1 | use super::parser::Cursor; |
2 | use super::timezone::{LocalTimeType, SECONDS_PER_WEEK}; |
3 | use super::{ |
4 | CUMUL_DAY_IN_MONTHS_NORMAL_YEAR, DAY_IN_MONTHS_NORMAL_YEAR, DAYS_PER_WEEK, Error, |
5 | SECONDS_PER_DAY, |
6 | }; |
7 | use crate::{Datelike, NaiveDateTime}; |
8 | use std::cmp::Ordering; |
9 | |
10 | /// Transition rule |
11 | #[derive (Debug, Copy, Clone, Eq, PartialEq)] |
12 | pub(super) enum TransitionRule { |
13 | /// Fixed local time type |
14 | Fixed(LocalTimeType), |
15 | /// Alternate local time types |
16 | Alternate(AlternateTime), |
17 | } |
18 | |
19 | impl TransitionRule { |
20 | /// Parse a POSIX TZ string containing a time zone description, as described in [the POSIX documentation of the `TZ` environment variable](https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html). |
21 | /// |
22 | /// TZ string extensions from [RFC 8536](https://datatracker.ietf.org/doc/html/rfc8536#section-3.3.1) may be used. |
23 | pub(super) fn from_tz_string( |
24 | tz_string: &[u8], |
25 | use_string_extensions: bool, |
26 | ) -> Result<Self, Error> { |
27 | let mut cursor = Cursor::new(tz_string); |
28 | |
29 | let std_time_zone = Some(parse_name(&mut cursor)?); |
30 | let std_offset = parse_offset(&mut cursor)?; |
31 | |
32 | if cursor.is_empty() { |
33 | return Ok(LocalTimeType::new(-std_offset, false, std_time_zone)?.into()); |
34 | } |
35 | |
36 | let dst_time_zone = Some(parse_name(&mut cursor)?); |
37 | |
38 | let dst_offset = match cursor.peek() { |
39 | Some(&b',' ) => std_offset - 3600, |
40 | Some(_) => parse_offset(&mut cursor)?, |
41 | None => { |
42 | return Err(Error::UnsupportedTzString("DST start and end rules must be provided" )); |
43 | } |
44 | }; |
45 | |
46 | if cursor.is_empty() { |
47 | return Err(Error::UnsupportedTzString("DST start and end rules must be provided" )); |
48 | } |
49 | |
50 | cursor.read_tag(b"," )?; |
51 | let (dst_start, dst_start_time) = RuleDay::parse(&mut cursor, use_string_extensions)?; |
52 | |
53 | cursor.read_tag(b"," )?; |
54 | let (dst_end, dst_end_time) = RuleDay::parse(&mut cursor, use_string_extensions)?; |
55 | |
56 | if !cursor.is_empty() { |
57 | return Err(Error::InvalidTzString("remaining data after parsing TZ string" )); |
58 | } |
59 | |
60 | Ok(AlternateTime::new( |
61 | LocalTimeType::new(-std_offset, false, std_time_zone)?, |
62 | LocalTimeType::new(-dst_offset, true, dst_time_zone)?, |
63 | dst_start, |
64 | dst_start_time, |
65 | dst_end, |
66 | dst_end_time, |
67 | )? |
68 | .into()) |
69 | } |
70 | |
71 | /// Find the local time type associated to the transition rule at the specified Unix time in seconds |
72 | pub(super) fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> { |
73 | match self { |
74 | TransitionRule::Fixed(local_time_type) => Ok(local_time_type), |
75 | TransitionRule::Alternate(alternate_time) => { |
76 | alternate_time.find_local_time_type(unix_time) |
77 | } |
78 | } |
79 | } |
80 | |
81 | /// Find the local time type associated to the transition rule at the specified Unix time in seconds |
82 | pub(super) fn find_local_time_type_from_local( |
83 | &self, |
84 | local_time: NaiveDateTime, |
85 | ) -> Result<crate::MappedLocalTime<LocalTimeType>, Error> { |
86 | match self { |
87 | TransitionRule::Fixed(local_time_type) => { |
88 | Ok(crate::MappedLocalTime::Single(*local_time_type)) |
89 | } |
90 | TransitionRule::Alternate(alternate_time) => { |
91 | alternate_time.find_local_time_type_from_local(local_time) |
92 | } |
93 | } |
94 | } |
95 | } |
96 | |
97 | impl From<LocalTimeType> for TransitionRule { |
98 | fn from(inner: LocalTimeType) -> Self { |
99 | TransitionRule::Fixed(inner) |
100 | } |
101 | } |
102 | |
103 | impl From<AlternateTime> for TransitionRule { |
104 | fn from(inner: AlternateTime) -> Self { |
105 | TransitionRule::Alternate(inner) |
106 | } |
107 | } |
108 | |
109 | /// Transition rule representing alternate local time types |
110 | #[derive (Debug, Copy, Clone, Eq, PartialEq)] |
111 | pub(super) struct AlternateTime { |
112 | /// Local time type for standard time |
113 | pub(super) std: LocalTimeType, |
114 | /// Local time type for Daylight Saving Time |
115 | pub(super) dst: LocalTimeType, |
116 | /// Start day of Daylight Saving Time |
117 | dst_start: RuleDay, |
118 | /// Local start day time of Daylight Saving Time, in seconds |
119 | dst_start_time: i32, |
120 | /// End day of Daylight Saving Time |
121 | dst_end: RuleDay, |
122 | /// Local end day time of Daylight Saving Time, in seconds |
123 | dst_end_time: i32, |
124 | } |
125 | |
126 | impl AlternateTime { |
127 | /// Construct a transition rule representing alternate local time types |
128 | const fn new( |
129 | std: LocalTimeType, |
130 | dst: LocalTimeType, |
131 | dst_start: RuleDay, |
132 | dst_start_time: i32, |
133 | dst_end: RuleDay, |
134 | dst_end_time: i32, |
135 | ) -> Result<Self, Error> { |
136 | // Overflow is not possible |
137 | if !((dst_start_time as i64).abs() < SECONDS_PER_WEEK |
138 | && (dst_end_time as i64).abs() < SECONDS_PER_WEEK) |
139 | { |
140 | return Err(Error::TransitionRule("invalid DST start or end time" )); |
141 | } |
142 | |
143 | Ok(Self { std, dst, dst_start, dst_start_time, dst_end, dst_end_time }) |
144 | } |
145 | |
146 | /// Find the local time type associated to the alternate transition rule at the specified Unix time in seconds |
147 | fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> { |
148 | // Overflow is not possible |
149 | let dst_start_time_in_utc = self.dst_start_time as i64 - self.std.ut_offset as i64; |
150 | let dst_end_time_in_utc = self.dst_end_time as i64 - self.dst.ut_offset as i64; |
151 | |
152 | let current_year = match UtcDateTime::from_timespec(unix_time) { |
153 | Ok(dt) => dt.year, |
154 | Err(error) => return Err(error), |
155 | }; |
156 | |
157 | // Check if the current year is valid for the following computations |
158 | if !(i32::MIN + 2..=i32::MAX - 2).contains(¤t_year) { |
159 | return Err(Error::OutOfRange("out of range date time" )); |
160 | } |
161 | |
162 | let current_year_dst_start_unix_time = |
163 | self.dst_start.unix_time(current_year, dst_start_time_in_utc); |
164 | let current_year_dst_end_unix_time = |
165 | self.dst_end.unix_time(current_year, dst_end_time_in_utc); |
166 | |
167 | // Check DST start/end Unix times for previous/current/next years to support for transition day times outside of [0h, 24h] range |
168 | let is_dst = |
169 | match Ord::cmp(¤t_year_dst_start_unix_time, ¤t_year_dst_end_unix_time) { |
170 | Ordering::Less | Ordering::Equal => { |
171 | if unix_time < current_year_dst_start_unix_time { |
172 | let previous_year_dst_end_unix_time = |
173 | self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc); |
174 | if unix_time < previous_year_dst_end_unix_time { |
175 | let previous_year_dst_start_unix_time = |
176 | self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc); |
177 | previous_year_dst_start_unix_time <= unix_time |
178 | } else { |
179 | false |
180 | } |
181 | } else if unix_time < current_year_dst_end_unix_time { |
182 | true |
183 | } else { |
184 | let next_year_dst_start_unix_time = |
185 | self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc); |
186 | if next_year_dst_start_unix_time <= unix_time { |
187 | let next_year_dst_end_unix_time = |
188 | self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc); |
189 | unix_time < next_year_dst_end_unix_time |
190 | } else { |
191 | false |
192 | } |
193 | } |
194 | } |
195 | Ordering::Greater => { |
196 | if unix_time < current_year_dst_end_unix_time { |
197 | let previous_year_dst_start_unix_time = |
198 | self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc); |
199 | if unix_time < previous_year_dst_start_unix_time { |
200 | let previous_year_dst_end_unix_time = |
201 | self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc); |
202 | unix_time < previous_year_dst_end_unix_time |
203 | } else { |
204 | true |
205 | } |
206 | } else if unix_time < current_year_dst_start_unix_time { |
207 | false |
208 | } else { |
209 | let next_year_dst_end_unix_time = |
210 | self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc); |
211 | if next_year_dst_end_unix_time <= unix_time { |
212 | let next_year_dst_start_unix_time = |
213 | self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc); |
214 | next_year_dst_start_unix_time <= unix_time |
215 | } else { |
216 | true |
217 | } |
218 | } |
219 | } |
220 | }; |
221 | |
222 | if is_dst { Ok(&self.dst) } else { Ok(&self.std) } |
223 | } |
224 | |
225 | fn find_local_time_type_from_local( |
226 | &self, |
227 | local_time: NaiveDateTime, |
228 | ) -> Result<crate::MappedLocalTime<LocalTimeType>, Error> { |
229 | // Year must be between i32::MIN + 2 and i32::MAX - 2, year in NaiveDate is always smaller. |
230 | let current_year = local_time.year(); |
231 | let local_time = local_time.and_utc().timestamp(); |
232 | |
233 | let dst_start_transition_start = |
234 | self.dst_start.unix_time(current_year, 0) + i64::from(self.dst_start_time); |
235 | let dst_start_transition_end = self.dst_start.unix_time(current_year, 0) |
236 | + i64::from(self.dst_start_time) |
237 | + i64::from(self.dst.ut_offset) |
238 | - i64::from(self.std.ut_offset); |
239 | |
240 | let dst_end_transition_start = |
241 | self.dst_end.unix_time(current_year, 0) + i64::from(self.dst_end_time); |
242 | let dst_end_transition_end = self.dst_end.unix_time(current_year, 0) |
243 | + i64::from(self.dst_end_time) |
244 | + i64::from(self.std.ut_offset) |
245 | - i64::from(self.dst.ut_offset); |
246 | |
247 | match self.std.ut_offset.cmp(&self.dst.ut_offset) { |
248 | Ordering::Equal => Ok(crate::MappedLocalTime::Single(self.std)), |
249 | Ordering::Less => { |
250 | if self.dst_start.transition_date(current_year).0 |
251 | < self.dst_end.transition_date(current_year).0 |
252 | { |
253 | // northern hemisphere |
254 | // For the DST END transition, the `start` happens at a later timestamp than the `end`. |
255 | if local_time <= dst_start_transition_start { |
256 | Ok(crate::MappedLocalTime::Single(self.std)) |
257 | } else if local_time > dst_start_transition_start |
258 | && local_time < dst_start_transition_end |
259 | { |
260 | Ok(crate::MappedLocalTime::None) |
261 | } else if local_time >= dst_start_transition_end |
262 | && local_time < dst_end_transition_end |
263 | { |
264 | Ok(crate::MappedLocalTime::Single(self.dst)) |
265 | } else if local_time >= dst_end_transition_end |
266 | && local_time <= dst_end_transition_start |
267 | { |
268 | Ok(crate::MappedLocalTime::Ambiguous(self.std, self.dst)) |
269 | } else { |
270 | Ok(crate::MappedLocalTime::Single(self.std)) |
271 | } |
272 | } else { |
273 | // southern hemisphere regular DST |
274 | // For the DST END transition, the `start` happens at a later timestamp than the `end`. |
275 | if local_time < dst_end_transition_end { |
276 | Ok(crate::MappedLocalTime::Single(self.dst)) |
277 | } else if local_time >= dst_end_transition_end |
278 | && local_time <= dst_end_transition_start |
279 | { |
280 | Ok(crate::MappedLocalTime::Ambiguous(self.std, self.dst)) |
281 | } else if local_time > dst_end_transition_end |
282 | && local_time < dst_start_transition_start |
283 | { |
284 | Ok(crate::MappedLocalTime::Single(self.std)) |
285 | } else if local_time >= dst_start_transition_start |
286 | && local_time < dst_start_transition_end |
287 | { |
288 | Ok(crate::MappedLocalTime::None) |
289 | } else { |
290 | Ok(crate::MappedLocalTime::Single(self.dst)) |
291 | } |
292 | } |
293 | } |
294 | Ordering::Greater => { |
295 | if self.dst_start.transition_date(current_year).0 |
296 | < self.dst_end.transition_date(current_year).0 |
297 | { |
298 | // southern hemisphere reverse DST |
299 | // For the DST END transition, the `start` happens at a later timestamp than the `end`. |
300 | if local_time < dst_start_transition_end { |
301 | Ok(crate::MappedLocalTime::Single(self.std)) |
302 | } else if local_time >= dst_start_transition_end |
303 | && local_time <= dst_start_transition_start |
304 | { |
305 | Ok(crate::MappedLocalTime::Ambiguous(self.dst, self.std)) |
306 | } else if local_time > dst_start_transition_start |
307 | && local_time < dst_end_transition_start |
308 | { |
309 | Ok(crate::MappedLocalTime::Single(self.dst)) |
310 | } else if local_time >= dst_end_transition_start |
311 | && local_time < dst_end_transition_end |
312 | { |
313 | Ok(crate::MappedLocalTime::None) |
314 | } else { |
315 | Ok(crate::MappedLocalTime::Single(self.std)) |
316 | } |
317 | } else { |
318 | // northern hemisphere reverse DST |
319 | // For the DST END transition, the `start` happens at a later timestamp than the `end`. |
320 | if local_time <= dst_end_transition_start { |
321 | Ok(crate::MappedLocalTime::Single(self.dst)) |
322 | } else if local_time > dst_end_transition_start |
323 | && local_time < dst_end_transition_end |
324 | { |
325 | Ok(crate::MappedLocalTime::None) |
326 | } else if local_time >= dst_end_transition_end |
327 | && local_time < dst_start_transition_end |
328 | { |
329 | Ok(crate::MappedLocalTime::Single(self.std)) |
330 | } else if local_time >= dst_start_transition_end |
331 | && local_time <= dst_start_transition_start |
332 | { |
333 | Ok(crate::MappedLocalTime::Ambiguous(self.dst, self.std)) |
334 | } else { |
335 | Ok(crate::MappedLocalTime::Single(self.dst)) |
336 | } |
337 | } |
338 | } |
339 | } |
340 | } |
341 | } |
342 | |
343 | /// Parse time zone name |
344 | fn parse_name<'a>(cursor: &mut Cursor<'a>) -> Result<&'a [u8], Error> { |
345 | match cursor.peek() { |
346 | Some(b'<' ) => {} |
347 | _ => return Ok(cursor.read_while(u8::is_ascii_alphabetic)?), |
348 | } |
349 | |
350 | cursor.read_exact(count:1)?; |
351 | let unquoted: &'a [u8] = cursor.read_until(|&x: u8| x == b'>' )?; |
352 | cursor.read_exact(count:1)?; |
353 | Ok(unquoted) |
354 | } |
355 | |
356 | /// Parse time zone offset |
357 | fn parse_offset(cursor: &mut Cursor) -> Result<i32, Error> { |
358 | let (sign: i32, hour: i32, minute: i32, second: i32) = parse_signed_hhmmss(cursor)?; |
359 | |
360 | if !(0..=24).contains(&hour) { |
361 | return Err(Error::InvalidTzString("invalid offset hour" )); |
362 | } |
363 | if !(0..=59).contains(&minute) { |
364 | return Err(Error::InvalidTzString("invalid offset minute" )); |
365 | } |
366 | if !(0..=59).contains(&second) { |
367 | return Err(Error::InvalidTzString("invalid offset second" )); |
368 | } |
369 | |
370 | Ok(sign * (hour * 3600 + minute * 60 + second)) |
371 | } |
372 | |
373 | /// Parse transition rule time |
374 | fn parse_rule_time(cursor: &mut Cursor) -> Result<i32, Error> { |
375 | let (hour: i32, minute: i32, second: i32) = parse_hhmmss(cursor)?; |
376 | |
377 | if !(0..=24).contains(&hour) { |
378 | return Err(Error::InvalidTzString("invalid day time hour" )); |
379 | } |
380 | if !(0..=59).contains(&minute) { |
381 | return Err(Error::InvalidTzString("invalid day time minute" )); |
382 | } |
383 | if !(0..=59).contains(&second) { |
384 | return Err(Error::InvalidTzString("invalid day time second" )); |
385 | } |
386 | |
387 | Ok(hour * 3600 + minute * 60 + second) |
388 | } |
389 | |
390 | /// Parse transition rule time with TZ string extensions |
391 | fn parse_rule_time_extended(cursor: &mut Cursor) -> Result<i32, Error> { |
392 | let (sign: i32, hour: i32, minute: i32, second: i32) = parse_signed_hhmmss(cursor)?; |
393 | |
394 | if !(-167..=167).contains(&hour) { |
395 | return Err(Error::InvalidTzString("invalid day time hour" )); |
396 | } |
397 | if !(0..=59).contains(&minute) { |
398 | return Err(Error::InvalidTzString("invalid day time minute" )); |
399 | } |
400 | if !(0..=59).contains(&second) { |
401 | return Err(Error::InvalidTzString("invalid day time second" )); |
402 | } |
403 | |
404 | Ok(sign * (hour * 3600 + minute * 60 + second)) |
405 | } |
406 | |
407 | /// Parse hours, minutes and seconds |
408 | fn parse_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32), Error> { |
409 | let hour: i32 = cursor.read_int()?; |
410 | |
411 | let mut minute: i32 = 0; |
412 | let mut second: i32 = 0; |
413 | |
414 | if cursor.read_optional_tag(b":" )? { |
415 | minute = cursor.read_int()?; |
416 | |
417 | if cursor.read_optional_tag(b":" )? { |
418 | second = cursor.read_int()?; |
419 | } |
420 | } |
421 | |
422 | Ok((hour, minute, second)) |
423 | } |
424 | |
425 | /// Parse signed hours, minutes and seconds |
426 | fn parse_signed_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32, i32), Error> { |
427 | let mut sign: i32 = 1; |
428 | if let Some(&c: u8) = cursor.peek() { |
429 | if c == b'+' || c == b'-' { |
430 | cursor.read_exact(count:1)?; |
431 | if c == b'-' { |
432 | sign = -1; |
433 | } |
434 | } |
435 | } |
436 | |
437 | let (hour: i32, minute: i32, second: i32) = parse_hhmmss(cursor)?; |
438 | Ok((sign, hour, minute, second)) |
439 | } |
440 | |
441 | /// Transition rule day |
442 | #[derive (Debug, Copy, Clone, Eq, PartialEq)] |
443 | enum RuleDay { |
444 | /// Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable |
445 | Julian1WithoutLeap(u16), |
446 | /// Zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account |
447 | Julian0WithLeap(u16), |
448 | /// Day represented by a month, a month week and a week day |
449 | MonthWeekday { |
450 | /// Month in `[1, 12]` |
451 | month: u8, |
452 | /// Week of the month in `[1, 5]`, with `5` representing the last week of the month |
453 | week: u8, |
454 | /// Day of the week in `[0, 6]` from Sunday |
455 | week_day: u8, |
456 | }, |
457 | } |
458 | |
459 | impl RuleDay { |
460 | /// Parse transition rule |
461 | fn parse(cursor: &mut Cursor, use_string_extensions: bool) -> Result<(Self, i32), Error> { |
462 | let date = match cursor.peek() { |
463 | Some(b'M' ) => { |
464 | cursor.read_exact(1)?; |
465 | let month = cursor.read_int()?; |
466 | cursor.read_tag(b"." )?; |
467 | let week = cursor.read_int()?; |
468 | cursor.read_tag(b"." )?; |
469 | let week_day = cursor.read_int()?; |
470 | RuleDay::month_weekday(month, week, week_day)? |
471 | } |
472 | Some(b'J' ) => { |
473 | cursor.read_exact(1)?; |
474 | RuleDay::julian_1(cursor.read_int()?)? |
475 | } |
476 | _ => RuleDay::julian_0(cursor.read_int()?)?, |
477 | }; |
478 | |
479 | Ok(( |
480 | date, |
481 | match (cursor.read_optional_tag(b"/" )?, use_string_extensions) { |
482 | (false, _) => 2 * 3600, |
483 | (true, true) => parse_rule_time_extended(cursor)?, |
484 | (true, false) => parse_rule_time(cursor)?, |
485 | }, |
486 | )) |
487 | } |
488 | |
489 | /// Construct a transition rule day represented by a Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable |
490 | fn julian_1(julian_day_1: u16) -> Result<Self, Error> { |
491 | if !(1..=365).contains(&julian_day_1) { |
492 | return Err(Error::TransitionRule("invalid rule day julian day" )); |
493 | } |
494 | |
495 | Ok(RuleDay::Julian1WithoutLeap(julian_day_1)) |
496 | } |
497 | |
498 | /// Construct a transition rule day represented by a zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account |
499 | const fn julian_0(julian_day_0: u16) -> Result<Self, Error> { |
500 | if julian_day_0 > 365 { |
501 | return Err(Error::TransitionRule("invalid rule day julian day" )); |
502 | } |
503 | |
504 | Ok(RuleDay::Julian0WithLeap(julian_day_0)) |
505 | } |
506 | |
507 | /// Construct a transition rule day represented by a month, a month week and a week day |
508 | fn month_weekday(month: u8, week: u8, week_day: u8) -> Result<Self, Error> { |
509 | if !(1..=12).contains(&month) { |
510 | return Err(Error::TransitionRule("invalid rule day month" )); |
511 | } |
512 | |
513 | if !(1..=5).contains(&week) { |
514 | return Err(Error::TransitionRule("invalid rule day week" )); |
515 | } |
516 | |
517 | if week_day > 6 { |
518 | return Err(Error::TransitionRule("invalid rule day week day" )); |
519 | } |
520 | |
521 | Ok(RuleDay::MonthWeekday { month, week, week_day }) |
522 | } |
523 | |
524 | /// Get the transition date for the provided year |
525 | /// |
526 | /// ## Outputs |
527 | /// |
528 | /// * `month`: Month in `[1, 12]` |
529 | /// * `month_day`: Day of the month in `[1, 31]` |
530 | fn transition_date(&self, year: i32) -> (usize, i64) { |
531 | match *self { |
532 | RuleDay::Julian1WithoutLeap(year_day) => { |
533 | let year_day = year_day as i64; |
534 | |
535 | let month = match CUMUL_DAY_IN_MONTHS_NORMAL_YEAR.binary_search(&(year_day - 1)) { |
536 | Ok(x) => x + 1, |
537 | Err(x) => x, |
538 | }; |
539 | |
540 | let month_day = year_day - CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1]; |
541 | |
542 | (month, month_day) |
543 | } |
544 | RuleDay::Julian0WithLeap(year_day) => { |
545 | let leap = is_leap_year(year) as i64; |
546 | |
547 | let cumul_day_in_months = [ |
548 | 0, |
549 | 31, |
550 | 59 + leap, |
551 | 90 + leap, |
552 | 120 + leap, |
553 | 151 + leap, |
554 | 181 + leap, |
555 | 212 + leap, |
556 | 243 + leap, |
557 | 273 + leap, |
558 | 304 + leap, |
559 | 334 + leap, |
560 | ]; |
561 | |
562 | let year_day = year_day as i64; |
563 | |
564 | let month = match cumul_day_in_months.binary_search(&year_day) { |
565 | Ok(x) => x + 1, |
566 | Err(x) => x, |
567 | }; |
568 | |
569 | let month_day = 1 + year_day - cumul_day_in_months[month - 1]; |
570 | |
571 | (month, month_day) |
572 | } |
573 | RuleDay::MonthWeekday { month: rule_month, week, week_day } => { |
574 | let leap = is_leap_year(year) as i64; |
575 | |
576 | let month = rule_month as usize; |
577 | |
578 | let mut day_in_month = DAY_IN_MONTHS_NORMAL_YEAR[month - 1]; |
579 | if month == 2 { |
580 | day_in_month += leap; |
581 | } |
582 | |
583 | let week_day_of_first_month_day = |
584 | (4 + days_since_unix_epoch(year, month, 1)).rem_euclid(DAYS_PER_WEEK); |
585 | let first_week_day_occurrence_in_month = |
586 | 1 + (week_day as i64 - week_day_of_first_month_day).rem_euclid(DAYS_PER_WEEK); |
587 | |
588 | let mut month_day = |
589 | first_week_day_occurrence_in_month + (week as i64 - 1) * DAYS_PER_WEEK; |
590 | if month_day > day_in_month { |
591 | month_day -= DAYS_PER_WEEK |
592 | } |
593 | |
594 | (month, month_day) |
595 | } |
596 | } |
597 | } |
598 | |
599 | /// Returns the UTC Unix time in seconds associated to the transition date for the provided year |
600 | fn unix_time(&self, year: i32, day_time_in_utc: i64) -> i64 { |
601 | let (month, month_day) = self.transition_date(year); |
602 | days_since_unix_epoch(year, month, month_day) * SECONDS_PER_DAY + day_time_in_utc |
603 | } |
604 | } |
605 | |
606 | /// UTC date time exprimed in the [proleptic gregorian calendar](https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar) |
607 | #[derive (Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)] |
608 | pub(crate) struct UtcDateTime { |
609 | /// Year |
610 | pub(crate) year: i32, |
611 | /// Month in `[1, 12]` |
612 | pub(crate) month: u8, |
613 | /// Day of the month in `[1, 31]` |
614 | pub(crate) month_day: u8, |
615 | /// Hours since midnight in `[0, 23]` |
616 | pub(crate) hour: u8, |
617 | /// Minutes in `[0, 59]` |
618 | pub(crate) minute: u8, |
619 | /// Seconds in `[0, 60]`, with a possible leap second |
620 | pub(crate) second: u8, |
621 | } |
622 | |
623 | impl UtcDateTime { |
624 | /// Construct a UTC date time from a Unix time in seconds and nanoseconds |
625 | pub(crate) fn from_timespec(unix_time: i64) -> Result<Self, Error> { |
626 | let seconds = match unix_time.checked_sub(UNIX_OFFSET_SECS) { |
627 | Some(seconds) => seconds, |
628 | None => return Err(Error::OutOfRange("out of range operation" )), |
629 | }; |
630 | |
631 | let mut remaining_days = seconds / SECONDS_PER_DAY; |
632 | let mut remaining_seconds = seconds % SECONDS_PER_DAY; |
633 | if remaining_seconds < 0 { |
634 | remaining_seconds += SECONDS_PER_DAY; |
635 | remaining_days -= 1; |
636 | } |
637 | |
638 | let mut cycles_400_years = remaining_days / DAYS_PER_400_YEARS; |
639 | remaining_days %= DAYS_PER_400_YEARS; |
640 | if remaining_days < 0 { |
641 | remaining_days += DAYS_PER_400_YEARS; |
642 | cycles_400_years -= 1; |
643 | } |
644 | |
645 | let cycles_100_years = Ord::min(remaining_days / DAYS_PER_100_YEARS, 3); |
646 | remaining_days -= cycles_100_years * DAYS_PER_100_YEARS; |
647 | |
648 | let cycles_4_years = Ord::min(remaining_days / DAYS_PER_4_YEARS, 24); |
649 | remaining_days -= cycles_4_years * DAYS_PER_4_YEARS; |
650 | |
651 | let remaining_years = Ord::min(remaining_days / DAYS_PER_NORMAL_YEAR, 3); |
652 | remaining_days -= remaining_years * DAYS_PER_NORMAL_YEAR; |
653 | |
654 | let mut year = OFFSET_YEAR |
655 | + remaining_years |
656 | + cycles_4_years * 4 |
657 | + cycles_100_years * 100 |
658 | + cycles_400_years * 400; |
659 | |
660 | let mut month = 0; |
661 | while month < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH.len() { |
662 | let days = DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month]; |
663 | if remaining_days < days { |
664 | break; |
665 | } |
666 | remaining_days -= days; |
667 | month += 1; |
668 | } |
669 | month += 2; |
670 | |
671 | if month >= MONTHS_PER_YEAR as usize { |
672 | month -= MONTHS_PER_YEAR as usize; |
673 | year += 1; |
674 | } |
675 | month += 1; |
676 | |
677 | let month_day = 1 + remaining_days; |
678 | |
679 | let hour = remaining_seconds / SECONDS_PER_HOUR; |
680 | let minute = (remaining_seconds / SECONDS_PER_MINUTE) % MINUTES_PER_HOUR; |
681 | let second = remaining_seconds % SECONDS_PER_MINUTE; |
682 | |
683 | let year = match year >= i32::MIN as i64 && year <= i32::MAX as i64 { |
684 | true => year as i32, |
685 | false => return Err(Error::OutOfRange("i64 is out of range for i32" )), |
686 | }; |
687 | |
688 | Ok(Self { |
689 | year, |
690 | month: month as u8, |
691 | month_day: month_day as u8, |
692 | hour: hour as u8, |
693 | minute: minute as u8, |
694 | second: second as u8, |
695 | }) |
696 | } |
697 | } |
698 | |
699 | /// Number of nanoseconds in one second |
700 | const NANOSECONDS_PER_SECOND: u32 = 1_000_000_000; |
701 | /// Number of seconds in one minute |
702 | const SECONDS_PER_MINUTE: i64 = 60; |
703 | /// Number of seconds in one hour |
704 | const SECONDS_PER_HOUR: i64 = 3600; |
705 | /// Number of minutes in one hour |
706 | const MINUTES_PER_HOUR: i64 = 60; |
707 | /// Number of months in one year |
708 | const MONTHS_PER_YEAR: i64 = 12; |
709 | /// Number of days in a normal year |
710 | const DAYS_PER_NORMAL_YEAR: i64 = 365; |
711 | /// Number of days in 4 years (including 1 leap year) |
712 | const DAYS_PER_4_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 4 + 1; |
713 | /// Number of days in 100 years (including 24 leap years) |
714 | const DAYS_PER_100_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 100 + 24; |
715 | /// Number of days in 400 years (including 97 leap years) |
716 | const DAYS_PER_400_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 400 + 97; |
717 | /// Unix time at `2000-03-01T00:00:00Z` (Wednesday) |
718 | const UNIX_OFFSET_SECS: i64 = 951868800; |
719 | /// Offset year |
720 | const OFFSET_YEAR: i64 = 2000; |
721 | /// Month days in a leap year from March |
722 | const DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH: [i64; 12] = |
723 | [31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29]; |
724 | |
725 | /// Compute the number of days since Unix epoch (`1970-01-01T00:00:00Z`). |
726 | /// |
727 | /// ## Inputs |
728 | /// |
729 | /// * `year`: Year |
730 | /// * `month`: Month in `[1, 12]` |
731 | /// * `month_day`: Day of the month in `[1, 31]` |
732 | pub(crate) const fn days_since_unix_epoch(year: i32, month: usize, month_day: i64) -> i64 { |
733 | let is_leap_year = is_leap_year(year); |
734 | |
735 | let year = year as i64; |
736 | |
737 | let mut result = (year - 1970) * 365; |
738 | |
739 | if year >= 1970 { |
740 | result += (year - 1968) / 4; |
741 | result -= (year - 1900) / 100; |
742 | result += (year - 1600) / 400; |
743 | |
744 | if is_leap_year && month < 3 { |
745 | result -= 1; |
746 | } |
747 | } else { |
748 | result += (year - 1972) / 4; |
749 | result -= (year - 2000) / 100; |
750 | result += (year - 2000) / 400; |
751 | |
752 | if is_leap_year && month >= 3 { |
753 | result += 1; |
754 | } |
755 | } |
756 | |
757 | result += CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1] + month_day - 1; |
758 | |
759 | result |
760 | } |
761 | |
762 | /// Check if a year is a leap year |
763 | pub(crate) const fn is_leap_year(year: i32) -> bool { |
764 | year % 400 == 0 || (year % 4 == 0 && year % 100 != 0) |
765 | } |
766 | |
767 | #[cfg (test)] |
768 | mod tests { |
769 | use super::super::timezone::Transition; |
770 | use super::super::{Error, TimeZone}; |
771 | use super::{AlternateTime, LocalTimeType, RuleDay, TransitionRule}; |
772 | |
773 | #[test ] |
774 | fn test_quoted() -> Result<(), Error> { |
775 | let transition_rule = TransitionRule::from_tz_string(b"<-03>+3<+03>-3,J1,J365" , false)?; |
776 | assert_eq!( |
777 | transition_rule, |
778 | AlternateTime::new( |
779 | LocalTimeType::new(-10800, false, Some(b"-03" ))?, |
780 | LocalTimeType::new(10800, true, Some(b"+03" ))?, |
781 | RuleDay::julian_1(1)?, |
782 | 7200, |
783 | RuleDay::julian_1(365)?, |
784 | 7200, |
785 | )? |
786 | .into() |
787 | ); |
788 | Ok(()) |
789 | } |
790 | |
791 | #[test ] |
792 | fn test_full() -> Result<(), Error> { |
793 | let tz_string = b"NZST-12:00:00NZDT-13:00:00,M10.1.0/02:00:00,M3.3.0/02:00:00" ; |
794 | let transition_rule = TransitionRule::from_tz_string(tz_string, false)?; |
795 | assert_eq!( |
796 | transition_rule, |
797 | AlternateTime::new( |
798 | LocalTimeType::new(43200, false, Some(b"NZST" ))?, |
799 | LocalTimeType::new(46800, true, Some(b"NZDT" ))?, |
800 | RuleDay::month_weekday(10, 1, 0)?, |
801 | 7200, |
802 | RuleDay::month_weekday(3, 3, 0)?, |
803 | 7200, |
804 | )? |
805 | .into() |
806 | ); |
807 | Ok(()) |
808 | } |
809 | |
810 | #[test ] |
811 | fn test_negative_dst() -> Result<(), Error> { |
812 | let tz_string = b"IST-1GMT0,M10.5.0,M3.5.0/1" ; |
813 | let transition_rule = TransitionRule::from_tz_string(tz_string, false)?; |
814 | assert_eq!( |
815 | transition_rule, |
816 | AlternateTime::new( |
817 | LocalTimeType::new(3600, false, Some(b"IST" ))?, |
818 | LocalTimeType::new(0, true, Some(b"GMT" ))?, |
819 | RuleDay::month_weekday(10, 5, 0)?, |
820 | 7200, |
821 | RuleDay::month_weekday(3, 5, 0)?, |
822 | 3600, |
823 | )? |
824 | .into() |
825 | ); |
826 | Ok(()) |
827 | } |
828 | |
829 | #[test ] |
830 | fn test_negative_hour() -> Result<(), Error> { |
831 | let tz_string = b"<-03>3<-02>,M3.5.0/-2,M10.5.0/-1" ; |
832 | assert!(TransitionRule::from_tz_string(tz_string, false).is_err()); |
833 | |
834 | assert_eq!( |
835 | TransitionRule::from_tz_string(tz_string, true)?, |
836 | AlternateTime::new( |
837 | LocalTimeType::new(-10800, false, Some(b"-03" ))?, |
838 | LocalTimeType::new(-7200, true, Some(b"-02" ))?, |
839 | RuleDay::month_weekday(3, 5, 0)?, |
840 | -7200, |
841 | RuleDay::month_weekday(10, 5, 0)?, |
842 | -3600, |
843 | )? |
844 | .into() |
845 | ); |
846 | Ok(()) |
847 | } |
848 | |
849 | #[test ] |
850 | fn test_all_year_dst() -> Result<(), Error> { |
851 | let tz_string = b"EST5EDT,0/0,J365/25" ; |
852 | assert!(TransitionRule::from_tz_string(tz_string, false).is_err()); |
853 | |
854 | assert_eq!( |
855 | TransitionRule::from_tz_string(tz_string, true)?, |
856 | AlternateTime::new( |
857 | LocalTimeType::new(-18000, false, Some(b"EST" ))?, |
858 | LocalTimeType::new(-14400, true, Some(b"EDT" ))?, |
859 | RuleDay::julian_0(0)?, |
860 | 0, |
861 | RuleDay::julian_1(365)?, |
862 | 90000, |
863 | )? |
864 | .into() |
865 | ); |
866 | Ok(()) |
867 | } |
868 | |
869 | #[test ] |
870 | fn test_v3_file() -> Result<(), Error> { |
871 | let bytes = b"TZif3 \0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x04\0\0\x1c\x20\0\0IST \0TZif3 \0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\x04\0\0\0\0\x7f\xe8\x17\x80\0\0\0\x1c\x20\0\0IST \0\x01\x01\x0aIST-2IDT,M3.4.4/26,M10.5.0 \x0a" ; |
872 | |
873 | let time_zone = TimeZone::from_tz_data(bytes)?; |
874 | |
875 | let time_zone_result = TimeZone::new( |
876 | vec![Transition::new(2145916800, 0)], |
877 | vec![LocalTimeType::new(7200, false, Some(b"IST" ))?], |
878 | Vec::new(), |
879 | Some(TransitionRule::from(AlternateTime::new( |
880 | LocalTimeType::new(7200, false, Some(b"IST" ))?, |
881 | LocalTimeType::new(10800, true, Some(b"IDT" ))?, |
882 | RuleDay::month_weekday(3, 4, 4)?, |
883 | 93600, |
884 | RuleDay::month_weekday(10, 5, 0)?, |
885 | 7200, |
886 | )?)), |
887 | )?; |
888 | |
889 | assert_eq!(time_zone, time_zone_result); |
890 | |
891 | Ok(()) |
892 | } |
893 | |
894 | #[test ] |
895 | fn test_rule_day() -> Result<(), Error> { |
896 | let rule_day_j1 = RuleDay::julian_1(60)?; |
897 | assert_eq!(rule_day_j1.transition_date(2000), (3, 1)); |
898 | assert_eq!(rule_day_j1.transition_date(2001), (3, 1)); |
899 | assert_eq!(rule_day_j1.unix_time(2000, 43200), 951912000); |
900 | |
901 | let rule_day_j0 = RuleDay::julian_0(59)?; |
902 | assert_eq!(rule_day_j0.transition_date(2000), (2, 29)); |
903 | assert_eq!(rule_day_j0.transition_date(2001), (3, 1)); |
904 | assert_eq!(rule_day_j0.unix_time(2000, 43200), 951825600); |
905 | |
906 | let rule_day_mwd = RuleDay::month_weekday(2, 5, 2)?; |
907 | assert_eq!(rule_day_mwd.transition_date(2000), (2, 29)); |
908 | assert_eq!(rule_day_mwd.transition_date(2001), (2, 27)); |
909 | assert_eq!(rule_day_mwd.unix_time(2000, 43200), 951825600); |
910 | assert_eq!(rule_day_mwd.unix_time(2001, 43200), 983275200); |
911 | |
912 | Ok(()) |
913 | } |
914 | |
915 | #[test ] |
916 | fn test_transition_rule() -> Result<(), Error> { |
917 | let transition_rule_fixed = TransitionRule::from(LocalTimeType::new(-36000, false, None)?); |
918 | assert_eq!(transition_rule_fixed.find_local_time_type(0)?.offset(), -36000); |
919 | |
920 | let transition_rule_dst = TransitionRule::from(AlternateTime::new( |
921 | LocalTimeType::new(43200, false, Some(b"NZST" ))?, |
922 | LocalTimeType::new(46800, true, Some(b"NZDT" ))?, |
923 | RuleDay::month_weekday(10, 1, 0)?, |
924 | 7200, |
925 | RuleDay::month_weekday(3, 3, 0)?, |
926 | 7200, |
927 | )?); |
928 | |
929 | assert_eq!(transition_rule_dst.find_local_time_type(953384399)?.offset(), 46800); |
930 | assert_eq!(transition_rule_dst.find_local_time_type(953384400)?.offset(), 43200); |
931 | assert_eq!(transition_rule_dst.find_local_time_type(970322399)?.offset(), 43200); |
932 | assert_eq!(transition_rule_dst.find_local_time_type(970322400)?.offset(), 46800); |
933 | |
934 | let transition_rule_negative_dst = TransitionRule::from(AlternateTime::new( |
935 | LocalTimeType::new(3600, false, Some(b"IST" ))?, |
936 | LocalTimeType::new(0, true, Some(b"GMT" ))?, |
937 | RuleDay::month_weekday(10, 5, 0)?, |
938 | 7200, |
939 | RuleDay::month_weekday(3, 5, 0)?, |
940 | 3600, |
941 | )?); |
942 | |
943 | assert_eq!(transition_rule_negative_dst.find_local_time_type(954032399)?.offset(), 0); |
944 | assert_eq!(transition_rule_negative_dst.find_local_time_type(954032400)?.offset(), 3600); |
945 | assert_eq!(transition_rule_negative_dst.find_local_time_type(972781199)?.offset(), 3600); |
946 | assert_eq!(transition_rule_negative_dst.find_local_time_type(972781200)?.offset(), 0); |
947 | |
948 | let transition_rule_negative_time_1 = TransitionRule::from(AlternateTime::new( |
949 | LocalTimeType::new(0, false, None)?, |
950 | LocalTimeType::new(0, true, None)?, |
951 | RuleDay::julian_0(100)?, |
952 | 0, |
953 | RuleDay::julian_0(101)?, |
954 | -86500, |
955 | )?); |
956 | |
957 | assert!(transition_rule_negative_time_1.find_local_time_type(8639899)?.is_dst()); |
958 | assert!(!transition_rule_negative_time_1.find_local_time_type(8639900)?.is_dst()); |
959 | assert!(!transition_rule_negative_time_1.find_local_time_type(8639999)?.is_dst()); |
960 | assert!(transition_rule_negative_time_1.find_local_time_type(8640000)?.is_dst()); |
961 | |
962 | let transition_rule_negative_time_2 = TransitionRule::from(AlternateTime::new( |
963 | LocalTimeType::new(-10800, false, Some(b"-03" ))?, |
964 | LocalTimeType::new(-7200, true, Some(b"-02" ))?, |
965 | RuleDay::month_weekday(3, 5, 0)?, |
966 | -7200, |
967 | RuleDay::month_weekday(10, 5, 0)?, |
968 | -3600, |
969 | )?); |
970 | |
971 | assert_eq!( |
972 | transition_rule_negative_time_2.find_local_time_type(954032399)?.offset(), |
973 | -10800 |
974 | ); |
975 | assert_eq!( |
976 | transition_rule_negative_time_2.find_local_time_type(954032400)?.offset(), |
977 | -7200 |
978 | ); |
979 | assert_eq!( |
980 | transition_rule_negative_time_2.find_local_time_type(972781199)?.offset(), |
981 | -7200 |
982 | ); |
983 | assert_eq!( |
984 | transition_rule_negative_time_2.find_local_time_type(972781200)?.offset(), |
985 | -10800 |
986 | ); |
987 | |
988 | let transition_rule_all_year_dst = TransitionRule::from(AlternateTime::new( |
989 | LocalTimeType::new(-18000, false, Some(b"EST" ))?, |
990 | LocalTimeType::new(-14400, true, Some(b"EDT" ))?, |
991 | RuleDay::julian_0(0)?, |
992 | 0, |
993 | RuleDay::julian_1(365)?, |
994 | 90000, |
995 | )?); |
996 | |
997 | assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702799)?.offset(), -14400); |
998 | assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702800)?.offset(), -14400); |
999 | |
1000 | Ok(()) |
1001 | } |
1002 | |
1003 | #[test ] |
1004 | fn test_transition_rule_overflow() -> Result<(), Error> { |
1005 | let transition_rule_1 = TransitionRule::from(AlternateTime::new( |
1006 | LocalTimeType::new(-1, false, None)?, |
1007 | LocalTimeType::new(-1, true, None)?, |
1008 | RuleDay::julian_1(365)?, |
1009 | 0, |
1010 | RuleDay::julian_1(1)?, |
1011 | 0, |
1012 | )?); |
1013 | |
1014 | let transition_rule_2 = TransitionRule::from(AlternateTime::new( |
1015 | LocalTimeType::new(1, false, None)?, |
1016 | LocalTimeType::new(1, true, None)?, |
1017 | RuleDay::julian_1(365)?, |
1018 | 0, |
1019 | RuleDay::julian_1(1)?, |
1020 | 0, |
1021 | )?); |
1022 | |
1023 | let min_unix_time = -67768100567971200; |
1024 | let max_unix_time = 67767976233532799; |
1025 | |
1026 | assert!(matches!( |
1027 | transition_rule_1.find_local_time_type(min_unix_time), |
1028 | Err(Error::OutOfRange(_)) |
1029 | )); |
1030 | assert!(matches!( |
1031 | transition_rule_2.find_local_time_type(max_unix_time), |
1032 | Err(Error::OutOfRange(_)) |
1033 | )); |
1034 | |
1035 | Ok(()) |
1036 | } |
1037 | } |
1038 | |