1 | //! Notify async tasks or threads. |
2 | //! |
3 | //! This is a synchronization primitive similar to [eventcounts] invented by Dmitry Vyukov. |
4 | //! |
5 | //! You can use this crate to turn non-blocking data structures into async or blocking data |
6 | //! structures. See a [simple mutex] implementation that exposes an async and a blocking interface |
7 | //! for acquiring locks. |
8 | //! |
9 | //! [eventcounts]: https://www.1024cores.net/home/lock-free-algorithms/eventcounts |
10 | //! [simple mutex]: https://github.com/smol-rs/event-listener/blob/master/examples/mutex.rs |
11 | //! |
12 | //! # Examples |
13 | //! |
14 | //! Wait until another thread sets a boolean flag: |
15 | //! |
16 | //! ``` |
17 | //! use std::sync::atomic::{AtomicBool, Ordering}; |
18 | //! use std::sync::Arc; |
19 | //! use std::thread; |
20 | //! use std::time::Duration; |
21 | //! use std::usize; |
22 | //! use event_listener::Event; |
23 | //! |
24 | //! let flag = Arc::new(AtomicBool::new(false)); |
25 | //! let event = Arc::new(Event::new()); |
26 | //! |
27 | //! // Spawn a thread that will set the flag after 1 second. |
28 | //! thread::spawn({ |
29 | //! let flag = flag.clone(); |
30 | //! let event = event.clone(); |
31 | //! move || { |
32 | //! // Wait for a second. |
33 | //! thread::sleep(Duration::from_secs(1)); |
34 | //! |
35 | //! // Set the flag. |
36 | //! flag.store(true, Ordering::SeqCst); |
37 | //! |
38 | //! // Notify all listeners that the flag has been set. |
39 | //! event.notify(usize::MAX); |
40 | //! } |
41 | //! }); |
42 | //! |
43 | //! // Wait until the flag is set. |
44 | //! loop { |
45 | //! // Check the flag. |
46 | //! if flag.load(Ordering::SeqCst) { |
47 | //! break; |
48 | //! } |
49 | //! |
50 | //! // Start listening for events. |
51 | //! let mut listener = event.listen(); |
52 | //! |
53 | //! // Check the flag again after creating the listener. |
54 | //! if flag.load(Ordering::SeqCst) { |
55 | //! break; |
56 | //! } |
57 | //! |
58 | //! // Wait for a notification and continue the loop. |
59 | //! listener.as_mut().wait(); |
60 | //! } |
61 | //! ``` |
62 | //! |
63 | //! # Features |
64 | //! |
65 | //! - The `portable-atomic` feature enables the use of the [`portable-atomic`] crate to provide |
66 | //! atomic operations on platforms that don't support them. |
67 | //! |
68 | //! [`portable-atomic`]: https://crates.io/crates/portable-atomic |
69 | |
70 | #![cfg_attr (all(not(feature = "std" ), not(test)), no_std)] |
71 | #![warn (missing_docs, missing_debug_implementations, rust_2018_idioms)] |
72 | #![doc ( |
73 | html_favicon_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png" |
74 | )] |
75 | #![doc ( |
76 | html_logo_url = "https://raw.githubusercontent.com/smol-rs/smol/master/assets/images/logo_fullsize_transparent.png" |
77 | )] |
78 | |
79 | extern crate alloc; |
80 | |
81 | #[cfg_attr (feature = "std" , path = "std.rs" )] |
82 | #[cfg_attr (not(feature = "std" ), path = "no_std.rs" )] |
83 | mod sys; |
84 | |
85 | mod notify; |
86 | |
87 | use alloc::boxed::Box; |
88 | |
89 | use core::borrow::Borrow; |
90 | use core::fmt; |
91 | use core::future::Future; |
92 | use core::mem::ManuallyDrop; |
93 | use core::pin::Pin; |
94 | use core::ptr; |
95 | use core::task::{Context, Poll, Waker}; |
96 | |
97 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
98 | use { |
99 | parking::{Parker, Unparker}, |
100 | std::time::{Duration, Instant}, |
101 | }; |
102 | |
103 | use sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; |
104 | use sync::{Arc, WithMut}; |
105 | |
106 | use notify::{Internal, NotificationPrivate}; |
107 | pub use notify::{IntoNotification, Notification}; |
108 | |
109 | /// Useful traits for notifications. |
110 | pub mod prelude { |
111 | pub use crate::{IntoNotification, Notification}; |
112 | } |
113 | |
114 | /// Inner state of [`Event`]. |
115 | struct Inner<T> { |
116 | /// The number of notified entries, or `usize::MAX` if all of them have been notified. |
117 | /// |
118 | /// If there are no entries, this value is set to `usize::MAX`. |
119 | notified: AtomicUsize, |
120 | |
121 | /// Inner queue of event listeners. |
122 | /// |
123 | /// On `std` platforms, this is an intrusive linked list. On `no_std` platforms, this is a |
124 | /// more traditional `Vec` of listeners, with an atomic queue used as a backup for high |
125 | /// contention. |
126 | list: sys::List<T>, |
127 | } |
128 | |
129 | impl<T> Inner<T> { |
130 | fn new() -> Self { |
131 | Self { |
132 | notified: AtomicUsize::new(core::usize::MAX), |
133 | list: sys::List::new(), |
134 | } |
135 | } |
136 | } |
137 | |
138 | /// A synchronization primitive for notifying async tasks and threads. |
139 | /// |
140 | /// Listeners can be registered using [`Event::listen()`]. There are two ways to notify listeners: |
141 | /// |
142 | /// 1. [`Event::notify()`] notifies a number of listeners. |
143 | /// 2. [`Event::notify_additional()`] notifies a number of previously unnotified listeners. |
144 | /// |
145 | /// If there are no active listeners at the time a notification is sent, it simply gets lost. |
146 | /// |
147 | /// There are two ways for a listener to wait for a notification: |
148 | /// |
149 | /// 1. In an asynchronous manner using `.await`. |
150 | /// 2. In a blocking manner by calling [`EventListener::wait()`] on it. |
151 | /// |
152 | /// If a notified listener is dropped without receiving a notification, dropping will notify |
153 | /// another active listener. Whether one *additional* listener will be notified depends on what |
154 | /// kind of notification was delivered. |
155 | /// |
156 | /// Listeners are registered and notified in the first-in first-out fashion, ensuring fairness. |
157 | pub struct Event<T = ()> { |
158 | /// A pointer to heap-allocated inner state. |
159 | /// |
160 | /// This pointer is initially null and gets lazily initialized on first use. Semantically, it |
161 | /// is an `Arc<Inner>` so it's important to keep in mind that it contributes to the [`Arc`]'s |
162 | /// reference count. |
163 | inner: AtomicPtr<Inner<T>>, |
164 | } |
165 | |
166 | unsafe impl<T: Send> Send for Event<T> {} |
167 | unsafe impl<T: Send> Sync for Event<T> {} |
168 | |
169 | impl<T> core::panic::UnwindSafe for Event<T> {} |
170 | impl<T> core::panic::RefUnwindSafe for Event<T> {} |
171 | |
172 | impl<T> fmt::Debug for Event<T> { |
173 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
174 | match self.try_inner() { |
175 | Some(inner) => { |
176 | let notified_count = inner.notified.load(Ordering::Relaxed); |
177 | let total_count = match inner.list.total_listeners() { |
178 | Ok(total_count) => total_count, |
179 | Err(_) => { |
180 | return f |
181 | .debug_tuple("Event" ) |
182 | .field(&format_args!("<locked>" )) |
183 | .finish() |
184 | } |
185 | }; |
186 | |
187 | f.debug_struct("Event" ) |
188 | .field("listeners_notified" , ¬ified_count) |
189 | .field("listeners_total" , &total_count) |
190 | .finish() |
191 | } |
192 | None => f |
193 | .debug_tuple("Event" ) |
194 | .field(&format_args!("<uninitialized>" )) |
195 | .finish(), |
196 | } |
197 | } |
198 | } |
199 | |
200 | impl Default for Event { |
201 | #[inline ] |
202 | fn default() -> Self { |
203 | Self::new() |
204 | } |
205 | } |
206 | |
207 | impl<T> Event<T> { |
208 | /// Creates a new `Event` with a tag type. |
209 | /// |
210 | /// Tagging cannot be implemented efficiently on `no_std`, so this is only available when the |
211 | /// `std` feature is enabled. |
212 | /// |
213 | /// # Examples |
214 | /// |
215 | /// ``` |
216 | /// use event_listener::Event; |
217 | /// |
218 | /// let event = Event::<usize>::with_tag(); |
219 | /// ``` |
220 | #[cfg (feature = "std" )] |
221 | #[inline ] |
222 | pub const fn with_tag() -> Self { |
223 | Self { |
224 | inner: AtomicPtr::new(ptr::null_mut()), |
225 | } |
226 | } |
227 | |
228 | /// Tell whether any listeners are currently notified. |
229 | /// |
230 | /// # Examples |
231 | /// |
232 | /// ``` |
233 | /// use event_listener::Event; |
234 | /// |
235 | /// let event = Event::new(); |
236 | /// let listener = event.listen(); |
237 | /// assert!(!event.is_notified()); |
238 | /// |
239 | /// event.notify(1); |
240 | /// assert!(event.is_notified()); |
241 | /// ``` |
242 | #[inline ] |
243 | pub fn is_notified(&self) -> bool { |
244 | self.try_inner() |
245 | .map_or(false, |inner| inner.notified.load(Ordering::Acquire) > 0) |
246 | } |
247 | |
248 | /// Returns a guard listening for a notification. |
249 | /// |
250 | /// This method emits a `SeqCst` fence after registering a listener. For now, this method |
251 | /// is an alias for calling [`EventListener::new()`], pinning it to the heap, and then |
252 | /// inserting it into a list. |
253 | /// |
254 | /// # Examples |
255 | /// |
256 | /// ``` |
257 | /// use event_listener::Event; |
258 | /// |
259 | /// let event = Event::new(); |
260 | /// let listener = event.listen(); |
261 | /// ``` |
262 | /// |
263 | /// # Caveats |
264 | /// |
265 | /// The above example is equivalent to this code: |
266 | /// |
267 | /// ``` |
268 | /// use event_listener::{Event, EventListener}; |
269 | /// |
270 | /// let event = Event::new(); |
271 | /// let mut listener = Box::pin(EventListener::new()); |
272 | /// listener.as_mut().listen(&event); |
273 | /// ``` |
274 | /// |
275 | /// It creates a new listener, pins it to the heap, and inserts it into the linked list |
276 | /// of listeners. While this type of usage is simple, it may be desired to eliminate this |
277 | /// heap allocation. In this case, consider using the [`EventListener::new`] constructor |
278 | /// directly, which allows for greater control over where the [`EventListener`] is |
279 | /// allocated. However, users of this `new` method must be careful to ensure that the |
280 | /// [`EventListener`] is `listen`ing before waiting on it; panics may occur otherwise. |
281 | #[cold ] |
282 | pub fn listen(&self) -> Pin<Box<EventListener<T>>> { |
283 | let mut listener = Box::pin(EventListener::new()); |
284 | listener.as_mut().listen(self); |
285 | listener |
286 | } |
287 | |
288 | /// Notifies a number of active listeners. |
289 | /// |
290 | /// The number is allowed to be zero or exceed the current number of listeners. |
291 | /// |
292 | /// The [`Notification`] trait is used to define what kind of notification is delivered. |
293 | /// The default implementation (implemented on `usize`) is a notification that only notifies |
294 | /// *at least* the specified number of listeners. |
295 | /// |
296 | /// In certain cases, this function emits a `SeqCst` fence before notifying listeners. |
297 | /// |
298 | /// This function returns the number of [`EventListener`]s that were notified by this call. |
299 | /// |
300 | /// # Caveats |
301 | /// |
302 | /// If the `std` feature is disabled, the notification will be delayed under high contention, |
303 | /// such as when another thread is taking a while to `notify` the event. In this circumstance, |
304 | /// this function will return `0` instead of the number of listeners actually notified. Therefore |
305 | /// if the `std` feature is disabled the return value of this function should not be relied upon |
306 | /// for soundness and should be used only as a hint. |
307 | /// |
308 | /// If the `std` feature is enabled, no spurious returns are possible, since the `std` |
309 | /// implementation uses system locking primitives to ensure there is no unavoidable |
310 | /// contention. |
311 | /// |
312 | /// # Examples |
313 | /// |
314 | /// Use the default notification strategy: |
315 | /// |
316 | /// ``` |
317 | /// use event_listener::Event; |
318 | /// |
319 | /// let event = Event::new(); |
320 | /// |
321 | /// // This notification gets lost because there are no listeners. |
322 | /// event.notify(1); |
323 | /// |
324 | /// let listener1 = event.listen(); |
325 | /// let listener2 = event.listen(); |
326 | /// let listener3 = event.listen(); |
327 | /// |
328 | /// // Notifies two listeners. |
329 | /// // |
330 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
331 | /// // get notified here since they start listening before `listener3`. |
332 | /// event.notify(2); |
333 | /// ``` |
334 | /// |
335 | /// Notify without emitting a `SeqCst` fence. This uses the [`relaxed`] notification strategy. |
336 | /// This is equivalent to calling [`Event::notify_relaxed()`]. |
337 | /// |
338 | /// [`relaxed`]: IntoNotification::relaxed |
339 | /// |
340 | /// ``` |
341 | /// use event_listener::{prelude::*, Event}; |
342 | /// use std::sync::atomic::{self, Ordering}; |
343 | /// |
344 | /// let event = Event::new(); |
345 | /// |
346 | /// // This notification gets lost because there are no listeners. |
347 | /// event.notify(1.relaxed()); |
348 | /// |
349 | /// let listener1 = event.listen(); |
350 | /// let listener2 = event.listen(); |
351 | /// let listener3 = event.listen(); |
352 | /// |
353 | /// // We should emit a fence manually when using relaxed notifications. |
354 | /// atomic::fence(Ordering::SeqCst); |
355 | /// |
356 | /// // Notifies two listeners. |
357 | /// // |
358 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
359 | /// // get notified here since they start listening before `listener3`. |
360 | /// event.notify(2.relaxed()); |
361 | /// ``` |
362 | /// |
363 | /// Notify additional listeners. In contrast to [`Event::notify()`], this method will notify `n` |
364 | /// *additional* listeners that were previously unnotified. This uses the [`additional`] |
365 | /// notification strategy. This is equivalent to calling [`Event::notify_additional()`]. |
366 | /// |
367 | /// [`additional`]: IntoNotification::additional |
368 | /// |
369 | /// ``` |
370 | /// use event_listener::{prelude::*, Event}; |
371 | /// |
372 | /// let event = Event::new(); |
373 | /// |
374 | /// // This notification gets lost because there are no listeners. |
375 | /// event.notify(1.additional()); |
376 | /// |
377 | /// let listener1 = event.listen(); |
378 | /// let listener2 = event.listen(); |
379 | /// let listener3 = event.listen(); |
380 | /// |
381 | /// // Notifies two listeners. |
382 | /// // |
383 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
384 | /// // get notified here since they start listening before `listener3`. |
385 | /// event.notify(1.additional()); |
386 | /// event.notify(1.additional()); |
387 | /// ``` |
388 | /// |
389 | /// Notifies with the [`additional`] and [`relaxed`] strategies at the same time. This is |
390 | /// equivalent to calling [`Event::notify_additional_relaxed()`]. |
391 | /// |
392 | /// ``` |
393 | /// use event_listener::{prelude::*, Event}; |
394 | /// use std::sync::atomic::{self, Ordering}; |
395 | /// |
396 | /// let event = Event::new(); |
397 | /// |
398 | /// // This notification gets lost because there are no listeners. |
399 | /// event.notify(1.additional().relaxed()); |
400 | /// |
401 | /// let listener1 = event.listen(); |
402 | /// let listener2 = event.listen(); |
403 | /// let listener3 = event.listen(); |
404 | /// |
405 | /// // We should emit a fence manually when using relaxed notifications. |
406 | /// atomic::fence(Ordering::SeqCst); |
407 | /// |
408 | /// // Notifies two listeners. |
409 | /// // |
410 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
411 | /// // get notified here since they start listening before `listener3`. |
412 | /// event.notify(1.additional().relaxed()); |
413 | /// event.notify(1.additional().relaxed()); |
414 | /// ``` |
415 | #[inline ] |
416 | pub fn notify(&self, notify: impl IntoNotification<Tag = T>) -> usize { |
417 | let notify = notify.into_notification(); |
418 | |
419 | // Make sure the notification comes after whatever triggered it. |
420 | notify.fence(notify::Internal::new()); |
421 | |
422 | if let Some(inner) = self.try_inner() { |
423 | let limit = if notify.is_additional(Internal::new()) { |
424 | core::usize::MAX |
425 | } else { |
426 | notify.count(Internal::new()) |
427 | }; |
428 | |
429 | // Notify if there is at least one unnotified listener and the number of notified |
430 | // listeners is less than `limit`. |
431 | if inner.needs_notification(limit) { |
432 | return inner.notify(notify); |
433 | } |
434 | } |
435 | |
436 | 0 |
437 | } |
438 | |
439 | /// Return a reference to the inner state if it has been initialized. |
440 | #[inline ] |
441 | fn try_inner(&self) -> Option<&Inner<T>> { |
442 | let inner = self.inner.load(Ordering::Acquire); |
443 | unsafe { inner.as_ref() } |
444 | } |
445 | |
446 | /// Returns a raw, initialized pointer to the inner state. |
447 | /// |
448 | /// This returns a raw pointer instead of reference because `from_raw` |
449 | /// requires raw/mut provenance: <https://github.com/rust-lang/rust/pull/67339>. |
450 | fn inner(&self) -> *const Inner<T> { |
451 | let mut inner = self.inner.load(Ordering::Acquire); |
452 | |
453 | // If this is the first use, initialize the state. |
454 | if inner.is_null() { |
455 | // Allocate the state on the heap. |
456 | let new = Arc::new(Inner::<T>::new()); |
457 | |
458 | // Convert the state to a raw pointer. |
459 | let new = Arc::into_raw(new) as *mut Inner<T>; |
460 | |
461 | // Replace the null pointer with the new state pointer. |
462 | inner = self |
463 | .inner |
464 | .compare_exchange(inner, new, Ordering::AcqRel, Ordering::Acquire) |
465 | .unwrap_or_else(|x| x); |
466 | |
467 | // Check if the old pointer value was indeed null. |
468 | if inner.is_null() { |
469 | // If yes, then use the new state pointer. |
470 | inner = new; |
471 | } else { |
472 | // If not, that means a concurrent operation has initialized the state. |
473 | // In that case, use the old pointer and deallocate the new one. |
474 | unsafe { |
475 | drop(Arc::from_raw(new)); |
476 | } |
477 | } |
478 | } |
479 | |
480 | inner |
481 | } |
482 | } |
483 | |
484 | impl Event<()> { |
485 | /// Creates a new [`Event`]. |
486 | /// |
487 | /// # Examples |
488 | /// |
489 | /// ``` |
490 | /// use event_listener::Event; |
491 | /// |
492 | /// let event = Event::new(); |
493 | /// ``` |
494 | #[inline ] |
495 | pub const fn new() -> Self { |
496 | Self { |
497 | inner: AtomicPtr::new(ptr::null_mut()), |
498 | } |
499 | } |
500 | |
501 | /// Notifies a number of active listeners without emitting a `SeqCst` fence. |
502 | /// |
503 | /// The number is allowed to be zero or exceed the current number of listeners. |
504 | /// |
505 | /// In contrast to [`Event::notify_additional()`], this method only makes sure *at least* `n` |
506 | /// listeners among the active ones are notified. |
507 | /// |
508 | /// Unlike [`Event::notify()`], this method does not emit a `SeqCst` fence. |
509 | /// |
510 | /// This method only works for untagged events. In other cases, it is recommended to instead |
511 | /// use [`Event::notify()`] like so: |
512 | /// |
513 | /// ``` |
514 | /// use event_listener::{prelude::*, Event}; |
515 | /// let event = Event::new(); |
516 | /// |
517 | /// // Old way: |
518 | /// event.notify_relaxed(1); |
519 | /// |
520 | /// // New way: |
521 | /// event.notify(1.relaxed()); |
522 | /// ``` |
523 | /// |
524 | /// # Examples |
525 | /// |
526 | /// ``` |
527 | /// use event_listener::Event; |
528 | /// use std::sync::atomic::{self, Ordering}; |
529 | /// |
530 | /// let event = Event::new(); |
531 | /// |
532 | /// // This notification gets lost because there are no listeners. |
533 | /// event.notify_relaxed(1); |
534 | /// |
535 | /// let listener1 = event.listen(); |
536 | /// let listener2 = event.listen(); |
537 | /// let listener3 = event.listen(); |
538 | /// |
539 | /// // We should emit a fence manually when using relaxed notifications. |
540 | /// atomic::fence(Ordering::SeqCst); |
541 | /// |
542 | /// // Notifies two listeners. |
543 | /// // |
544 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
545 | /// // get notified here since they start listening before `listener3`. |
546 | /// event.notify_relaxed(2); |
547 | /// ``` |
548 | #[inline ] |
549 | pub fn notify_relaxed(&self, n: usize) -> usize { |
550 | self.notify(n.relaxed()) |
551 | } |
552 | |
553 | /// Notifies a number of active and still unnotified listeners. |
554 | /// |
555 | /// The number is allowed to be zero or exceed the current number of listeners. |
556 | /// |
557 | /// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that |
558 | /// were previously unnotified. |
559 | /// |
560 | /// This method emits a `SeqCst` fence before notifying listeners. |
561 | /// |
562 | /// This method only works for untagged events. In other cases, it is recommended to instead |
563 | /// use [`Event::notify()`] like so: |
564 | /// |
565 | /// ``` |
566 | /// use event_listener::{prelude::*, Event}; |
567 | /// let event = Event::new(); |
568 | /// |
569 | /// // Old way: |
570 | /// event.notify_additional(1); |
571 | /// |
572 | /// // New way: |
573 | /// event.notify(1.additional()); |
574 | /// ``` |
575 | /// |
576 | /// # Examples |
577 | /// |
578 | /// ``` |
579 | /// use event_listener::Event; |
580 | /// |
581 | /// let event = Event::new(); |
582 | /// |
583 | /// // This notification gets lost because there are no listeners. |
584 | /// event.notify_additional(1); |
585 | /// |
586 | /// let listener1 = event.listen(); |
587 | /// let listener2 = event.listen(); |
588 | /// let listener3 = event.listen(); |
589 | /// |
590 | /// // Notifies two listeners. |
591 | /// // |
592 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
593 | /// // get notified here since they start listening before `listener3`. |
594 | /// event.notify_additional(1); |
595 | /// event.notify_additional(1); |
596 | /// ``` |
597 | #[inline ] |
598 | pub fn notify_additional(&self, n: usize) -> usize { |
599 | self.notify(n.additional()) |
600 | } |
601 | |
602 | /// Notifies a number of active and still unnotified listeners without emitting a `SeqCst` |
603 | /// fence. |
604 | /// |
605 | /// The number is allowed to be zero or exceed the current number of listeners. |
606 | /// |
607 | /// In contrast to [`Event::notify()`], this method will notify `n` *additional* listeners that |
608 | /// were previously unnotified. |
609 | /// |
610 | /// Unlike [`Event::notify_additional()`], this method does not emit a `SeqCst` fence. |
611 | /// |
612 | /// This method only works for untagged events. In other cases, it is recommended to instead |
613 | /// use [`Event::notify()`] like so: |
614 | /// |
615 | /// ``` |
616 | /// use event_listener::{prelude::*, Event}; |
617 | /// let event = Event::new(); |
618 | /// |
619 | /// // Old way: |
620 | /// event.notify_additional_relaxed(1); |
621 | /// |
622 | /// // New way: |
623 | /// event.notify(1.additional().relaxed()); |
624 | /// ``` |
625 | /// |
626 | /// # Examples |
627 | /// |
628 | /// ``` |
629 | /// use event_listener::Event; |
630 | /// use std::sync::atomic::{self, Ordering}; |
631 | /// |
632 | /// let event = Event::new(); |
633 | /// |
634 | /// // This notification gets lost because there are no listeners. |
635 | /// event.notify(1); |
636 | /// |
637 | /// let listener1 = event.listen(); |
638 | /// let listener2 = event.listen(); |
639 | /// let listener3 = event.listen(); |
640 | /// |
641 | /// // We should emit a fence manually when using relaxed notifications. |
642 | /// atomic::fence(Ordering::SeqCst); |
643 | /// |
644 | /// // Notifies two listeners. |
645 | /// // |
646 | /// // Listener queueing is fair, which means `listener1` and `listener2` |
647 | /// // get notified here since they start listening before `listener3`. |
648 | /// event.notify_additional_relaxed(1); |
649 | /// event.notify_additional_relaxed(1); |
650 | /// ``` |
651 | #[inline ] |
652 | pub fn notify_additional_relaxed(&self, n: usize) -> usize { |
653 | self.notify(n.additional().relaxed()) |
654 | } |
655 | } |
656 | |
657 | impl<T> Drop for Event<T> { |
658 | #[inline ] |
659 | fn drop(&mut self) { |
660 | self.inner.with_mut(|&mut inner: *mut Inner| { |
661 | // If the state pointer has been initialized, drop it. |
662 | if !inner.is_null() { |
663 | unsafe { |
664 | drop(Arc::from_raw(ptr:inner)); |
665 | } |
666 | } |
667 | }) |
668 | } |
669 | } |
670 | |
671 | pin_project_lite::pin_project! { |
672 | /// A guard waiting for a notification from an [`Event`]. |
673 | /// |
674 | /// There are two ways for a listener to wait for a notification: |
675 | /// |
676 | /// 1. In an asynchronous manner using `.await`. |
677 | /// 2. In a blocking manner by calling [`EventListener::wait()`] on it. |
678 | /// |
679 | /// If a notified listener is dropped without receiving a notification, dropping will notify |
680 | /// another active listener. Whether one *additional* listener will be notified depends on what |
681 | /// kind of notification was delivered. |
682 | /// |
683 | /// The listener is not registered into the linked list inside of the [`Event`] by default if |
684 | /// it is created via the `new()` method. It needs to be pinned first before being inserted |
685 | /// using the `listen()` method. After the listener has begun `listen`ing, the user can |
686 | /// `await` it like a future or call `wait()` to block the current thread until it is notified. |
687 | /// |
688 | /// ## Examples |
689 | /// |
690 | /// ``` |
691 | /// use event_listener::{Event, EventListener}; |
692 | /// use std::sync::{Arc, atomic::{AtomicBool, Ordering}}; |
693 | /// use std::thread; |
694 | /// use std::time::Duration; |
695 | /// |
696 | /// // Some flag to wait on. |
697 | /// let flag = Arc::new(AtomicBool::new(false)); |
698 | /// |
699 | /// // Create an event to wait on. |
700 | /// let event = Arc::new(Event::new()); |
701 | /// |
702 | /// thread::spawn({ |
703 | /// let flag = flag.clone(); |
704 | /// let event = event.clone(); |
705 | /// move || { |
706 | /// thread::sleep(Duration::from_secs(2)); |
707 | /// flag.store(true, Ordering::SeqCst); |
708 | /// |
709 | /// // Wake up the listener. |
710 | /// event.notify_additional(std::usize::MAX); |
711 | /// } |
712 | /// }); |
713 | /// |
714 | /// let listener = EventListener::new(); |
715 | /// |
716 | /// // Make sure that the event listener is pinned before doing anything else. |
717 | /// // |
718 | /// // We pin the listener to the stack here, as it lets us avoid a heap allocation. |
719 | /// futures_lite::pin!(listener); |
720 | /// |
721 | /// // Wait for the flag to become ready. |
722 | /// loop { |
723 | /// if flag.load(Ordering::Acquire) { |
724 | /// // We are done. |
725 | /// break; |
726 | /// } |
727 | /// |
728 | /// if listener.is_listening() { |
729 | /// // We are inserted into the linked list and we can now wait. |
730 | /// listener.as_mut().wait(); |
731 | /// } else { |
732 | /// // We need to insert ourselves into the list. Since this insertion is an atomic |
733 | /// // operation, we should check the flag again before waiting. |
734 | /// listener.as_mut().listen(&event); |
735 | /// } |
736 | /// } |
737 | /// ``` |
738 | /// |
739 | /// The above example is equivalent to the one provided in the crate level example. However, |
740 | /// it has some advantages. By directly creating the listener with `EventListener::new()`, |
741 | /// we have control over how the listener is handled in memory. We take advantage of this by |
742 | /// pinning the `listener` variable to the stack using the [`futures_lite::pin`] macro. In |
743 | /// contrast, `Event::listen` binds the listener to the heap. |
744 | /// |
745 | /// However, this additional power comes with additional responsibility. By default, the |
746 | /// event listener is created in an "uninserted" state. This property means that any |
747 | /// notifications delivered to the [`Event`] by default will not wake up this listener. |
748 | /// Before any notifications can be received, the `listen()` method must be called on |
749 | /// `EventListener` to insert it into the list of listeners. After a `.await` or a `wait()` |
750 | /// call has completed, `listen()` must be called again if the user is still interested in |
751 | /// any events. |
752 | /// |
753 | /// [`futures_lite::pin`]: https://docs.rs/futures-lite/latest/futures_lite/macro.pin.html |
754 | #[project(!Unpin)] // implied by Listener, but can generate better docs |
755 | pub struct EventListener<T = ()> { |
756 | #[pin] |
757 | listener: Listener<T, Arc<Inner<T>>>, |
758 | } |
759 | } |
760 | |
761 | unsafe impl<T: Send> Send for EventListener<T> {} |
762 | unsafe impl<T: Send> Sync for EventListener<T> {} |
763 | |
764 | impl<T> core::panic::UnwindSafe for EventListener<T> {} |
765 | impl<T> core::panic::RefUnwindSafe for EventListener<T> {} |
766 | |
767 | impl<T> Default for EventListener<T> { |
768 | fn default() -> Self { |
769 | Self::new() |
770 | } |
771 | } |
772 | |
773 | impl<T> fmt::Debug for EventListener<T> { |
774 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
775 | f&mut DebugStruct<'_, '_>.debug_struct("EventListener" ) |
776 | .field(name:"listening" , &self.is_listening()) |
777 | .finish() |
778 | } |
779 | } |
780 | |
781 | impl<T> EventListener<T> { |
782 | /// Create a new `EventListener` that will wait for a notification from the given [`Event`]. |
783 | /// |
784 | /// This function does not register the `EventListener` into the linked list of listeners |
785 | /// contained within the [`Event`]. Make sure to call `listen` before `await`ing on |
786 | /// this future or calling `wait()`. |
787 | /// |
788 | /// ## Examples |
789 | /// |
790 | /// ``` |
791 | /// use event_listener::{Event, EventListener}; |
792 | /// |
793 | /// let event = Event::new(); |
794 | /// let listener = EventListener::new(); |
795 | /// |
796 | /// // Make sure that the listener is pinned and listening before doing anything else. |
797 | /// let mut listener = Box::pin(listener); |
798 | /// listener.as_mut().listen(&event); |
799 | /// ``` |
800 | pub fn new() -> Self { |
801 | Self { |
802 | listener: Listener { |
803 | event: None, |
804 | listener: None, |
805 | }, |
806 | } |
807 | } |
808 | |
809 | /// Register this listener into the given [`Event`]. |
810 | /// |
811 | /// This method can only be called after the listener has been pinned, and must be called before |
812 | /// the listener is polled. |
813 | /// |
814 | /// Notifications that exist when this function is called will be discarded. |
815 | pub fn listen(mut self: Pin<&mut Self>, event: &Event<T>) { |
816 | let inner = { |
817 | let inner = event.inner(); |
818 | unsafe { Arc::clone(&ManuallyDrop::new(Arc::from_raw(inner))) } |
819 | }; |
820 | |
821 | let ListenerProject { |
822 | event, |
823 | mut listener, |
824 | } = self.as_mut().project().listener.project(); |
825 | |
826 | // If an event is already registered, make sure to remove it. |
827 | if let Some(current_event) = event.as_ref() { |
828 | current_event.remove(listener.as_mut(), false); |
829 | } |
830 | |
831 | let inner = event.insert(inner); |
832 | inner.insert(listener); |
833 | |
834 | // Make sure the listener is registered before whatever happens next. |
835 | notify::full_fence(); |
836 | } |
837 | |
838 | /// Tell if this [`EventListener`] is currently listening for a notification. |
839 | /// |
840 | /// # Examples |
841 | /// |
842 | /// ``` |
843 | /// use event_listener::{Event, EventListener}; |
844 | /// |
845 | /// let event = Event::new(); |
846 | /// let mut listener = Box::pin(EventListener::new()); |
847 | /// |
848 | /// // The listener starts off not listening. |
849 | /// assert!(!listener.is_listening()); |
850 | /// |
851 | /// // After listen() is called, the listener is listening. |
852 | /// listener.as_mut().listen(&event); |
853 | /// assert!(listener.is_listening()); |
854 | /// |
855 | /// // Once the future is notified, the listener is no longer listening. |
856 | /// event.notify(1); |
857 | /// listener.as_mut().wait(); |
858 | /// assert!(!listener.is_listening()); |
859 | /// ``` |
860 | pub fn is_listening(&self) -> bool { |
861 | self.listener.listener.is_some() |
862 | } |
863 | |
864 | /// Blocks until a notification is received. |
865 | /// |
866 | /// # Examples |
867 | /// |
868 | /// ``` |
869 | /// use event_listener::Event; |
870 | /// |
871 | /// let event = Event::new(); |
872 | /// let mut listener = event.listen(); |
873 | /// |
874 | /// // Notify `listener`. |
875 | /// event.notify(1); |
876 | /// |
877 | /// // Receive the notification. |
878 | /// listener.as_mut().wait(); |
879 | /// ``` |
880 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
881 | pub fn wait(self: Pin<&mut Self>) -> T { |
882 | self.listener().wait_internal(None).unwrap() |
883 | } |
884 | |
885 | /// Blocks until a notification is received or a timeout is reached. |
886 | /// |
887 | /// Returns `true` if a notification was received. |
888 | /// |
889 | /// # Examples |
890 | /// |
891 | /// ``` |
892 | /// use std::time::Duration; |
893 | /// use event_listener::Event; |
894 | /// |
895 | /// let event = Event::new(); |
896 | /// let mut listener = event.listen(); |
897 | /// |
898 | /// // There are no notification so this times out. |
899 | /// assert!(listener.as_mut().wait_timeout(Duration::from_secs(1)).is_none()); |
900 | /// ``` |
901 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
902 | pub fn wait_timeout(self: Pin<&mut Self>, timeout: Duration) -> Option<T> { |
903 | self.listener() |
904 | .wait_internal(Instant::now().checked_add(timeout)) |
905 | } |
906 | |
907 | /// Blocks until a notification is received or a deadline is reached. |
908 | /// |
909 | /// Returns `true` if a notification was received. |
910 | /// |
911 | /// # Examples |
912 | /// |
913 | /// ``` |
914 | /// use std::time::{Duration, Instant}; |
915 | /// use event_listener::Event; |
916 | /// |
917 | /// let event = Event::new(); |
918 | /// let mut listener = event.listen(); |
919 | /// |
920 | /// // There are no notification so this times out. |
921 | /// assert!(listener.as_mut().wait_deadline(Instant::now() + Duration::from_secs(1)).is_none()); |
922 | /// ``` |
923 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
924 | pub fn wait_deadline(self: Pin<&mut Self>, deadline: Instant) -> Option<T> { |
925 | self.listener().wait_internal(Some(deadline)) |
926 | } |
927 | |
928 | /// Drops this listener and discards its notification (if any) without notifying another |
929 | /// active listener. |
930 | /// |
931 | /// Returns `true` if a notification was discarded. |
932 | /// |
933 | /// # Examples |
934 | /// ``` |
935 | /// use event_listener::Event; |
936 | /// |
937 | /// let event = Event::new(); |
938 | /// let mut listener1 = event.listen(); |
939 | /// let mut listener2 = event.listen(); |
940 | /// |
941 | /// event.notify(1); |
942 | /// |
943 | /// assert!(listener1.as_mut().discard()); |
944 | /// assert!(!listener2.as_mut().discard()); |
945 | /// ``` |
946 | pub fn discard(self: Pin<&mut Self>) -> bool { |
947 | self.project().listener.discard() |
948 | } |
949 | |
950 | /// Returns `true` if this listener listens to the given `Event`. |
951 | /// |
952 | /// # Examples |
953 | /// |
954 | /// ``` |
955 | /// use event_listener::Event; |
956 | /// |
957 | /// let event = Event::new(); |
958 | /// let listener = event.listen(); |
959 | /// |
960 | /// assert!(listener.listens_to(&event)); |
961 | /// ``` |
962 | #[inline ] |
963 | pub fn listens_to(&self, event: &Event<T>) -> bool { |
964 | if let Some(inner) = &self.listener.event { |
965 | return ptr::eq::<Inner<T>>(&**inner, event.inner.load(Ordering::Acquire)); |
966 | } |
967 | |
968 | false |
969 | } |
970 | |
971 | /// Returns `true` if both listeners listen to the same `Event`. |
972 | /// |
973 | /// # Examples |
974 | /// |
975 | /// ``` |
976 | /// use event_listener::Event; |
977 | /// |
978 | /// let event = Event::new(); |
979 | /// let listener1 = event.listen(); |
980 | /// let listener2 = event.listen(); |
981 | /// |
982 | /// assert!(listener1.same_event(&listener2)); |
983 | /// ``` |
984 | pub fn same_event(&self, other: &EventListener<T>) -> bool { |
985 | if let (Some(inner1), Some(inner2)) = (self.inner(), other.inner()) { |
986 | return ptr::eq::<Inner<T>>(&**inner1, &**inner2); |
987 | } |
988 | |
989 | false |
990 | } |
991 | |
992 | fn listener(self: Pin<&mut Self>) -> Pin<&mut Listener<T, Arc<Inner<T>>>> { |
993 | self.project().listener |
994 | } |
995 | |
996 | fn inner(&self) -> Option<&Arc<Inner<T>>> { |
997 | self.listener.event.as_ref() |
998 | } |
999 | } |
1000 | |
1001 | impl<T> Future for EventListener<T> { |
1002 | type Output = T; |
1003 | |
1004 | fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { |
1005 | self.listener().poll_internal(cx) |
1006 | } |
1007 | } |
1008 | |
1009 | pin_project_lite::pin_project! { |
1010 | #[project(!Unpin)] |
1011 | #[project = ListenerProject] |
1012 | struct Listener<T, B: Borrow<Inner<T>>> |
1013 | where |
1014 | B: Unpin, |
1015 | { |
1016 | // The reference to the original event. |
1017 | event: Option<B>, |
1018 | |
1019 | // The inner state of the listener. |
1020 | // |
1021 | // This is only ever `None` during initialization. After `listen()` has completed, this |
1022 | // should be `Some`. |
1023 | #[pin] |
1024 | listener: Option<sys::Listener<T>>, |
1025 | } |
1026 | |
1027 | impl<T, B: Borrow<Inner<T>>> PinnedDrop for Listener<T, B> |
1028 | where |
1029 | B: Unpin, |
1030 | { |
1031 | fn drop(mut this: Pin<&mut Self>) { |
1032 | // If we're being dropped, we need to remove ourself from the list. |
1033 | let this = this.project(); |
1034 | if let Some(inner) = this.event { |
1035 | (*inner).borrow().remove(this.listener, true); |
1036 | } |
1037 | } |
1038 | } |
1039 | } |
1040 | |
1041 | unsafe impl<T: Send, B: Borrow<Inner<T>> + Unpin + Send> Send for Listener<T, B> {} |
1042 | unsafe impl<T: Send, B: Borrow<Inner<T>> + Unpin + Sync> Sync for Listener<T, B> {} |
1043 | |
1044 | impl<T, B: Borrow<Inner<T>> + Unpin> Listener<T, B> { |
1045 | /// Wait until the provided deadline. |
1046 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1047 | fn wait_internal(mut self: Pin<&mut Self>, deadline: Option<Instant>) -> Option<T> { |
1048 | use std::cell::RefCell; |
1049 | |
1050 | std::thread_local! { |
1051 | /// Cached thread-local parker/unparker pair. |
1052 | static PARKER: RefCell<Option<(Parker, Task)>> = RefCell::new(None); |
1053 | } |
1054 | |
1055 | // Try to borrow the thread-local parker/unparker pair. |
1056 | PARKER |
1057 | .try_with({ |
1058 | let this = self.as_mut(); |
1059 | |parker| { |
1060 | let mut pair = parker |
1061 | .try_borrow_mut() |
1062 | .expect("Shouldn't be able to borrow parker reentrantly" ); |
1063 | let (parker, unparker) = pair.get_or_insert_with(|| { |
1064 | let (parker, unparker) = parking::pair(); |
1065 | (parker, Task::Unparker(unparker)) |
1066 | }); |
1067 | |
1068 | this.wait_with_parker(deadline, parker, unparker.as_task_ref()) |
1069 | } |
1070 | }) |
1071 | .unwrap_or_else(|_| { |
1072 | // If the pair isn't accessible, we may be being called in a destructor. |
1073 | // Just create a new pair. |
1074 | let (parker, unparker) = parking::pair(); |
1075 | self.wait_with_parker(deadline, &parker, TaskRef::Unparker(&unparker)) |
1076 | }) |
1077 | } |
1078 | |
1079 | /// Wait until the provided deadline using the specified parker/unparker pair. |
1080 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1081 | fn wait_with_parker( |
1082 | self: Pin<&mut Self>, |
1083 | deadline: Option<Instant>, |
1084 | parker: &Parker, |
1085 | unparker: TaskRef<'_>, |
1086 | ) -> Option<T> { |
1087 | let mut this = self.project(); |
1088 | let inner = (*this |
1089 | .event |
1090 | .as_ref() |
1091 | .expect("must listen() on event listener before waiting" )) |
1092 | .borrow(); |
1093 | |
1094 | // Set the listener's state to `Task`. |
1095 | if let Some(tag) = inner.register(this.listener.as_mut(), unparker).notified() { |
1096 | // We were already notified, so we don't need to park. |
1097 | return Some(tag); |
1098 | } |
1099 | |
1100 | // Wait until a notification is received or the timeout is reached. |
1101 | loop { |
1102 | match deadline { |
1103 | None => parker.park(), |
1104 | |
1105 | Some(deadline) => { |
1106 | // Make sure we're not timed out already. |
1107 | let now = Instant::now(); |
1108 | if now >= deadline { |
1109 | // Remove our entry and check if we were notified. |
1110 | return inner |
1111 | .remove(this.listener, false) |
1112 | .expect("We never removed ourself from the list" ) |
1113 | .notified(); |
1114 | } |
1115 | parker.park_deadline(deadline); |
1116 | } |
1117 | } |
1118 | |
1119 | // See if we were notified. |
1120 | if let Some(tag) = inner.register(this.listener.as_mut(), unparker).notified() { |
1121 | return Some(tag); |
1122 | } |
1123 | } |
1124 | } |
1125 | |
1126 | /// Drops this listener and discards its notification (if any) without notifying another |
1127 | /// active listener. |
1128 | fn discard(self: Pin<&mut Self>) -> bool { |
1129 | let this = self.project(); |
1130 | |
1131 | if let Some(inner) = this.event.as_ref() { |
1132 | (*inner) |
1133 | .borrow() |
1134 | .remove(this.listener, false) |
1135 | .map_or(false, |state| state.is_notified()) |
1136 | } else { |
1137 | false |
1138 | } |
1139 | } |
1140 | |
1141 | /// Poll this listener for a notification. |
1142 | fn poll_internal(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> { |
1143 | let mut this = self.project(); |
1144 | let inner = match &this.event { |
1145 | Some(inner) => (*inner).borrow(), |
1146 | None => panic!("" ), |
1147 | }; |
1148 | |
1149 | // Try to register the listener. |
1150 | match inner |
1151 | .register(this.listener.as_mut(), TaskRef::Waker(cx.waker())) |
1152 | .notified() |
1153 | { |
1154 | Some(tag) => { |
1155 | // We were already notified, so we don't need to park. |
1156 | Poll::Ready(tag) |
1157 | } |
1158 | |
1159 | None => { |
1160 | // We're now waiting for a notification. |
1161 | Poll::Pending |
1162 | } |
1163 | } |
1164 | } |
1165 | } |
1166 | |
1167 | /// The state of a listener. |
1168 | #[derive (PartialEq)] |
1169 | enum State<T> { |
1170 | /// The listener was just created. |
1171 | Created, |
1172 | |
1173 | /// The listener has received a notification. |
1174 | /// |
1175 | /// The `bool` is `true` if this was an "additional" notification. |
1176 | Notified { |
1177 | /// Whether or not this is an "additional" notification. |
1178 | additional: bool, |
1179 | |
1180 | /// The tag associated with the notification. |
1181 | tag: T, |
1182 | }, |
1183 | |
1184 | /// A task is waiting for a notification. |
1185 | Task(Task), |
1186 | |
1187 | /// Empty hole used to replace a notified listener. |
1188 | NotifiedTaken, |
1189 | } |
1190 | |
1191 | impl<T> fmt::Debug for State<T> { |
1192 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1193 | match self { |
1194 | Self::Created => f.write_str(data:"Created" ), |
1195 | Self::Notified { additional: &bool, .. } => f&mut DebugStruct<'_, '_> |
1196 | .debug_struct("Notified" ) |
1197 | .field(name:"additional" , value:additional) |
1198 | .finish(), |
1199 | Self::Task(_) => f.write_str(data:"Task(_)" ), |
1200 | Self::NotifiedTaken => f.write_str(data:"NotifiedTaken" ), |
1201 | } |
1202 | } |
1203 | } |
1204 | |
1205 | impl<T> State<T> { |
1206 | fn is_notified(&self) -> bool { |
1207 | matches!(self, Self::Notified { .. } | Self::NotifiedTaken) |
1208 | } |
1209 | |
1210 | /// If this state was notified, return the tag associated with the notification. |
1211 | #[allow (unused)] |
1212 | fn notified(self) -> Option<T> { |
1213 | match self { |
1214 | Self::Notified { tag: T, .. } => Some(tag), |
1215 | Self::NotifiedTaken => panic!("listener was already notified but taken" ), |
1216 | _ => None, |
1217 | } |
1218 | } |
1219 | } |
1220 | |
1221 | /// The result of registering a listener. |
1222 | #[derive (Debug, PartialEq)] |
1223 | enum RegisterResult<T> { |
1224 | /// The listener was already notified. |
1225 | Notified(T), |
1226 | |
1227 | /// The listener has been registered. |
1228 | Registered, |
1229 | |
1230 | /// The listener was never inserted into the list. |
1231 | NeverInserted, |
1232 | } |
1233 | |
1234 | impl<T> RegisterResult<T> { |
1235 | /// Whether or not the listener was notified. |
1236 | /// |
1237 | /// Panics if the listener was never inserted into the list. |
1238 | fn notified(self) -> Option<T> { |
1239 | match self { |
1240 | Self::Notified(tag: T) => Some(tag), |
1241 | Self::Registered => None, |
1242 | Self::NeverInserted => panic!("listener was never inserted into the list" ), |
1243 | } |
1244 | } |
1245 | } |
1246 | |
1247 | /// A task that can be woken up. |
1248 | #[derive (Debug, Clone)] |
1249 | enum Task { |
1250 | /// A waker that wakes up a future. |
1251 | Waker(Waker), |
1252 | |
1253 | /// An unparker that wakes up a thread. |
1254 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1255 | Unparker(Unparker), |
1256 | } |
1257 | |
1258 | impl Task { |
1259 | fn as_task_ref(&self) -> TaskRef<'_> { |
1260 | match self { |
1261 | Self::Waker(waker: &Waker) => TaskRef::Waker(waker), |
1262 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1263 | Self::Unparker(unparker: &Unparker) => TaskRef::Unparker(unparker), |
1264 | } |
1265 | } |
1266 | |
1267 | fn wake(self) { |
1268 | match self { |
1269 | Self::Waker(waker: Waker) => waker.wake(), |
1270 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1271 | Self::Unparker(unparker: Unparker) => { |
1272 | unparker.unpark(); |
1273 | } |
1274 | } |
1275 | } |
1276 | } |
1277 | |
1278 | impl PartialEq for Task { |
1279 | fn eq(&self, other: &Self) -> bool { |
1280 | self.as_task_ref().will_wake(other.as_task_ref()) |
1281 | } |
1282 | } |
1283 | |
1284 | /// A reference to a task. |
1285 | #[derive (Clone, Copy)] |
1286 | enum TaskRef<'a> { |
1287 | /// A waker that wakes up a future. |
1288 | Waker(&'a Waker), |
1289 | |
1290 | /// An unparker that wakes up a thread. |
1291 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1292 | Unparker(&'a Unparker), |
1293 | } |
1294 | |
1295 | impl TaskRef<'_> { |
1296 | /// Tells if this task will wake up the other task. |
1297 | #[allow (unreachable_patterns)] |
1298 | fn will_wake(self, other: Self) -> bool { |
1299 | match (self, other) { |
1300 | (Self::Waker(a: &Waker), Self::Waker(b: &Waker)) => a.will_wake(b), |
1301 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1302 | (Self::Unparker(_), Self::Unparker(_)) => { |
1303 | // TODO: Use unreleased will_unpark API. |
1304 | false |
1305 | } |
1306 | _ => false, |
1307 | } |
1308 | } |
1309 | |
1310 | /// Converts this task reference to a task by cloning. |
1311 | fn into_task(self) -> Task { |
1312 | match self { |
1313 | Self::Waker(waker: &Waker) => Task::Waker(waker.clone()), |
1314 | #[cfg (all(feature = "std" , not(target_family = "wasm" )))] |
1315 | Self::Unparker(unparker: &Unparker) => Task::Unparker(unparker.clone()), |
1316 | } |
1317 | } |
1318 | } |
1319 | |
1320 | /// Synchronization primitive implementation. |
1321 | mod sync { |
1322 | pub(super) use core::cell; |
1323 | |
1324 | #[cfg (not(feature = "portable-atomic" ))] |
1325 | pub(super) use alloc::sync::Arc; |
1326 | #[cfg (not(feature = "portable-atomic" ))] |
1327 | pub(super) use core::sync::atomic; |
1328 | |
1329 | #[cfg (feature = "portable-atomic" )] |
1330 | pub(super) use portable_atomic_crate as atomic; |
1331 | #[cfg (feature = "portable-atomic" )] |
1332 | pub(super) use portable_atomic_util::Arc; |
1333 | |
1334 | #[cfg (feature = "std" )] |
1335 | pub(super) use std::sync::{Mutex, MutexGuard}; |
1336 | |
1337 | pub(super) trait WithMut { |
1338 | type Output; |
1339 | |
1340 | fn with_mut<F, R>(&mut self, f: F) -> R |
1341 | where |
1342 | F: FnOnce(&mut Self::Output) -> R; |
1343 | } |
1344 | |
1345 | impl<T> WithMut for atomic::AtomicPtr<T> { |
1346 | type Output = *mut T; |
1347 | |
1348 | #[inline ] |
1349 | fn with_mut<F, R>(&mut self, f: F) -> R |
1350 | where |
1351 | F: FnOnce(&mut Self::Output) -> R, |
1352 | { |
1353 | f(self.get_mut()) |
1354 | } |
1355 | } |
1356 | } |
1357 | |
1358 | fn __test_send_and_sync() { |
1359 | fn _assert_send<T: Send>() {} |
1360 | fn _assert_sync<T: Sync>() {} |
1361 | |
1362 | _assert_send::<Event<()>>(); |
1363 | _assert_sync::<Event<()>>(); |
1364 | _assert_send::<EventListener<()>>(); |
1365 | _assert_sync::<EventListener<()>>(); |
1366 | } |
1367 | |