1 | use core::cmp::Ordering; |
2 | use core::num::FpCategory; |
3 | use core::ops::{Add, Div, Neg}; |
4 | |
5 | use core::f32; |
6 | use core::f64; |
7 | |
8 | use crate::{Num, NumCast, ToPrimitive}; |
9 | |
10 | /// Generic trait for floating point numbers that works with `no_std`. |
11 | /// |
12 | /// This trait implements a subset of the `Float` trait. |
13 | pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy { |
14 | /// Returns positive infinity. |
15 | /// |
16 | /// # Examples |
17 | /// |
18 | /// ``` |
19 | /// use num_traits::float::FloatCore; |
20 | /// use std::{f32, f64}; |
21 | /// |
22 | /// fn check<T: FloatCore>(x: T) { |
23 | /// assert!(T::infinity() == x); |
24 | /// } |
25 | /// |
26 | /// check(f32::INFINITY); |
27 | /// check(f64::INFINITY); |
28 | /// ``` |
29 | fn infinity() -> Self; |
30 | |
31 | /// Returns negative infinity. |
32 | /// |
33 | /// # Examples |
34 | /// |
35 | /// ``` |
36 | /// use num_traits::float::FloatCore; |
37 | /// use std::{f32, f64}; |
38 | /// |
39 | /// fn check<T: FloatCore>(x: T) { |
40 | /// assert!(T::neg_infinity() == x); |
41 | /// } |
42 | /// |
43 | /// check(f32::NEG_INFINITY); |
44 | /// check(f64::NEG_INFINITY); |
45 | /// ``` |
46 | fn neg_infinity() -> Self; |
47 | |
48 | /// Returns NaN. |
49 | /// |
50 | /// # Examples |
51 | /// |
52 | /// ``` |
53 | /// use num_traits::float::FloatCore; |
54 | /// |
55 | /// fn check<T: FloatCore>() { |
56 | /// let n = T::nan(); |
57 | /// assert!(n != n); |
58 | /// } |
59 | /// |
60 | /// check::<f32>(); |
61 | /// check::<f64>(); |
62 | /// ``` |
63 | fn nan() -> Self; |
64 | |
65 | /// Returns `-0.0`. |
66 | /// |
67 | /// # Examples |
68 | /// |
69 | /// ``` |
70 | /// use num_traits::float::FloatCore; |
71 | /// use std::{f32, f64}; |
72 | /// |
73 | /// fn check<T: FloatCore>(n: T) { |
74 | /// let z = T::neg_zero(); |
75 | /// assert!(z.is_zero()); |
76 | /// assert!(T::one() / z == n); |
77 | /// } |
78 | /// |
79 | /// check(f32::NEG_INFINITY); |
80 | /// check(f64::NEG_INFINITY); |
81 | /// ``` |
82 | fn neg_zero() -> Self; |
83 | |
84 | /// Returns the smallest finite value that this type can represent. |
85 | /// |
86 | /// # Examples |
87 | /// |
88 | /// ``` |
89 | /// use num_traits::float::FloatCore; |
90 | /// use std::{f32, f64}; |
91 | /// |
92 | /// fn check<T: FloatCore>(x: T) { |
93 | /// assert!(T::min_value() == x); |
94 | /// } |
95 | /// |
96 | /// check(f32::MIN); |
97 | /// check(f64::MIN); |
98 | /// ``` |
99 | fn min_value() -> Self; |
100 | |
101 | /// Returns the smallest positive, normalized value that this type can represent. |
102 | /// |
103 | /// # Examples |
104 | /// |
105 | /// ``` |
106 | /// use num_traits::float::FloatCore; |
107 | /// use std::{f32, f64}; |
108 | /// |
109 | /// fn check<T: FloatCore>(x: T) { |
110 | /// assert!(T::min_positive_value() == x); |
111 | /// } |
112 | /// |
113 | /// check(f32::MIN_POSITIVE); |
114 | /// check(f64::MIN_POSITIVE); |
115 | /// ``` |
116 | fn min_positive_value() -> Self; |
117 | |
118 | /// Returns epsilon, a small positive value. |
119 | /// |
120 | /// # Examples |
121 | /// |
122 | /// ``` |
123 | /// use num_traits::float::FloatCore; |
124 | /// use std::{f32, f64}; |
125 | /// |
126 | /// fn check<T: FloatCore>(x: T) { |
127 | /// assert!(T::epsilon() == x); |
128 | /// } |
129 | /// |
130 | /// check(f32::EPSILON); |
131 | /// check(f64::EPSILON); |
132 | /// ``` |
133 | fn epsilon() -> Self; |
134 | |
135 | /// Returns the largest finite value that this type can represent. |
136 | /// |
137 | /// # Examples |
138 | /// |
139 | /// ``` |
140 | /// use num_traits::float::FloatCore; |
141 | /// use std::{f32, f64}; |
142 | /// |
143 | /// fn check<T: FloatCore>(x: T) { |
144 | /// assert!(T::max_value() == x); |
145 | /// } |
146 | /// |
147 | /// check(f32::MAX); |
148 | /// check(f64::MAX); |
149 | /// ``` |
150 | fn max_value() -> Self; |
151 | |
152 | /// Returns `true` if the number is NaN. |
153 | /// |
154 | /// # Examples |
155 | /// |
156 | /// ``` |
157 | /// use num_traits::float::FloatCore; |
158 | /// use std::{f32, f64}; |
159 | /// |
160 | /// fn check<T: FloatCore>(x: T, p: bool) { |
161 | /// assert!(x.is_nan() == p); |
162 | /// } |
163 | /// |
164 | /// check(f32::NAN, true); |
165 | /// check(f32::INFINITY, false); |
166 | /// check(f64::NAN, true); |
167 | /// check(0.0f64, false); |
168 | /// ``` |
169 | #[inline ] |
170 | #[allow (clippy::eq_op)] |
171 | fn is_nan(self) -> bool { |
172 | self != self |
173 | } |
174 | |
175 | /// Returns `true` if the number is infinite. |
176 | /// |
177 | /// # Examples |
178 | /// |
179 | /// ``` |
180 | /// use num_traits::float::FloatCore; |
181 | /// use std::{f32, f64}; |
182 | /// |
183 | /// fn check<T: FloatCore>(x: T, p: bool) { |
184 | /// assert!(x.is_infinite() == p); |
185 | /// } |
186 | /// |
187 | /// check(f32::INFINITY, true); |
188 | /// check(f32::NEG_INFINITY, true); |
189 | /// check(f32::NAN, false); |
190 | /// check(f64::INFINITY, true); |
191 | /// check(f64::NEG_INFINITY, true); |
192 | /// check(0.0f64, false); |
193 | /// ``` |
194 | #[inline ] |
195 | fn is_infinite(self) -> bool { |
196 | self == Self::infinity() || self == Self::neg_infinity() |
197 | } |
198 | |
199 | /// Returns `true` if the number is neither infinite or NaN. |
200 | /// |
201 | /// # Examples |
202 | /// |
203 | /// ``` |
204 | /// use num_traits::float::FloatCore; |
205 | /// use std::{f32, f64}; |
206 | /// |
207 | /// fn check<T: FloatCore>(x: T, p: bool) { |
208 | /// assert!(x.is_finite() == p); |
209 | /// } |
210 | /// |
211 | /// check(f32::INFINITY, false); |
212 | /// check(f32::MAX, true); |
213 | /// check(f64::NEG_INFINITY, false); |
214 | /// check(f64::MIN_POSITIVE, true); |
215 | /// check(f64::NAN, false); |
216 | /// ``` |
217 | #[inline ] |
218 | fn is_finite(self) -> bool { |
219 | !(self.is_nan() || self.is_infinite()) |
220 | } |
221 | |
222 | /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. |
223 | /// |
224 | /// # Examples |
225 | /// |
226 | /// ``` |
227 | /// use num_traits::float::FloatCore; |
228 | /// use std::{f32, f64}; |
229 | /// |
230 | /// fn check<T: FloatCore>(x: T, p: bool) { |
231 | /// assert!(x.is_normal() == p); |
232 | /// } |
233 | /// |
234 | /// check(f32::INFINITY, false); |
235 | /// check(f32::MAX, true); |
236 | /// check(f64::NEG_INFINITY, false); |
237 | /// check(f64::MIN_POSITIVE, true); |
238 | /// check(0.0f64, false); |
239 | /// ``` |
240 | #[inline ] |
241 | fn is_normal(self) -> bool { |
242 | self.classify() == FpCategory::Normal |
243 | } |
244 | |
245 | /// Returns `true` if the number is [subnormal]. |
246 | /// |
247 | /// ``` |
248 | /// use num_traits::float::FloatCore; |
249 | /// use std::f64; |
250 | /// |
251 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
252 | /// let max = f64::MAX; |
253 | /// let lower_than_min = 1.0e-308_f64; |
254 | /// let zero = 0.0_f64; |
255 | /// |
256 | /// assert!(!min.is_subnormal()); |
257 | /// assert!(!max.is_subnormal()); |
258 | /// |
259 | /// assert!(!zero.is_subnormal()); |
260 | /// assert!(!f64::NAN.is_subnormal()); |
261 | /// assert!(!f64::INFINITY.is_subnormal()); |
262 | /// // Values between `0` and `min` are Subnormal. |
263 | /// assert!(lower_than_min.is_subnormal()); |
264 | /// ``` |
265 | /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
266 | #[inline ] |
267 | fn is_subnormal(self) -> bool { |
268 | self.classify() == FpCategory::Subnormal |
269 | } |
270 | |
271 | /// Returns the floating point category of the number. If only one property |
272 | /// is going to be tested, it is generally faster to use the specific |
273 | /// predicate instead. |
274 | /// |
275 | /// # Examples |
276 | /// |
277 | /// ``` |
278 | /// use num_traits::float::FloatCore; |
279 | /// use std::{f32, f64}; |
280 | /// use std::num::FpCategory; |
281 | /// |
282 | /// fn check<T: FloatCore>(x: T, c: FpCategory) { |
283 | /// assert!(x.classify() == c); |
284 | /// } |
285 | /// |
286 | /// check(f32::INFINITY, FpCategory::Infinite); |
287 | /// check(f32::MAX, FpCategory::Normal); |
288 | /// check(f64::NAN, FpCategory::Nan); |
289 | /// check(f64::MIN_POSITIVE, FpCategory::Normal); |
290 | /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); |
291 | /// check(0.0f64, FpCategory::Zero); |
292 | /// ``` |
293 | fn classify(self) -> FpCategory; |
294 | |
295 | /// Returns the largest integer less than or equal to a number. |
296 | /// |
297 | /// # Examples |
298 | /// |
299 | /// ``` |
300 | /// use num_traits::float::FloatCore; |
301 | /// use std::{f32, f64}; |
302 | /// |
303 | /// fn check<T: FloatCore>(x: T, y: T) { |
304 | /// assert!(x.floor() == y); |
305 | /// } |
306 | /// |
307 | /// check(f32::INFINITY, f32::INFINITY); |
308 | /// check(0.9f32, 0.0); |
309 | /// check(1.0f32, 1.0); |
310 | /// check(1.1f32, 1.0); |
311 | /// check(-0.0f64, 0.0); |
312 | /// check(-0.9f64, -1.0); |
313 | /// check(-1.0f64, -1.0); |
314 | /// check(-1.1f64, -2.0); |
315 | /// check(f64::MIN, f64::MIN); |
316 | /// ``` |
317 | #[inline ] |
318 | fn floor(self) -> Self { |
319 | let f = self.fract(); |
320 | if f.is_nan() || f.is_zero() { |
321 | self |
322 | } else if self < Self::zero() { |
323 | self - f - Self::one() |
324 | } else { |
325 | self - f |
326 | } |
327 | } |
328 | |
329 | /// Returns the smallest integer greater than or equal to a number. |
330 | /// |
331 | /// # Examples |
332 | /// |
333 | /// ``` |
334 | /// use num_traits::float::FloatCore; |
335 | /// use std::{f32, f64}; |
336 | /// |
337 | /// fn check<T: FloatCore>(x: T, y: T) { |
338 | /// assert!(x.ceil() == y); |
339 | /// } |
340 | /// |
341 | /// check(f32::INFINITY, f32::INFINITY); |
342 | /// check(0.9f32, 1.0); |
343 | /// check(1.0f32, 1.0); |
344 | /// check(1.1f32, 2.0); |
345 | /// check(-0.0f64, 0.0); |
346 | /// check(-0.9f64, -0.0); |
347 | /// check(-1.0f64, -1.0); |
348 | /// check(-1.1f64, -1.0); |
349 | /// check(f64::MIN, f64::MIN); |
350 | /// ``` |
351 | #[inline ] |
352 | fn ceil(self) -> Self { |
353 | let f = self.fract(); |
354 | if f.is_nan() || f.is_zero() { |
355 | self |
356 | } else if self > Self::zero() { |
357 | self - f + Self::one() |
358 | } else { |
359 | self - f |
360 | } |
361 | } |
362 | |
363 | /// Returns the nearest integer to a number. Round half-way cases away from `0.0`. |
364 | /// |
365 | /// # Examples |
366 | /// |
367 | /// ``` |
368 | /// use num_traits::float::FloatCore; |
369 | /// use std::{f32, f64}; |
370 | /// |
371 | /// fn check<T: FloatCore>(x: T, y: T) { |
372 | /// assert!(x.round() == y); |
373 | /// } |
374 | /// |
375 | /// check(f32::INFINITY, f32::INFINITY); |
376 | /// check(0.4f32, 0.0); |
377 | /// check(0.5f32, 1.0); |
378 | /// check(0.6f32, 1.0); |
379 | /// check(-0.4f64, 0.0); |
380 | /// check(-0.5f64, -1.0); |
381 | /// check(-0.6f64, -1.0); |
382 | /// check(f64::MIN, f64::MIN); |
383 | /// ``` |
384 | #[inline ] |
385 | fn round(self) -> Self { |
386 | let one = Self::one(); |
387 | let h = Self::from(0.5).expect("Unable to cast from 0.5" ); |
388 | let f = self.fract(); |
389 | if f.is_nan() || f.is_zero() { |
390 | self |
391 | } else if self > Self::zero() { |
392 | if f < h { |
393 | self - f |
394 | } else { |
395 | self - f + one |
396 | } |
397 | } else if -f < h { |
398 | self - f |
399 | } else { |
400 | self - f - one |
401 | } |
402 | } |
403 | |
404 | /// Return the integer part of a number. |
405 | /// |
406 | /// # Examples |
407 | /// |
408 | /// ``` |
409 | /// use num_traits::float::FloatCore; |
410 | /// use std::{f32, f64}; |
411 | /// |
412 | /// fn check<T: FloatCore>(x: T, y: T) { |
413 | /// assert!(x.trunc() == y); |
414 | /// } |
415 | /// |
416 | /// check(f32::INFINITY, f32::INFINITY); |
417 | /// check(0.9f32, 0.0); |
418 | /// check(1.0f32, 1.0); |
419 | /// check(1.1f32, 1.0); |
420 | /// check(-0.0f64, 0.0); |
421 | /// check(-0.9f64, -0.0); |
422 | /// check(-1.0f64, -1.0); |
423 | /// check(-1.1f64, -1.0); |
424 | /// check(f64::MIN, f64::MIN); |
425 | /// ``` |
426 | #[inline ] |
427 | fn trunc(self) -> Self { |
428 | let f = self.fract(); |
429 | if f.is_nan() { |
430 | self |
431 | } else { |
432 | self - f |
433 | } |
434 | } |
435 | |
436 | /// Returns the fractional part of a number. |
437 | /// |
438 | /// # Examples |
439 | /// |
440 | /// ``` |
441 | /// use num_traits::float::FloatCore; |
442 | /// use std::{f32, f64}; |
443 | /// |
444 | /// fn check<T: FloatCore>(x: T, y: T) { |
445 | /// assert!(x.fract() == y); |
446 | /// } |
447 | /// |
448 | /// check(f32::MAX, 0.0); |
449 | /// check(0.75f32, 0.75); |
450 | /// check(1.0f32, 0.0); |
451 | /// check(1.25f32, 0.25); |
452 | /// check(-0.0f64, 0.0); |
453 | /// check(-0.75f64, -0.75); |
454 | /// check(-1.0f64, 0.0); |
455 | /// check(-1.25f64, -0.25); |
456 | /// check(f64::MIN, 0.0); |
457 | /// ``` |
458 | #[inline ] |
459 | fn fract(self) -> Self { |
460 | if self.is_zero() { |
461 | Self::zero() |
462 | } else { |
463 | self % Self::one() |
464 | } |
465 | } |
466 | |
467 | /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the |
468 | /// number is `FloatCore::nan()`. |
469 | /// |
470 | /// # Examples |
471 | /// |
472 | /// ``` |
473 | /// use num_traits::float::FloatCore; |
474 | /// use std::{f32, f64}; |
475 | /// |
476 | /// fn check<T: FloatCore>(x: T, y: T) { |
477 | /// assert!(x.abs() == y); |
478 | /// } |
479 | /// |
480 | /// check(f32::INFINITY, f32::INFINITY); |
481 | /// check(1.0f32, 1.0); |
482 | /// check(0.0f64, 0.0); |
483 | /// check(-0.0f64, 0.0); |
484 | /// check(-1.0f64, 1.0); |
485 | /// check(f64::MIN, f64::MAX); |
486 | /// ``` |
487 | #[inline ] |
488 | fn abs(self) -> Self { |
489 | if self.is_sign_positive() { |
490 | return self; |
491 | } |
492 | if self.is_sign_negative() { |
493 | return -self; |
494 | } |
495 | Self::nan() |
496 | } |
497 | |
498 | /// Returns a number that represents the sign of `self`. |
499 | /// |
500 | /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()` |
501 | /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()` |
502 | /// - `FloatCore::nan()` if the number is `FloatCore::nan()` |
503 | /// |
504 | /// # Examples |
505 | /// |
506 | /// ``` |
507 | /// use num_traits::float::FloatCore; |
508 | /// use std::{f32, f64}; |
509 | /// |
510 | /// fn check<T: FloatCore>(x: T, y: T) { |
511 | /// assert!(x.signum() == y); |
512 | /// } |
513 | /// |
514 | /// check(f32::INFINITY, 1.0); |
515 | /// check(3.0f32, 1.0); |
516 | /// check(0.0f32, 1.0); |
517 | /// check(-0.0f64, -1.0); |
518 | /// check(-3.0f64, -1.0); |
519 | /// check(f64::MIN, -1.0); |
520 | /// ``` |
521 | #[inline ] |
522 | fn signum(self) -> Self { |
523 | if self.is_nan() { |
524 | Self::nan() |
525 | } else if self.is_sign_negative() { |
526 | -Self::one() |
527 | } else { |
528 | Self::one() |
529 | } |
530 | } |
531 | |
532 | /// Returns `true` if `self` is positive, including `+0.0` and |
533 | /// `FloatCore::infinity()`, and `FloatCore::nan()`. |
534 | /// |
535 | /// # Examples |
536 | /// |
537 | /// ``` |
538 | /// use num_traits::float::FloatCore; |
539 | /// use std::{f32, f64}; |
540 | /// |
541 | /// fn check<T: FloatCore>(x: T, p: bool) { |
542 | /// assert!(x.is_sign_positive() == p); |
543 | /// } |
544 | /// |
545 | /// check(f32::INFINITY, true); |
546 | /// check(f32::MAX, true); |
547 | /// check(0.0f32, true); |
548 | /// check(-0.0f64, false); |
549 | /// check(f64::NEG_INFINITY, false); |
550 | /// check(f64::MIN_POSITIVE, true); |
551 | /// check(f64::NAN, true); |
552 | /// check(-f64::NAN, false); |
553 | /// ``` |
554 | #[inline ] |
555 | fn is_sign_positive(self) -> bool { |
556 | !self.is_sign_negative() |
557 | } |
558 | |
559 | /// Returns `true` if `self` is negative, including `-0.0` and |
560 | /// `FloatCore::neg_infinity()`, and `-FloatCore::nan()`. |
561 | /// |
562 | /// # Examples |
563 | /// |
564 | /// ``` |
565 | /// use num_traits::float::FloatCore; |
566 | /// use std::{f32, f64}; |
567 | /// |
568 | /// fn check<T: FloatCore>(x: T, p: bool) { |
569 | /// assert!(x.is_sign_negative() == p); |
570 | /// } |
571 | /// |
572 | /// check(f32::INFINITY, false); |
573 | /// check(f32::MAX, false); |
574 | /// check(0.0f32, false); |
575 | /// check(-0.0f64, true); |
576 | /// check(f64::NEG_INFINITY, true); |
577 | /// check(f64::MIN_POSITIVE, false); |
578 | /// check(f64::NAN, false); |
579 | /// check(-f64::NAN, true); |
580 | /// ``` |
581 | #[inline ] |
582 | fn is_sign_negative(self) -> bool { |
583 | let (_, _, sign) = self.integer_decode(); |
584 | sign < 0 |
585 | } |
586 | |
587 | /// Returns the minimum of the two numbers. |
588 | /// |
589 | /// If one of the arguments is NaN, then the other argument is returned. |
590 | /// |
591 | /// # Examples |
592 | /// |
593 | /// ``` |
594 | /// use num_traits::float::FloatCore; |
595 | /// use std::{f32, f64}; |
596 | /// |
597 | /// fn check<T: FloatCore>(x: T, y: T, min: T) { |
598 | /// assert!(x.min(y) == min); |
599 | /// } |
600 | /// |
601 | /// check(1.0f32, 2.0, 1.0); |
602 | /// check(f32::NAN, 2.0, 2.0); |
603 | /// check(1.0f64, -2.0, -2.0); |
604 | /// check(1.0f64, f64::NAN, 1.0); |
605 | /// ``` |
606 | #[inline ] |
607 | fn min(self, other: Self) -> Self { |
608 | if self.is_nan() { |
609 | return other; |
610 | } |
611 | if other.is_nan() { |
612 | return self; |
613 | } |
614 | if self < other { |
615 | self |
616 | } else { |
617 | other |
618 | } |
619 | } |
620 | |
621 | /// Returns the maximum of the two numbers. |
622 | /// |
623 | /// If one of the arguments is NaN, then the other argument is returned. |
624 | /// |
625 | /// # Examples |
626 | /// |
627 | /// ``` |
628 | /// use num_traits::float::FloatCore; |
629 | /// use std::{f32, f64}; |
630 | /// |
631 | /// fn check<T: FloatCore>(x: T, y: T, max: T) { |
632 | /// assert!(x.max(y) == max); |
633 | /// } |
634 | /// |
635 | /// check(1.0f32, 2.0, 2.0); |
636 | /// check(1.0f32, f32::NAN, 1.0); |
637 | /// check(-1.0f64, 2.0, 2.0); |
638 | /// check(-1.0f64, f64::NAN, -1.0); |
639 | /// ``` |
640 | #[inline ] |
641 | fn max(self, other: Self) -> Self { |
642 | if self.is_nan() { |
643 | return other; |
644 | } |
645 | if other.is_nan() { |
646 | return self; |
647 | } |
648 | if self > other { |
649 | self |
650 | } else { |
651 | other |
652 | } |
653 | } |
654 | |
655 | /// Returns the reciprocal (multiplicative inverse) of the number. |
656 | /// |
657 | /// # Examples |
658 | /// |
659 | /// ``` |
660 | /// use num_traits::float::FloatCore; |
661 | /// use std::{f32, f64}; |
662 | /// |
663 | /// fn check<T: FloatCore>(x: T, y: T) { |
664 | /// assert!(x.recip() == y); |
665 | /// assert!(y.recip() == x); |
666 | /// } |
667 | /// |
668 | /// check(f32::INFINITY, 0.0); |
669 | /// check(2.0f32, 0.5); |
670 | /// check(-0.25f64, -4.0); |
671 | /// check(-0.0f64, f64::NEG_INFINITY); |
672 | /// ``` |
673 | #[inline ] |
674 | fn recip(self) -> Self { |
675 | Self::one() / self |
676 | } |
677 | |
678 | /// Raise a number to an integer power. |
679 | /// |
680 | /// Using this function is generally faster than using `powf` |
681 | /// |
682 | /// # Examples |
683 | /// |
684 | /// ``` |
685 | /// use num_traits::float::FloatCore; |
686 | /// |
687 | /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) { |
688 | /// assert!(x.powi(exp) == powi); |
689 | /// } |
690 | /// |
691 | /// check(9.0f32, 2, 81.0); |
692 | /// check(1.0f32, -2, 1.0); |
693 | /// check(10.0f64, 20, 1e20); |
694 | /// check(4.0f64, -2, 0.0625); |
695 | /// check(-1.0f64, std::i32::MIN, 1.0); |
696 | /// ``` |
697 | #[inline ] |
698 | fn powi(mut self, mut exp: i32) -> Self { |
699 | if exp < 0 { |
700 | exp = exp.wrapping_neg(); |
701 | self = self.recip(); |
702 | } |
703 | // It should always be possible to convert a positive `i32` to a `usize`. |
704 | // Note, `i32::MIN` will wrap and still be negative, so we need to convert |
705 | // to `u32` without sign-extension before growing to `usize`. |
706 | super::pow(self, (exp as u32).to_usize().unwrap()) |
707 | } |
708 | |
709 | /// Converts to degrees, assuming the number is in radians. |
710 | /// |
711 | /// # Examples |
712 | /// |
713 | /// ``` |
714 | /// use num_traits::float::FloatCore; |
715 | /// use std::{f32, f64}; |
716 | /// |
717 | /// fn check<T: FloatCore>(rad: T, deg: T) { |
718 | /// assert!(rad.to_degrees() == deg); |
719 | /// } |
720 | /// |
721 | /// check(0.0f32, 0.0); |
722 | /// check(f32::consts::PI, 180.0); |
723 | /// check(f64::consts::FRAC_PI_4, 45.0); |
724 | /// check(f64::INFINITY, f64::INFINITY); |
725 | /// ``` |
726 | fn to_degrees(self) -> Self; |
727 | |
728 | /// Converts to radians, assuming the number is in degrees. |
729 | /// |
730 | /// # Examples |
731 | /// |
732 | /// ``` |
733 | /// use num_traits::float::FloatCore; |
734 | /// use std::{f32, f64}; |
735 | /// |
736 | /// fn check<T: FloatCore>(deg: T, rad: T) { |
737 | /// assert!(deg.to_radians() == rad); |
738 | /// } |
739 | /// |
740 | /// check(0.0f32, 0.0); |
741 | /// check(180.0, f32::consts::PI); |
742 | /// check(45.0, f64::consts::FRAC_PI_4); |
743 | /// check(f64::INFINITY, f64::INFINITY); |
744 | /// ``` |
745 | fn to_radians(self) -> Self; |
746 | |
747 | /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
748 | /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
749 | /// |
750 | /// # Examples |
751 | /// |
752 | /// ``` |
753 | /// use num_traits::float::FloatCore; |
754 | /// use std::{f32, f64}; |
755 | /// |
756 | /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { |
757 | /// let (mantissa, exponent, sign) = x.integer_decode(); |
758 | /// assert_eq!(mantissa, m); |
759 | /// assert_eq!(exponent, e); |
760 | /// assert_eq!(sign, s); |
761 | /// } |
762 | /// |
763 | /// check(2.0f32, 1 << 23, -22, 1); |
764 | /// check(-2.0f32, 1 << 23, -22, -1); |
765 | /// check(f32::INFINITY, 1 << 23, 105, 1); |
766 | /// check(f64::NEG_INFINITY, 1 << 52, 972, -1); |
767 | /// ``` |
768 | fn integer_decode(self) -> (u64, i16, i8); |
769 | } |
770 | |
771 | impl FloatCore for f32 { |
772 | constant! { |
773 | infinity() -> f32::INFINITY; |
774 | neg_infinity() -> f32::NEG_INFINITY; |
775 | nan() -> f32::NAN; |
776 | neg_zero() -> -0.0; |
777 | min_value() -> f32::MIN; |
778 | min_positive_value() -> f32::MIN_POSITIVE; |
779 | epsilon() -> f32::EPSILON; |
780 | max_value() -> f32::MAX; |
781 | } |
782 | |
783 | #[inline ] |
784 | fn integer_decode(self) -> (u64, i16, i8) { |
785 | integer_decode_f32(self) |
786 | } |
787 | |
788 | forward! { |
789 | Self::is_nan(self) -> bool; |
790 | Self::is_infinite(self) -> bool; |
791 | Self::is_finite(self) -> bool; |
792 | Self::is_normal(self) -> bool; |
793 | Self::classify(self) -> FpCategory; |
794 | Self::is_sign_positive(self) -> bool; |
795 | Self::is_sign_negative(self) -> bool; |
796 | Self::min(self, other: Self) -> Self; |
797 | Self::max(self, other: Self) -> Self; |
798 | Self::recip(self) -> Self; |
799 | Self::to_degrees(self) -> Self; |
800 | Self::to_radians(self) -> Self; |
801 | } |
802 | |
803 | #[cfg (has_is_subnormal)] |
804 | forward! { |
805 | Self::is_subnormal(self) -> bool; |
806 | } |
807 | |
808 | #[cfg (feature = "std" )] |
809 | forward! { |
810 | Self::floor(self) -> Self; |
811 | Self::ceil(self) -> Self; |
812 | Self::round(self) -> Self; |
813 | Self::trunc(self) -> Self; |
814 | Self::fract(self) -> Self; |
815 | Self::abs(self) -> Self; |
816 | Self::signum(self) -> Self; |
817 | Self::powi(self, n: i32) -> Self; |
818 | } |
819 | |
820 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
821 | forward! { |
822 | libm::floorf as floor(self) -> Self; |
823 | libm::ceilf as ceil(self) -> Self; |
824 | libm::roundf as round(self) -> Self; |
825 | libm::truncf as trunc(self) -> Self; |
826 | libm::fabsf as abs(self) -> Self; |
827 | } |
828 | |
829 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
830 | #[inline ] |
831 | fn fract(self) -> Self { |
832 | self - libm::truncf(self) |
833 | } |
834 | } |
835 | |
836 | impl FloatCore for f64 { |
837 | constant! { |
838 | infinity() -> f64::INFINITY; |
839 | neg_infinity() -> f64::NEG_INFINITY; |
840 | nan() -> f64::NAN; |
841 | neg_zero() -> -0.0; |
842 | min_value() -> f64::MIN; |
843 | min_positive_value() -> f64::MIN_POSITIVE; |
844 | epsilon() -> f64::EPSILON; |
845 | max_value() -> f64::MAX; |
846 | } |
847 | |
848 | #[inline ] |
849 | fn integer_decode(self) -> (u64, i16, i8) { |
850 | integer_decode_f64(self) |
851 | } |
852 | |
853 | forward! { |
854 | Self::is_nan(self) -> bool; |
855 | Self::is_infinite(self) -> bool; |
856 | Self::is_finite(self) -> bool; |
857 | Self::is_normal(self) -> bool; |
858 | Self::classify(self) -> FpCategory; |
859 | Self::is_sign_positive(self) -> bool; |
860 | Self::is_sign_negative(self) -> bool; |
861 | Self::min(self, other: Self) -> Self; |
862 | Self::max(self, other: Self) -> Self; |
863 | Self::recip(self) -> Self; |
864 | Self::to_degrees(self) -> Self; |
865 | Self::to_radians(self) -> Self; |
866 | } |
867 | |
868 | #[cfg (has_is_subnormal)] |
869 | forward! { |
870 | Self::is_subnormal(self) -> bool; |
871 | } |
872 | |
873 | #[cfg (feature = "std" )] |
874 | forward! { |
875 | Self::floor(self) -> Self; |
876 | Self::ceil(self) -> Self; |
877 | Self::round(self) -> Self; |
878 | Self::trunc(self) -> Self; |
879 | Self::fract(self) -> Self; |
880 | Self::abs(self) -> Self; |
881 | Self::signum(self) -> Self; |
882 | Self::powi(self, n: i32) -> Self; |
883 | } |
884 | |
885 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
886 | forward! { |
887 | libm::floor as floor(self) -> Self; |
888 | libm::ceil as ceil(self) -> Self; |
889 | libm::round as round(self) -> Self; |
890 | libm::trunc as trunc(self) -> Self; |
891 | libm::fabs as abs(self) -> Self; |
892 | } |
893 | |
894 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
895 | #[inline ] |
896 | fn fract(self) -> Self { |
897 | self - libm::trunc(self) |
898 | } |
899 | } |
900 | |
901 | // FIXME: these doctests aren't actually helpful, because they're using and |
902 | // testing the inherent methods directly, not going through `Float`. |
903 | |
904 | /// Generic trait for floating point numbers |
905 | /// |
906 | /// This trait is only available with the `std` feature, or with the `libm` feature otherwise. |
907 | #[cfg (any(feature = "std" , feature = "libm" ))] |
908 | pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { |
909 | /// Returns the `NaN` value. |
910 | /// |
911 | /// ``` |
912 | /// use num_traits::Float; |
913 | /// |
914 | /// let nan: f32 = Float::nan(); |
915 | /// |
916 | /// assert!(nan.is_nan()); |
917 | /// ``` |
918 | fn nan() -> Self; |
919 | /// Returns the infinite value. |
920 | /// |
921 | /// ``` |
922 | /// use num_traits::Float; |
923 | /// use std::f32; |
924 | /// |
925 | /// let infinity: f32 = Float::infinity(); |
926 | /// |
927 | /// assert!(infinity.is_infinite()); |
928 | /// assert!(!infinity.is_finite()); |
929 | /// assert!(infinity > f32::MAX); |
930 | /// ``` |
931 | fn infinity() -> Self; |
932 | /// Returns the negative infinite value. |
933 | /// |
934 | /// ``` |
935 | /// use num_traits::Float; |
936 | /// use std::f32; |
937 | /// |
938 | /// let neg_infinity: f32 = Float::neg_infinity(); |
939 | /// |
940 | /// assert!(neg_infinity.is_infinite()); |
941 | /// assert!(!neg_infinity.is_finite()); |
942 | /// assert!(neg_infinity < f32::MIN); |
943 | /// ``` |
944 | fn neg_infinity() -> Self; |
945 | /// Returns `-0.0`. |
946 | /// |
947 | /// ``` |
948 | /// use num_traits::{Zero, Float}; |
949 | /// |
950 | /// let inf: f32 = Float::infinity(); |
951 | /// let zero: f32 = Zero::zero(); |
952 | /// let neg_zero: f32 = Float::neg_zero(); |
953 | /// |
954 | /// assert_eq!(zero, neg_zero); |
955 | /// assert_eq!(7.0f32/inf, zero); |
956 | /// assert_eq!(zero * 10.0, zero); |
957 | /// ``` |
958 | fn neg_zero() -> Self; |
959 | |
960 | /// Returns the smallest finite value that this type can represent. |
961 | /// |
962 | /// ``` |
963 | /// use num_traits::Float; |
964 | /// use std::f64; |
965 | /// |
966 | /// let x: f64 = Float::min_value(); |
967 | /// |
968 | /// assert_eq!(x, f64::MIN); |
969 | /// ``` |
970 | fn min_value() -> Self; |
971 | |
972 | /// Returns the smallest positive, normalized value that this type can represent. |
973 | /// |
974 | /// ``` |
975 | /// use num_traits::Float; |
976 | /// use std::f64; |
977 | /// |
978 | /// let x: f64 = Float::min_positive_value(); |
979 | /// |
980 | /// assert_eq!(x, f64::MIN_POSITIVE); |
981 | /// ``` |
982 | fn min_positive_value() -> Self; |
983 | |
984 | /// Returns epsilon, a small positive value. |
985 | /// |
986 | /// ``` |
987 | /// use num_traits::Float; |
988 | /// use std::f64; |
989 | /// |
990 | /// let x: f64 = Float::epsilon(); |
991 | /// |
992 | /// assert_eq!(x, f64::EPSILON); |
993 | /// ``` |
994 | /// |
995 | /// # Panics |
996 | /// |
997 | /// The default implementation will panic if `f32::EPSILON` cannot |
998 | /// be cast to `Self`. |
999 | fn epsilon() -> Self { |
1000 | Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON" ) |
1001 | } |
1002 | |
1003 | /// Returns the largest finite value that this type can represent. |
1004 | /// |
1005 | /// ``` |
1006 | /// use num_traits::Float; |
1007 | /// use std::f64; |
1008 | /// |
1009 | /// let x: f64 = Float::max_value(); |
1010 | /// assert_eq!(x, f64::MAX); |
1011 | /// ``` |
1012 | fn max_value() -> Self; |
1013 | |
1014 | /// Returns `true` if this value is `NaN` and false otherwise. |
1015 | /// |
1016 | /// ``` |
1017 | /// use num_traits::Float; |
1018 | /// use std::f64; |
1019 | /// |
1020 | /// let nan = f64::NAN; |
1021 | /// let f = 7.0; |
1022 | /// |
1023 | /// assert!(nan.is_nan()); |
1024 | /// assert!(!f.is_nan()); |
1025 | /// ``` |
1026 | fn is_nan(self) -> bool; |
1027 | |
1028 | /// Returns `true` if this value is positive infinity or negative infinity and |
1029 | /// false otherwise. |
1030 | /// |
1031 | /// ``` |
1032 | /// use num_traits::Float; |
1033 | /// use std::f32; |
1034 | /// |
1035 | /// let f = 7.0f32; |
1036 | /// let inf: f32 = Float::infinity(); |
1037 | /// let neg_inf: f32 = Float::neg_infinity(); |
1038 | /// let nan: f32 = f32::NAN; |
1039 | /// |
1040 | /// assert!(!f.is_infinite()); |
1041 | /// assert!(!nan.is_infinite()); |
1042 | /// |
1043 | /// assert!(inf.is_infinite()); |
1044 | /// assert!(neg_inf.is_infinite()); |
1045 | /// ``` |
1046 | fn is_infinite(self) -> bool; |
1047 | |
1048 | /// Returns `true` if this number is neither infinite nor `NaN`. |
1049 | /// |
1050 | /// ``` |
1051 | /// use num_traits::Float; |
1052 | /// use std::f32; |
1053 | /// |
1054 | /// let f = 7.0f32; |
1055 | /// let inf: f32 = Float::infinity(); |
1056 | /// let neg_inf: f32 = Float::neg_infinity(); |
1057 | /// let nan: f32 = f32::NAN; |
1058 | /// |
1059 | /// assert!(f.is_finite()); |
1060 | /// |
1061 | /// assert!(!nan.is_finite()); |
1062 | /// assert!(!inf.is_finite()); |
1063 | /// assert!(!neg_inf.is_finite()); |
1064 | /// ``` |
1065 | fn is_finite(self) -> bool; |
1066 | |
1067 | /// Returns `true` if the number is neither zero, infinite, |
1068 | /// [subnormal][subnormal], or `NaN`. |
1069 | /// |
1070 | /// ``` |
1071 | /// use num_traits::Float; |
1072 | /// use std::f32; |
1073 | /// |
1074 | /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
1075 | /// let max = f32::MAX; |
1076 | /// let lower_than_min = 1.0e-40_f32; |
1077 | /// let zero = 0.0f32; |
1078 | /// |
1079 | /// assert!(min.is_normal()); |
1080 | /// assert!(max.is_normal()); |
1081 | /// |
1082 | /// assert!(!zero.is_normal()); |
1083 | /// assert!(!f32::NAN.is_normal()); |
1084 | /// assert!(!f32::INFINITY.is_normal()); |
1085 | /// // Values between `0` and `min` are Subnormal. |
1086 | /// assert!(!lower_than_min.is_normal()); |
1087 | /// ``` |
1088 | /// [subnormal]: http://en.wikipedia.org/wiki/Subnormal_number |
1089 | fn is_normal(self) -> bool; |
1090 | |
1091 | /// Returns `true` if the number is [subnormal]. |
1092 | /// |
1093 | /// ``` |
1094 | /// use num_traits::Float; |
1095 | /// use std::f64; |
1096 | /// |
1097 | /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
1098 | /// let max = f64::MAX; |
1099 | /// let lower_than_min = 1.0e-308_f64; |
1100 | /// let zero = 0.0_f64; |
1101 | /// |
1102 | /// assert!(!min.is_subnormal()); |
1103 | /// assert!(!max.is_subnormal()); |
1104 | /// |
1105 | /// assert!(!zero.is_subnormal()); |
1106 | /// assert!(!f64::NAN.is_subnormal()); |
1107 | /// assert!(!f64::INFINITY.is_subnormal()); |
1108 | /// // Values between `0` and `min` are Subnormal. |
1109 | /// assert!(lower_than_min.is_subnormal()); |
1110 | /// ``` |
1111 | /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
1112 | #[inline ] |
1113 | fn is_subnormal(self) -> bool { |
1114 | self.classify() == FpCategory::Subnormal |
1115 | } |
1116 | |
1117 | /// Returns the floating point category of the number. If only one property |
1118 | /// is going to be tested, it is generally faster to use the specific |
1119 | /// predicate instead. |
1120 | /// |
1121 | /// ``` |
1122 | /// use num_traits::Float; |
1123 | /// use std::num::FpCategory; |
1124 | /// use std::f32; |
1125 | /// |
1126 | /// let num = 12.4f32; |
1127 | /// let inf = f32::INFINITY; |
1128 | /// |
1129 | /// assert_eq!(num.classify(), FpCategory::Normal); |
1130 | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
1131 | /// ``` |
1132 | fn classify(self) -> FpCategory; |
1133 | |
1134 | /// Returns the largest integer less than or equal to a number. |
1135 | /// |
1136 | /// ``` |
1137 | /// use num_traits::Float; |
1138 | /// |
1139 | /// let f = 3.99; |
1140 | /// let g = 3.0; |
1141 | /// |
1142 | /// assert_eq!(f.floor(), 3.0); |
1143 | /// assert_eq!(g.floor(), 3.0); |
1144 | /// ``` |
1145 | fn floor(self) -> Self; |
1146 | |
1147 | /// Returns the smallest integer greater than or equal to a number. |
1148 | /// |
1149 | /// ``` |
1150 | /// use num_traits::Float; |
1151 | /// |
1152 | /// let f = 3.01; |
1153 | /// let g = 4.0; |
1154 | /// |
1155 | /// assert_eq!(f.ceil(), 4.0); |
1156 | /// assert_eq!(g.ceil(), 4.0); |
1157 | /// ``` |
1158 | fn ceil(self) -> Self; |
1159 | |
1160 | /// Returns the nearest integer to a number. Round half-way cases away from |
1161 | /// `0.0`. |
1162 | /// |
1163 | /// ``` |
1164 | /// use num_traits::Float; |
1165 | /// |
1166 | /// let f = 3.3; |
1167 | /// let g = -3.3; |
1168 | /// |
1169 | /// assert_eq!(f.round(), 3.0); |
1170 | /// assert_eq!(g.round(), -3.0); |
1171 | /// ``` |
1172 | fn round(self) -> Self; |
1173 | |
1174 | /// Return the integer part of a number. |
1175 | /// |
1176 | /// ``` |
1177 | /// use num_traits::Float; |
1178 | /// |
1179 | /// let f = 3.3; |
1180 | /// let g = -3.7; |
1181 | /// |
1182 | /// assert_eq!(f.trunc(), 3.0); |
1183 | /// assert_eq!(g.trunc(), -3.0); |
1184 | /// ``` |
1185 | fn trunc(self) -> Self; |
1186 | |
1187 | /// Returns the fractional part of a number. |
1188 | /// |
1189 | /// ``` |
1190 | /// use num_traits::Float; |
1191 | /// |
1192 | /// let x = 3.5; |
1193 | /// let y = -3.5; |
1194 | /// let abs_difference_x = (x.fract() - 0.5).abs(); |
1195 | /// let abs_difference_y = (y.fract() - (-0.5)).abs(); |
1196 | /// |
1197 | /// assert!(abs_difference_x < 1e-10); |
1198 | /// assert!(abs_difference_y < 1e-10); |
1199 | /// ``` |
1200 | fn fract(self) -> Self; |
1201 | |
1202 | /// Computes the absolute value of `self`. Returns `Float::nan()` if the |
1203 | /// number is `Float::nan()`. |
1204 | /// |
1205 | /// ``` |
1206 | /// use num_traits::Float; |
1207 | /// use std::f64; |
1208 | /// |
1209 | /// let x = 3.5; |
1210 | /// let y = -3.5; |
1211 | /// |
1212 | /// let abs_difference_x = (x.abs() - x).abs(); |
1213 | /// let abs_difference_y = (y.abs() - (-y)).abs(); |
1214 | /// |
1215 | /// assert!(abs_difference_x < 1e-10); |
1216 | /// assert!(abs_difference_y < 1e-10); |
1217 | /// |
1218 | /// assert!(f64::NAN.abs().is_nan()); |
1219 | /// ``` |
1220 | fn abs(self) -> Self; |
1221 | |
1222 | /// Returns a number that represents the sign of `self`. |
1223 | /// |
1224 | /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` |
1225 | /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` |
1226 | /// - `Float::nan()` if the number is `Float::nan()` |
1227 | /// |
1228 | /// ``` |
1229 | /// use num_traits::Float; |
1230 | /// use std::f64; |
1231 | /// |
1232 | /// let f = 3.5; |
1233 | /// |
1234 | /// assert_eq!(f.signum(), 1.0); |
1235 | /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); |
1236 | /// |
1237 | /// assert!(f64::NAN.signum().is_nan()); |
1238 | /// ``` |
1239 | fn signum(self) -> Self; |
1240 | |
1241 | /// Returns `true` if `self` is positive, including `+0.0`, |
1242 | /// `Float::infinity()`, and `Float::nan()`. |
1243 | /// |
1244 | /// ``` |
1245 | /// use num_traits::Float; |
1246 | /// use std::f64; |
1247 | /// |
1248 | /// let nan: f64 = f64::NAN; |
1249 | /// let neg_nan: f64 = -f64::NAN; |
1250 | /// |
1251 | /// let f = 7.0; |
1252 | /// let g = -7.0; |
1253 | /// |
1254 | /// assert!(f.is_sign_positive()); |
1255 | /// assert!(!g.is_sign_positive()); |
1256 | /// assert!(nan.is_sign_positive()); |
1257 | /// assert!(!neg_nan.is_sign_positive()); |
1258 | /// ``` |
1259 | fn is_sign_positive(self) -> bool; |
1260 | |
1261 | /// Returns `true` if `self` is negative, including `-0.0`, |
1262 | /// `Float::neg_infinity()`, and `-Float::nan()`. |
1263 | /// |
1264 | /// ``` |
1265 | /// use num_traits::Float; |
1266 | /// use std::f64; |
1267 | /// |
1268 | /// let nan: f64 = f64::NAN; |
1269 | /// let neg_nan: f64 = -f64::NAN; |
1270 | /// |
1271 | /// let f = 7.0; |
1272 | /// let g = -7.0; |
1273 | /// |
1274 | /// assert!(!f.is_sign_negative()); |
1275 | /// assert!(g.is_sign_negative()); |
1276 | /// assert!(!nan.is_sign_negative()); |
1277 | /// assert!(neg_nan.is_sign_negative()); |
1278 | /// ``` |
1279 | fn is_sign_negative(self) -> bool; |
1280 | |
1281 | /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
1282 | /// error, yielding a more accurate result than an unfused multiply-add. |
1283 | /// |
1284 | /// Using `mul_add` can be more performant than an unfused multiply-add if |
1285 | /// the target architecture has a dedicated `fma` CPU instruction. |
1286 | /// |
1287 | /// ``` |
1288 | /// use num_traits::Float; |
1289 | /// |
1290 | /// let m = 10.0; |
1291 | /// let x = 4.0; |
1292 | /// let b = 60.0; |
1293 | /// |
1294 | /// // 100.0 |
1295 | /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); |
1296 | /// |
1297 | /// assert!(abs_difference < 1e-10); |
1298 | /// ``` |
1299 | fn mul_add(self, a: Self, b: Self) -> Self; |
1300 | /// Take the reciprocal (inverse) of a number, `1/x`. |
1301 | /// |
1302 | /// ``` |
1303 | /// use num_traits::Float; |
1304 | /// |
1305 | /// let x = 2.0; |
1306 | /// let abs_difference = (x.recip() - (1.0/x)).abs(); |
1307 | /// |
1308 | /// assert!(abs_difference < 1e-10); |
1309 | /// ``` |
1310 | fn recip(self) -> Self; |
1311 | |
1312 | /// Raise a number to an integer power. |
1313 | /// |
1314 | /// Using this function is generally faster than using `powf` |
1315 | /// |
1316 | /// ``` |
1317 | /// use num_traits::Float; |
1318 | /// |
1319 | /// let x = 2.0; |
1320 | /// let abs_difference = (x.powi(2) - x*x).abs(); |
1321 | /// |
1322 | /// assert!(abs_difference < 1e-10); |
1323 | /// ``` |
1324 | fn powi(self, n: i32) -> Self; |
1325 | |
1326 | /// Raise a number to a floating point power. |
1327 | /// |
1328 | /// ``` |
1329 | /// use num_traits::Float; |
1330 | /// |
1331 | /// let x = 2.0; |
1332 | /// let abs_difference = (x.powf(2.0) - x*x).abs(); |
1333 | /// |
1334 | /// assert!(abs_difference < 1e-10); |
1335 | /// ``` |
1336 | fn powf(self, n: Self) -> Self; |
1337 | |
1338 | /// Take the square root of a number. |
1339 | /// |
1340 | /// Returns NaN if `self` is a negative number. |
1341 | /// |
1342 | /// ``` |
1343 | /// use num_traits::Float; |
1344 | /// |
1345 | /// let positive = 4.0; |
1346 | /// let negative = -4.0; |
1347 | /// |
1348 | /// let abs_difference = (positive.sqrt() - 2.0).abs(); |
1349 | /// |
1350 | /// assert!(abs_difference < 1e-10); |
1351 | /// assert!(negative.sqrt().is_nan()); |
1352 | /// ``` |
1353 | fn sqrt(self) -> Self; |
1354 | |
1355 | /// Returns `e^(self)`, (the exponential function). |
1356 | /// |
1357 | /// ``` |
1358 | /// use num_traits::Float; |
1359 | /// |
1360 | /// let one = 1.0; |
1361 | /// // e^1 |
1362 | /// let e = one.exp(); |
1363 | /// |
1364 | /// // ln(e) - 1 == 0 |
1365 | /// let abs_difference = (e.ln() - 1.0).abs(); |
1366 | /// |
1367 | /// assert!(abs_difference < 1e-10); |
1368 | /// ``` |
1369 | fn exp(self) -> Self; |
1370 | |
1371 | /// Returns `2^(self)`. |
1372 | /// |
1373 | /// ``` |
1374 | /// use num_traits::Float; |
1375 | /// |
1376 | /// let f = 2.0; |
1377 | /// |
1378 | /// // 2^2 - 4 == 0 |
1379 | /// let abs_difference = (f.exp2() - 4.0).abs(); |
1380 | /// |
1381 | /// assert!(abs_difference < 1e-10); |
1382 | /// ``` |
1383 | fn exp2(self) -> Self; |
1384 | |
1385 | /// Returns the natural logarithm of the number. |
1386 | /// |
1387 | /// ``` |
1388 | /// use num_traits::Float; |
1389 | /// |
1390 | /// let one = 1.0; |
1391 | /// // e^1 |
1392 | /// let e = one.exp(); |
1393 | /// |
1394 | /// // ln(e) - 1 == 0 |
1395 | /// let abs_difference = (e.ln() - 1.0).abs(); |
1396 | /// |
1397 | /// assert!(abs_difference < 1e-10); |
1398 | /// ``` |
1399 | fn ln(self) -> Self; |
1400 | |
1401 | /// Returns the logarithm of the number with respect to an arbitrary base. |
1402 | /// |
1403 | /// ``` |
1404 | /// use num_traits::Float; |
1405 | /// |
1406 | /// let ten = 10.0; |
1407 | /// let two = 2.0; |
1408 | /// |
1409 | /// // log10(10) - 1 == 0 |
1410 | /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); |
1411 | /// |
1412 | /// // log2(2) - 1 == 0 |
1413 | /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); |
1414 | /// |
1415 | /// assert!(abs_difference_10 < 1e-10); |
1416 | /// assert!(abs_difference_2 < 1e-10); |
1417 | /// ``` |
1418 | fn log(self, base: Self) -> Self; |
1419 | |
1420 | /// Returns the base 2 logarithm of the number. |
1421 | /// |
1422 | /// ``` |
1423 | /// use num_traits::Float; |
1424 | /// |
1425 | /// let two = 2.0; |
1426 | /// |
1427 | /// // log2(2) - 1 == 0 |
1428 | /// let abs_difference = (two.log2() - 1.0).abs(); |
1429 | /// |
1430 | /// assert!(abs_difference < 1e-10); |
1431 | /// ``` |
1432 | fn log2(self) -> Self; |
1433 | |
1434 | /// Returns the base 10 logarithm of the number. |
1435 | /// |
1436 | /// ``` |
1437 | /// use num_traits::Float; |
1438 | /// |
1439 | /// let ten = 10.0; |
1440 | /// |
1441 | /// // log10(10) - 1 == 0 |
1442 | /// let abs_difference = (ten.log10() - 1.0).abs(); |
1443 | /// |
1444 | /// assert!(abs_difference < 1e-10); |
1445 | /// ``` |
1446 | fn log10(self) -> Self; |
1447 | |
1448 | /// Converts radians to degrees. |
1449 | /// |
1450 | /// ``` |
1451 | /// use std::f64::consts; |
1452 | /// |
1453 | /// let angle = consts::PI; |
1454 | /// |
1455 | /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
1456 | /// |
1457 | /// assert!(abs_difference < 1e-10); |
1458 | /// ``` |
1459 | #[inline ] |
1460 | fn to_degrees(self) -> Self { |
1461 | let halfpi = Self::zero().acos(); |
1462 | let ninety = Self::from(90u8).unwrap(); |
1463 | self * ninety / halfpi |
1464 | } |
1465 | |
1466 | /// Converts degrees to radians. |
1467 | /// |
1468 | /// ``` |
1469 | /// use std::f64::consts; |
1470 | /// |
1471 | /// let angle = 180.0_f64; |
1472 | /// |
1473 | /// let abs_difference = (angle.to_radians() - consts::PI).abs(); |
1474 | /// |
1475 | /// assert!(abs_difference < 1e-10); |
1476 | /// ``` |
1477 | #[inline ] |
1478 | fn to_radians(self) -> Self { |
1479 | let halfpi = Self::zero().acos(); |
1480 | let ninety = Self::from(90u8).unwrap(); |
1481 | self * halfpi / ninety |
1482 | } |
1483 | |
1484 | /// Returns the maximum of the two numbers. |
1485 | /// |
1486 | /// ``` |
1487 | /// use num_traits::Float; |
1488 | /// |
1489 | /// let x = 1.0; |
1490 | /// let y = 2.0; |
1491 | /// |
1492 | /// assert_eq!(x.max(y), y); |
1493 | /// ``` |
1494 | fn max(self, other: Self) -> Self; |
1495 | |
1496 | /// Returns the minimum of the two numbers. |
1497 | /// |
1498 | /// ``` |
1499 | /// use num_traits::Float; |
1500 | /// |
1501 | /// let x = 1.0; |
1502 | /// let y = 2.0; |
1503 | /// |
1504 | /// assert_eq!(x.min(y), x); |
1505 | /// ``` |
1506 | fn min(self, other: Self) -> Self; |
1507 | |
1508 | /// The positive difference of two numbers. |
1509 | /// |
1510 | /// * If `self <= other`: `0:0` |
1511 | /// * Else: `self - other` |
1512 | /// |
1513 | /// ``` |
1514 | /// use num_traits::Float; |
1515 | /// |
1516 | /// let x = 3.0; |
1517 | /// let y = -3.0; |
1518 | /// |
1519 | /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
1520 | /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
1521 | /// |
1522 | /// assert!(abs_difference_x < 1e-10); |
1523 | /// assert!(abs_difference_y < 1e-10); |
1524 | /// ``` |
1525 | fn abs_sub(self, other: Self) -> Self; |
1526 | |
1527 | /// Take the cubic root of a number. |
1528 | /// |
1529 | /// ``` |
1530 | /// use num_traits::Float; |
1531 | /// |
1532 | /// let x = 8.0; |
1533 | /// |
1534 | /// // x^(1/3) - 2 == 0 |
1535 | /// let abs_difference = (x.cbrt() - 2.0).abs(); |
1536 | /// |
1537 | /// assert!(abs_difference < 1e-10); |
1538 | /// ``` |
1539 | fn cbrt(self) -> Self; |
1540 | |
1541 | /// Calculate the length of the hypotenuse of a right-angle triangle given |
1542 | /// legs of length `x` and `y`. |
1543 | /// |
1544 | /// ``` |
1545 | /// use num_traits::Float; |
1546 | /// |
1547 | /// let x = 2.0; |
1548 | /// let y = 3.0; |
1549 | /// |
1550 | /// // sqrt(x^2 + y^2) |
1551 | /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
1552 | /// |
1553 | /// assert!(abs_difference < 1e-10); |
1554 | /// ``` |
1555 | fn hypot(self, other: Self) -> Self; |
1556 | |
1557 | /// Computes the sine of a number (in radians). |
1558 | /// |
1559 | /// ``` |
1560 | /// use num_traits::Float; |
1561 | /// use std::f64; |
1562 | /// |
1563 | /// let x = f64::consts::PI/2.0; |
1564 | /// |
1565 | /// let abs_difference = (x.sin() - 1.0).abs(); |
1566 | /// |
1567 | /// assert!(abs_difference < 1e-10); |
1568 | /// ``` |
1569 | fn sin(self) -> Self; |
1570 | |
1571 | /// Computes the cosine of a number (in radians). |
1572 | /// |
1573 | /// ``` |
1574 | /// use num_traits::Float; |
1575 | /// use std::f64; |
1576 | /// |
1577 | /// let x = 2.0*f64::consts::PI; |
1578 | /// |
1579 | /// let abs_difference = (x.cos() - 1.0).abs(); |
1580 | /// |
1581 | /// assert!(abs_difference < 1e-10); |
1582 | /// ``` |
1583 | fn cos(self) -> Self; |
1584 | |
1585 | /// Computes the tangent of a number (in radians). |
1586 | /// |
1587 | /// ``` |
1588 | /// use num_traits::Float; |
1589 | /// use std::f64; |
1590 | /// |
1591 | /// let x = f64::consts::PI/4.0; |
1592 | /// let abs_difference = (x.tan() - 1.0).abs(); |
1593 | /// |
1594 | /// assert!(abs_difference < 1e-14); |
1595 | /// ``` |
1596 | fn tan(self) -> Self; |
1597 | |
1598 | /// Computes the arcsine of a number. Return value is in radians in |
1599 | /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
1600 | /// [-1, 1]. |
1601 | /// |
1602 | /// ``` |
1603 | /// use num_traits::Float; |
1604 | /// use std::f64; |
1605 | /// |
1606 | /// let f = f64::consts::PI / 2.0; |
1607 | /// |
1608 | /// // asin(sin(pi/2)) |
1609 | /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); |
1610 | /// |
1611 | /// assert!(abs_difference < 1e-10); |
1612 | /// ``` |
1613 | fn asin(self) -> Self; |
1614 | |
1615 | /// Computes the arccosine of a number. Return value is in radians in |
1616 | /// the range [0, pi] or NaN if the number is outside the range |
1617 | /// [-1, 1]. |
1618 | /// |
1619 | /// ``` |
1620 | /// use num_traits::Float; |
1621 | /// use std::f64; |
1622 | /// |
1623 | /// let f = f64::consts::PI / 4.0; |
1624 | /// |
1625 | /// // acos(cos(pi/4)) |
1626 | /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); |
1627 | /// |
1628 | /// assert!(abs_difference < 1e-10); |
1629 | /// ``` |
1630 | fn acos(self) -> Self; |
1631 | |
1632 | /// Computes the arctangent of a number. Return value is in radians in the |
1633 | /// range [-pi/2, pi/2]; |
1634 | /// |
1635 | /// ``` |
1636 | /// use num_traits::Float; |
1637 | /// |
1638 | /// let f = 1.0; |
1639 | /// |
1640 | /// // atan(tan(1)) |
1641 | /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
1642 | /// |
1643 | /// assert!(abs_difference < 1e-10); |
1644 | /// ``` |
1645 | fn atan(self) -> Self; |
1646 | |
1647 | /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). |
1648 | /// |
1649 | /// * `x = 0`, `y = 0`: `0` |
1650 | /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
1651 | /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
1652 | /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
1653 | /// |
1654 | /// ``` |
1655 | /// use num_traits::Float; |
1656 | /// use std::f64; |
1657 | /// |
1658 | /// let pi = f64::consts::PI; |
1659 | /// // All angles from horizontal right (+x) |
1660 | /// // 45 deg counter-clockwise |
1661 | /// let x1 = 3.0; |
1662 | /// let y1 = -3.0; |
1663 | /// |
1664 | /// // 135 deg clockwise |
1665 | /// let x2 = -3.0; |
1666 | /// let y2 = 3.0; |
1667 | /// |
1668 | /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); |
1669 | /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); |
1670 | /// |
1671 | /// assert!(abs_difference_1 < 1e-10); |
1672 | /// assert!(abs_difference_2 < 1e-10); |
1673 | /// ``` |
1674 | fn atan2(self, other: Self) -> Self; |
1675 | |
1676 | /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
1677 | /// `(sin(x), cos(x))`. |
1678 | /// |
1679 | /// ``` |
1680 | /// use num_traits::Float; |
1681 | /// use std::f64; |
1682 | /// |
1683 | /// let x = f64::consts::PI/4.0; |
1684 | /// let f = x.sin_cos(); |
1685 | /// |
1686 | /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
1687 | /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
1688 | /// |
1689 | /// assert!(abs_difference_0 < 1e-10); |
1690 | /// assert!(abs_difference_0 < 1e-10); |
1691 | /// ``` |
1692 | fn sin_cos(self) -> (Self, Self); |
1693 | |
1694 | /// Returns `e^(self) - 1` in a way that is accurate even if the |
1695 | /// number is close to zero. |
1696 | /// |
1697 | /// ``` |
1698 | /// use num_traits::Float; |
1699 | /// |
1700 | /// let x = 7.0; |
1701 | /// |
1702 | /// // e^(ln(7)) - 1 |
1703 | /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); |
1704 | /// |
1705 | /// assert!(abs_difference < 1e-10); |
1706 | /// ``` |
1707 | fn exp_m1(self) -> Self; |
1708 | |
1709 | /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
1710 | /// the operations were performed separately. |
1711 | /// |
1712 | /// ``` |
1713 | /// use num_traits::Float; |
1714 | /// use std::f64; |
1715 | /// |
1716 | /// let x = f64::consts::E - 1.0; |
1717 | /// |
1718 | /// // ln(1 + (e - 1)) == ln(e) == 1 |
1719 | /// let abs_difference = (x.ln_1p() - 1.0).abs(); |
1720 | /// |
1721 | /// assert!(abs_difference < 1e-10); |
1722 | /// ``` |
1723 | fn ln_1p(self) -> Self; |
1724 | |
1725 | /// Hyperbolic sine function. |
1726 | /// |
1727 | /// ``` |
1728 | /// use num_traits::Float; |
1729 | /// use std::f64; |
1730 | /// |
1731 | /// let e = f64::consts::E; |
1732 | /// let x = 1.0; |
1733 | /// |
1734 | /// let f = x.sinh(); |
1735 | /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
1736 | /// let g = (e*e - 1.0)/(2.0*e); |
1737 | /// let abs_difference = (f - g).abs(); |
1738 | /// |
1739 | /// assert!(abs_difference < 1e-10); |
1740 | /// ``` |
1741 | fn sinh(self) -> Self; |
1742 | |
1743 | /// Hyperbolic cosine function. |
1744 | /// |
1745 | /// ``` |
1746 | /// use num_traits::Float; |
1747 | /// use std::f64; |
1748 | /// |
1749 | /// let e = f64::consts::E; |
1750 | /// let x = 1.0; |
1751 | /// let f = x.cosh(); |
1752 | /// // Solving cosh() at 1 gives this result |
1753 | /// let g = (e*e + 1.0)/(2.0*e); |
1754 | /// let abs_difference = (f - g).abs(); |
1755 | /// |
1756 | /// // Same result |
1757 | /// assert!(abs_difference < 1.0e-10); |
1758 | /// ``` |
1759 | fn cosh(self) -> Self; |
1760 | |
1761 | /// Hyperbolic tangent function. |
1762 | /// |
1763 | /// ``` |
1764 | /// use num_traits::Float; |
1765 | /// use std::f64; |
1766 | /// |
1767 | /// let e = f64::consts::E; |
1768 | /// let x = 1.0; |
1769 | /// |
1770 | /// let f = x.tanh(); |
1771 | /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
1772 | /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); |
1773 | /// let abs_difference = (f - g).abs(); |
1774 | /// |
1775 | /// assert!(abs_difference < 1.0e-10); |
1776 | /// ``` |
1777 | fn tanh(self) -> Self; |
1778 | |
1779 | /// Inverse hyperbolic sine function. |
1780 | /// |
1781 | /// ``` |
1782 | /// use num_traits::Float; |
1783 | /// |
1784 | /// let x = 1.0; |
1785 | /// let f = x.sinh().asinh(); |
1786 | /// |
1787 | /// let abs_difference = (f - x).abs(); |
1788 | /// |
1789 | /// assert!(abs_difference < 1.0e-10); |
1790 | /// ``` |
1791 | fn asinh(self) -> Self; |
1792 | |
1793 | /// Inverse hyperbolic cosine function. |
1794 | /// |
1795 | /// ``` |
1796 | /// use num_traits::Float; |
1797 | /// |
1798 | /// let x = 1.0; |
1799 | /// let f = x.cosh().acosh(); |
1800 | /// |
1801 | /// let abs_difference = (f - x).abs(); |
1802 | /// |
1803 | /// assert!(abs_difference < 1.0e-10); |
1804 | /// ``` |
1805 | fn acosh(self) -> Self; |
1806 | |
1807 | /// Inverse hyperbolic tangent function. |
1808 | /// |
1809 | /// ``` |
1810 | /// use num_traits::Float; |
1811 | /// use std::f64; |
1812 | /// |
1813 | /// let e = f64::consts::E; |
1814 | /// let f = e.tanh().atanh(); |
1815 | /// |
1816 | /// let abs_difference = (f - e).abs(); |
1817 | /// |
1818 | /// assert!(abs_difference < 1.0e-10); |
1819 | /// ``` |
1820 | fn atanh(self) -> Self; |
1821 | |
1822 | /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
1823 | /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
1824 | /// |
1825 | /// ``` |
1826 | /// use num_traits::Float; |
1827 | /// |
1828 | /// let num = 2.0f32; |
1829 | /// |
1830 | /// // (8388608, -22, 1) |
1831 | /// let (mantissa, exponent, sign) = Float::integer_decode(num); |
1832 | /// let sign_f = sign as f32; |
1833 | /// let mantissa_f = mantissa as f32; |
1834 | /// let exponent_f = num.powf(exponent as f32); |
1835 | /// |
1836 | /// // 1 * 8388608 * 2^(-22) == 2 |
1837 | /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); |
1838 | /// |
1839 | /// assert!(abs_difference < 1e-10); |
1840 | /// ``` |
1841 | fn integer_decode(self) -> (u64, i16, i8); |
1842 | |
1843 | /// Returns a number composed of the magnitude of `self` and the sign of |
1844 | /// `sign`. |
1845 | /// |
1846 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise |
1847 | /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of |
1848 | /// `sign` is returned. |
1849 | /// |
1850 | /// # Examples |
1851 | /// |
1852 | /// ``` |
1853 | /// use num_traits::Float; |
1854 | /// |
1855 | /// let f = 3.5_f32; |
1856 | /// |
1857 | /// assert_eq!(f.copysign(0.42), 3.5_f32); |
1858 | /// assert_eq!(f.copysign(-0.42), -3.5_f32); |
1859 | /// assert_eq!((-f).copysign(0.42), 3.5_f32); |
1860 | /// assert_eq!((-f).copysign(-0.42), -3.5_f32); |
1861 | /// |
1862 | /// assert!(f32::nan().copysign(1.0).is_nan()); |
1863 | /// ``` |
1864 | fn copysign(self, sign: Self) -> Self { |
1865 | if self.is_sign_negative() == sign.is_sign_negative() { |
1866 | self |
1867 | } else { |
1868 | self.neg() |
1869 | } |
1870 | } |
1871 | } |
1872 | |
1873 | #[cfg (feature = "std" )] |
1874 | macro_rules! float_impl_std { |
1875 | ($T:ident $decode:ident) => { |
1876 | impl Float for $T { |
1877 | constant! { |
1878 | nan() -> $T::NAN; |
1879 | infinity() -> $T::INFINITY; |
1880 | neg_infinity() -> $T::NEG_INFINITY; |
1881 | neg_zero() -> -0.0; |
1882 | min_value() -> $T::MIN; |
1883 | min_positive_value() -> $T::MIN_POSITIVE; |
1884 | epsilon() -> $T::EPSILON; |
1885 | max_value() -> $T::MAX; |
1886 | } |
1887 | |
1888 | #[inline] |
1889 | #[allow(deprecated)] |
1890 | fn abs_sub(self, other: Self) -> Self { |
1891 | <$T>::abs_sub(self, other) |
1892 | } |
1893 | |
1894 | #[inline] |
1895 | fn integer_decode(self) -> (u64, i16, i8) { |
1896 | $decode(self) |
1897 | } |
1898 | |
1899 | forward! { |
1900 | Self::is_nan(self) -> bool; |
1901 | Self::is_infinite(self) -> bool; |
1902 | Self::is_finite(self) -> bool; |
1903 | Self::is_normal(self) -> bool; |
1904 | Self::classify(self) -> FpCategory; |
1905 | Self::floor(self) -> Self; |
1906 | Self::ceil(self) -> Self; |
1907 | Self::round(self) -> Self; |
1908 | Self::trunc(self) -> Self; |
1909 | Self::fract(self) -> Self; |
1910 | Self::abs(self) -> Self; |
1911 | Self::signum(self) -> Self; |
1912 | Self::is_sign_positive(self) -> bool; |
1913 | Self::is_sign_negative(self) -> bool; |
1914 | Self::mul_add(self, a: Self, b: Self) -> Self; |
1915 | Self::recip(self) -> Self; |
1916 | Self::powi(self, n: i32) -> Self; |
1917 | Self::powf(self, n: Self) -> Self; |
1918 | Self::sqrt(self) -> Self; |
1919 | Self::exp(self) -> Self; |
1920 | Self::exp2(self) -> Self; |
1921 | Self::ln(self) -> Self; |
1922 | Self::log(self, base: Self) -> Self; |
1923 | Self::log2(self) -> Self; |
1924 | Self::log10(self) -> Self; |
1925 | Self::to_degrees(self) -> Self; |
1926 | Self::to_radians(self) -> Self; |
1927 | Self::max(self, other: Self) -> Self; |
1928 | Self::min(self, other: Self) -> Self; |
1929 | Self::cbrt(self) -> Self; |
1930 | Self::hypot(self, other: Self) -> Self; |
1931 | Self::sin(self) -> Self; |
1932 | Self::cos(self) -> Self; |
1933 | Self::tan(self) -> Self; |
1934 | Self::asin(self) -> Self; |
1935 | Self::acos(self) -> Self; |
1936 | Self::atan(self) -> Self; |
1937 | Self::atan2(self, other: Self) -> Self; |
1938 | Self::sin_cos(self) -> (Self, Self); |
1939 | Self::exp_m1(self) -> Self; |
1940 | Self::ln_1p(self) -> Self; |
1941 | Self::sinh(self) -> Self; |
1942 | Self::cosh(self) -> Self; |
1943 | Self::tanh(self) -> Self; |
1944 | Self::asinh(self) -> Self; |
1945 | Self::acosh(self) -> Self; |
1946 | Self::atanh(self) -> Self; |
1947 | } |
1948 | |
1949 | #[cfg(has_copysign)] |
1950 | forward! { |
1951 | Self::copysign(self, sign: Self) -> Self; |
1952 | } |
1953 | |
1954 | #[cfg(has_is_subnormal)] |
1955 | forward! { |
1956 | Self::is_subnormal(self) -> bool; |
1957 | } |
1958 | } |
1959 | }; |
1960 | } |
1961 | |
1962 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
1963 | macro_rules! float_impl_libm { |
1964 | ($T:ident $decode:ident) => { |
1965 | constant! { |
1966 | nan() -> $T::NAN; |
1967 | infinity() -> $T::INFINITY; |
1968 | neg_infinity() -> $T::NEG_INFINITY; |
1969 | neg_zero() -> -0.0; |
1970 | min_value() -> $T::MIN; |
1971 | min_positive_value() -> $T::MIN_POSITIVE; |
1972 | epsilon() -> $T::EPSILON; |
1973 | max_value() -> $T::MAX; |
1974 | } |
1975 | |
1976 | #[inline] |
1977 | fn integer_decode(self) -> (u64, i16, i8) { |
1978 | $decode(self) |
1979 | } |
1980 | |
1981 | #[inline] |
1982 | fn fract(self) -> Self { |
1983 | self - Float::trunc(self) |
1984 | } |
1985 | |
1986 | #[inline] |
1987 | fn log(self, base: Self) -> Self { |
1988 | self.ln() / base.ln() |
1989 | } |
1990 | |
1991 | forward! { |
1992 | Self::is_nan(self) -> bool; |
1993 | Self::is_infinite(self) -> bool; |
1994 | Self::is_finite(self) -> bool; |
1995 | Self::is_normal(self) -> bool; |
1996 | Self::classify(self) -> FpCategory; |
1997 | Self::is_sign_positive(self) -> bool; |
1998 | Self::is_sign_negative(self) -> bool; |
1999 | Self::min(self, other: Self) -> Self; |
2000 | Self::max(self, other: Self) -> Self; |
2001 | Self::recip(self) -> Self; |
2002 | Self::to_degrees(self) -> Self; |
2003 | Self::to_radians(self) -> Self; |
2004 | } |
2005 | |
2006 | #[cfg(has_is_subnormal)] |
2007 | forward! { |
2008 | Self::is_subnormal(self) -> bool; |
2009 | } |
2010 | |
2011 | forward! { |
2012 | FloatCore::signum(self) -> Self; |
2013 | FloatCore::powi(self, n: i32) -> Self; |
2014 | } |
2015 | }; |
2016 | } |
2017 | |
2018 | fn integer_decode_f32(f: f32) -> (u64, i16, i8) { |
2019 | let bits: u32 = f.to_bits(); |
2020 | let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; |
2021 | let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; |
2022 | let mantissa: u32 = if exponent == 0 { |
2023 | (bits & 0x7fffff) << 1 |
2024 | } else { |
2025 | (bits & 0x7fffff) | 0x800000 |
2026 | }; |
2027 | // Exponent bias + mantissa shift |
2028 | exponent -= 127 + 23; |
2029 | (mantissa as u64, exponent, sign) |
2030 | } |
2031 | |
2032 | fn integer_decode_f64(f: f64) -> (u64, i16, i8) { |
2033 | let bits: u64 = f.to_bits(); |
2034 | let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; |
2035 | let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; |
2036 | let mantissa: u64 = if exponent == 0 { |
2037 | (bits & 0xfffffffffffff) << 1 |
2038 | } else { |
2039 | (bits & 0xfffffffffffff) | 0x10000000000000 |
2040 | }; |
2041 | // Exponent bias + mantissa shift |
2042 | exponent -= 1023 + 52; |
2043 | (mantissa, exponent, sign) |
2044 | } |
2045 | |
2046 | #[cfg (feature = "std" )] |
2047 | float_impl_std!(f32 integer_decode_f32); |
2048 | #[cfg (feature = "std" )] |
2049 | float_impl_std!(f64 integer_decode_f64); |
2050 | |
2051 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
2052 | impl Float for f32 { |
2053 | float_impl_libm!(f32 integer_decode_f32); |
2054 | |
2055 | #[inline ] |
2056 | #[allow (deprecated)] |
2057 | fn abs_sub(self, other: Self) -> Self { |
2058 | libm::fdimf(self, other) |
2059 | } |
2060 | |
2061 | forward! { |
2062 | libm::floorf as floor(self) -> Self; |
2063 | libm::ceilf as ceil(self) -> Self; |
2064 | libm::roundf as round(self) -> Self; |
2065 | libm::truncf as trunc(self) -> Self; |
2066 | libm::fabsf as abs(self) -> Self; |
2067 | libm::fmaf as mul_add(self, a: Self, b: Self) -> Self; |
2068 | libm::powf as powf(self, n: Self) -> Self; |
2069 | libm::sqrtf as sqrt(self) -> Self; |
2070 | libm::expf as exp(self) -> Self; |
2071 | libm::exp2f as exp2(self) -> Self; |
2072 | libm::logf as ln(self) -> Self; |
2073 | libm::log2f as log2(self) -> Self; |
2074 | libm::log10f as log10(self) -> Self; |
2075 | libm::cbrtf as cbrt(self) -> Self; |
2076 | libm::hypotf as hypot(self, other: Self) -> Self; |
2077 | libm::sinf as sin(self) -> Self; |
2078 | libm::cosf as cos(self) -> Self; |
2079 | libm::tanf as tan(self) -> Self; |
2080 | libm::asinf as asin(self) -> Self; |
2081 | libm::acosf as acos(self) -> Self; |
2082 | libm::atanf as atan(self) -> Self; |
2083 | libm::atan2f as atan2(self, other: Self) -> Self; |
2084 | libm::sincosf as sin_cos(self) -> (Self, Self); |
2085 | libm::expm1f as exp_m1(self) -> Self; |
2086 | libm::log1pf as ln_1p(self) -> Self; |
2087 | libm::sinhf as sinh(self) -> Self; |
2088 | libm::coshf as cosh(self) -> Self; |
2089 | libm::tanhf as tanh(self) -> Self; |
2090 | libm::asinhf as asinh(self) -> Self; |
2091 | libm::acoshf as acosh(self) -> Self; |
2092 | libm::atanhf as atanh(self) -> Self; |
2093 | libm::copysignf as copysign(self, other: Self) -> Self; |
2094 | } |
2095 | } |
2096 | |
2097 | #[cfg (all(not(feature = "std" ), feature = "libm" ))] |
2098 | impl Float for f64 { |
2099 | float_impl_libm!(f64 integer_decode_f64); |
2100 | |
2101 | #[inline ] |
2102 | #[allow (deprecated)] |
2103 | fn abs_sub(self, other: Self) -> Self { |
2104 | libm::fdim(self, other) |
2105 | } |
2106 | |
2107 | forward! { |
2108 | libm::floor as floor(self) -> Self; |
2109 | libm::ceil as ceil(self) -> Self; |
2110 | libm::round as round(self) -> Self; |
2111 | libm::trunc as trunc(self) -> Self; |
2112 | libm::fabs as abs(self) -> Self; |
2113 | libm::fma as mul_add(self, a: Self, b: Self) -> Self; |
2114 | libm::pow as powf(self, n: Self) -> Self; |
2115 | libm::sqrt as sqrt(self) -> Self; |
2116 | libm::exp as exp(self) -> Self; |
2117 | libm::exp2 as exp2(self) -> Self; |
2118 | libm::log as ln(self) -> Self; |
2119 | libm::log2 as log2(self) -> Self; |
2120 | libm::log10 as log10(self) -> Self; |
2121 | libm::cbrt as cbrt(self) -> Self; |
2122 | libm::hypot as hypot(self, other: Self) -> Self; |
2123 | libm::sin as sin(self) -> Self; |
2124 | libm::cos as cos(self) -> Self; |
2125 | libm::tan as tan(self) -> Self; |
2126 | libm::asin as asin(self) -> Self; |
2127 | libm::acos as acos(self) -> Self; |
2128 | libm::atan as atan(self) -> Self; |
2129 | libm::atan2 as atan2(self, other: Self) -> Self; |
2130 | libm::sincos as sin_cos(self) -> (Self, Self); |
2131 | libm::expm1 as exp_m1(self) -> Self; |
2132 | libm::log1p as ln_1p(self) -> Self; |
2133 | libm::sinh as sinh(self) -> Self; |
2134 | libm::cosh as cosh(self) -> Self; |
2135 | libm::tanh as tanh(self) -> Self; |
2136 | libm::asinh as asinh(self) -> Self; |
2137 | libm::acosh as acosh(self) -> Self; |
2138 | libm::atanh as atanh(self) -> Self; |
2139 | libm::copysign as copysign(self, sign: Self) -> Self; |
2140 | } |
2141 | } |
2142 | |
2143 | macro_rules! float_const_impl { |
2144 | ($(#[$doc:meta] $constant:ident,)+) => ( |
2145 | #[allow(non_snake_case)] |
2146 | pub trait FloatConst { |
2147 | $(#[$doc] fn $constant() -> Self;)+ |
2148 | #[doc = "Return the full circle constant `τ`." ] |
2149 | #[inline] |
2150 | fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> { |
2151 | Self::PI() + Self::PI() |
2152 | } |
2153 | #[doc = "Return `log10(2.0)`." ] |
2154 | #[inline] |
2155 | fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> { |
2156 | Self::LN_2() / Self::LN_10() |
2157 | } |
2158 | #[doc = "Return `log2(10.0)`." ] |
2159 | #[inline] |
2160 | fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> { |
2161 | Self::LN_10() / Self::LN_2() |
2162 | } |
2163 | } |
2164 | float_const_impl! { @float f32, $($constant,)+ } |
2165 | float_const_impl! { @float f64, $($constant,)+ } |
2166 | ); |
2167 | (@float $T:ident, $($constant:ident,)+) => ( |
2168 | impl FloatConst for $T { |
2169 | constant! { |
2170 | $( $constant() -> $T::consts::$constant; )+ |
2171 | TAU() -> 6.28318530717958647692528676655900577; |
2172 | LOG10_2() -> 0.301029995663981195213738894724493027; |
2173 | LOG2_10() -> 3.32192809488736234787031942948939018; |
2174 | } |
2175 | } |
2176 | ); |
2177 | } |
2178 | |
2179 | float_const_impl! { |
2180 | #[doc = "Return Euler’s number." ] |
2181 | E, |
2182 | #[doc = "Return `1.0 / π`." ] |
2183 | FRAC_1_PI, |
2184 | #[doc = "Return `1.0 / sqrt(2.0)`." ] |
2185 | FRAC_1_SQRT_2, |
2186 | #[doc = "Return `2.0 / π`." ] |
2187 | FRAC_2_PI, |
2188 | #[doc = "Return `2.0 / sqrt(π)`." ] |
2189 | FRAC_2_SQRT_PI, |
2190 | #[doc = "Return `π / 2.0`." ] |
2191 | FRAC_PI_2, |
2192 | #[doc = "Return `π / 3.0`." ] |
2193 | FRAC_PI_3, |
2194 | #[doc = "Return `π / 4.0`." ] |
2195 | FRAC_PI_4, |
2196 | #[doc = "Return `π / 6.0`." ] |
2197 | FRAC_PI_6, |
2198 | #[doc = "Return `π / 8.0`." ] |
2199 | FRAC_PI_8, |
2200 | #[doc = "Return `ln(10.0)`." ] |
2201 | LN_10, |
2202 | #[doc = "Return `ln(2.0)`." ] |
2203 | LN_2, |
2204 | #[doc = "Return `log10(e)`." ] |
2205 | LOG10_E, |
2206 | #[doc = "Return `log2(e)`." ] |
2207 | LOG2_E, |
2208 | #[doc = "Return Archimedes’ constant `π`." ] |
2209 | PI, |
2210 | #[doc = "Return `sqrt(2.0)`." ] |
2211 | SQRT_2, |
2212 | } |
2213 | |
2214 | /// Trait for floating point numbers that provide an implementation |
2215 | /// of the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
2216 | /// floating point standard. |
2217 | pub trait TotalOrder { |
2218 | /// Return the ordering between `self` and `other`. |
2219 | /// |
2220 | /// Unlike the standard partial comparison between floating point numbers, |
2221 | /// this comparison always produces an ordering in accordance to |
2222 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
2223 | /// floating point standard. The values are ordered in the following sequence: |
2224 | /// |
2225 | /// - negative quiet NaN |
2226 | /// - negative signaling NaN |
2227 | /// - negative infinity |
2228 | /// - negative numbers |
2229 | /// - negative subnormal numbers |
2230 | /// - negative zero |
2231 | /// - positive zero |
2232 | /// - positive subnormal numbers |
2233 | /// - positive numbers |
2234 | /// - positive infinity |
2235 | /// - positive signaling NaN |
2236 | /// - positive quiet NaN. |
2237 | /// |
2238 | /// The ordering established by this function does not always agree with the |
2239 | /// [`PartialOrd`] and [`PartialEq`] implementations. For example, |
2240 | /// they consider negative and positive zero equal, while `total_cmp` |
2241 | /// doesn't. |
2242 | /// |
2243 | /// The interpretation of the signaling NaN bit follows the definition in |
2244 | /// the IEEE 754 standard, which may not match the interpretation by some of |
2245 | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
2246 | /// |
2247 | /// # Examples |
2248 | /// ``` |
2249 | /// use num_traits::float::TotalOrder; |
2250 | /// use std::cmp::Ordering; |
2251 | /// use std::{f32, f64}; |
2252 | /// |
2253 | /// fn check_eq<T: TotalOrder>(x: T, y: T) { |
2254 | /// assert_eq!(x.total_cmp(&y), Ordering::Equal); |
2255 | /// } |
2256 | /// |
2257 | /// check_eq(f64::NAN, f64::NAN); |
2258 | /// check_eq(f32::NAN, f32::NAN); |
2259 | /// |
2260 | /// fn check_lt<T: TotalOrder>(x: T, y: T) { |
2261 | /// assert_eq!(x.total_cmp(&y), Ordering::Less); |
2262 | /// } |
2263 | /// |
2264 | /// check_lt(-f64::NAN, f64::NAN); |
2265 | /// check_lt(f64::INFINITY, f64::NAN); |
2266 | /// check_lt(-0.0_f64, 0.0_f64); |
2267 | /// ``` |
2268 | fn total_cmp(&self, other: &Self) -> Ordering; |
2269 | } |
2270 | macro_rules! totalorder_impl { |
2271 | ($T:ident, $I:ident, $U:ident, $bits:expr) => { |
2272 | impl TotalOrder for $T { |
2273 | #[inline] |
2274 | #[cfg(has_total_cmp)] |
2275 | fn total_cmp(&self, other: &Self) -> Ordering { |
2276 | // Forward to the core implementation |
2277 | Self::total_cmp(&self, other) |
2278 | } |
2279 | #[inline] |
2280 | #[cfg(not(has_total_cmp))] |
2281 | fn total_cmp(&self, other: &Self) -> Ordering { |
2282 | // Backport the core implementation (since 1.62) |
2283 | let mut left = self.to_bits() as $I; |
2284 | let mut right = other.to_bits() as $I; |
2285 | |
2286 | left ^= (((left >> ($bits - 1)) as $U) >> 1) as $I; |
2287 | right ^= (((right >> ($bits - 1)) as $U) >> 1) as $I; |
2288 | |
2289 | left.cmp(&right) |
2290 | } |
2291 | } |
2292 | }; |
2293 | } |
2294 | totalorder_impl!(f64, i64, u64, 64); |
2295 | totalorder_impl!(f32, i32, u32, 32); |
2296 | |
2297 | #[cfg (test)] |
2298 | mod tests { |
2299 | use core::f64::consts; |
2300 | |
2301 | const DEG_RAD_PAIRS: [(f64, f64); 7] = [ |
2302 | (0.0, 0.), |
2303 | (22.5, consts::FRAC_PI_8), |
2304 | (30.0, consts::FRAC_PI_6), |
2305 | (45.0, consts::FRAC_PI_4), |
2306 | (60.0, consts::FRAC_PI_3), |
2307 | (90.0, consts::FRAC_PI_2), |
2308 | (180.0, consts::PI), |
2309 | ]; |
2310 | |
2311 | #[test ] |
2312 | fn convert_deg_rad() { |
2313 | use crate::float::FloatCore; |
2314 | |
2315 | for &(deg, rad) in &DEG_RAD_PAIRS { |
2316 | assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6); |
2317 | assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6); |
2318 | |
2319 | let (deg, rad) = (deg as f32, rad as f32); |
2320 | assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5); |
2321 | assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5); |
2322 | } |
2323 | } |
2324 | |
2325 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2326 | #[test ] |
2327 | fn convert_deg_rad_std() { |
2328 | for &(deg, rad) in &DEG_RAD_PAIRS { |
2329 | use crate::Float; |
2330 | |
2331 | assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); |
2332 | assert!((Float::to_radians(deg) - rad).abs() < 1e-6); |
2333 | |
2334 | let (deg, rad) = (deg as f32, rad as f32); |
2335 | assert!((Float::to_degrees(rad) - deg).abs() < 1e-5); |
2336 | assert!((Float::to_radians(deg) - rad).abs() < 1e-5); |
2337 | } |
2338 | } |
2339 | |
2340 | #[test ] |
2341 | fn to_degrees_rounding() { |
2342 | use crate::float::FloatCore; |
2343 | |
2344 | assert_eq!( |
2345 | FloatCore::to_degrees(1_f32), |
2346 | 57.2957795130823208767981548141051703 |
2347 | ); |
2348 | } |
2349 | |
2350 | #[test ] |
2351 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2352 | fn extra_logs() { |
2353 | use crate::float::{Float, FloatConst}; |
2354 | |
2355 | fn check<F: Float + FloatConst>(diff: F) { |
2356 | let _2 = F::from(2.0).unwrap(); |
2357 | assert!((F::LOG10_2() - F::log10(_2)).abs() < diff); |
2358 | assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff); |
2359 | |
2360 | let _10 = F::from(10.0).unwrap(); |
2361 | assert!((F::LOG2_10() - F::log2(_10)).abs() < diff); |
2362 | assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff); |
2363 | } |
2364 | |
2365 | check::<f32>(1e-6); |
2366 | check::<f64>(1e-12); |
2367 | } |
2368 | |
2369 | #[test ] |
2370 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2371 | fn copysign() { |
2372 | use crate::float::Float; |
2373 | test_copysign_generic(2.0_f32, -2.0_f32, f32::nan()); |
2374 | test_copysign_generic(2.0_f64, -2.0_f64, f64::nan()); |
2375 | test_copysignf(2.0_f32, -2.0_f32, f32::nan()); |
2376 | } |
2377 | |
2378 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2379 | fn test_copysignf(p: f32, n: f32, nan: f32) { |
2380 | use crate::float::Float; |
2381 | use core::ops::Neg; |
2382 | |
2383 | assert!(p.is_sign_positive()); |
2384 | assert!(n.is_sign_negative()); |
2385 | assert!(nan.is_nan()); |
2386 | |
2387 | assert_eq!(p, Float::copysign(p, p)); |
2388 | assert_eq!(p.neg(), Float::copysign(p, n)); |
2389 | |
2390 | assert_eq!(n, Float::copysign(n, n)); |
2391 | assert_eq!(n.neg(), Float::copysign(n, p)); |
2392 | |
2393 | assert!(Float::copysign(nan, p).is_sign_positive()); |
2394 | assert!(Float::copysign(nan, n).is_sign_negative()); |
2395 | } |
2396 | |
2397 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2398 | fn test_copysign_generic<F: crate::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) { |
2399 | assert!(p.is_sign_positive()); |
2400 | assert!(n.is_sign_negative()); |
2401 | assert!(nan.is_nan()); |
2402 | assert!(!nan.is_subnormal()); |
2403 | |
2404 | assert_eq!(p, p.copysign(p)); |
2405 | assert_eq!(p.neg(), p.copysign(n)); |
2406 | |
2407 | assert_eq!(n, n.copysign(n)); |
2408 | assert_eq!(n.neg(), n.copysign(p)); |
2409 | |
2410 | assert!(nan.copysign(p).is_sign_positive()); |
2411 | assert!(nan.copysign(n).is_sign_negative()); |
2412 | } |
2413 | |
2414 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2415 | fn test_subnormal<F: crate::float::Float + ::core::fmt::Debug>() { |
2416 | let min_positive = F::min_positive_value(); |
2417 | let lower_than_min = min_positive / F::from(2.0f32).unwrap(); |
2418 | assert!(!min_positive.is_subnormal()); |
2419 | assert!(lower_than_min.is_subnormal()); |
2420 | } |
2421 | |
2422 | #[test ] |
2423 | #[cfg (any(feature = "std" , feature = "libm" ))] |
2424 | fn subnormal() { |
2425 | test_subnormal::<f64>(); |
2426 | test_subnormal::<f32>(); |
2427 | } |
2428 | |
2429 | #[test ] |
2430 | fn total_cmp() { |
2431 | use crate::float::TotalOrder; |
2432 | use core::cmp::Ordering; |
2433 | use core::{f32, f64}; |
2434 | |
2435 | fn check_eq<T: TotalOrder>(x: T, y: T) { |
2436 | assert_eq!(x.total_cmp(&y), Ordering::Equal); |
2437 | } |
2438 | fn check_lt<T: TotalOrder>(x: T, y: T) { |
2439 | assert_eq!(x.total_cmp(&y), Ordering::Less); |
2440 | } |
2441 | fn check_gt<T: TotalOrder>(x: T, y: T) { |
2442 | assert_eq!(x.total_cmp(&y), Ordering::Greater); |
2443 | } |
2444 | |
2445 | check_eq(f64::NAN, f64::NAN); |
2446 | check_eq(f32::NAN, f32::NAN); |
2447 | |
2448 | check_lt(-0.0_f64, 0.0_f64); |
2449 | check_lt(-0.0_f32, 0.0_f32); |
2450 | |
2451 | // x87 registers don't preserve the exact value of signaling NaN: |
2452 | // https://github.com/rust-lang/rust/issues/115567 |
2453 | #[cfg (not(target_arch = "x86" ))] |
2454 | { |
2455 | let s_nan = f64::from_bits(0x7ff4000000000000); |
2456 | let q_nan = f64::from_bits(0x7ff8000000000000); |
2457 | check_lt(s_nan, q_nan); |
2458 | |
2459 | let neg_s_nan = f64::from_bits(0xfff4000000000000); |
2460 | let neg_q_nan = f64::from_bits(0xfff8000000000000); |
2461 | check_lt(neg_q_nan, neg_s_nan); |
2462 | |
2463 | let s_nan = f32::from_bits(0x7fa00000); |
2464 | let q_nan = f32::from_bits(0x7fc00000); |
2465 | check_lt(s_nan, q_nan); |
2466 | |
2467 | let neg_s_nan = f32::from_bits(0xffa00000); |
2468 | let neg_q_nan = f32::from_bits(0xffc00000); |
2469 | check_lt(neg_q_nan, neg_s_nan); |
2470 | } |
2471 | |
2472 | check_lt(-f64::NAN, f64::NEG_INFINITY); |
2473 | check_gt(1.0_f64, -f64::NAN); |
2474 | check_lt(f64::INFINITY, f64::NAN); |
2475 | check_gt(f64::NAN, 1.0_f64); |
2476 | |
2477 | check_lt(-f32::NAN, f32::NEG_INFINITY); |
2478 | check_gt(1.0_f32, -f32::NAN); |
2479 | check_lt(f32::INFINITY, f32::NAN); |
2480 | check_gt(f32::NAN, 1.0_f32); |
2481 | } |
2482 | } |
2483 | |