1 | // Copyright 2013 The Servo Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | use super::UnknownUnit; |
11 | use crate::approxeq::ApproxEq; |
12 | use crate::approxord::{max, min}; |
13 | use crate::length::Length; |
14 | use crate::num::*; |
15 | use crate::point::{point2, point3, Point2D, Point3D}; |
16 | use crate::scale::Scale; |
17 | use crate::size::{size2, size3, Size2D, Size3D}; |
18 | use crate::transform2d::Transform2D; |
19 | use crate::transform3d::Transform3D; |
20 | use crate::trig::Trig; |
21 | use crate::Angle; |
22 | use core::cmp::{Eq, PartialEq}; |
23 | use core::fmt; |
24 | use core::hash::Hash; |
25 | use core::iter::Sum; |
26 | use core::marker::PhantomData; |
27 | use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; |
28 | #[cfg (feature = "mint" )] |
29 | use mint; |
30 | use num_traits::real::Real; |
31 | use num_traits::{Float, NumCast, Signed}; |
32 | #[cfg (feature = "serde" )] |
33 | use serde; |
34 | |
35 | #[cfg (feature = "bytemuck" )] |
36 | use bytemuck::{Zeroable, Pod}; |
37 | |
38 | /// A 2d Vector tagged with a unit. |
39 | #[repr (C)] |
40 | pub struct Vector2D<T, U> { |
41 | /// The `x` (traditionally, horizontal) coordinate. |
42 | pub x: T, |
43 | /// The `y` (traditionally, vertical) coordinate. |
44 | pub y: T, |
45 | #[doc (hidden)] |
46 | pub _unit: PhantomData<U>, |
47 | } |
48 | |
49 | mint_vec!(Vector2D[x, y] = Vector2); |
50 | |
51 | impl<T: Copy, U> Copy for Vector2D<T, U> {} |
52 | |
53 | impl<T: Clone, U> Clone for Vector2D<T, U> { |
54 | fn clone(&self) -> Self { |
55 | Vector2D { |
56 | x: self.x.clone(), |
57 | y: self.y.clone(), |
58 | _unit: PhantomData, |
59 | } |
60 | } |
61 | } |
62 | |
63 | #[cfg (feature = "serde" )] |
64 | impl<'de, T, U> serde::Deserialize<'de> for Vector2D<T, U> |
65 | where |
66 | T: serde::Deserialize<'de>, |
67 | { |
68 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
69 | where |
70 | D: serde::Deserializer<'de>, |
71 | { |
72 | let (x, y) = serde::Deserialize::deserialize(deserializer)?; |
73 | Ok(Vector2D { |
74 | x, |
75 | y, |
76 | _unit: PhantomData, |
77 | }) |
78 | } |
79 | } |
80 | |
81 | #[cfg (feature = "serde" )] |
82 | impl<T, U> serde::Serialize for Vector2D<T, U> |
83 | where |
84 | T: serde::Serialize, |
85 | { |
86 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
87 | where |
88 | S: serde::Serializer, |
89 | { |
90 | (&self.x, &self.y).serialize(serializer) |
91 | } |
92 | } |
93 | |
94 | #[cfg (feature = "arbitrary" )] |
95 | impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector2D<T, U> |
96 | where |
97 | T: arbitrary::Arbitrary<'a>, |
98 | { |
99 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> |
100 | { |
101 | let (x, y) = arbitrary::Arbitrary::arbitrary(u)?; |
102 | Ok(Vector2D { |
103 | x, |
104 | y, |
105 | _unit: PhantomData, |
106 | }) |
107 | } |
108 | } |
109 | |
110 | #[cfg (feature = "bytemuck" )] |
111 | unsafe impl<T: Zeroable, U> Zeroable for Vector2D<T, U> {} |
112 | |
113 | #[cfg (feature = "bytemuck" )] |
114 | unsafe impl<T: Pod, U: 'static> Pod for Vector2D<T, U> {} |
115 | |
116 | impl<T: Eq, U> Eq for Vector2D<T, U> {} |
117 | |
118 | impl<T: PartialEq, U> PartialEq for Vector2D<T, U> { |
119 | fn eq(&self, other: &Self) -> bool { |
120 | self.x == other.x && self.y == other.y |
121 | } |
122 | } |
123 | |
124 | impl<T: Hash, U> Hash for Vector2D<T, U> { |
125 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
126 | self.x.hash(state:h); |
127 | self.y.hash(state:h); |
128 | } |
129 | } |
130 | |
131 | impl<T: Zero, U> Zero for Vector2D<T, U> { |
132 | /// Constructor, setting all components to zero. |
133 | #[inline ] |
134 | fn zero() -> Self { |
135 | Vector2D::new(x:Zero::zero(), y:Zero::zero()) |
136 | } |
137 | } |
138 | |
139 | impl<T: fmt::Debug, U> fmt::Debug for Vector2D<T, U> { |
140 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
141 | f.debug_tuple(name:"" ).field(&self.x).field(&self.y).finish() |
142 | } |
143 | } |
144 | |
145 | impl<T: Default, U> Default for Vector2D<T, U> { |
146 | fn default() -> Self { |
147 | Vector2D::new(x:Default::default(), y:Default::default()) |
148 | } |
149 | } |
150 | |
151 | impl<T, U> Vector2D<T, U> { |
152 | /// Constructor, setting all components to zero. |
153 | #[inline ] |
154 | pub fn zero() -> Self |
155 | where |
156 | T: Zero, |
157 | { |
158 | Vector2D::new(Zero::zero(), Zero::zero()) |
159 | } |
160 | |
161 | /// Constructor, setting all components to one. |
162 | #[inline ] |
163 | pub fn one() -> Self |
164 | where |
165 | T: One, |
166 | { |
167 | Vector2D::new(One::one(), One::one()) |
168 | } |
169 | |
170 | /// Constructor taking scalar values directly. |
171 | #[inline ] |
172 | pub const fn new(x: T, y: T) -> Self { |
173 | Vector2D { |
174 | x, |
175 | y, |
176 | _unit: PhantomData, |
177 | } |
178 | } |
179 | |
180 | /// Constructor setting all components to the same value. |
181 | #[inline ] |
182 | pub fn splat(v: T) -> Self |
183 | where |
184 | T: Clone, |
185 | { |
186 | Vector2D { |
187 | x: v.clone(), |
188 | y: v, |
189 | _unit: PhantomData, |
190 | } |
191 | } |
192 | |
193 | /// Constructor taking angle and length |
194 | pub fn from_angle_and_length(angle: Angle<T>, length: T) -> Self |
195 | where |
196 | T: Trig + Mul<Output = T> + Copy, |
197 | { |
198 | vec2(length * angle.radians.cos(), length * angle.radians.sin()) |
199 | } |
200 | |
201 | /// Constructor taking properly Lengths instead of scalar values. |
202 | #[inline ] |
203 | pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self { |
204 | vec2(x.0, y.0) |
205 | } |
206 | |
207 | /// Tag a unit-less value with units. |
208 | #[inline ] |
209 | pub fn from_untyped(p: Vector2D<T, UnknownUnit>) -> Self { |
210 | vec2(p.x, p.y) |
211 | } |
212 | |
213 | /// Computes the vector with absolute values of each component. |
214 | /// |
215 | /// # Example |
216 | /// |
217 | /// ```rust |
218 | /// # use std::{i32, f32}; |
219 | /// # use euclid::vec2; |
220 | /// enum U {} |
221 | /// |
222 | /// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2)); |
223 | /// |
224 | /// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs(); |
225 | /// assert!(vec.x.is_nan()); |
226 | /// assert_eq!(vec.y, f32::MAX); |
227 | /// ``` |
228 | /// |
229 | /// # Panics |
230 | /// |
231 | /// The behavior for each component follows the scalar type's implementation of |
232 | /// `num_traits::Signed::abs`. |
233 | pub fn abs(self) -> Self |
234 | where |
235 | T: Signed, |
236 | { |
237 | vec2(self.x.abs(), self.y.abs()) |
238 | } |
239 | |
240 | /// Dot product. |
241 | #[inline ] |
242 | pub fn dot(self, other: Self) -> T |
243 | where |
244 | T: Add<Output = T> + Mul<Output = T>, |
245 | { |
246 | self.x * other.x + self.y * other.y |
247 | } |
248 | |
249 | /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0]. |
250 | #[inline ] |
251 | pub fn cross(self, other: Self) -> T |
252 | where |
253 | T: Sub<Output = T> + Mul<Output = T>, |
254 | { |
255 | self.x * other.y - self.y * other.x |
256 | } |
257 | |
258 | /// Returns the component-wise multiplication of the two vectors. |
259 | #[inline ] |
260 | pub fn component_mul(self, other: Self) -> Self |
261 | where |
262 | T: Mul<Output = T>, |
263 | { |
264 | vec2(self.x * other.x, self.y * other.y) |
265 | } |
266 | |
267 | /// Returns the component-wise division of the two vectors. |
268 | #[inline ] |
269 | pub fn component_div(self, other: Self) -> Self |
270 | where |
271 | T: Div<Output = T>, |
272 | { |
273 | vec2(self.x / other.x, self.y / other.y) |
274 | } |
275 | } |
276 | |
277 | impl<T: Copy, U> Vector2D<T, U> { |
278 | /// Create a 3d vector from this one, using the specified z value. |
279 | #[inline ] |
280 | pub fn extend(self, z: T) -> Vector3D<T, U> { |
281 | vec3(self.x, self.y, z) |
282 | } |
283 | |
284 | /// Cast this vector into a point. |
285 | /// |
286 | /// Equivalent to adding this vector to the origin. |
287 | #[inline ] |
288 | pub fn to_point(self) -> Point2D<T, U> { |
289 | Point2D { |
290 | x: self.x, |
291 | y: self.y, |
292 | _unit: PhantomData, |
293 | } |
294 | } |
295 | |
296 | /// Swap x and y. |
297 | #[inline ] |
298 | pub fn yx(self) -> Self { |
299 | vec2(self.y, self.x) |
300 | } |
301 | |
302 | /// Cast this vector into a size. |
303 | #[inline ] |
304 | pub fn to_size(self) -> Size2D<T, U> { |
305 | size2(self.x, self.y) |
306 | } |
307 | |
308 | /// Drop the units, preserving only the numeric value. |
309 | #[inline ] |
310 | pub fn to_untyped(self) -> Vector2D<T, UnknownUnit> { |
311 | vec2(self.x, self.y) |
312 | } |
313 | |
314 | /// Cast the unit. |
315 | #[inline ] |
316 | pub fn cast_unit<V>(self) -> Vector2D<T, V> { |
317 | vec2(self.x, self.y) |
318 | } |
319 | |
320 | /// Cast into an array with x and y. |
321 | #[inline ] |
322 | pub fn to_array(self) -> [T; 2] { |
323 | [self.x, self.y] |
324 | } |
325 | |
326 | /// Cast into a tuple with x and y. |
327 | #[inline ] |
328 | pub fn to_tuple(self) -> (T, T) { |
329 | (self.x, self.y) |
330 | } |
331 | |
332 | /// Convert into a 3d vector with `z` coordinate equals to `T::zero()`. |
333 | #[inline ] |
334 | pub fn to_3d(self) -> Vector3D<T, U> |
335 | where |
336 | T: Zero, |
337 | { |
338 | vec3(self.x, self.y, Zero::zero()) |
339 | } |
340 | |
341 | /// Rounds each component to the nearest integer value. |
342 | /// |
343 | /// This behavior is preserved for negative values (unlike the basic cast). |
344 | /// |
345 | /// ```rust |
346 | /// # use euclid::vec2; |
347 | /// enum Mm {} |
348 | /// |
349 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0)) |
350 | /// ``` |
351 | #[inline ] |
352 | #[must_use ] |
353 | pub fn round(self) -> Self |
354 | where |
355 | T: Round, |
356 | { |
357 | vec2(self.x.round(), self.y.round()) |
358 | } |
359 | |
360 | /// Rounds each component to the smallest integer equal or greater than the original value. |
361 | /// |
362 | /// This behavior is preserved for negative values (unlike the basic cast). |
363 | /// |
364 | /// ```rust |
365 | /// # use euclid::vec2; |
366 | /// enum Mm {} |
367 | /// |
368 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0)) |
369 | /// ``` |
370 | #[inline ] |
371 | #[must_use ] |
372 | pub fn ceil(self) -> Self |
373 | where |
374 | T: Ceil, |
375 | { |
376 | vec2(self.x.ceil(), self.y.ceil()) |
377 | } |
378 | |
379 | /// Rounds each component to the biggest integer equal or lower than the original value. |
380 | /// |
381 | /// This behavior is preserved for negative values (unlike the basic cast). |
382 | /// |
383 | /// ```rust |
384 | /// # use euclid::vec2; |
385 | /// enum Mm {} |
386 | /// |
387 | /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0)) |
388 | /// ``` |
389 | #[inline ] |
390 | #[must_use ] |
391 | pub fn floor(self) -> Self |
392 | where |
393 | T: Floor, |
394 | { |
395 | vec2(self.x.floor(), self.y.floor()) |
396 | } |
397 | |
398 | /// Returns the signed angle between this vector and the x axis. |
399 | /// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2` |
400 | /// is `+y` axis. |
401 | /// |
402 | /// The returned angle is between -PI and PI. |
403 | pub fn angle_from_x_axis(self) -> Angle<T> |
404 | where |
405 | T: Trig, |
406 | { |
407 | Angle::radians(Trig::fast_atan2(self.y, self.x)) |
408 | } |
409 | |
410 | /// Creates translation by this vector in vector units. |
411 | #[inline ] |
412 | pub fn to_transform(self) -> Transform2D<T, U, U> |
413 | where |
414 | T: Zero + One, |
415 | { |
416 | Transform2D::translation(self.x, self.y) |
417 | } |
418 | } |
419 | |
420 | impl<T, U> Vector2D<T, U> |
421 | where |
422 | T: Copy + Mul<T, Output = T> + Add<T, Output = T>, |
423 | { |
424 | /// Returns the vector's length squared. |
425 | #[inline ] |
426 | pub fn square_length(self) -> T { |
427 | self.x * self.x + self.y * self.y |
428 | } |
429 | |
430 | /// Returns this vector projected onto another one. |
431 | /// |
432 | /// Projecting onto a nil vector will cause a division by zero. |
433 | #[inline ] |
434 | pub fn project_onto_vector(self, onto: Self) -> Self |
435 | where |
436 | T: Sub<T, Output = T> + Div<T, Output = T>, |
437 | { |
438 | onto * (self.dot(onto) / onto.square_length()) |
439 | } |
440 | |
441 | /// Returns the signed angle between this vector and another vector. |
442 | /// |
443 | /// The returned angle is between -PI and PI. |
444 | pub fn angle_to(self, other: Self) -> Angle<T> |
445 | where |
446 | T: Sub<Output = T> + Trig, |
447 | { |
448 | Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other))) |
449 | } |
450 | } |
451 | |
452 | impl<T: Float, U> Vector2D<T, U> { |
453 | /// Return the normalized vector even if the length is larger than the max value of Float. |
454 | #[inline ] |
455 | #[must_use ] |
456 | pub fn robust_normalize(self) -> Self { |
457 | let length: T = self.length(); |
458 | if length.is_infinite() { |
459 | let scaled: Vector2D = self / T::max_value(); |
460 | scaled / scaled.length() |
461 | } else { |
462 | self / length |
463 | } |
464 | } |
465 | |
466 | /// Returns true if all members are finite. |
467 | #[inline ] |
468 | pub fn is_finite(self) -> bool { |
469 | self.x.is_finite() && self.y.is_finite() |
470 | } |
471 | } |
472 | |
473 | impl<T: Real, U> Vector2D<T, U> { |
474 | /// Returns the vector length. |
475 | #[inline ] |
476 | pub fn length(self) -> T { |
477 | self.square_length().sqrt() |
478 | } |
479 | |
480 | /// Returns the vector with length of one unit. |
481 | #[inline ] |
482 | #[must_use ] |
483 | pub fn normalize(self) -> Self { |
484 | self / self.length() |
485 | } |
486 | |
487 | /// Returns the vector with length of one unit. |
488 | /// |
489 | /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the |
490 | /// length of the vector is zero. |
491 | #[inline ] |
492 | #[must_use ] |
493 | pub fn try_normalize(self) -> Option<Self> { |
494 | let len = self.length(); |
495 | if len == T::zero() { |
496 | None |
497 | } else { |
498 | Some(self / len) |
499 | } |
500 | } |
501 | |
502 | /// Return this vector scaled to fit the provided length. |
503 | #[inline ] |
504 | pub fn with_length(self, length: T) -> Self { |
505 | self.normalize() * length |
506 | } |
507 | |
508 | /// Return this vector capped to a maximum length. |
509 | #[inline ] |
510 | pub fn with_max_length(self, max_length: T) -> Self { |
511 | let square_length = self.square_length(); |
512 | if square_length > max_length * max_length { |
513 | return self * (max_length / square_length.sqrt()); |
514 | } |
515 | |
516 | self |
517 | } |
518 | |
519 | /// Return this vector with a minimum length applied. |
520 | #[inline ] |
521 | pub fn with_min_length(self, min_length: T) -> Self { |
522 | let square_length = self.square_length(); |
523 | if square_length < min_length * min_length { |
524 | return self * (min_length / square_length.sqrt()); |
525 | } |
526 | |
527 | self |
528 | } |
529 | |
530 | /// Return this vector with minimum and maximum lengths applied. |
531 | #[inline ] |
532 | pub fn clamp_length(self, min: T, max: T) -> Self { |
533 | debug_assert!(min <= max); |
534 | self.with_min_length(min).with_max_length(max) |
535 | } |
536 | } |
537 | |
538 | impl<T, U> Vector2D<T, U> |
539 | where |
540 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
541 | { |
542 | /// Linearly interpolate each component between this vector and another vector. |
543 | /// |
544 | /// # Example |
545 | /// |
546 | /// ```rust |
547 | /// use euclid::vec2; |
548 | /// use euclid::default::Vector2D; |
549 | /// |
550 | /// let from: Vector2D<_> = vec2(0.0, 10.0); |
551 | /// let to: Vector2D<_> = vec2(8.0, -4.0); |
552 | /// |
553 | /// assert_eq!(from.lerp(to, -1.0), vec2(-8.0, 24.0)); |
554 | /// assert_eq!(from.lerp(to, 0.0), vec2( 0.0, 10.0)); |
555 | /// assert_eq!(from.lerp(to, 0.5), vec2( 4.0, 3.0)); |
556 | /// assert_eq!(from.lerp(to, 1.0), vec2( 8.0, -4.0)); |
557 | /// assert_eq!(from.lerp(to, 2.0), vec2(16.0, -18.0)); |
558 | /// ``` |
559 | #[inline ] |
560 | pub fn lerp(self, other: Self, t: T) -> Self { |
561 | let one_t = T::one() - t; |
562 | self * one_t + other * t |
563 | } |
564 | |
565 | /// Returns a reflection vector using an incident ray and a surface normal. |
566 | #[inline ] |
567 | pub fn reflect(self, normal: Self) -> Self { |
568 | let two = T::one() + T::one(); |
569 | self - normal * two * self.dot(normal) |
570 | } |
571 | } |
572 | |
573 | impl<T: PartialOrd, U> Vector2D<T, U> { |
574 | /// Returns the vector each component of which are minimum of this vector and another. |
575 | #[inline ] |
576 | pub fn min(self, other: Self) -> Self { |
577 | vec2(min(self.x, other.x), min(self.y, other.y)) |
578 | } |
579 | |
580 | /// Returns the vector each component of which are maximum of this vector and another. |
581 | #[inline ] |
582 | pub fn max(self, other: Self) -> Self { |
583 | vec2(max(self.x, other.x), max(self.y, other.y)) |
584 | } |
585 | |
586 | /// Returns the vector each component of which is clamped by corresponding |
587 | /// components of `start` and `end`. |
588 | /// |
589 | /// Shortcut for `self.max(start).min(end)`. |
590 | #[inline ] |
591 | pub fn clamp(self, start: Self, end: Self) -> Self |
592 | where |
593 | T: Copy, |
594 | { |
595 | self.max(start).min(end) |
596 | } |
597 | |
598 | /// Returns vector with results of "greater than" operation on each component. |
599 | #[inline ] |
600 | pub fn greater_than(self, other: Self) -> BoolVector2D { |
601 | BoolVector2D { |
602 | x: self.x > other.x, |
603 | y: self.y > other.y, |
604 | } |
605 | } |
606 | |
607 | /// Returns vector with results of "lower than" operation on each component. |
608 | #[inline ] |
609 | pub fn lower_than(self, other: Self) -> BoolVector2D { |
610 | BoolVector2D { |
611 | x: self.x < other.x, |
612 | y: self.y < other.y, |
613 | } |
614 | } |
615 | } |
616 | |
617 | impl<T: PartialEq, U> Vector2D<T, U> { |
618 | /// Returns vector with results of "equal" operation on each component. |
619 | #[inline ] |
620 | pub fn equal(self, other: Self) -> BoolVector2D { |
621 | BoolVector2D { |
622 | x: self.x == other.x, |
623 | y: self.y == other.y, |
624 | } |
625 | } |
626 | |
627 | /// Returns vector with results of "not equal" operation on each component. |
628 | #[inline ] |
629 | pub fn not_equal(self, other: Self) -> BoolVector2D { |
630 | BoolVector2D { |
631 | x: self.x != other.x, |
632 | y: self.y != other.y, |
633 | } |
634 | } |
635 | } |
636 | |
637 | impl<T: NumCast + Copy, U> Vector2D<T, U> { |
638 | /// Cast from one numeric representation to another, preserving the units. |
639 | /// |
640 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
641 | /// as one would expect from a simple cast, but this behavior does not always make sense |
642 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
643 | #[inline ] |
644 | pub fn cast<NewT: NumCast>(self) -> Vector2D<NewT, U> { |
645 | self.try_cast().unwrap() |
646 | } |
647 | |
648 | /// Fallible cast from one numeric representation to another, preserving the units. |
649 | /// |
650 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
651 | /// as one would expect from a simple cast, but this behavior does not always make sense |
652 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
653 | pub fn try_cast<NewT: NumCast>(self) -> Option<Vector2D<NewT, U>> { |
654 | match (NumCast::from(self.x), NumCast::from(self.y)) { |
655 | (Some(x), Some(y)) => Some(Vector2D::new(x, y)), |
656 | _ => None, |
657 | } |
658 | } |
659 | |
660 | // Convenience functions for common casts. |
661 | |
662 | /// Cast into an `f32` vector. |
663 | #[inline ] |
664 | pub fn to_f32(self) -> Vector2D<f32, U> { |
665 | self.cast() |
666 | } |
667 | |
668 | /// Cast into an `f64` vector. |
669 | #[inline ] |
670 | pub fn to_f64(self) -> Vector2D<f64, U> { |
671 | self.cast() |
672 | } |
673 | |
674 | /// Cast into an `usize` vector, truncating decimals if any. |
675 | /// |
676 | /// When casting from floating vector vectors, it is worth considering whether |
677 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
678 | /// the desired conversion behavior. |
679 | #[inline ] |
680 | pub fn to_usize(self) -> Vector2D<usize, U> { |
681 | self.cast() |
682 | } |
683 | |
684 | /// Cast into an `u32` vector, truncating decimals if any. |
685 | /// |
686 | /// When casting from floating vector vectors, it is worth considering whether |
687 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
688 | /// the desired conversion behavior. |
689 | #[inline ] |
690 | pub fn to_u32(self) -> Vector2D<u32, U> { |
691 | self.cast() |
692 | } |
693 | |
694 | /// Cast into an i32 vector, truncating decimals if any. |
695 | /// |
696 | /// When casting from floating vector vectors, it is worth considering whether |
697 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
698 | /// the desired conversion behavior. |
699 | #[inline ] |
700 | pub fn to_i32(self) -> Vector2D<i32, U> { |
701 | self.cast() |
702 | } |
703 | |
704 | /// Cast into an i64 vector, truncating decimals if any. |
705 | /// |
706 | /// When casting from floating vector vectors, it is worth considering whether |
707 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
708 | /// the desired conversion behavior. |
709 | #[inline ] |
710 | pub fn to_i64(self) -> Vector2D<i64, U> { |
711 | self.cast() |
712 | } |
713 | } |
714 | |
715 | impl<T: Neg, U> Neg for Vector2D<T, U> { |
716 | type Output = Vector2D<T::Output, U>; |
717 | |
718 | #[inline ] |
719 | fn neg(self) -> Self::Output { |
720 | vec2(-self.x, -self.y) |
721 | } |
722 | } |
723 | |
724 | impl<T: Add, U> Add for Vector2D<T, U> { |
725 | type Output = Vector2D<T::Output, U>; |
726 | |
727 | #[inline ] |
728 | fn add(self, other: Self) -> Self::Output { |
729 | Vector2D::new(self.x + other.x, self.y + other.y) |
730 | } |
731 | } |
732 | |
733 | impl<T: Add + Copy, U> Add<&Self> for Vector2D<T, U> { |
734 | type Output = Vector2D<T::Output, U>; |
735 | |
736 | #[inline ] |
737 | fn add(self, other: &Self) -> Self::Output { |
738 | Vector2D::new(self.x + other.x, self.y + other.y) |
739 | } |
740 | } |
741 | |
742 | impl<T: Add<Output = T> + Zero, U> Sum for Vector2D<T, U> { |
743 | fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { |
744 | iter.fold(Self::zero(), f:Add::add) |
745 | } |
746 | } |
747 | |
748 | impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector2D<T, U> { |
749 | fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { |
750 | iter.fold(Self::zero(), f:Add::add) |
751 | } |
752 | } |
753 | |
754 | impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector2D<T, U> { |
755 | #[inline ] |
756 | fn add_assign(&mut self, other: Self) { |
757 | *self = *self + other |
758 | } |
759 | } |
760 | |
761 | impl<T: Sub, U> Sub for Vector2D<T, U> { |
762 | type Output = Vector2D<T::Output, U>; |
763 | |
764 | #[inline ] |
765 | fn sub(self, other: Self) -> Self::Output { |
766 | vec2(self.x - other.x, self.y - other.y) |
767 | } |
768 | } |
769 | |
770 | impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Vector2D<T, U> { |
771 | #[inline ] |
772 | fn sub_assign(&mut self, other: Self) { |
773 | *self = *self - other |
774 | } |
775 | } |
776 | |
777 | impl<T: Copy + Mul, U> Mul<T> for Vector2D<T, U> { |
778 | type Output = Vector2D<T::Output, U>; |
779 | |
780 | #[inline ] |
781 | fn mul(self, scale: T) -> Self::Output { |
782 | vec2(self.x * scale, self.y * scale) |
783 | } |
784 | } |
785 | |
786 | impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector2D<T, U> { |
787 | #[inline ] |
788 | fn mul_assign(&mut self, scale: T) { |
789 | *self = *self * scale |
790 | } |
791 | } |
792 | |
793 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector2D<T, U1> { |
794 | type Output = Vector2D<T::Output, U2>; |
795 | |
796 | #[inline ] |
797 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
798 | vec2(self.x * scale.0, self.y * scale.0) |
799 | } |
800 | } |
801 | |
802 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector2D<T, U> { |
803 | #[inline ] |
804 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
805 | self.x *= scale.0; |
806 | self.y *= scale.0; |
807 | } |
808 | } |
809 | |
810 | impl<T: Copy + Div, U> Div<T> for Vector2D<T, U> { |
811 | type Output = Vector2D<T::Output, U>; |
812 | |
813 | #[inline ] |
814 | fn div(self, scale: T) -> Self::Output { |
815 | vec2(self.x / scale, self.y / scale) |
816 | } |
817 | } |
818 | |
819 | impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector2D<T, U> { |
820 | #[inline ] |
821 | fn div_assign(&mut self, scale: T) { |
822 | *self = *self / scale |
823 | } |
824 | } |
825 | |
826 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector2D<T, U2> { |
827 | type Output = Vector2D<T::Output, U1>; |
828 | |
829 | #[inline ] |
830 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
831 | vec2(self.x / scale.0, self.y / scale.0) |
832 | } |
833 | } |
834 | |
835 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector2D<T, U> { |
836 | #[inline ] |
837 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
838 | self.x /= scale.0; |
839 | self.y /= scale.0; |
840 | } |
841 | } |
842 | |
843 | impl<T: Round, U> Round for Vector2D<T, U> { |
844 | /// See [`Vector2D::round()`](#method.round) |
845 | #[inline ] |
846 | fn round(self) -> Self { |
847 | self.round() |
848 | } |
849 | } |
850 | |
851 | impl<T: Ceil, U> Ceil for Vector2D<T, U> { |
852 | /// See [`Vector2D::ceil()`](#method.ceil) |
853 | #[inline ] |
854 | fn ceil(self) -> Self { |
855 | self.ceil() |
856 | } |
857 | } |
858 | |
859 | impl<T: Floor, U> Floor for Vector2D<T, U> { |
860 | /// See [`Vector2D::floor()`](#method.floor) |
861 | #[inline ] |
862 | fn floor(self) -> Self { |
863 | self.floor() |
864 | } |
865 | } |
866 | |
867 | impl<T: ApproxEq<T>, U> ApproxEq<Vector2D<T, U>> for Vector2D<T, U> { |
868 | #[inline ] |
869 | fn approx_epsilon() -> Self { |
870 | vec2(T::approx_epsilon(), T::approx_epsilon()) |
871 | } |
872 | |
873 | #[inline ] |
874 | fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { |
875 | self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) |
876 | } |
877 | } |
878 | |
879 | impl<T, U> Into<[T; 2]> for Vector2D<T, U> { |
880 | fn into(self) -> [T; 2] { |
881 | [self.x, self.y] |
882 | } |
883 | } |
884 | |
885 | impl<T, U> From<[T; 2]> for Vector2D<T, U> { |
886 | fn from([x: T, y: T]: [T; 2]) -> Self { |
887 | vec2(x, y) |
888 | } |
889 | } |
890 | |
891 | impl<T, U> Into<(T, T)> for Vector2D<T, U> { |
892 | fn into(self) -> (T, T) { |
893 | (self.x, self.y) |
894 | } |
895 | } |
896 | |
897 | impl<T, U> From<(T, T)> for Vector2D<T, U> { |
898 | fn from(tuple: (T, T)) -> Self { |
899 | vec2(x:tuple.0, y:tuple.1) |
900 | } |
901 | } |
902 | |
903 | impl<T, U> From<Size2D<T, U>> for Vector2D<T, U> { |
904 | fn from(size: Size2D<T, U>) -> Self { |
905 | vec2(x:size.width, y:size.height) |
906 | } |
907 | } |
908 | |
909 | /// A 3d Vector tagged with a unit. |
910 | #[repr (C)] |
911 | pub struct Vector3D<T, U> { |
912 | /// The `x` (traditionally, horizontal) coordinate. |
913 | pub x: T, |
914 | /// The `y` (traditionally, vertical) coordinate. |
915 | pub y: T, |
916 | /// The `z` (traditionally, depth) coordinate. |
917 | pub z: T, |
918 | #[doc (hidden)] |
919 | pub _unit: PhantomData<U>, |
920 | } |
921 | |
922 | mint_vec!(Vector3D[x, y, z] = Vector3); |
923 | |
924 | impl<T: Copy, U> Copy for Vector3D<T, U> {} |
925 | |
926 | impl<T: Clone, U> Clone for Vector3D<T, U> { |
927 | fn clone(&self) -> Self { |
928 | Vector3D { |
929 | x: self.x.clone(), |
930 | y: self.y.clone(), |
931 | z: self.z.clone(), |
932 | _unit: PhantomData, |
933 | } |
934 | } |
935 | } |
936 | |
937 | #[cfg (feature = "serde" )] |
938 | impl<'de, T, U> serde::Deserialize<'de> for Vector3D<T, U> |
939 | where |
940 | T: serde::Deserialize<'de>, |
941 | { |
942 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
943 | where |
944 | D: serde::Deserializer<'de>, |
945 | { |
946 | let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; |
947 | Ok(Vector3D { |
948 | x, |
949 | y, |
950 | z, |
951 | _unit: PhantomData, |
952 | }) |
953 | } |
954 | } |
955 | |
956 | #[cfg (feature = "serde" )] |
957 | impl<T, U> serde::Serialize for Vector3D<T, U> |
958 | where |
959 | T: serde::Serialize, |
960 | { |
961 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
962 | where |
963 | S: serde::Serializer, |
964 | { |
965 | (&self.x, &self.y, &self.z).serialize(serializer) |
966 | } |
967 | } |
968 | |
969 | #[cfg (feature = "bytemuck" )] |
970 | unsafe impl<T: Zeroable, U> Zeroable for Vector3D<T, U> {} |
971 | |
972 | #[cfg (feature = "bytemuck" )] |
973 | unsafe impl<T: Pod, U: 'static> Pod for Vector3D<T, U> {} |
974 | |
975 | impl<T: Eq, U> Eq for Vector3D<T, U> {} |
976 | |
977 | impl<T: PartialEq, U> PartialEq for Vector3D<T, U> { |
978 | fn eq(&self, other: &Self) -> bool { |
979 | self.x == other.x && self.y == other.y && self.z == other.z |
980 | } |
981 | } |
982 | |
983 | impl<T: Hash, U> Hash for Vector3D<T, U> { |
984 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
985 | self.x.hash(state:h); |
986 | self.y.hash(state:h); |
987 | self.z.hash(state:h); |
988 | } |
989 | } |
990 | |
991 | impl<T: Zero, U> Zero for Vector3D<T, U> { |
992 | /// Constructor, setting all components to zero. |
993 | #[inline ] |
994 | fn zero() -> Self { |
995 | vec3(x:Zero::zero(), y:Zero::zero(), z:Zero::zero()) |
996 | } |
997 | } |
998 | |
999 | impl<T: fmt::Debug, U> fmt::Debug for Vector3D<T, U> { |
1000 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
1001 | f&mut DebugTuple<'_, '_>.debug_tuple(name:"" ) |
1002 | .field(&self.x) |
1003 | .field(&self.y) |
1004 | .field(&self.z) |
1005 | .finish() |
1006 | } |
1007 | } |
1008 | |
1009 | impl<T: Default, U> Default for Vector3D<T, U> { |
1010 | fn default() -> Self { |
1011 | Vector3D::new(x:Default::default(), y:Default::default(), z:Default::default()) |
1012 | } |
1013 | } |
1014 | |
1015 | impl<T, U> Vector3D<T, U> { |
1016 | /// Constructor, setting all components to zero. |
1017 | #[inline ] |
1018 | pub fn zero() -> Self |
1019 | where |
1020 | T: Zero, |
1021 | { |
1022 | vec3(Zero::zero(), Zero::zero(), Zero::zero()) |
1023 | } |
1024 | |
1025 | /// Constructor, setting all components to one. |
1026 | #[inline ] |
1027 | pub fn one() -> Self |
1028 | where |
1029 | T: One, |
1030 | { |
1031 | vec3(One::one(), One::one(), One::one()) |
1032 | } |
1033 | |
1034 | /// Constructor taking scalar values directly. |
1035 | #[inline ] |
1036 | pub const fn new(x: T, y: T, z: T) -> Self { |
1037 | Vector3D { |
1038 | x, |
1039 | y, |
1040 | z, |
1041 | _unit: PhantomData, |
1042 | } |
1043 | } |
1044 | /// Constructor setting all components to the same value. |
1045 | #[inline ] |
1046 | pub fn splat(v: T) -> Self |
1047 | where |
1048 | T: Clone, |
1049 | { |
1050 | Vector3D { |
1051 | x: v.clone(), |
1052 | y: v.clone(), |
1053 | z: v, |
1054 | _unit: PhantomData, |
1055 | } |
1056 | } |
1057 | |
1058 | /// Constructor taking properly Lengths instead of scalar values. |
1059 | #[inline ] |
1060 | pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Vector3D<T, U> { |
1061 | vec3(x.0, y.0, z.0) |
1062 | } |
1063 | |
1064 | /// Tag a unitless value with units. |
1065 | #[inline ] |
1066 | pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Self { |
1067 | vec3(p.x, p.y, p.z) |
1068 | } |
1069 | |
1070 | /// Computes the vector with absolute values of each component. |
1071 | /// |
1072 | /// # Example |
1073 | /// |
1074 | /// ```rust |
1075 | /// # use std::{i32, f32}; |
1076 | /// # use euclid::vec3; |
1077 | /// enum U {} |
1078 | /// |
1079 | /// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2)); |
1080 | /// |
1081 | /// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs(); |
1082 | /// assert!(vec.x.is_nan()); |
1083 | /// assert_eq!(vec.y, 0.0); |
1084 | /// assert_eq!(vec.z, f32::MAX); |
1085 | /// ``` |
1086 | /// |
1087 | /// # Panics |
1088 | /// |
1089 | /// The behavior for each component follows the scalar type's implementation of |
1090 | /// `num_traits::Signed::abs`. |
1091 | pub fn abs(self) -> Self |
1092 | where |
1093 | T: Signed, |
1094 | { |
1095 | vec3(self.x.abs(), self.y.abs(), self.z.abs()) |
1096 | } |
1097 | |
1098 | /// Dot product. |
1099 | #[inline ] |
1100 | pub fn dot(self, other: Self) -> T |
1101 | where |
1102 | T: Add<Output = T> + Mul<Output = T>, |
1103 | { |
1104 | self.x * other.x + self.y * other.y + self.z * other.z |
1105 | } |
1106 | } |
1107 | |
1108 | impl<T: Copy, U> Vector3D<T, U> { |
1109 | /// Cross product. |
1110 | #[inline ] |
1111 | pub fn cross(self, other: Self) -> Self |
1112 | where |
1113 | T: Sub<Output = T> + Mul<Output = T>, |
1114 | { |
1115 | vec3( |
1116 | self.y * other.z - self.z * other.y, |
1117 | self.z * other.x - self.x * other.z, |
1118 | self.x * other.y - self.y * other.x, |
1119 | ) |
1120 | } |
1121 | |
1122 | /// Returns the component-wise multiplication of the two vectors. |
1123 | #[inline ] |
1124 | pub fn component_mul(self, other: Self) -> Self |
1125 | where |
1126 | T: Mul<Output = T>, |
1127 | { |
1128 | vec3(self.x * other.x, self.y * other.y, self.z * other.z) |
1129 | } |
1130 | |
1131 | /// Returns the component-wise division of the two vectors. |
1132 | #[inline ] |
1133 | pub fn component_div(self, other: Self) -> Self |
1134 | where |
1135 | T: Div<Output = T>, |
1136 | { |
1137 | vec3(self.x / other.x, self.y / other.y, self.z / other.z) |
1138 | } |
1139 | |
1140 | /// Cast this vector into a point. |
1141 | /// |
1142 | /// Equivalent to adding this vector to the origin. |
1143 | #[inline ] |
1144 | pub fn to_point(self) -> Point3D<T, U> { |
1145 | point3(self.x, self.y, self.z) |
1146 | } |
1147 | |
1148 | /// Returns a 2d vector using this vector's x and y coordinates |
1149 | #[inline ] |
1150 | pub fn xy(self) -> Vector2D<T, U> { |
1151 | vec2(self.x, self.y) |
1152 | } |
1153 | |
1154 | /// Returns a 2d vector using this vector's x and z coordinates |
1155 | #[inline ] |
1156 | pub fn xz(self) -> Vector2D<T, U> { |
1157 | vec2(self.x, self.z) |
1158 | } |
1159 | |
1160 | /// Returns a 2d vector using this vector's x and z coordinates |
1161 | #[inline ] |
1162 | pub fn yz(self) -> Vector2D<T, U> { |
1163 | vec2(self.y, self.z) |
1164 | } |
1165 | |
1166 | /// Cast into an array with x, y and z. |
1167 | #[inline ] |
1168 | pub fn to_array(self) -> [T; 3] { |
1169 | [self.x, self.y, self.z] |
1170 | } |
1171 | |
1172 | /// Cast into an array with x, y, z and 0. |
1173 | #[inline ] |
1174 | pub fn to_array_4d(self) -> [T; 4] |
1175 | where |
1176 | T: Zero, |
1177 | { |
1178 | [self.x, self.y, self.z, Zero::zero()] |
1179 | } |
1180 | |
1181 | /// Cast into a tuple with x, y and z. |
1182 | #[inline ] |
1183 | pub fn to_tuple(self) -> (T, T, T) { |
1184 | (self.x, self.y, self.z) |
1185 | } |
1186 | |
1187 | /// Cast into a tuple with x, y, z and 0. |
1188 | #[inline ] |
1189 | pub fn to_tuple_4d(self) -> (T, T, T, T) |
1190 | where |
1191 | T: Zero, |
1192 | { |
1193 | (self.x, self.y, self.z, Zero::zero()) |
1194 | } |
1195 | |
1196 | /// Drop the units, preserving only the numeric value. |
1197 | #[inline ] |
1198 | pub fn to_untyped(self) -> Vector3D<T, UnknownUnit> { |
1199 | vec3(self.x, self.y, self.z) |
1200 | } |
1201 | |
1202 | /// Cast the unit. |
1203 | #[inline ] |
1204 | pub fn cast_unit<V>(self) -> Vector3D<T, V> { |
1205 | vec3(self.x, self.y, self.z) |
1206 | } |
1207 | |
1208 | /// Convert into a 2d vector. |
1209 | #[inline ] |
1210 | pub fn to_2d(self) -> Vector2D<T, U> { |
1211 | self.xy() |
1212 | } |
1213 | |
1214 | /// Rounds each component to the nearest integer value. |
1215 | /// |
1216 | /// This behavior is preserved for negative values (unlike the basic cast). |
1217 | /// |
1218 | /// ```rust |
1219 | /// # use euclid::vec3; |
1220 | /// enum Mm {} |
1221 | /// |
1222 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0)) |
1223 | /// ``` |
1224 | #[inline ] |
1225 | #[must_use ] |
1226 | pub fn round(self) -> Self |
1227 | where |
1228 | T: Round, |
1229 | { |
1230 | vec3(self.x.round(), self.y.round(), self.z.round()) |
1231 | } |
1232 | |
1233 | /// Rounds each component to the smallest integer equal or greater than the original value. |
1234 | /// |
1235 | /// This behavior is preserved for negative values (unlike the basic cast). |
1236 | /// |
1237 | /// ```rust |
1238 | /// # use euclid::vec3; |
1239 | /// enum Mm {} |
1240 | /// |
1241 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0)) |
1242 | /// ``` |
1243 | #[inline ] |
1244 | #[must_use ] |
1245 | pub fn ceil(self) -> Self |
1246 | where |
1247 | T: Ceil, |
1248 | { |
1249 | vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) |
1250 | } |
1251 | |
1252 | /// Rounds each component to the biggest integer equal or lower than the original value. |
1253 | /// |
1254 | /// This behavior is preserved for negative values (unlike the basic cast). |
1255 | /// |
1256 | /// ```rust |
1257 | /// # use euclid::vec3; |
1258 | /// enum Mm {} |
1259 | /// |
1260 | /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0)) |
1261 | /// ``` |
1262 | #[inline ] |
1263 | #[must_use ] |
1264 | pub fn floor(self) -> Self |
1265 | where |
1266 | T: Floor, |
1267 | { |
1268 | vec3(self.x.floor(), self.y.floor(), self.z.floor()) |
1269 | } |
1270 | |
1271 | /// Creates translation by this vector in vector units |
1272 | #[inline ] |
1273 | pub fn to_transform(self) -> Transform3D<T, U, U> |
1274 | where |
1275 | T: Zero + One, |
1276 | { |
1277 | Transform3D::translation(self.x, self.y, self.z) |
1278 | } |
1279 | } |
1280 | |
1281 | impl<T, U> Vector3D<T, U> |
1282 | where |
1283 | T: Copy + Mul<T, Output = T> + Add<T, Output = T>, |
1284 | { |
1285 | /// Returns the vector's length squared. |
1286 | #[inline ] |
1287 | pub fn square_length(self) -> T { |
1288 | self.x * self.x + self.y * self.y + self.z * self.z |
1289 | } |
1290 | |
1291 | /// Returns this vector projected onto another one. |
1292 | /// |
1293 | /// Projecting onto a nil vector will cause a division by zero. |
1294 | #[inline ] |
1295 | pub fn project_onto_vector(self, onto: Self) -> Self |
1296 | where |
1297 | T: Sub<T, Output = T> + Div<T, Output = T>, |
1298 | { |
1299 | onto * (self.dot(onto) / onto.square_length()) |
1300 | } |
1301 | } |
1302 | |
1303 | impl<T: Float, U> Vector3D<T, U> { |
1304 | /// Return the normalized vector even if the length is larger than the max value of Float. |
1305 | #[inline ] |
1306 | #[must_use ] |
1307 | pub fn robust_normalize(self) -> Self { |
1308 | let length: T = self.length(); |
1309 | if length.is_infinite() { |
1310 | let scaled: Vector3D = self / T::max_value(); |
1311 | scaled / scaled.length() |
1312 | } else { |
1313 | self / length |
1314 | } |
1315 | } |
1316 | |
1317 | /// Returns true if all members are finite. |
1318 | #[inline ] |
1319 | pub fn is_finite(self) -> bool { |
1320 | self.x.is_finite() && self.y.is_finite() && self.z.is_finite() |
1321 | } |
1322 | } |
1323 | |
1324 | impl<T: Real, U> Vector3D<T, U> { |
1325 | /// Returns the positive angle between this vector and another vector. |
1326 | /// |
1327 | /// The returned angle is between 0 and PI. |
1328 | pub fn angle_to(self, other: Self) -> Angle<T> |
1329 | where |
1330 | T: Trig, |
1331 | { |
1332 | Angle::radians(Trig::fast_atan2( |
1333 | self.cross(other).length(), |
1334 | self.dot(other), |
1335 | )) |
1336 | } |
1337 | |
1338 | /// Returns the vector length. |
1339 | #[inline ] |
1340 | pub fn length(self) -> T { |
1341 | self.square_length().sqrt() |
1342 | } |
1343 | |
1344 | /// Returns the vector with length of one unit |
1345 | #[inline ] |
1346 | #[must_use ] |
1347 | pub fn normalize(self) -> Self { |
1348 | self / self.length() |
1349 | } |
1350 | |
1351 | /// Returns the vector with length of one unit. |
1352 | /// |
1353 | /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the |
1354 | /// length of the vector is zero. |
1355 | #[inline ] |
1356 | #[must_use ] |
1357 | pub fn try_normalize(self) -> Option<Self> { |
1358 | let len = self.length(); |
1359 | if len == T::zero() { |
1360 | None |
1361 | } else { |
1362 | Some(self / len) |
1363 | } |
1364 | } |
1365 | |
1366 | /// Return this vector capped to a maximum length. |
1367 | #[inline ] |
1368 | pub fn with_max_length(self, max_length: T) -> Self { |
1369 | let square_length = self.square_length(); |
1370 | if square_length > max_length * max_length { |
1371 | return self * (max_length / square_length.sqrt()); |
1372 | } |
1373 | |
1374 | self |
1375 | } |
1376 | |
1377 | /// Return this vector with a minimum length applied. |
1378 | #[inline ] |
1379 | pub fn with_min_length(self, min_length: T) -> Self { |
1380 | let square_length = self.square_length(); |
1381 | if square_length < min_length * min_length { |
1382 | return self * (min_length / square_length.sqrt()); |
1383 | } |
1384 | |
1385 | self |
1386 | } |
1387 | |
1388 | /// Return this vector with minimum and maximum lengths applied. |
1389 | #[inline ] |
1390 | pub fn clamp_length(self, min: T, max: T) -> Self { |
1391 | debug_assert!(min <= max); |
1392 | self.with_min_length(min).with_max_length(max) |
1393 | } |
1394 | } |
1395 | |
1396 | impl<T, U> Vector3D<T, U> |
1397 | where |
1398 | T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, |
1399 | { |
1400 | /// Linearly interpolate each component between this vector and another vector. |
1401 | /// |
1402 | /// # Example |
1403 | /// |
1404 | /// ```rust |
1405 | /// use euclid::vec3; |
1406 | /// use euclid::default::Vector3D; |
1407 | /// |
1408 | /// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0); |
1409 | /// let to: Vector3D<_> = vec3(8.0, -4.0, 0.0); |
1410 | /// |
1411 | /// assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0)); |
1412 | /// assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0)); |
1413 | /// assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5)); |
1414 | /// assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0)); |
1415 | /// assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0)); |
1416 | /// ``` |
1417 | #[inline ] |
1418 | pub fn lerp(self, other: Self, t: T) -> Self { |
1419 | let one_t = T::one() - t; |
1420 | self * one_t + other * t |
1421 | } |
1422 | |
1423 | /// Returns a reflection vector using an incident ray and a surface normal. |
1424 | #[inline ] |
1425 | pub fn reflect(self, normal: Self) -> Self { |
1426 | let two = T::one() + T::one(); |
1427 | self - normal * two * self.dot(normal) |
1428 | } |
1429 | } |
1430 | |
1431 | impl<T: PartialOrd, U> Vector3D<T, U> { |
1432 | /// Returns the vector each component of which are minimum of this vector and another. |
1433 | #[inline ] |
1434 | pub fn min(self, other: Self) -> Self { |
1435 | vec3( |
1436 | min(self.x, other.x), |
1437 | min(self.y, other.y), |
1438 | min(self.z, other.z), |
1439 | ) |
1440 | } |
1441 | |
1442 | /// Returns the vector each component of which are maximum of this vector and another. |
1443 | #[inline ] |
1444 | pub fn max(self, other: Self) -> Self { |
1445 | vec3( |
1446 | max(self.x, other.x), |
1447 | max(self.y, other.y), |
1448 | max(self.z, other.z), |
1449 | ) |
1450 | } |
1451 | |
1452 | /// Returns the vector each component of which is clamped by corresponding |
1453 | /// components of `start` and `end`. |
1454 | /// |
1455 | /// Shortcut for `self.max(start).min(end)`. |
1456 | #[inline ] |
1457 | pub fn clamp(self, start: Self, end: Self) -> Self |
1458 | where |
1459 | T: Copy, |
1460 | { |
1461 | self.max(start).min(end) |
1462 | } |
1463 | |
1464 | /// Returns vector with results of "greater than" operation on each component. |
1465 | #[inline ] |
1466 | pub fn greater_than(self, other: Self) -> BoolVector3D { |
1467 | BoolVector3D { |
1468 | x: self.x > other.x, |
1469 | y: self.y > other.y, |
1470 | z: self.z > other.z, |
1471 | } |
1472 | } |
1473 | |
1474 | /// Returns vector with results of "lower than" operation on each component. |
1475 | #[inline ] |
1476 | pub fn lower_than(self, other: Self) -> BoolVector3D { |
1477 | BoolVector3D { |
1478 | x: self.x < other.x, |
1479 | y: self.y < other.y, |
1480 | z: self.z < other.z, |
1481 | } |
1482 | } |
1483 | } |
1484 | |
1485 | impl<T: PartialEq, U> Vector3D<T, U> { |
1486 | /// Returns vector with results of "equal" operation on each component. |
1487 | #[inline ] |
1488 | pub fn equal(self, other: Self) -> BoolVector3D { |
1489 | BoolVector3D { |
1490 | x: self.x == other.x, |
1491 | y: self.y == other.y, |
1492 | z: self.z == other.z, |
1493 | } |
1494 | } |
1495 | |
1496 | /// Returns vector with results of "not equal" operation on each component. |
1497 | #[inline ] |
1498 | pub fn not_equal(self, other: Self) -> BoolVector3D { |
1499 | BoolVector3D { |
1500 | x: self.x != other.x, |
1501 | y: self.y != other.y, |
1502 | z: self.z != other.z, |
1503 | } |
1504 | } |
1505 | } |
1506 | |
1507 | impl<T: NumCast + Copy, U> Vector3D<T, U> { |
1508 | /// Cast from one numeric representation to another, preserving the units. |
1509 | /// |
1510 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
1511 | /// as one would expect from a simple cast, but this behavior does not always make sense |
1512 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
1513 | #[inline ] |
1514 | pub fn cast<NewT: NumCast>(self) -> Vector3D<NewT, U> { |
1515 | self.try_cast().unwrap() |
1516 | } |
1517 | |
1518 | /// Fallible cast from one numeric representation to another, preserving the units. |
1519 | /// |
1520 | /// When casting from floating vector to integer coordinates, the decimals are truncated |
1521 | /// as one would expect from a simple cast, but this behavior does not always make sense |
1522 | /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. |
1523 | pub fn try_cast<NewT: NumCast>(self) -> Option<Vector3D<NewT, U>> { |
1524 | match ( |
1525 | NumCast::from(self.x), |
1526 | NumCast::from(self.y), |
1527 | NumCast::from(self.z), |
1528 | ) { |
1529 | (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), |
1530 | _ => None, |
1531 | } |
1532 | } |
1533 | |
1534 | // Convenience functions for common casts. |
1535 | |
1536 | /// Cast into an `f32` vector. |
1537 | #[inline ] |
1538 | pub fn to_f32(self) -> Vector3D<f32, U> { |
1539 | self.cast() |
1540 | } |
1541 | |
1542 | /// Cast into an `f64` vector. |
1543 | #[inline ] |
1544 | pub fn to_f64(self) -> Vector3D<f64, U> { |
1545 | self.cast() |
1546 | } |
1547 | |
1548 | /// Cast into an `usize` vector, truncating decimals if any. |
1549 | /// |
1550 | /// When casting from floating vector vectors, it is worth considering whether |
1551 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1552 | /// the desired conversion behavior. |
1553 | #[inline ] |
1554 | pub fn to_usize(self) -> Vector3D<usize, U> { |
1555 | self.cast() |
1556 | } |
1557 | |
1558 | /// Cast into an `u32` vector, truncating decimals if any. |
1559 | /// |
1560 | /// When casting from floating vector vectors, it is worth considering whether |
1561 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1562 | /// the desired conversion behavior. |
1563 | #[inline ] |
1564 | pub fn to_u32(self) -> Vector3D<u32, U> { |
1565 | self.cast() |
1566 | } |
1567 | |
1568 | /// Cast into an `i32` vector, truncating decimals if any. |
1569 | /// |
1570 | /// When casting from floating vector vectors, it is worth considering whether |
1571 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1572 | /// the desired conversion behavior. |
1573 | #[inline ] |
1574 | pub fn to_i32(self) -> Vector3D<i32, U> { |
1575 | self.cast() |
1576 | } |
1577 | |
1578 | /// Cast into an `i64` vector, truncating decimals if any. |
1579 | /// |
1580 | /// When casting from floating vector vectors, it is worth considering whether |
1581 | /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain |
1582 | /// the desired conversion behavior. |
1583 | #[inline ] |
1584 | pub fn to_i64(self) -> Vector3D<i64, U> { |
1585 | self.cast() |
1586 | } |
1587 | } |
1588 | |
1589 | impl<T: Neg, U> Neg for Vector3D<T, U> { |
1590 | type Output = Vector3D<T::Output, U>; |
1591 | |
1592 | #[inline ] |
1593 | fn neg(self) -> Self::Output { |
1594 | vec3(-self.x, -self.y, -self.z) |
1595 | } |
1596 | } |
1597 | |
1598 | impl<T: Add, U> Add for Vector3D<T, U> { |
1599 | type Output = Vector3D<T::Output, U>; |
1600 | |
1601 | #[inline ] |
1602 | fn add(self, other: Self) -> Self::Output { |
1603 | vec3(self.x + other.x, self.y + other.y, self.z + other.z) |
1604 | } |
1605 | } |
1606 | |
1607 | impl<'a, T: 'a + Add + Copy, U: 'a> Add<&Self> for Vector3D<T, U> { |
1608 | type Output = Vector3D<T::Output, U>; |
1609 | |
1610 | #[inline ] |
1611 | fn add(self, other: &Self) -> Self::Output { |
1612 | vec3(self.x + other.x, self.y + other.y, self.z + other.z) |
1613 | } |
1614 | } |
1615 | |
1616 | impl<T: Add<Output = T> + Zero, U> Sum for Vector3D<T, U> { |
1617 | fn sum<I: Iterator<Item=Self>>(iter: I) -> Self { |
1618 | iter.fold(Self::zero(), f:Add::add) |
1619 | } |
1620 | } |
1621 | |
1622 | impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector3D<T, U> { |
1623 | fn sum<I: Iterator<Item=&'a Self>>(iter: I) -> Self { |
1624 | iter.fold(Self::zero(), f:Add::add) |
1625 | } |
1626 | } |
1627 | |
1628 | impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector3D<T, U> { |
1629 | #[inline ] |
1630 | fn add_assign(&mut self, other: Self) { |
1631 | *self = *self + other |
1632 | } |
1633 | } |
1634 | |
1635 | impl<T: Sub, U> Sub for Vector3D<T, U> { |
1636 | type Output = Vector3D<T::Output, U>; |
1637 | |
1638 | #[inline ] |
1639 | fn sub(self, other: Self) -> Self::Output { |
1640 | vec3(self.x - other.x, self.y - other.y, self.z - other.z) |
1641 | } |
1642 | } |
1643 | |
1644 | impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Vector3D<T, U> { |
1645 | #[inline ] |
1646 | fn sub_assign(&mut self, other: Self) { |
1647 | *self = *self - other |
1648 | } |
1649 | } |
1650 | |
1651 | impl<T: Copy + Mul, U> Mul<T> for Vector3D<T, U> { |
1652 | type Output = Vector3D<T::Output, U>; |
1653 | |
1654 | #[inline ] |
1655 | fn mul(self, scale: T) -> Self::Output { |
1656 | vec3( |
1657 | self.x * scale, |
1658 | self.y * scale, |
1659 | self.z * scale, |
1660 | ) |
1661 | } |
1662 | } |
1663 | |
1664 | impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector3D<T, U> { |
1665 | #[inline ] |
1666 | fn mul_assign(&mut self, scale: T) { |
1667 | *self = *self * scale |
1668 | } |
1669 | } |
1670 | |
1671 | impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector3D<T, U1> { |
1672 | type Output = Vector3D<T::Output, U2>; |
1673 | |
1674 | #[inline ] |
1675 | fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output { |
1676 | vec3( |
1677 | self.x * scale.0, |
1678 | self.y * scale.0, |
1679 | self.z * scale.0, |
1680 | ) |
1681 | } |
1682 | } |
1683 | |
1684 | impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U> { |
1685 | #[inline ] |
1686 | fn mul_assign(&mut self, scale: Scale<T, U, U>) { |
1687 | self.x *= scale.0; |
1688 | self.y *= scale.0; |
1689 | self.z *= scale.0; |
1690 | } |
1691 | } |
1692 | |
1693 | impl<T: Copy + Div, U> Div<T> for Vector3D<T, U> { |
1694 | type Output = Vector3D<T::Output, U>; |
1695 | |
1696 | #[inline ] |
1697 | fn div(self, scale: T) -> Self::Output { |
1698 | vec3( |
1699 | self.x / scale, |
1700 | self.y / scale, |
1701 | self.z / scale, |
1702 | ) |
1703 | } |
1704 | } |
1705 | |
1706 | impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector3D<T, U> { |
1707 | #[inline ] |
1708 | fn div_assign(&mut self, scale: T) { |
1709 | *self = *self / scale |
1710 | } |
1711 | } |
1712 | |
1713 | impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector3D<T, U2> { |
1714 | type Output = Vector3D<T::Output, U1>; |
1715 | |
1716 | #[inline ] |
1717 | fn div(self, scale: Scale<T, U1, U2>) -> Self::Output { |
1718 | vec3( |
1719 | self.x / scale.0, |
1720 | self.y / scale.0, |
1721 | self.z / scale.0, |
1722 | ) |
1723 | } |
1724 | } |
1725 | |
1726 | impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U> { |
1727 | #[inline ] |
1728 | fn div_assign(&mut self, scale: Scale<T, U, U>) { |
1729 | self.x /= scale.0; |
1730 | self.y /= scale.0; |
1731 | self.z /= scale.0; |
1732 | } |
1733 | } |
1734 | |
1735 | impl<T: Round, U> Round for Vector3D<T, U> { |
1736 | /// See [`Vector3D::round()`](#method.round) |
1737 | #[inline ] |
1738 | fn round(self) -> Self { |
1739 | self.round() |
1740 | } |
1741 | } |
1742 | |
1743 | impl<T: Ceil, U> Ceil for Vector3D<T, U> { |
1744 | /// See [`Vector3D::ceil()`](#method.ceil) |
1745 | #[inline ] |
1746 | fn ceil(self) -> Self { |
1747 | self.ceil() |
1748 | } |
1749 | } |
1750 | |
1751 | impl<T: Floor, U> Floor for Vector3D<T, U> { |
1752 | /// See [`Vector3D::floor()`](#method.floor) |
1753 | #[inline ] |
1754 | fn floor(self) -> Self { |
1755 | self.floor() |
1756 | } |
1757 | } |
1758 | |
1759 | impl<T: ApproxEq<T>, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U> { |
1760 | #[inline ] |
1761 | fn approx_epsilon() -> Self { |
1762 | vec3( |
1763 | T::approx_epsilon(), |
1764 | T::approx_epsilon(), |
1765 | T::approx_epsilon(), |
1766 | ) |
1767 | } |
1768 | |
1769 | #[inline ] |
1770 | fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { |
1771 | self.x.approx_eq_eps(&other.x, &eps.x) |
1772 | && self.y.approx_eq_eps(&other.y, &eps.y) |
1773 | && self.z.approx_eq_eps(&other.z, &eps.z) |
1774 | } |
1775 | } |
1776 | |
1777 | impl<T, U> Into<[T; 3]> for Vector3D<T, U> { |
1778 | fn into(self) -> [T; 3] { |
1779 | [self.x, self.y, self.z] |
1780 | } |
1781 | } |
1782 | |
1783 | impl<T, U> From<[T; 3]> for Vector3D<T, U> { |
1784 | fn from([x: T, y: T, z: T]: [T; 3]) -> Self { |
1785 | vec3(x, y, z) |
1786 | } |
1787 | } |
1788 | |
1789 | impl<T, U> Into<(T, T, T)> for Vector3D<T, U> { |
1790 | fn into(self) -> (T, T, T) { |
1791 | (self.x, self.y, self.z) |
1792 | } |
1793 | } |
1794 | |
1795 | impl<T, U> From<(T, T, T)> for Vector3D<T, U> { |
1796 | fn from(tuple: (T, T, T)) -> Self { |
1797 | vec3(x:tuple.0, y:tuple.1, z:tuple.2) |
1798 | } |
1799 | } |
1800 | |
1801 | /// A 2d vector of booleans, useful for component-wise logic operations. |
1802 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
1803 | pub struct BoolVector2D { |
1804 | pub x: bool, |
1805 | pub y: bool, |
1806 | } |
1807 | |
1808 | /// A 3d vector of booleans, useful for component-wise logic operations. |
1809 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Hash)] |
1810 | pub struct BoolVector3D { |
1811 | pub x: bool, |
1812 | pub y: bool, |
1813 | pub z: bool, |
1814 | } |
1815 | |
1816 | impl BoolVector2D { |
1817 | /// Returns `true` if all components are `true` and `false` otherwise. |
1818 | #[inline ] |
1819 | pub fn all(self) -> bool { |
1820 | self.x && self.y |
1821 | } |
1822 | |
1823 | /// Returns `true` if any component are `true` and `false` otherwise. |
1824 | #[inline ] |
1825 | pub fn any(self) -> bool { |
1826 | self.x || self.y |
1827 | } |
1828 | |
1829 | /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. |
1830 | #[inline ] |
1831 | pub fn none(self) -> bool { |
1832 | !self.any() |
1833 | } |
1834 | |
1835 | /// Returns new vector with by-component AND operation applied. |
1836 | #[inline ] |
1837 | pub fn and(self, other: Self) -> Self { |
1838 | BoolVector2D { |
1839 | x: self.x && other.x, |
1840 | y: self.y && other.y, |
1841 | } |
1842 | } |
1843 | |
1844 | /// Returns new vector with by-component OR operation applied. |
1845 | #[inline ] |
1846 | pub fn or(self, other: Self) -> Self { |
1847 | BoolVector2D { |
1848 | x: self.x || other.x, |
1849 | y: self.y || other.y, |
1850 | } |
1851 | } |
1852 | |
1853 | /// Returns new vector with results of negation operation on each component. |
1854 | #[inline ] |
1855 | pub fn not(self) -> Self { |
1856 | BoolVector2D { |
1857 | x: !self.x, |
1858 | y: !self.y, |
1859 | } |
1860 | } |
1861 | |
1862 | /// Returns point, each component of which or from `a`, or from `b` depending on truly value |
1863 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1864 | #[inline ] |
1865 | pub fn select_point<T, U>(self, a: Point2D<T, U>, b: Point2D<T, U>) -> Point2D<T, U> { |
1866 | point2( |
1867 | if self.x { a.x } else { b.x }, |
1868 | if self.y { a.y } else { b.y }, |
1869 | ) |
1870 | } |
1871 | |
1872 | /// Returns vector, each component of which or from `a`, or from `b` depending on truly value |
1873 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1874 | #[inline ] |
1875 | pub fn select_vector<T, U>(self, a: Vector2D<T, U>, b: Vector2D<T, U>) -> Vector2D<T, U> { |
1876 | vec2( |
1877 | if self.x { a.x } else { b.x }, |
1878 | if self.y { a.y } else { b.y }, |
1879 | ) |
1880 | } |
1881 | |
1882 | /// Returns size, each component of which or from `a`, or from `b` depending on truly value |
1883 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1884 | #[inline ] |
1885 | pub fn select_size<T, U>(self, a: Size2D<T, U>, b: Size2D<T, U>) -> Size2D<T, U> { |
1886 | size2( |
1887 | if self.x { a.width } else { b.width }, |
1888 | if self.y { a.height } else { b.height }, |
1889 | ) |
1890 | } |
1891 | } |
1892 | |
1893 | impl BoolVector3D { |
1894 | /// Returns `true` if all components are `true` and `false` otherwise. |
1895 | #[inline ] |
1896 | pub fn all(self) -> bool { |
1897 | self.x && self.y && self.z |
1898 | } |
1899 | |
1900 | /// Returns `true` if any component are `true` and `false` otherwise. |
1901 | #[inline ] |
1902 | pub fn any(self) -> bool { |
1903 | self.x || self.y || self.z |
1904 | } |
1905 | |
1906 | /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. |
1907 | #[inline ] |
1908 | pub fn none(self) -> bool { |
1909 | !self.any() |
1910 | } |
1911 | |
1912 | /// Returns new vector with by-component AND operation applied. |
1913 | #[inline ] |
1914 | pub fn and(self, other: Self) -> Self { |
1915 | BoolVector3D { |
1916 | x: self.x && other.x, |
1917 | y: self.y && other.y, |
1918 | z: self.z && other.z, |
1919 | } |
1920 | } |
1921 | |
1922 | /// Returns new vector with by-component OR operation applied. |
1923 | #[inline ] |
1924 | pub fn or(self, other: Self) -> Self { |
1925 | BoolVector3D { |
1926 | x: self.x || other.x, |
1927 | y: self.y || other.y, |
1928 | z: self.z || other.z, |
1929 | } |
1930 | } |
1931 | |
1932 | /// Returns new vector with results of negation operation on each component. |
1933 | #[inline ] |
1934 | pub fn not(self) -> Self { |
1935 | BoolVector3D { |
1936 | x: !self.x, |
1937 | y: !self.y, |
1938 | z: !self.z, |
1939 | } |
1940 | } |
1941 | |
1942 | /// Returns point, each component of which or from `a`, or from `b` depending on truly value |
1943 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1944 | #[inline ] |
1945 | pub fn select_point<T, U>(self, a: Point3D<T, U>, b: Point3D<T, U>) -> Point3D<T, U> { |
1946 | point3( |
1947 | if self.x { a.x } else { b.x }, |
1948 | if self.y { a.y } else { b.y }, |
1949 | if self.z { a.z } else { b.z }, |
1950 | ) |
1951 | } |
1952 | |
1953 | /// Returns vector, each component of which or from `a`, or from `b` depending on truly value |
1954 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1955 | #[inline ] |
1956 | pub fn select_vector<T, U>(self, a: Vector3D<T, U>, b: Vector3D<T, U>) -> Vector3D<T, U> { |
1957 | vec3( |
1958 | if self.x { a.x } else { b.x }, |
1959 | if self.y { a.y } else { b.y }, |
1960 | if self.z { a.z } else { b.z }, |
1961 | ) |
1962 | } |
1963 | |
1964 | /// Returns size, each component of which or from `a`, or from `b` depending on truly value |
1965 | /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. |
1966 | #[inline ] |
1967 | #[must_use ] |
1968 | pub fn select_size<T, U>(self, a: Size3D<T, U>, b: Size3D<T, U>) -> Size3D<T, U> { |
1969 | size3( |
1970 | if self.x { a.width } else { b.width }, |
1971 | if self.y { a.height } else { b.height }, |
1972 | if self.z { a.depth } else { b.depth }, |
1973 | ) |
1974 | } |
1975 | |
1976 | /// Returns a 2d vector using this vector's x and y coordinates. |
1977 | #[inline ] |
1978 | pub fn xy(self) -> BoolVector2D { |
1979 | BoolVector2D { |
1980 | x: self.x, |
1981 | y: self.y, |
1982 | } |
1983 | } |
1984 | |
1985 | /// Returns a 2d vector using this vector's x and z coordinates. |
1986 | #[inline ] |
1987 | pub fn xz(self) -> BoolVector2D { |
1988 | BoolVector2D { |
1989 | x: self.x, |
1990 | y: self.z, |
1991 | } |
1992 | } |
1993 | |
1994 | /// Returns a 2d vector using this vector's y and z coordinates. |
1995 | #[inline ] |
1996 | pub fn yz(self) -> BoolVector2D { |
1997 | BoolVector2D { |
1998 | x: self.y, |
1999 | y: self.z, |
2000 | } |
2001 | } |
2002 | } |
2003 | |
2004 | /// Convenience constructor. |
2005 | #[inline ] |
2006 | pub const fn vec2<T, U>(x: T, y: T) -> Vector2D<T, U> { |
2007 | Vector2D { |
2008 | x, |
2009 | y, |
2010 | _unit: PhantomData, |
2011 | } |
2012 | } |
2013 | |
2014 | /// Convenience constructor. |
2015 | #[inline ] |
2016 | pub const fn vec3<T, U>(x: T, y: T, z: T) -> Vector3D<T, U> { |
2017 | Vector3D { |
2018 | x, |
2019 | y, |
2020 | z, |
2021 | _unit: PhantomData, |
2022 | } |
2023 | } |
2024 | |
2025 | /// Shorthand for `BoolVector2D { x, y }`. |
2026 | #[inline ] |
2027 | pub const fn bvec2(x: bool, y: bool) -> BoolVector2D { |
2028 | BoolVector2D { x, y } |
2029 | } |
2030 | |
2031 | /// Shorthand for `BoolVector3D { x, y, z }`. |
2032 | #[inline ] |
2033 | pub const fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { |
2034 | BoolVector3D { x, y, z } |
2035 | } |
2036 | |
2037 | #[cfg (test)] |
2038 | mod vector2d { |
2039 | use crate::scale::Scale; |
2040 | use crate::{default, vec2}; |
2041 | |
2042 | #[cfg (feature = "mint" )] |
2043 | use mint; |
2044 | type Vec2 = default::Vector2D<f32>; |
2045 | |
2046 | #[test ] |
2047 | pub fn test_scalar_mul() { |
2048 | let p1: Vec2 = vec2(3.0, 5.0); |
2049 | |
2050 | let result = p1 * 5.0; |
2051 | |
2052 | assert_eq!(result, Vec2::new(15.0, 25.0)); |
2053 | } |
2054 | |
2055 | #[test ] |
2056 | pub fn test_dot() { |
2057 | let p1: Vec2 = vec2(2.0, 7.0); |
2058 | let p2: Vec2 = vec2(13.0, 11.0); |
2059 | assert_eq!(p1.dot(p2), 103.0); |
2060 | } |
2061 | |
2062 | #[test ] |
2063 | pub fn test_cross() { |
2064 | let p1: Vec2 = vec2(4.0, 7.0); |
2065 | let p2: Vec2 = vec2(13.0, 8.0); |
2066 | let r = p1.cross(p2); |
2067 | assert_eq!(r, -59.0); |
2068 | } |
2069 | |
2070 | #[test ] |
2071 | pub fn test_normalize() { |
2072 | use std::f32; |
2073 | |
2074 | let p0: Vec2 = Vec2::zero(); |
2075 | let p1: Vec2 = vec2(4.0, 0.0); |
2076 | let p2: Vec2 = vec2(3.0, -4.0); |
2077 | assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); |
2078 | assert_eq!(p1.normalize(), vec2(1.0, 0.0)); |
2079 | assert_eq!(p2.normalize(), vec2(0.6, -0.8)); |
2080 | |
2081 | let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); |
2082 | assert_ne!( |
2083 | p3.normalize(), |
2084 | vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) |
2085 | ); |
2086 | assert_eq!( |
2087 | p3.robust_normalize(), |
2088 | vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) |
2089 | ); |
2090 | |
2091 | let p4: Vec2 = Vec2::zero(); |
2092 | assert!(p4.try_normalize().is_none()); |
2093 | let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE); |
2094 | assert!(p5.try_normalize().is_none()); |
2095 | |
2096 | let p6: Vec2 = vec2(4.0, 0.0); |
2097 | let p7: Vec2 = vec2(3.0, -4.0); |
2098 | assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0)); |
2099 | assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8)); |
2100 | } |
2101 | |
2102 | #[test ] |
2103 | pub fn test_min() { |
2104 | let p1: Vec2 = vec2(1.0, 3.0); |
2105 | let p2: Vec2 = vec2(2.0, 2.0); |
2106 | |
2107 | let result = p1.min(p2); |
2108 | |
2109 | assert_eq!(result, vec2(1.0, 2.0)); |
2110 | } |
2111 | |
2112 | #[test ] |
2113 | pub fn test_max() { |
2114 | let p1: Vec2 = vec2(1.0, 3.0); |
2115 | let p2: Vec2 = vec2(2.0, 2.0); |
2116 | |
2117 | let result = p1.max(p2); |
2118 | |
2119 | assert_eq!(result, vec2(2.0, 3.0)); |
2120 | } |
2121 | |
2122 | #[test ] |
2123 | pub fn test_angle_from_x_axis() { |
2124 | use crate::approxeq::ApproxEq; |
2125 | use core::f32::consts::FRAC_PI_2; |
2126 | |
2127 | let right: Vec2 = vec2(10.0, 0.0); |
2128 | let down: Vec2 = vec2(0.0, 4.0); |
2129 | let up: Vec2 = vec2(0.0, -1.0); |
2130 | |
2131 | assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); |
2132 | assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); |
2133 | assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); |
2134 | } |
2135 | |
2136 | #[test ] |
2137 | pub fn test_angle_to() { |
2138 | use crate::approxeq::ApproxEq; |
2139 | use core::f32::consts::FRAC_PI_2; |
2140 | |
2141 | let right: Vec2 = vec2(10.0, 0.0); |
2142 | let right2: Vec2 = vec2(1.0, 0.0); |
2143 | let up: Vec2 = vec2(0.0, -1.0); |
2144 | let up_left: Vec2 = vec2(-1.0, -1.0); |
2145 | |
2146 | assert!(right.angle_to(right2).get().approx_eq(&0.0)); |
2147 | assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2)); |
2148 | assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); |
2149 | assert!(up_left |
2150 | .angle_to(up) |
2151 | .get() |
2152 | .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); |
2153 | } |
2154 | |
2155 | #[test ] |
2156 | pub fn test_with_max_length() { |
2157 | use crate::approxeq::ApproxEq; |
2158 | |
2159 | let v1: Vec2 = vec2(0.5, 0.5); |
2160 | let v2: Vec2 = vec2(1.0, 0.0); |
2161 | let v3: Vec2 = vec2(0.1, 0.2); |
2162 | let v4: Vec2 = vec2(2.0, -2.0); |
2163 | let v5: Vec2 = vec2(1.0, 2.0); |
2164 | let v6: Vec2 = vec2(-1.0, 3.0); |
2165 | |
2166 | assert_eq!(v1.with_max_length(1.0), v1); |
2167 | assert_eq!(v2.with_max_length(1.0), v2); |
2168 | assert_eq!(v3.with_max_length(1.0), v3); |
2169 | assert_eq!(v4.with_max_length(10.0), v4); |
2170 | assert_eq!(v5.with_max_length(10.0), v5); |
2171 | assert_eq!(v6.with_max_length(10.0), v6); |
2172 | |
2173 | let v4_clamped = v4.with_max_length(1.0); |
2174 | assert!(v4_clamped.length().approx_eq(&1.0)); |
2175 | assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); |
2176 | |
2177 | let v5_clamped = v5.with_max_length(1.5); |
2178 | assert!(v5_clamped.length().approx_eq(&1.5)); |
2179 | assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); |
2180 | |
2181 | let v6_clamped = v6.with_max_length(2.5); |
2182 | assert!(v6_clamped.length().approx_eq(&2.5)); |
2183 | assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); |
2184 | } |
2185 | |
2186 | #[test ] |
2187 | pub fn test_project_onto_vector() { |
2188 | use crate::approxeq::ApproxEq; |
2189 | |
2190 | let v1: Vec2 = vec2(1.0, 2.0); |
2191 | let x: Vec2 = vec2(1.0, 0.0); |
2192 | let y: Vec2 = vec2(0.0, 1.0); |
2193 | |
2194 | assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0))); |
2195 | assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0))); |
2196 | assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0))); |
2197 | assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0))); |
2198 | assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); |
2199 | assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); |
2200 | } |
2201 | |
2202 | #[cfg (feature = "mint" )] |
2203 | #[test ] |
2204 | pub fn test_mint() { |
2205 | let v1 = Vec2::new(1.0, 3.0); |
2206 | let vm: mint::Vector2<_> = v1.into(); |
2207 | let v2 = Vec2::from(vm); |
2208 | |
2209 | assert_eq!(v1, v2); |
2210 | } |
2211 | |
2212 | pub enum Mm {} |
2213 | pub enum Cm {} |
2214 | |
2215 | pub type Vector2DMm<T> = super::Vector2D<T, Mm>; |
2216 | pub type Vector2DCm<T> = super::Vector2D<T, Cm>; |
2217 | |
2218 | #[test ] |
2219 | pub fn test_add() { |
2220 | let p1 = Vector2DMm::new(1.0, 2.0); |
2221 | let p2 = Vector2DMm::new(3.0, 4.0); |
2222 | |
2223 | assert_eq!(p1 + p2, vec2(4.0, 6.0)); |
2224 | assert_eq!(p1 + &p2, vec2(4.0, 6.0)); |
2225 | } |
2226 | |
2227 | #[test ] |
2228 | pub fn test_sum() { |
2229 | let vecs = [ |
2230 | Vector2DMm::new(1.0, 2.0), |
2231 | Vector2DMm::new(3.0, 4.0), |
2232 | Vector2DMm::new(5.0, 6.0) |
2233 | ]; |
2234 | let sum = Vector2DMm::new(9.0, 12.0); |
2235 | assert_eq!(vecs.iter().sum::<Vector2DMm<_>>(), sum); |
2236 | } |
2237 | |
2238 | #[test ] |
2239 | pub fn test_add_assign() { |
2240 | let mut p1 = Vector2DMm::new(1.0, 2.0); |
2241 | p1 += vec2(3.0, 4.0); |
2242 | |
2243 | assert_eq!(p1, vec2(4.0, 6.0)); |
2244 | } |
2245 | |
2246 | #[test ] |
2247 | pub fn test_tpyed_scalar_mul() { |
2248 | let p1 = Vector2DMm::new(1.0, 2.0); |
2249 | let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1); |
2250 | |
2251 | let result: Vector2DCm<f32> = p1 * cm_per_mm; |
2252 | |
2253 | assert_eq!(result, vec2(0.1, 0.2)); |
2254 | } |
2255 | |
2256 | #[test ] |
2257 | pub fn test_swizzling() { |
2258 | let p: default::Vector2D<i32> = vec2(1, 2); |
2259 | assert_eq!(p.yx(), vec2(2, 1)); |
2260 | } |
2261 | |
2262 | #[test ] |
2263 | pub fn test_reflect() { |
2264 | use crate::approxeq::ApproxEq; |
2265 | let a: Vec2 = vec2(1.0, 3.0); |
2266 | let n1: Vec2 = vec2(0.0, -1.0); |
2267 | let n2: Vec2 = vec2(1.0, -1.0).normalize(); |
2268 | |
2269 | assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0))); |
2270 | assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0))); |
2271 | } |
2272 | } |
2273 | |
2274 | #[cfg (test)] |
2275 | mod vector3d { |
2276 | use crate::scale::Scale; |
2277 | use crate::{default, vec2, vec3}; |
2278 | #[cfg (feature = "mint" )] |
2279 | use mint; |
2280 | |
2281 | type Vec3 = default::Vector3D<f32>; |
2282 | |
2283 | #[test ] |
2284 | pub fn test_add() { |
2285 | let p1 = Vec3::new(1.0, 2.0, 3.0); |
2286 | let p2 = Vec3::new(4.0, 5.0, 6.0); |
2287 | |
2288 | assert_eq!(p1 + p2, vec3(5.0, 7.0, 9.0)); |
2289 | assert_eq!(p1 + &p2, vec3(5.0, 7.0, 9.0)); |
2290 | } |
2291 | |
2292 | #[test ] |
2293 | pub fn test_sum() { |
2294 | let vecs = [ |
2295 | Vec3::new(1.0, 2.0, 3.0), |
2296 | Vec3::new(4.0, 5.0, 6.0), |
2297 | Vec3::new(7.0, 8.0, 9.0) |
2298 | ]; |
2299 | let sum = Vec3::new(12.0, 15.0, 18.0); |
2300 | assert_eq!(vecs.iter().sum::<Vec3>(), sum); |
2301 | } |
2302 | |
2303 | #[test ] |
2304 | pub fn test_dot() { |
2305 | let p1: Vec3 = vec3(7.0, 21.0, 32.0); |
2306 | let p2: Vec3 = vec3(43.0, 5.0, 16.0); |
2307 | assert_eq!(p1.dot(p2), 918.0); |
2308 | } |
2309 | |
2310 | #[test ] |
2311 | pub fn test_cross() { |
2312 | let p1: Vec3 = vec3(4.0, 7.0, 9.0); |
2313 | let p2: Vec3 = vec3(13.0, 8.0, 3.0); |
2314 | let p3 = p1.cross(p2); |
2315 | assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); |
2316 | } |
2317 | |
2318 | #[test ] |
2319 | pub fn test_normalize() { |
2320 | use std::f32; |
2321 | |
2322 | let p0: Vec3 = Vec3::zero(); |
2323 | let p1: Vec3 = vec3(0.0, -6.0, 0.0); |
2324 | let p2: Vec3 = vec3(1.0, 2.0, -2.0); |
2325 | assert!( |
2326 | p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() |
2327 | ); |
2328 | assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); |
2329 | assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); |
2330 | |
2331 | let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); |
2332 | assert_ne!( |
2333 | p3.normalize(), |
2334 | vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) |
2335 | ); |
2336 | assert_eq!( |
2337 | p3.robust_normalize(), |
2338 | vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) |
2339 | ); |
2340 | |
2341 | let p4: Vec3 = Vec3::zero(); |
2342 | assert!(p4.try_normalize().is_none()); |
2343 | let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE); |
2344 | assert!(p5.try_normalize().is_none()); |
2345 | |
2346 | let p6: Vec3 = vec3(4.0, 0.0, 3.0); |
2347 | let p7: Vec3 = vec3(3.0, -4.0, 0.0); |
2348 | assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6)); |
2349 | assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0)); |
2350 | } |
2351 | |
2352 | #[test ] |
2353 | pub fn test_min() { |
2354 | let p1: Vec3 = vec3(1.0, 3.0, 5.0); |
2355 | let p2: Vec3 = vec3(2.0, 2.0, -1.0); |
2356 | |
2357 | let result = p1.min(p2); |
2358 | |
2359 | assert_eq!(result, vec3(1.0, 2.0, -1.0)); |
2360 | } |
2361 | |
2362 | #[test ] |
2363 | pub fn test_max() { |
2364 | let p1: Vec3 = vec3(1.0, 3.0, 5.0); |
2365 | let p2: Vec3 = vec3(2.0, 2.0, -1.0); |
2366 | |
2367 | let result = p1.max(p2); |
2368 | |
2369 | assert_eq!(result, vec3(2.0, 3.0, 5.0)); |
2370 | } |
2371 | |
2372 | #[test ] |
2373 | pub fn test_clamp() { |
2374 | let p1: Vec3 = vec3(1.0, -1.0, 5.0); |
2375 | let p2: Vec3 = vec3(2.0, 5.0, 10.0); |
2376 | let p3: Vec3 = vec3(-1.0, 2.0, 20.0); |
2377 | |
2378 | let result = p3.clamp(p1, p2); |
2379 | |
2380 | assert_eq!(result, vec3(1.0, 2.0, 10.0)); |
2381 | } |
2382 | |
2383 | #[test ] |
2384 | pub fn test_typed_scalar_mul() { |
2385 | enum Mm {} |
2386 | enum Cm {} |
2387 | |
2388 | let p1 = super::Vector3D::<f32, Mm>::new(1.0, 2.0, 3.0); |
2389 | let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1); |
2390 | |
2391 | let result: super::Vector3D<f32, Cm> = p1 * cm_per_mm; |
2392 | |
2393 | assert_eq!(result, vec3(0.1, 0.2, 0.3)); |
2394 | } |
2395 | |
2396 | #[test ] |
2397 | pub fn test_swizzling() { |
2398 | let p: Vec3 = vec3(1.0, 2.0, 3.0); |
2399 | assert_eq!(p.xy(), vec2(1.0, 2.0)); |
2400 | assert_eq!(p.xz(), vec2(1.0, 3.0)); |
2401 | assert_eq!(p.yz(), vec2(2.0, 3.0)); |
2402 | } |
2403 | |
2404 | #[cfg (feature = "mint" )] |
2405 | #[test ] |
2406 | pub fn test_mint() { |
2407 | let v1 = Vec3::new(1.0, 3.0, 5.0); |
2408 | let vm: mint::Vector3<_> = v1.into(); |
2409 | let v2 = Vec3::from(vm); |
2410 | |
2411 | assert_eq!(v1, v2); |
2412 | } |
2413 | |
2414 | #[test ] |
2415 | pub fn test_reflect() { |
2416 | use crate::approxeq::ApproxEq; |
2417 | let a: Vec3 = vec3(1.0, 3.0, 2.0); |
2418 | let n1: Vec3 = vec3(0.0, -1.0, 0.0); |
2419 | let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize(); |
2420 | |
2421 | assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0))); |
2422 | assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0))); |
2423 | } |
2424 | |
2425 | #[test ] |
2426 | pub fn test_angle_to() { |
2427 | use crate::approxeq::ApproxEq; |
2428 | use core::f32::consts::FRAC_PI_2; |
2429 | |
2430 | let right: Vec3 = vec3(10.0, 0.0, 0.0); |
2431 | let right2: Vec3 = vec3(1.0, 0.0, 0.0); |
2432 | let up: Vec3 = vec3(0.0, -1.0, 0.0); |
2433 | let up_left: Vec3 = vec3(-1.0, -1.0, 0.0); |
2434 | |
2435 | assert!(right.angle_to(right2).get().approx_eq(&0.0)); |
2436 | assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2)); |
2437 | assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); |
2438 | assert!(up_left |
2439 | .angle_to(up) |
2440 | .get() |
2441 | .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); |
2442 | } |
2443 | |
2444 | #[test ] |
2445 | pub fn test_with_max_length() { |
2446 | use crate::approxeq::ApproxEq; |
2447 | |
2448 | let v1: Vec3 = vec3(0.5, 0.5, 0.0); |
2449 | let v2: Vec3 = vec3(1.0, 0.0, 0.0); |
2450 | let v3: Vec3 = vec3(0.1, 0.2, 0.3); |
2451 | let v4: Vec3 = vec3(2.0, -2.0, 2.0); |
2452 | let v5: Vec3 = vec3(1.0, 2.0, -3.0); |
2453 | let v6: Vec3 = vec3(-1.0, 3.0, 2.0); |
2454 | |
2455 | assert_eq!(v1.with_max_length(1.0), v1); |
2456 | assert_eq!(v2.with_max_length(1.0), v2); |
2457 | assert_eq!(v3.with_max_length(1.0), v3); |
2458 | assert_eq!(v4.with_max_length(10.0), v4); |
2459 | assert_eq!(v5.with_max_length(10.0), v5); |
2460 | assert_eq!(v6.with_max_length(10.0), v6); |
2461 | |
2462 | let v4_clamped = v4.with_max_length(1.0); |
2463 | assert!(v4_clamped.length().approx_eq(&1.0)); |
2464 | assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); |
2465 | |
2466 | let v5_clamped = v5.with_max_length(1.5); |
2467 | assert!(v5_clamped.length().approx_eq(&1.5)); |
2468 | assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); |
2469 | |
2470 | let v6_clamped = v6.with_max_length(2.5); |
2471 | assert!(v6_clamped.length().approx_eq(&2.5)); |
2472 | assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); |
2473 | } |
2474 | |
2475 | #[test ] |
2476 | pub fn test_project_onto_vector() { |
2477 | use crate::approxeq::ApproxEq; |
2478 | |
2479 | let v1: Vec3 = vec3(1.0, 2.0, 3.0); |
2480 | let x: Vec3 = vec3(1.0, 0.0, 0.0); |
2481 | let y: Vec3 = vec3(0.0, 1.0, 0.0); |
2482 | let z: Vec3 = vec3(0.0, 0.0, 1.0); |
2483 | |
2484 | assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0))); |
2485 | assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0))); |
2486 | assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0))); |
2487 | assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0))); |
2488 | assert!(v1 |
2489 | .project_onto_vector(x * 10.0) |
2490 | .approx_eq(&vec3(1.0, 0.0, 0.0))); |
2491 | assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); |
2492 | assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); |
2493 | } |
2494 | } |
2495 | |
2496 | #[cfg (test)] |
2497 | mod bool_vector { |
2498 | use super::*; |
2499 | use crate::default; |
2500 | type Vec2 = default::Vector2D<f32>; |
2501 | type Vec3 = default::Vector3D<f32>; |
2502 | |
2503 | #[test ] |
2504 | fn test_bvec2() { |
2505 | assert_eq!( |
2506 | Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), |
2507 | bvec2(false, true), |
2508 | ); |
2509 | |
2510 | assert_eq!( |
2511 | Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), |
2512 | bvec2(true, false), |
2513 | ); |
2514 | |
2515 | assert_eq!( |
2516 | Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), |
2517 | bvec2(true, false), |
2518 | ); |
2519 | |
2520 | assert_eq!( |
2521 | Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), |
2522 | bvec2(false, true), |
2523 | ); |
2524 | |
2525 | assert!(bvec2(true, true).any()); |
2526 | assert!(bvec2(false, true).any()); |
2527 | assert!(bvec2(true, false).any()); |
2528 | assert!(!bvec2(false, false).any()); |
2529 | assert!(bvec2(false, false).none()); |
2530 | assert!(bvec2(true, true).all()); |
2531 | assert!(!bvec2(false, true).all()); |
2532 | assert!(!bvec2(true, false).all()); |
2533 | assert!(!bvec2(false, false).all()); |
2534 | |
2535 | assert_eq!(bvec2(true, false).not(), bvec2(false, true)); |
2536 | assert_eq!( |
2537 | bvec2(true, false).and(bvec2(true, true)), |
2538 | bvec2(true, false) |
2539 | ); |
2540 | assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); |
2541 | |
2542 | assert_eq!( |
2543 | bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), |
2544 | Vec2::new(1.0, 4.0), |
2545 | ); |
2546 | } |
2547 | |
2548 | #[test ] |
2549 | fn test_bvec3() { |
2550 | assert_eq!( |
2551 | Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), |
2552 | bvec3(false, false, true), |
2553 | ); |
2554 | |
2555 | assert_eq!( |
2556 | Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), |
2557 | bvec3(true, false, false), |
2558 | ); |
2559 | |
2560 | assert_eq!( |
2561 | Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), |
2562 | bvec3(false, true, false), |
2563 | ); |
2564 | |
2565 | assert_eq!( |
2566 | Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), |
2567 | bvec3(true, false, true), |
2568 | ); |
2569 | |
2570 | assert!(bvec3(true, true, false).any()); |
2571 | assert!(bvec3(false, true, false).any()); |
2572 | assert!(bvec3(true, false, false).any()); |
2573 | assert!(!bvec3(false, false, false).any()); |
2574 | assert!(bvec3(false, false, false).none()); |
2575 | assert!(bvec3(true, true, true).all()); |
2576 | assert!(!bvec3(false, true, false).all()); |
2577 | assert!(!bvec3(true, false, false).all()); |
2578 | assert!(!bvec3(false, false, false).all()); |
2579 | |
2580 | assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); |
2581 | assert_eq!( |
2582 | bvec3(true, false, true).and(bvec3(true, true, false)), |
2583 | bvec3(true, false, false) |
2584 | ); |
2585 | assert_eq!( |
2586 | bvec3(true, false, false).or(bvec3(true, true, false)), |
2587 | bvec3(true, true, false) |
2588 | ); |
2589 | |
2590 | assert_eq!( |
2591 | bvec3(true, false, true) |
2592 | .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), |
2593 | Vec3::new(1.0, 5.0, 3.0), |
2594 | ); |
2595 | } |
2596 | } |
2597 | |