); |
935 | /// ``` |
936 | #[must_use ] |
937 | pub const fn and_utc(&self) -> DateTime<Utc> { |
938 | DateTime::from_naive_utc_and_offset(*self, Utc) |
939 | } |
940 | |
941 | /// The minimum possible `NaiveDateTime`. |
942 | pub const MIN: Self = Self { date: NaiveDate::MIN, time: NaiveTime::MIN }; |
943 | |
944 | /// The maximum possible `NaiveDateTime`. |
945 | pub const MAX: Self = Self { date: NaiveDate::MAX, time: NaiveTime::MAX }; |
946 | |
947 | /// The Unix Epoch, 1970-01-01 00:00:00. |
948 | pub const UNIX_EPOCH: Self = |
949 | expect(NaiveDate::from_ymd_opt(1970, 1, 1), "" ).and_time(NaiveTime::MIN); |
950 | } |
951 | |
952 | impl From<NaiveDate> for NaiveDateTime { |
953 | /// Converts a `NaiveDate` to a `NaiveDateTime` of the same date but at midnight. |
954 | /// |
955 | /// # Example |
956 | /// |
957 | /// ``` |
958 | /// use chrono::{NaiveDate, NaiveDateTime}; |
959 | /// |
960 | /// let nd = NaiveDate::from_ymd_opt(2016, 5, 28).unwrap(); |
961 | /// let ndt = NaiveDate::from_ymd_opt(2016, 5, 28).unwrap().and_hms_opt(0, 0, 0).unwrap(); |
962 | /// assert_eq!(ndt, NaiveDateTime::from(nd)); |
963 | fn from(date: NaiveDate) -> Self { |
964 | date.and_hms_opt(hour:0, min:0, sec:0).unwrap() |
965 | } |
966 | } |
967 | |
968 | impl Datelike for NaiveDateTime { |
969 | /// Returns the year number in the [calendar date](./struct.NaiveDate.html#calendar-date). |
970 | /// |
971 | /// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method. |
972 | /// |
973 | /// # Example |
974 | /// |
975 | /// ``` |
976 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
977 | /// |
978 | /// let dt: NaiveDateTime = |
979 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
980 | /// assert_eq!(dt.year(), 2015); |
981 | /// ``` |
982 | #[inline ] |
983 | fn year(&self) -> i32 { |
984 | self.date.year() |
985 | } |
986 | |
987 | /// Returns the month number starting from 1. |
988 | /// |
989 | /// The return value ranges from 1 to 12. |
990 | /// |
991 | /// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method. |
992 | /// |
993 | /// # Example |
994 | /// |
995 | /// ``` |
996 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
997 | /// |
998 | /// let dt: NaiveDateTime = |
999 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1000 | /// assert_eq!(dt.month(), 9); |
1001 | /// ``` |
1002 | #[inline ] |
1003 | fn month(&self) -> u32 { |
1004 | self.date.month() |
1005 | } |
1006 | |
1007 | /// Returns the month number starting from 0. |
1008 | /// |
1009 | /// The return value ranges from 0 to 11. |
1010 | /// |
1011 | /// See also the [`NaiveDate::month0`] method. |
1012 | /// |
1013 | /// # Example |
1014 | /// |
1015 | /// ``` |
1016 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1017 | /// |
1018 | /// let dt: NaiveDateTime = |
1019 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1020 | /// assert_eq!(dt.month0(), 8); |
1021 | /// ``` |
1022 | #[inline ] |
1023 | fn month0(&self) -> u32 { |
1024 | self.date.month0() |
1025 | } |
1026 | |
1027 | /// Returns the day of month starting from 1. |
1028 | /// |
1029 | /// The return value ranges from 1 to 31. (The last day of month differs by months.) |
1030 | /// |
1031 | /// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method. |
1032 | /// |
1033 | /// # Example |
1034 | /// |
1035 | /// ``` |
1036 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1037 | /// |
1038 | /// let dt: NaiveDateTime = |
1039 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1040 | /// assert_eq!(dt.day(), 25); |
1041 | /// ``` |
1042 | #[inline ] |
1043 | fn day(&self) -> u32 { |
1044 | self.date.day() |
1045 | } |
1046 | |
1047 | /// Returns the day of month starting from 0. |
1048 | /// |
1049 | /// The return value ranges from 0 to 30. (The last day of month differs by months.) |
1050 | /// |
1051 | /// See also the [`NaiveDate::day0`] method. |
1052 | /// |
1053 | /// # Example |
1054 | /// |
1055 | /// ``` |
1056 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1057 | /// |
1058 | /// let dt: NaiveDateTime = |
1059 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1060 | /// assert_eq!(dt.day0(), 24); |
1061 | /// ``` |
1062 | #[inline ] |
1063 | fn day0(&self) -> u32 { |
1064 | self.date.day0() |
1065 | } |
1066 | |
1067 | /// Returns the day of year starting from 1. |
1068 | /// |
1069 | /// The return value ranges from 1 to 366. (The last day of year differs by years.) |
1070 | /// |
1071 | /// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method. |
1072 | /// |
1073 | /// # Example |
1074 | /// |
1075 | /// ``` |
1076 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1077 | /// |
1078 | /// let dt: NaiveDateTime = |
1079 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1080 | /// assert_eq!(dt.ordinal(), 268); |
1081 | /// ``` |
1082 | #[inline ] |
1083 | fn ordinal(&self) -> u32 { |
1084 | self.date.ordinal() |
1085 | } |
1086 | |
1087 | /// Returns the day of year starting from 0. |
1088 | /// |
1089 | /// The return value ranges from 0 to 365. (The last day of year differs by years.) |
1090 | /// |
1091 | /// See also the [`NaiveDate::ordinal0`] method. |
1092 | /// |
1093 | /// # Example |
1094 | /// |
1095 | /// ``` |
1096 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1097 | /// |
1098 | /// let dt: NaiveDateTime = |
1099 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1100 | /// assert_eq!(dt.ordinal0(), 267); |
1101 | /// ``` |
1102 | #[inline ] |
1103 | fn ordinal0(&self) -> u32 { |
1104 | self.date.ordinal0() |
1105 | } |
1106 | |
1107 | /// Returns the day of week. |
1108 | /// |
1109 | /// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method. |
1110 | /// |
1111 | /// # Example |
1112 | /// |
1113 | /// ``` |
1114 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime, Weekday}; |
1115 | /// |
1116 | /// let dt: NaiveDateTime = |
1117 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1118 | /// assert_eq!(dt.weekday(), Weekday::Fri); |
1119 | /// ``` |
1120 | #[inline ] |
1121 | fn weekday(&self) -> Weekday { |
1122 | self.date.weekday() |
1123 | } |
1124 | |
1125 | #[inline ] |
1126 | fn iso_week(&self) -> IsoWeek { |
1127 | self.date.iso_week() |
1128 | } |
1129 | |
1130 | /// Makes a new `NaiveDateTime` with the year number changed, while keeping the same month and |
1131 | /// day. |
1132 | /// |
1133 | /// See also the [`NaiveDate::with_year`] method. |
1134 | /// |
1135 | /// # Errors |
1136 | /// |
1137 | /// Returns `None` if: |
1138 | /// - The resulting date does not exist (February 29 in a non-leap year). |
1139 | /// - The year is out of range for a `NaiveDate`. |
1140 | /// |
1141 | /// # Example |
1142 | /// |
1143 | /// ``` |
1144 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1145 | /// |
1146 | /// let dt: NaiveDateTime = |
1147 | /// NaiveDate::from_ymd_opt(2015, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1148 | /// assert_eq!( |
1149 | /// dt.with_year(2016), |
1150 | /// Some(NaiveDate::from_ymd_opt(2016, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1151 | /// ); |
1152 | /// assert_eq!( |
1153 | /// dt.with_year(-308), |
1154 | /// Some(NaiveDate::from_ymd_opt(-308, 9, 25).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1155 | /// ); |
1156 | /// ``` |
1157 | #[inline ] |
1158 | fn with_year(&self, year: i32) -> Option<NaiveDateTime> { |
1159 | self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self }) |
1160 | } |
1161 | |
1162 | /// Makes a new `NaiveDateTime` with the month number (starting from 1) changed. |
1163 | /// |
1164 | /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. |
1165 | /// |
1166 | /// See also the [`NaiveDate::with_month`] method. |
1167 | /// |
1168 | /// # Errors |
1169 | /// |
1170 | /// Returns `None` if: |
1171 | /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). |
1172 | /// - The value for `month` is invalid. |
1173 | /// |
1174 | /// # Example |
1175 | /// |
1176 | /// ``` |
1177 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1178 | /// |
1179 | /// let dt: NaiveDateTime = |
1180 | /// NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1181 | /// assert_eq!( |
1182 | /// dt.with_month(10), |
1183 | /// Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1184 | /// ); |
1185 | /// assert_eq!(dt.with_month(13), None); // No month 13 |
1186 | /// assert_eq!(dt.with_month(2), None); // No February 30 |
1187 | /// ``` |
1188 | #[inline ] |
1189 | fn with_month(&self, month: u32) -> Option<NaiveDateTime> { |
1190 | self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self }) |
1191 | } |
1192 | |
1193 | /// Makes a new `NaiveDateTime` with the month number (starting from 0) changed. |
1194 | /// |
1195 | /// See also the [`NaiveDate::with_month0`] method. |
1196 | /// |
1197 | /// # Errors |
1198 | /// |
1199 | /// Returns `None` if: |
1200 | /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). |
1201 | /// - The value for `month0` is invalid. |
1202 | /// |
1203 | /// # Example |
1204 | /// |
1205 | /// ``` |
1206 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1207 | /// |
1208 | /// let dt: NaiveDateTime = |
1209 | /// NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1210 | /// assert_eq!( |
1211 | /// dt.with_month0(9), |
1212 | /// Some(NaiveDate::from_ymd_opt(2015, 10, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1213 | /// ); |
1214 | /// assert_eq!(dt.with_month0(12), None); // No month 13 |
1215 | /// assert_eq!(dt.with_month0(1), None); // No February 30 |
1216 | /// ``` |
1217 | #[inline ] |
1218 | fn with_month0(&self, month0: u32) -> Option<NaiveDateTime> { |
1219 | self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self }) |
1220 | } |
1221 | |
1222 | /// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed. |
1223 | /// |
1224 | /// See also the [`NaiveDate::with_day`] method. |
1225 | /// |
1226 | /// # Errors |
1227 | /// |
1228 | /// Returns `None` if: |
1229 | /// - The resulting date does not exist (for example `day(31)` in April). |
1230 | /// - The value for `day` is invalid. |
1231 | /// |
1232 | /// # Example |
1233 | /// |
1234 | /// ``` |
1235 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1236 | /// |
1237 | /// let dt: NaiveDateTime = |
1238 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1239 | /// assert_eq!( |
1240 | /// dt.with_day(30), |
1241 | /// Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1242 | /// ); |
1243 | /// assert_eq!(dt.with_day(31), None); // no September 31 |
1244 | /// ``` |
1245 | #[inline ] |
1246 | fn with_day(&self, day: u32) -> Option<NaiveDateTime> { |
1247 | self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self }) |
1248 | } |
1249 | |
1250 | /// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed. |
1251 | /// |
1252 | /// See also the [`NaiveDate::with_day0`] method. |
1253 | /// |
1254 | /// # Errors |
1255 | /// |
1256 | /// Returns `None` if: |
1257 | /// - The resulting date does not exist (for example `day(30)` in April). |
1258 | /// - The value for `day0` is invalid. |
1259 | /// |
1260 | /// # Example |
1261 | /// |
1262 | /// ``` |
1263 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1264 | /// |
1265 | /// let dt: NaiveDateTime = |
1266 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1267 | /// assert_eq!( |
1268 | /// dt.with_day0(29), |
1269 | /// Some(NaiveDate::from_ymd_opt(2015, 9, 30).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1270 | /// ); |
1271 | /// assert_eq!(dt.with_day0(30), None); // no September 31 |
1272 | /// ``` |
1273 | #[inline ] |
1274 | fn with_day0(&self, day0: u32) -> Option<NaiveDateTime> { |
1275 | self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self }) |
1276 | } |
1277 | |
1278 | /// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed. |
1279 | /// |
1280 | /// See also the [`NaiveDate::with_ordinal`] method. |
1281 | /// |
1282 | /// # Errors |
1283 | /// |
1284 | /// Returns `None` if: |
1285 | /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). |
1286 | /// - The value for `ordinal` is invalid. |
1287 | /// |
1288 | /// # Example |
1289 | /// |
1290 | /// ``` |
1291 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1292 | /// |
1293 | /// let dt: NaiveDateTime = |
1294 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1295 | /// assert_eq!( |
1296 | /// dt.with_ordinal(60), |
1297 | /// Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1298 | /// ); |
1299 | /// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days |
1300 | /// |
1301 | /// let dt: NaiveDateTime = |
1302 | /// NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1303 | /// assert_eq!( |
1304 | /// dt.with_ordinal(60), |
1305 | /// Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1306 | /// ); |
1307 | /// assert_eq!( |
1308 | /// dt.with_ordinal(366), |
1309 | /// Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1310 | /// ); |
1311 | /// ``` |
1312 | #[inline ] |
1313 | fn with_ordinal(&self, ordinal: u32) -> Option<NaiveDateTime> { |
1314 | self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self }) |
1315 | } |
1316 | |
1317 | /// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed. |
1318 | /// |
1319 | /// See also the [`NaiveDate::with_ordinal0`] method. |
1320 | /// |
1321 | /// # Errors |
1322 | /// |
1323 | /// Returns `None` if: |
1324 | /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). |
1325 | /// - The value for `ordinal0` is invalid. |
1326 | /// |
1327 | /// # Example |
1328 | /// |
1329 | /// ``` |
1330 | /// use chrono::{Datelike, NaiveDate, NaiveDateTime}; |
1331 | /// |
1332 | /// let dt: NaiveDateTime = |
1333 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1334 | /// assert_eq!( |
1335 | /// dt.with_ordinal0(59), |
1336 | /// Some(NaiveDate::from_ymd_opt(2015, 3, 1).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1337 | /// ); |
1338 | /// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days |
1339 | /// |
1340 | /// let dt: NaiveDateTime = |
1341 | /// NaiveDate::from_ymd_opt(2016, 9, 8).unwrap().and_hms_opt(12, 34, 56).unwrap(); |
1342 | /// assert_eq!( |
1343 | /// dt.with_ordinal0(59), |
1344 | /// Some(NaiveDate::from_ymd_opt(2016, 2, 29).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1345 | /// ); |
1346 | /// assert_eq!( |
1347 | /// dt.with_ordinal0(365), |
1348 | /// Some(NaiveDate::from_ymd_opt(2016, 12, 31).unwrap().and_hms_opt(12, 34, 56).unwrap()) |
1349 | /// ); |
1350 | /// ``` |
1351 | #[inline ] |
1352 | fn with_ordinal0(&self, ordinal0: u32) -> Option<NaiveDateTime> { |
1353 | self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self }) |
1354 | } |
1355 | } |
1356 | |
1357 | impl Timelike for NaiveDateTime { |
1358 | /// Returns the hour number from 0 to 23. |
1359 | /// |
1360 | /// See also the [`NaiveTime::hour`] method. |
1361 | /// |
1362 | /// # Example |
1363 | /// |
1364 | /// ``` |
1365 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1366 | /// |
1367 | /// let dt: NaiveDateTime = |
1368 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1369 | /// assert_eq!(dt.hour(), 12); |
1370 | /// ``` |
1371 | #[inline ] |
1372 | fn hour(&self) -> u32 { |
1373 | self.time.hour() |
1374 | } |
1375 | |
1376 | /// Returns the minute number from 0 to 59. |
1377 | /// |
1378 | /// See also the [`NaiveTime::minute`] method. |
1379 | /// |
1380 | /// # Example |
1381 | /// |
1382 | /// ``` |
1383 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1384 | /// |
1385 | /// let dt: NaiveDateTime = |
1386 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1387 | /// assert_eq!(dt.minute(), 34); |
1388 | /// ``` |
1389 | #[inline ] |
1390 | fn minute(&self) -> u32 { |
1391 | self.time.minute() |
1392 | } |
1393 | |
1394 | /// Returns the second number from 0 to 59. |
1395 | /// |
1396 | /// See also the [`NaiveTime::second`] method. |
1397 | /// |
1398 | /// # Example |
1399 | /// |
1400 | /// ``` |
1401 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1402 | /// |
1403 | /// let dt: NaiveDateTime = |
1404 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1405 | /// assert_eq!(dt.second(), 56); |
1406 | /// ``` |
1407 | #[inline ] |
1408 | fn second(&self) -> u32 { |
1409 | self.time.second() |
1410 | } |
1411 | |
1412 | /// Returns the number of nanoseconds since the whole non-leap second. |
1413 | /// The range from 1,000,000,000 to 1,999,999,999 represents |
1414 | /// the [leap second](./struct.NaiveTime.html#leap-second-handling). |
1415 | /// |
1416 | /// See also the [`NaiveTime#method.nanosecond`] method. |
1417 | /// |
1418 | /// # Example |
1419 | /// |
1420 | /// ``` |
1421 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1422 | /// |
1423 | /// let dt: NaiveDateTime = |
1424 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1425 | /// assert_eq!(dt.nanosecond(), 789_000_000); |
1426 | /// ``` |
1427 | #[inline ] |
1428 | fn nanosecond(&self) -> u32 { |
1429 | self.time.nanosecond() |
1430 | } |
1431 | |
1432 | /// Makes a new `NaiveDateTime` with the hour number changed. |
1433 | /// |
1434 | /// See also the [`NaiveTime::with_hour`] method. |
1435 | /// |
1436 | /// # Errors |
1437 | /// |
1438 | /// Returns `None` if the value for `hour` is invalid. |
1439 | /// |
1440 | /// # Example |
1441 | /// |
1442 | /// ``` |
1443 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1444 | /// |
1445 | /// let dt: NaiveDateTime = |
1446 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1447 | /// assert_eq!( |
1448 | /// dt.with_hour(7), |
1449 | /// Some( |
1450 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(7, 34, 56, 789).unwrap() |
1451 | /// ) |
1452 | /// ); |
1453 | /// assert_eq!(dt.with_hour(24), None); |
1454 | /// ``` |
1455 | #[inline ] |
1456 | fn with_hour(&self, hour: u32) -> Option<NaiveDateTime> { |
1457 | self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self }) |
1458 | } |
1459 | |
1460 | /// Makes a new `NaiveDateTime` with the minute number changed. |
1461 | /// |
1462 | /// See also the [`NaiveTime::with_minute`] method. |
1463 | /// |
1464 | /// # Errors |
1465 | /// |
1466 | /// Returns `None` if the value for `minute` is invalid. |
1467 | /// |
1468 | /// # Example |
1469 | /// |
1470 | /// ``` |
1471 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1472 | /// |
1473 | /// let dt: NaiveDateTime = |
1474 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1475 | /// assert_eq!( |
1476 | /// dt.with_minute(45), |
1477 | /// Some( |
1478 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1479 | /// .unwrap() |
1480 | /// .and_hms_milli_opt(12, 45, 56, 789) |
1481 | /// .unwrap() |
1482 | /// ) |
1483 | /// ); |
1484 | /// assert_eq!(dt.with_minute(60), None); |
1485 | /// ``` |
1486 | #[inline ] |
1487 | fn with_minute(&self, min: u32) -> Option<NaiveDateTime> { |
1488 | self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self }) |
1489 | } |
1490 | |
1491 | /// Makes a new `NaiveDateTime` with the second number changed. |
1492 | /// |
1493 | /// As with the [`second`](#method.second) method, |
1494 | /// the input range is restricted to 0 through 59. |
1495 | /// |
1496 | /// See also the [`NaiveTime::with_second`] method. |
1497 | /// |
1498 | /// # Errors |
1499 | /// |
1500 | /// Returns `None` if the value for `second` is invalid. |
1501 | /// |
1502 | /// # Example |
1503 | /// |
1504 | /// ``` |
1505 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1506 | /// |
1507 | /// let dt: NaiveDateTime = |
1508 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 56, 789).unwrap(); |
1509 | /// assert_eq!( |
1510 | /// dt.with_second(17), |
1511 | /// Some( |
1512 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1513 | /// .unwrap() |
1514 | /// .and_hms_milli_opt(12, 34, 17, 789) |
1515 | /// .unwrap() |
1516 | /// ) |
1517 | /// ); |
1518 | /// assert_eq!(dt.with_second(60), None); |
1519 | /// ``` |
1520 | #[inline ] |
1521 | fn with_second(&self, sec: u32) -> Option<NaiveDateTime> { |
1522 | self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self }) |
1523 | } |
1524 | |
1525 | /// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed. |
1526 | /// |
1527 | /// Returns `None` when the resulting `NaiveDateTime` would be invalid. |
1528 | /// As with the [`NaiveDateTime::nanosecond`] method, |
1529 | /// the input range can exceed 1,000,000,000 for leap seconds. |
1530 | /// |
1531 | /// See also the [`NaiveTime::with_nanosecond`] method. |
1532 | /// |
1533 | /// # Errors |
1534 | /// |
1535 | /// Returns `None` if `nanosecond >= 2,000,000,000`. |
1536 | /// |
1537 | /// # Example |
1538 | /// |
1539 | /// ``` |
1540 | /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; |
1541 | /// |
1542 | /// let dt: NaiveDateTime = |
1543 | /// NaiveDate::from_ymd_opt(2015, 9, 8).unwrap().and_hms_milli_opt(12, 34, 59, 789).unwrap(); |
1544 | /// assert_eq!( |
1545 | /// dt.with_nanosecond(333_333_333), |
1546 | /// Some( |
1547 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1548 | /// .unwrap() |
1549 | /// .and_hms_nano_opt(12, 34, 59, 333_333_333) |
1550 | /// .unwrap() |
1551 | /// ) |
1552 | /// ); |
1553 | /// assert_eq!( |
1554 | /// dt.with_nanosecond(1_333_333_333), // leap second |
1555 | /// Some( |
1556 | /// NaiveDate::from_ymd_opt(2015, 9, 8) |
1557 | /// .unwrap() |
1558 | /// .and_hms_nano_opt(12, 34, 59, 1_333_333_333) |
1559 | /// .unwrap() |
1560 | /// ) |
1561 | /// ); |
1562 | /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); |
1563 | /// ``` |
1564 | #[inline ] |
1565 | fn with_nanosecond(&self, nano: u32) -> Option<NaiveDateTime> { |
1566 | self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self }) |
1567 | } |
1568 | } |
1569 | |
1570 | /// Add `TimeDelta` to `NaiveDateTime`. |
1571 | /// |
1572 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1573 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1574 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1575 | /// |
1576 | /// # Panics |
1577 | /// |
1578 | /// Panics if the resulting date would be out of range. |
1579 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1580 | /// |
1581 | /// # Example |
1582 | /// |
1583 | /// ``` |
1584 | /// use chrono::{NaiveDate, TimeDelta}; |
1585 | /// |
1586 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1587 | /// |
1588 | /// let d = from_ymd(2016, 7, 8); |
1589 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
1590 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::zero(), hms(3, 5, 7)); |
1591 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(1).unwrap(), hms(3, 5, 8)); |
1592 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(-1).unwrap(), hms(3, 5, 6)); |
1593 | /// assert_eq!(hms(3, 5, 7) + TimeDelta::try_seconds(3600 + 60).unwrap(), hms(4, 6, 7)); |
1594 | /// assert_eq!( |
1595 | /// hms(3, 5, 7) + TimeDelta::try_seconds(86_400).unwrap(), |
1596 | /// from_ymd(2016, 7, 9).and_hms_opt(3, 5, 7).unwrap() |
1597 | /// ); |
1598 | /// assert_eq!( |
1599 | /// hms(3, 5, 7) + TimeDelta::try_days(365).unwrap(), |
1600 | /// from_ymd(2017, 7, 8).and_hms_opt(3, 5, 7).unwrap() |
1601 | /// ); |
1602 | /// |
1603 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
1604 | /// assert_eq!(hmsm(3, 5, 7, 980) + TimeDelta::try_milliseconds(450).unwrap(), hmsm(3, 5, 8, 430)); |
1605 | /// ``` |
1606 | /// |
1607 | /// Leap seconds are handled, |
1608 | /// but the addition assumes that it is the only leap second happened. |
1609 | /// |
1610 | /// ``` |
1611 | /// # use chrono::{TimeDelta, NaiveDate}; |
1612 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1613 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
1614 | /// let leap = hmsm(3, 5, 59, 1_300); |
1615 | /// assert_eq!(leap + TimeDelta::zero(), hmsm(3, 5, 59, 1_300)); |
1616 | /// assert_eq!(leap + TimeDelta::try_milliseconds(-500).unwrap(), hmsm(3, 5, 59, 800)); |
1617 | /// assert_eq!(leap + TimeDelta::try_milliseconds(500).unwrap(), hmsm(3, 5, 59, 1_800)); |
1618 | /// assert_eq!(leap + TimeDelta::try_milliseconds(800).unwrap(), hmsm(3, 6, 0, 100)); |
1619 | /// assert_eq!(leap + TimeDelta::try_seconds(10).unwrap(), hmsm(3, 6, 9, 300)); |
1620 | /// assert_eq!(leap + TimeDelta::try_seconds(-10).unwrap(), hmsm(3, 5, 50, 300)); |
1621 | /// assert_eq!(leap + TimeDelta::try_days(1).unwrap(), |
1622 | /// from_ymd(2016, 7, 9).and_hms_milli_opt(3, 5, 59, 300).unwrap()); |
1623 | /// ``` |
1624 | /// |
1625 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
1626 | impl Add<TimeDelta> for NaiveDateTime { |
1627 | type Output = NaiveDateTime; |
1628 | |
1629 | #[inline ] |
1630 | fn add(self, rhs: TimeDelta) -> NaiveDateTime { |
1631 | self.checked_add_signed(rhs).expect(msg:"`NaiveDateTime + TimeDelta` overflowed" ) |
1632 | } |
1633 | } |
1634 | |
1635 | /// Add `std::time::Duration` to `NaiveDateTime`. |
1636 | /// |
1637 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1638 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1639 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1640 | /// |
1641 | /// # Panics |
1642 | /// |
1643 | /// Panics if the resulting date would be out of range. |
1644 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1645 | impl Add<Duration> for NaiveDateTime { |
1646 | type Output = NaiveDateTime; |
1647 | |
1648 | #[inline ] |
1649 | fn add(self, rhs: Duration) -> NaiveDateTime { |
1650 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
1651 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
1652 | self.checked_add_signed(rhs).expect(msg:"`NaiveDateTime + TimeDelta` overflowed" ) |
1653 | } |
1654 | } |
1655 | |
1656 | /// Add-assign `TimeDelta` to `NaiveDateTime`. |
1657 | /// |
1658 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1659 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1660 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1661 | /// |
1662 | /// # Panics |
1663 | /// |
1664 | /// Panics if the resulting date would be out of range. |
1665 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1666 | impl AddAssign<TimeDelta> for NaiveDateTime { |
1667 | #[inline ] |
1668 | fn add_assign(&mut self, rhs: TimeDelta) { |
1669 | *self = self.add(rhs); |
1670 | } |
1671 | } |
1672 | |
1673 | /// Add-assign `std::time::Duration` to `NaiveDateTime`. |
1674 | /// |
1675 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1676 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1677 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1678 | /// |
1679 | /// # Panics |
1680 | /// |
1681 | /// Panics if the resulting date would be out of range. |
1682 | /// Consider using [`NaiveDateTime::checked_add_signed`] to get an `Option` instead. |
1683 | impl AddAssign<Duration> for NaiveDateTime { |
1684 | #[inline ] |
1685 | fn add_assign(&mut self, rhs: Duration) { |
1686 | *self = self.add(rhs); |
1687 | } |
1688 | } |
1689 | |
1690 | /// Add `FixedOffset` to `NaiveDateTime`. |
1691 | /// |
1692 | /// # Panics |
1693 | /// |
1694 | /// Panics if the resulting date would be out of range. |
1695 | /// Consider using `checked_add_offset` to get an `Option` instead. |
1696 | impl Add<FixedOffset> for NaiveDateTime { |
1697 | type Output = NaiveDateTime; |
1698 | |
1699 | #[inline ] |
1700 | fn add(self, rhs: FixedOffset) -> NaiveDateTime { |
1701 | self.checked_add_offset(rhs).expect(msg:"`NaiveDateTime + FixedOffset` out of range" ) |
1702 | } |
1703 | } |
1704 | |
1705 | /// Add `Months` to `NaiveDateTime`. |
1706 | /// |
1707 | /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for |
1708 | /// details. |
1709 | /// |
1710 | /// # Panics |
1711 | /// |
1712 | /// Panics if the resulting date would be out of range. |
1713 | /// Consider using `checked_add_months` to get an `Option` instead. |
1714 | /// |
1715 | /// # Example |
1716 | /// |
1717 | /// ``` |
1718 | /// use chrono::{Months, NaiveDate}; |
1719 | /// |
1720 | /// assert_eq!( |
1721 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() + Months::new(1), |
1722 | /// NaiveDate::from_ymd_opt(2014, 2, 1).unwrap().and_hms_opt(1, 0, 0).unwrap() |
1723 | /// ); |
1724 | /// assert_eq!( |
1725 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() |
1726 | /// + Months::new(11), |
1727 | /// NaiveDate::from_ymd_opt(2014, 12, 1).unwrap().and_hms_opt(0, 2, 0).unwrap() |
1728 | /// ); |
1729 | /// assert_eq!( |
1730 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() |
1731 | /// + Months::new(12), |
1732 | /// NaiveDate::from_ymd_opt(2015, 1, 1).unwrap().and_hms_opt(0, 0, 3).unwrap() |
1733 | /// ); |
1734 | /// assert_eq!( |
1735 | /// NaiveDate::from_ymd_opt(2014, 1, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() |
1736 | /// + Months::new(13), |
1737 | /// NaiveDate::from_ymd_opt(2015, 2, 1).unwrap().and_hms_opt(0, 0, 4).unwrap() |
1738 | /// ); |
1739 | /// assert_eq!( |
1740 | /// NaiveDate::from_ymd_opt(2014, 1, 31).unwrap().and_hms_opt(0, 5, 0).unwrap() |
1741 | /// + Months::new(1), |
1742 | /// NaiveDate::from_ymd_opt(2014, 2, 28).unwrap().and_hms_opt(0, 5, 0).unwrap() |
1743 | /// ); |
1744 | /// assert_eq!( |
1745 | /// NaiveDate::from_ymd_opt(2020, 1, 31).unwrap().and_hms_opt(6, 0, 0).unwrap() |
1746 | /// + Months::new(1), |
1747 | /// NaiveDate::from_ymd_opt(2020, 2, 29).unwrap().and_hms_opt(6, 0, 0).unwrap() |
1748 | /// ); |
1749 | /// ``` |
1750 | impl Add<Months> for NaiveDateTime { |
1751 | type Output = NaiveDateTime; |
1752 | |
1753 | fn add(self, rhs: Months) -> Self::Output { |
1754 | self.checked_add_months(rhs).expect(msg:"`NaiveDateTime + Months` out of range" ) |
1755 | } |
1756 | } |
1757 | |
1758 | /// Subtract `TimeDelta` from `NaiveDateTime`. |
1759 | /// |
1760 | /// This is the same as the addition with a negated `TimeDelta`. |
1761 | /// |
1762 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1763 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1764 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1765 | /// |
1766 | /// # Panics |
1767 | /// |
1768 | /// Panics if the resulting date would be out of range. |
1769 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1770 | /// |
1771 | /// # Example |
1772 | /// |
1773 | /// ``` |
1774 | /// use chrono::{NaiveDate, TimeDelta}; |
1775 | /// |
1776 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1777 | /// |
1778 | /// let d = from_ymd(2016, 7, 8); |
1779 | /// let hms = |h, m, s| d.and_hms_opt(h, m, s).unwrap(); |
1780 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::zero(), hms(3, 5, 7)); |
1781 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(1).unwrap(), hms(3, 5, 6)); |
1782 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(-1).unwrap(), hms(3, 5, 8)); |
1783 | /// assert_eq!(hms(3, 5, 7) - TimeDelta::try_seconds(3600 + 60).unwrap(), hms(2, 4, 7)); |
1784 | /// assert_eq!( |
1785 | /// hms(3, 5, 7) - TimeDelta::try_seconds(86_400).unwrap(), |
1786 | /// from_ymd(2016, 7, 7).and_hms_opt(3, 5, 7).unwrap() |
1787 | /// ); |
1788 | /// assert_eq!( |
1789 | /// hms(3, 5, 7) - TimeDelta::try_days(365).unwrap(), |
1790 | /// from_ymd(2015, 7, 9).and_hms_opt(3, 5, 7).unwrap() |
1791 | /// ); |
1792 | /// |
1793 | /// let hmsm = |h, m, s, milli| d.and_hms_milli_opt(h, m, s, milli).unwrap(); |
1794 | /// assert_eq!(hmsm(3, 5, 7, 450) - TimeDelta::try_milliseconds(670).unwrap(), hmsm(3, 5, 6, 780)); |
1795 | /// ``` |
1796 | /// |
1797 | /// Leap seconds are handled, |
1798 | /// but the subtraction assumes that it is the only leap second happened. |
1799 | /// |
1800 | /// ``` |
1801 | /// # use chrono::{TimeDelta, NaiveDate}; |
1802 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1803 | /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli_opt(h, m, s, milli).unwrap(); |
1804 | /// let leap = hmsm(3, 5, 59, 1_300); |
1805 | /// assert_eq!(leap - TimeDelta::zero(), hmsm(3, 5, 59, 1_300)); |
1806 | /// assert_eq!(leap - TimeDelta::try_milliseconds(200).unwrap(), hmsm(3, 5, 59, 1_100)); |
1807 | /// assert_eq!(leap - TimeDelta::try_milliseconds(500).unwrap(), hmsm(3, 5, 59, 800)); |
1808 | /// assert_eq!(leap - TimeDelta::try_seconds(60).unwrap(), hmsm(3, 5, 0, 300)); |
1809 | /// assert_eq!(leap - TimeDelta::try_days(1).unwrap(), |
1810 | /// from_ymd(2016, 7, 7).and_hms_milli_opt(3, 6, 0, 300).unwrap()); |
1811 | /// ``` |
1812 | /// |
1813 | /// [leap second handling]: crate::NaiveTime#leap-second-handling |
1814 | impl Sub<TimeDelta> for NaiveDateTime { |
1815 | type Output = NaiveDateTime; |
1816 | |
1817 | #[inline ] |
1818 | fn sub(self, rhs: TimeDelta) -> NaiveDateTime { |
1819 | self.checked_sub_signed(rhs).expect(msg:"`NaiveDateTime - TimeDelta` overflowed" ) |
1820 | } |
1821 | } |
1822 | |
1823 | /// Subtract `std::time::Duration` from `NaiveDateTime`. |
1824 | /// |
1825 | /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap |
1826 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1827 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1828 | /// |
1829 | /// # Panics |
1830 | /// |
1831 | /// Panics if the resulting date would be out of range. |
1832 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1833 | impl Sub<Duration> for NaiveDateTime { |
1834 | type Output = NaiveDateTime; |
1835 | |
1836 | #[inline ] |
1837 | fn sub(self, rhs: Duration) -> NaiveDateTime { |
1838 | let rhs: TimeDelta = TimeDelta::from_std(rhs) |
1839 | .expect(msg:"overflow converting from core::time::Duration to TimeDelta" ); |
1840 | self.checked_sub_signed(rhs).expect(msg:"`NaiveDateTime - TimeDelta` overflowed" ) |
1841 | } |
1842 | } |
1843 | |
1844 | /// Subtract-assign `TimeDelta` from `NaiveDateTime`. |
1845 | /// |
1846 | /// This is the same as the addition with a negated `TimeDelta`. |
1847 | /// |
1848 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1849 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1850 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1851 | /// |
1852 | /// # Panics |
1853 | /// |
1854 | /// Panics if the resulting date would be out of range. |
1855 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1856 | impl SubAssign<TimeDelta> for NaiveDateTime { |
1857 | #[inline ] |
1858 | fn sub_assign(&mut self, rhs: TimeDelta) { |
1859 | *self = self.sub(rhs); |
1860 | } |
1861 | } |
1862 | |
1863 | /// Subtract-assign `std::time::Duration` from `NaiveDateTime`. |
1864 | /// |
1865 | /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap |
1866 | /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case |
1867 | /// the assumption becomes that **there is exactly a single leap second ever**. |
1868 | /// |
1869 | /// # Panics |
1870 | /// |
1871 | /// Panics if the resulting date would be out of range. |
1872 | /// Consider using [`NaiveDateTime::checked_sub_signed`] to get an `Option` instead. |
1873 | impl SubAssign<Duration> for NaiveDateTime { |
1874 | #[inline ] |
1875 | fn sub_assign(&mut self, rhs: Duration) { |
1876 | *self = self.sub(rhs); |
1877 | } |
1878 | } |
1879 | |
1880 | /// Subtract `FixedOffset` from `NaiveDateTime`. |
1881 | /// |
1882 | /// # Panics |
1883 | /// |
1884 | /// Panics if the resulting date would be out of range. |
1885 | /// Consider using `checked_sub_offset` to get an `Option` instead. |
1886 | impl Sub<FixedOffset> for NaiveDateTime { |
1887 | type Output = NaiveDateTime; |
1888 | |
1889 | #[inline ] |
1890 | fn sub(self, rhs: FixedOffset) -> NaiveDateTime { |
1891 | self.checked_sub_offset(rhs).expect(msg:"`NaiveDateTime - FixedOffset` out of range" ) |
1892 | } |
1893 | } |
1894 | |
1895 | /// Subtract `Months` from `NaiveDateTime`. |
1896 | /// |
1897 | /// The result will be clamped to valid days in the resulting month, see |
1898 | /// [`NaiveDateTime::checked_sub_months`] for details. |
1899 | /// |
1900 | /// # Panics |
1901 | /// |
1902 | /// Panics if the resulting date would be out of range. |
1903 | /// Consider using [`NaiveDateTime::checked_sub_months`] to get an `Option` instead. |
1904 | /// |
1905 | /// # Example |
1906 | /// |
1907 | /// ``` |
1908 | /// use chrono::{Months, NaiveDate}; |
1909 | /// |
1910 | /// assert_eq!( |
1911 | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() |
1912 | /// - Months::new(11), |
1913 | /// NaiveDate::from_ymd_opt(2013, 02, 01).unwrap().and_hms_opt(01, 00, 00).unwrap() |
1914 | /// ); |
1915 | /// assert_eq!( |
1916 | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() |
1917 | /// - Months::new(12), |
1918 | /// NaiveDate::from_ymd_opt(2013, 01, 01).unwrap().and_hms_opt(00, 02, 00).unwrap() |
1919 | /// ); |
1920 | /// assert_eq!( |
1921 | /// NaiveDate::from_ymd_opt(2014, 01, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() |
1922 | /// - Months::new(13), |
1923 | /// NaiveDate::from_ymd_opt(2012, 12, 01).unwrap().and_hms_opt(00, 00, 03).unwrap() |
1924 | /// ); |
1925 | /// ``` |
1926 | impl Sub<Months> for NaiveDateTime { |
1927 | type Output = NaiveDateTime; |
1928 | |
1929 | fn sub(self, rhs: Months) -> Self::Output { |
1930 | self.checked_sub_months(rhs).expect(msg:"`NaiveDateTime - Months` out of range" ) |
1931 | } |
1932 | } |
1933 | |
1934 | /// Subtracts another `NaiveDateTime` from the current date and time. |
1935 | /// This does not overflow or underflow at all. |
1936 | /// |
1937 | /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), |
1938 | /// the subtraction assumes that **there is no leap second ever**, |
1939 | /// except when any of the `NaiveDateTime`s themselves represents a leap second |
1940 | /// in which case the assumption becomes that |
1941 | /// **there are exactly one (or two) leap second(s) ever**. |
1942 | /// |
1943 | /// The implementation is a wrapper around [`NaiveDateTime::signed_duration_since`]. |
1944 | /// |
1945 | /// # Example |
1946 | /// |
1947 | /// ``` |
1948 | /// use chrono::{NaiveDate, TimeDelta}; |
1949 | /// |
1950 | /// let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1951 | /// |
1952 | /// let d = from_ymd(2016, 7, 8); |
1953 | /// assert_eq!( |
1954 | /// d.and_hms_opt(3, 5, 7).unwrap() - d.and_hms_opt(2, 4, 6).unwrap(), |
1955 | /// TimeDelta::try_seconds(3600 + 60 + 1).unwrap() |
1956 | /// ); |
1957 | /// |
1958 | /// // July 8 is 190th day in the year 2016 |
1959 | /// let d0 = from_ymd(2016, 1, 1); |
1960 | /// assert_eq!( |
1961 | /// d.and_hms_milli_opt(0, 7, 6, 500).unwrap() - d0.and_hms_opt(0, 0, 0).unwrap(), |
1962 | /// TimeDelta::try_seconds(189 * 86_400 + 7 * 60 + 6).unwrap() |
1963 | /// + TimeDelta::try_milliseconds(500).unwrap() |
1964 | /// ); |
1965 | /// ``` |
1966 | /// |
1967 | /// Leap seconds are handled, but the subtraction assumes that no other leap |
1968 | /// seconds happened. |
1969 | /// |
1970 | /// ``` |
1971 | /// # use chrono::{TimeDelta, NaiveDate}; |
1972 | /// # let from_ymd = |y, m, d| NaiveDate::from_ymd_opt(y, m, d).unwrap(); |
1973 | /// let leap = from_ymd(2015, 6, 30).and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
1974 | /// assert_eq!( |
1975 | /// leap - from_ymd(2015, 6, 30).and_hms_opt(23, 0, 0).unwrap(), |
1976 | /// TimeDelta::try_seconds(3600).unwrap() + TimeDelta::try_milliseconds(500).unwrap() |
1977 | /// ); |
1978 | /// assert_eq!( |
1979 | /// from_ymd(2015, 7, 1).and_hms_opt(1, 0, 0).unwrap() - leap, |
1980 | /// TimeDelta::try_seconds(3600).unwrap() - TimeDelta::try_milliseconds(500).unwrap() |
1981 | /// ); |
1982 | /// ``` |
1983 | impl Sub<NaiveDateTime> for NaiveDateTime { |
1984 | type Output = TimeDelta; |
1985 | |
1986 | #[inline ] |
1987 | fn sub(self, rhs: NaiveDateTime) -> TimeDelta { |
1988 | self.signed_duration_since(rhs) |
1989 | } |
1990 | } |
1991 | |
1992 | /// Add `Days` to `NaiveDateTime`. |
1993 | /// |
1994 | /// # Panics |
1995 | /// |
1996 | /// Panics if the resulting date would be out of range. |
1997 | /// Consider using `checked_add_days` to get an `Option` instead. |
1998 | impl Add<Days> for NaiveDateTime { |
1999 | type Output = NaiveDateTime; |
2000 | |
2001 | fn add(self, days: Days) -> Self::Output { |
2002 | self.checked_add_days(days).expect(msg:"`NaiveDateTime + Days` out of range" ) |
2003 | } |
2004 | } |
2005 | |
2006 | /// Subtract `Days` from `NaiveDateTime`. |
2007 | /// |
2008 | /// # Panics |
2009 | /// |
2010 | /// Panics if the resulting date would be out of range. |
2011 | /// Consider using `checked_sub_days` to get an `Option` instead. |
2012 | impl Sub<Days> for NaiveDateTime { |
2013 | type Output = NaiveDateTime; |
2014 | |
2015 | fn sub(self, days: Days) -> Self::Output { |
2016 | self.checked_sub_days(days).expect(msg:"`NaiveDateTime - Days` out of range" ) |
2017 | } |
2018 | } |
2019 | |
2020 | /// The `Debug` output of the naive date and time `dt` is the same as |
2021 | /// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](crate::format::strftime). |
2022 | /// |
2023 | /// The string printed can be readily parsed via the `parse` method on `str`. |
2024 | /// |
2025 | /// It should be noted that, for leap seconds not on the minute boundary, |
2026 | /// it may print a representation not distinguishable from non-leap seconds. |
2027 | /// This doesn't matter in practice, since such leap seconds never happened. |
2028 | /// (By the time of the first leap second on 1972-06-30, |
2029 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
2030 | /// |
2031 | /// # Example |
2032 | /// |
2033 | /// ``` |
2034 | /// use chrono::NaiveDate; |
2035 | /// |
2036 | /// let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap(); |
2037 | /// assert_eq!(format!("{:?}" , dt), "2016-11-15T07:39:24" ); |
2038 | /// ``` |
2039 | /// |
2040 | /// Leap seconds may also be used. |
2041 | /// |
2042 | /// ``` |
2043 | /// # use chrono::NaiveDate; |
2044 | /// let dt = |
2045 | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
2046 | /// assert_eq!(format!("{:?}" , dt), "2015-06-30T23:59:60.500" ); |
2047 | /// ``` |
2048 | impl fmt::Debug for NaiveDateTime { |
2049 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
2050 | self.date.fmt(f)?; |
2051 | f.write_char('T' )?; |
2052 | self.time.fmt(f) |
2053 | } |
2054 | } |
2055 | |
2056 | /// The `Display` output of the naive date and time `dt` is the same as |
2057 | /// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](crate::format::strftime). |
2058 | /// |
2059 | /// It should be noted that, for leap seconds not on the minute boundary, |
2060 | /// it may print a representation not distinguishable from non-leap seconds. |
2061 | /// This doesn't matter in practice, since such leap seconds never happened. |
2062 | /// (By the time of the first leap second on 1972-06-30, |
2063 | /// every time zone offset around the world has standardized to the 5-minute alignment.) |
2064 | /// |
2065 | /// # Example |
2066 | /// |
2067 | /// ``` |
2068 | /// use chrono::NaiveDate; |
2069 | /// |
2070 | /// let dt = NaiveDate::from_ymd_opt(2016, 11, 15).unwrap().and_hms_opt(7, 39, 24).unwrap(); |
2071 | /// assert_eq!(format!("{}" , dt), "2016-11-15 07:39:24" ); |
2072 | /// ``` |
2073 | /// |
2074 | /// Leap seconds may also be used. |
2075 | /// |
2076 | /// ``` |
2077 | /// # use chrono::NaiveDate; |
2078 | /// let dt = |
2079 | /// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_500).unwrap(); |
2080 | /// assert_eq!(format!("{}" , dt), "2015-06-30 23:59:60.500" ); |
2081 | /// ``` |
2082 | impl fmt::Display for NaiveDateTime { |
2083 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
2084 | self.date.fmt(f)?; |
2085 | f.write_char(' ' )?; |
2086 | self.time.fmt(f) |
2087 | } |
2088 | } |
2089 | |
2090 | /// Parsing a `str` into a `NaiveDateTime` uses the same format, |
2091 | /// [`%Y-%m-%dT%H:%M:%S%.f`](crate::format::strftime), as in `Debug`. |
2092 | /// |
2093 | /// # Example |
2094 | /// |
2095 | /// ``` |
2096 | /// use chrono::{NaiveDateTime, NaiveDate}; |
2097 | /// |
2098 | /// let dt = NaiveDate::from_ymd_opt(2015, 9, 18).unwrap().and_hms_opt(23, 56, 4).unwrap(); |
2099 | /// assert_eq!("2015-09-18T23:56:04" .parse::<NaiveDateTime>(), Ok(dt)); |
2100 | /// |
2101 | /// let dt = NaiveDate::from_ymd_opt(12345, 6, 7).unwrap().and_hms_milli_opt(7, 59, 59, 1_500).unwrap(); // leap second |
2102 | /// assert_eq!("+12345-6-7T7:59:60.5" .parse::<NaiveDateTime>(), Ok(dt)); |
2103 | /// |
2104 | /// assert!("foo" .parse::<NaiveDateTime>().is_err()); |
2105 | /// ``` |
2106 | impl str::FromStr for NaiveDateTime { |
2107 | type Err = ParseError; |
2108 | |
2109 | fn from_str(s: &str) -> ParseResult<NaiveDateTime> { |
2110 | const ITEMS: &[Item<'static>] = &[ |
2111 | Item::Numeric(Numeric::Year, Pad::Zero), |
2112 | Item::Space("" ), |
2113 | Item::Literal("-" ), |
2114 | Item::Numeric(Numeric::Month, Pad::Zero), |
2115 | Item::Space("" ), |
2116 | Item::Literal("-" ), |
2117 | Item::Numeric(Numeric::Day, Pad::Zero), |
2118 | Item::Space("" ), |
2119 | Item::Literal("T" ), // XXX shouldn't this be case-insensitive? |
2120 | Item::Numeric(Numeric::Hour, Pad::Zero), |
2121 | Item::Space("" ), |
2122 | Item::Literal(":" ), |
2123 | Item::Numeric(Numeric::Minute, Pad::Zero), |
2124 | Item::Space("" ), |
2125 | Item::Literal(":" ), |
2126 | Item::Numeric(Numeric::Second, Pad::Zero), |
2127 | Item::Fixed(Fixed::Nanosecond), |
2128 | Item::Space("" ), |
2129 | ]; |
2130 | |
2131 | let mut parsed = Parsed::new(); |
2132 | parse(&mut parsed, s, ITEMS.iter())?; |
2133 | parsed.to_naive_datetime_with_offset(0) |
2134 | } |
2135 | } |
2136 | |
2137 | /// The default value for a NaiveDateTime is one with epoch 0 |
2138 | /// that is, 1st of January 1970 at 00:00:00. |
2139 | /// |
2140 | /// # Example |
2141 | /// |
2142 | /// ```rust |
2143 | /// use chrono::NaiveDateTime; |
2144 | /// |
2145 | /// assert_eq!(NaiveDateTime::default(), NaiveDateTime::UNIX_EPOCH); |
2146 | /// ``` |
2147 | impl Default for NaiveDateTime { |
2148 | fn default() -> Self { |
2149 | Self::UNIX_EPOCH |
2150 | } |
2151 | } |
2152 | |