| 1 | //! Contains utility functions and traits to convert between slices of [`u16`] bits and [`struct@f16`] or |
| 2 | //! [`struct@bf16`] numbers. |
| 3 | //! |
| 4 | //! The utility [`HalfBitsSliceExt`] sealed extension trait is implemented for `[u16]` slices, |
| 5 | //! while the utility [`HalfFloatSliceExt`] sealed extension trait is implemented for both `[f16]` |
| 6 | //! and `[bf16]` slices. These traits provide efficient conversions and reinterpret casting of |
| 7 | //! larger buffers of floating point values, and are automatically included in the |
| 8 | //! [`prelude`][crate::prelude] module. |
| 9 | |
| 10 | use crate::{bf16, binary16::arch, f16}; |
| 11 | #[cfg (feature = "alloc" )] |
| 12 | #[allow (unused_imports)] |
| 13 | use alloc::{vec, vec::Vec}; |
| 14 | use core::slice; |
| 15 | |
| 16 | /// Extensions to `[f16]` and `[bf16]` slices to support conversion and reinterpret operations. |
| 17 | /// |
| 18 | /// This trait is sealed and cannot be implemented outside of this crate. |
| 19 | pub trait HalfFloatSliceExt: private::SealedHalfFloatSlice { |
| 20 | /// Reinterprets a slice of [`struct@f16`] or [`struct@bf16`] numbers as a slice of [`u16`] bits. |
| 21 | /// |
| 22 | /// This is a zero-copy operation. The reinterpreted slice has the same lifetime and memory |
| 23 | /// location as `self`. |
| 24 | /// |
| 25 | /// # Examples |
| 26 | /// |
| 27 | /// ```rust |
| 28 | /// # use half::prelude::*; |
| 29 | /// let float_buffer = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]; |
| 30 | /// let int_buffer = float_buffer.reinterpret_cast(); |
| 31 | /// |
| 32 | /// assert_eq!(int_buffer, [float_buffer[0].to_bits(), float_buffer[1].to_bits(), float_buffer[2].to_bits()]); |
| 33 | /// ``` |
| 34 | #[must_use ] |
| 35 | fn reinterpret_cast(&self) -> &[u16]; |
| 36 | |
| 37 | /// Reinterprets a mutable slice of [`struct@f16`] or [`struct@bf16`] numbers as a mutable slice of [`u16`]. |
| 38 | /// bits |
| 39 | /// |
| 40 | /// This is a zero-copy operation. The transmuted slice has the same lifetime as the original, |
| 41 | /// which prevents mutating `self` as long as the returned `&mut [u16]` is borrowed. |
| 42 | /// |
| 43 | /// # Examples |
| 44 | /// |
| 45 | /// ```rust |
| 46 | /// # use half::prelude::*; |
| 47 | /// let mut float_buffer = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]; |
| 48 | /// |
| 49 | /// { |
| 50 | /// let int_buffer = float_buffer.reinterpret_cast_mut(); |
| 51 | /// |
| 52 | /// assert_eq!(int_buffer, [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]); |
| 53 | /// |
| 54 | /// // Mutating the u16 slice will mutating the original |
| 55 | /// int_buffer[0] = 0; |
| 56 | /// } |
| 57 | /// |
| 58 | /// // Note that we need to drop int_buffer before using float_buffer again or we will get a borrow error. |
| 59 | /// assert_eq!(float_buffer, [f16::from_f32(0.), f16::from_f32(2.), f16::from_f32(3.)]); |
| 60 | /// ``` |
| 61 | #[must_use ] |
| 62 | fn reinterpret_cast_mut(&mut self) -> &mut [u16]; |
| 63 | |
| 64 | /// Converts all of the elements of a `[f32]` slice into [`struct@f16`] or [`struct@bf16`] values in `self`. |
| 65 | /// |
| 66 | /// The length of `src` must be the same as `self`. |
| 67 | /// |
| 68 | /// The conversion operation is vectorized over the slice, meaning the conversion may be more |
| 69 | /// efficient than converting individual elements on some hardware that supports SIMD |
| 70 | /// conversions. See [crate documentation](crate) for more information on hardware conversion |
| 71 | /// support. |
| 72 | /// |
| 73 | /// # Panics |
| 74 | /// |
| 75 | /// This function will panic if the two slices have different lengths. |
| 76 | /// |
| 77 | /// # Examples |
| 78 | /// ```rust |
| 79 | /// # use half::prelude::*; |
| 80 | /// // Initialize an empty buffer |
| 81 | /// let mut buffer = [0u16; 4]; |
| 82 | /// let buffer = buffer.reinterpret_cast_mut::<f16>(); |
| 83 | /// |
| 84 | /// let float_values = [1., 2., 3., 4.]; |
| 85 | /// |
| 86 | /// // Now convert |
| 87 | /// buffer.convert_from_f32_slice(&float_values); |
| 88 | /// |
| 89 | /// assert_eq!(buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]); |
| 90 | /// ``` |
| 91 | fn convert_from_f32_slice(&mut self, src: &[f32]); |
| 92 | |
| 93 | /// Converts all of the elements of a `[f64]` slice into [`struct@f16`] or [`struct@bf16`] values in `self`. |
| 94 | /// |
| 95 | /// The length of `src` must be the same as `self`. |
| 96 | /// |
| 97 | /// The conversion operation is vectorized over the slice, meaning the conversion may be more |
| 98 | /// efficient than converting individual elements on some hardware that supports SIMD |
| 99 | /// conversions. See [crate documentation](crate) for more information on hardware conversion |
| 100 | /// support. |
| 101 | /// |
| 102 | /// # Panics |
| 103 | /// |
| 104 | /// This function will panic if the two slices have different lengths. |
| 105 | /// |
| 106 | /// # Examples |
| 107 | /// ```rust |
| 108 | /// # use half::prelude::*; |
| 109 | /// // Initialize an empty buffer |
| 110 | /// let mut buffer = [0u16; 4]; |
| 111 | /// let buffer = buffer.reinterpret_cast_mut::<f16>(); |
| 112 | /// |
| 113 | /// let float_values = [1., 2., 3., 4.]; |
| 114 | /// |
| 115 | /// // Now convert |
| 116 | /// buffer.convert_from_f64_slice(&float_values); |
| 117 | /// |
| 118 | /// assert_eq!(buffer, [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]); |
| 119 | /// ``` |
| 120 | fn convert_from_f64_slice(&mut self, src: &[f64]); |
| 121 | |
| 122 | /// Converts all of the [`struct@f16`] or [`struct@bf16`] elements of `self` into [`f32`] values in `dst`. |
| 123 | /// |
| 124 | /// The length of `src` must be the same as `self`. |
| 125 | /// |
| 126 | /// The conversion operation is vectorized over the slice, meaning the conversion may be more |
| 127 | /// efficient than converting individual elements on some hardware that supports SIMD |
| 128 | /// conversions. See [crate documentation](crate) for more information on hardware conversion |
| 129 | /// support. |
| 130 | /// |
| 131 | /// # Panics |
| 132 | /// |
| 133 | /// This function will panic if the two slices have different lengths. |
| 134 | /// |
| 135 | /// # Examples |
| 136 | /// ```rust |
| 137 | /// # use half::prelude::*; |
| 138 | /// // Initialize an empty buffer |
| 139 | /// let mut buffer = [0f32; 4]; |
| 140 | /// |
| 141 | /// let half_values = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]; |
| 142 | /// |
| 143 | /// // Now convert |
| 144 | /// half_values.convert_to_f32_slice(&mut buffer); |
| 145 | /// |
| 146 | /// assert_eq!(buffer, [1., 2., 3., 4.]); |
| 147 | /// ``` |
| 148 | fn convert_to_f32_slice(&self, dst: &mut [f32]); |
| 149 | |
| 150 | /// Converts all of the [`struct@f16`] or [`struct@bf16`] elements of `self` into [`f64`] values in `dst`. |
| 151 | /// |
| 152 | /// The length of `src` must be the same as `self`. |
| 153 | /// |
| 154 | /// The conversion operation is vectorized over the slice, meaning the conversion may be more |
| 155 | /// efficient than converting individual elements on some hardware that supports SIMD |
| 156 | /// conversions. See [crate documentation](crate) for more information on hardware conversion |
| 157 | /// support. |
| 158 | /// |
| 159 | /// # Panics |
| 160 | /// |
| 161 | /// This function will panic if the two slices have different lengths. |
| 162 | /// |
| 163 | /// # Examples |
| 164 | /// ```rust |
| 165 | /// # use half::prelude::*; |
| 166 | /// // Initialize an empty buffer |
| 167 | /// let mut buffer = [0f64; 4]; |
| 168 | /// |
| 169 | /// let half_values = [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]; |
| 170 | /// |
| 171 | /// // Now convert |
| 172 | /// half_values.convert_to_f64_slice(&mut buffer); |
| 173 | /// |
| 174 | /// assert_eq!(buffer, [1., 2., 3., 4.]); |
| 175 | /// ``` |
| 176 | fn convert_to_f64_slice(&self, dst: &mut [f64]); |
| 177 | |
| 178 | // Because trait is sealed, we can get away with different interfaces between features. |
| 179 | |
| 180 | /// Converts all of the [`struct@f16`] or [`struct@bf16`] elements of `self` into [`f32`] values in a new |
| 181 | /// vector |
| 182 | /// |
| 183 | /// The conversion operation is vectorized over the slice, meaning the conversion may be more |
| 184 | /// efficient than converting individual elements on some hardware that supports SIMD |
| 185 | /// conversions. See [crate documentation](crate) for more information on hardware conversion |
| 186 | /// support. |
| 187 | /// |
| 188 | /// This method is only available with the `std` or `alloc` feature. |
| 189 | /// |
| 190 | /// # Examples |
| 191 | /// ```rust |
| 192 | /// # use half::prelude::*; |
| 193 | /// let half_values = [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.), f16::from_f32(4.)]; |
| 194 | /// let vec = half_values.to_f32_vec(); |
| 195 | /// |
| 196 | /// assert_eq!(vec, vec![1., 2., 3., 4.]); |
| 197 | /// ``` |
| 198 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
| 199 | #[must_use ] |
| 200 | fn to_f32_vec(&self) -> Vec<f32>; |
| 201 | |
| 202 | /// Converts all of the [`struct@f16`] or [`struct@bf16`] elements of `self` into [`f64`] values in a new |
| 203 | /// vector. |
| 204 | /// |
| 205 | /// The conversion operation is vectorized over the slice, meaning the conversion may be more |
| 206 | /// efficient than converting individual elements on some hardware that supports SIMD |
| 207 | /// conversions. See [crate documentation](crate) for more information on hardware conversion |
| 208 | /// support. |
| 209 | /// |
| 210 | /// This method is only available with the `std` or `alloc` feature. |
| 211 | /// |
| 212 | /// # Examples |
| 213 | /// ```rust |
| 214 | /// # use half::prelude::*; |
| 215 | /// let half_values = [f16::from_f64(1.), f16::from_f64(2.), f16::from_f64(3.), f16::from_f64(4.)]; |
| 216 | /// let vec = half_values.to_f64_vec(); |
| 217 | /// |
| 218 | /// assert_eq!(vec, vec![1., 2., 3., 4.]); |
| 219 | /// ``` |
| 220 | #[cfg (feature = "alloc" )] |
| 221 | #[must_use ] |
| 222 | fn to_f64_vec(&self) -> Vec<f64>; |
| 223 | } |
| 224 | |
| 225 | /// Extensions to `[u16]` slices to support reinterpret operations. |
| 226 | /// |
| 227 | /// This trait is sealed and cannot be implemented outside of this crate. |
| 228 | pub trait HalfBitsSliceExt: private::SealedHalfBitsSlice { |
| 229 | /// Reinterprets a slice of [`u16`] bits as a slice of [`struct@f16`] or [`struct@bf16`] numbers. |
| 230 | /// |
| 231 | /// `H` is the type to cast to, and must be either the [`struct@f16`] or [`struct@bf16`] type. |
| 232 | /// |
| 233 | /// This is a zero-copy operation. The reinterpreted slice has the same lifetime and memory |
| 234 | /// location as `self`. |
| 235 | /// |
| 236 | /// # Examples |
| 237 | /// |
| 238 | /// ```rust |
| 239 | /// # use half::prelude::*; |
| 240 | /// let int_buffer = [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]; |
| 241 | /// let float_buffer: &[f16] = int_buffer.reinterpret_cast(); |
| 242 | /// |
| 243 | /// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]); |
| 244 | /// |
| 245 | /// // You may have to specify the cast type directly if the compiler can't infer the type. |
| 246 | /// // The following is also valid in Rust. |
| 247 | /// let typed_buffer = int_buffer.reinterpret_cast::<f16>(); |
| 248 | /// ``` |
| 249 | #[must_use ] |
| 250 | fn reinterpret_cast<H>(&self) -> &[H] |
| 251 | where |
| 252 | H: crate::private::SealedHalf; |
| 253 | |
| 254 | /// Reinterprets a mutable slice of [`u16`] bits as a mutable slice of [`struct@f16`] or [`struct@bf16`] |
| 255 | /// numbers. |
| 256 | /// |
| 257 | /// `H` is the type to cast to, and must be either the [`struct@f16`] or [`struct@bf16`] type. |
| 258 | /// |
| 259 | /// This is a zero-copy operation. The transmuted slice has the same lifetime as the original, |
| 260 | /// which prevents mutating `self` as long as the returned `&mut [f16]` is borrowed. |
| 261 | /// |
| 262 | /// # Examples |
| 263 | /// |
| 264 | /// ```rust |
| 265 | /// # use half::prelude::*; |
| 266 | /// let mut int_buffer = [f16::from_f32(1.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]; |
| 267 | /// |
| 268 | /// { |
| 269 | /// let float_buffer: &mut [f16] = int_buffer.reinterpret_cast_mut(); |
| 270 | /// |
| 271 | /// assert_eq!(float_buffer, [f16::from_f32(1.), f16::from_f32(2.), f16::from_f32(3.)]); |
| 272 | /// |
| 273 | /// // Mutating the f16 slice will mutating the original |
| 274 | /// float_buffer[0] = f16::from_f32(0.); |
| 275 | /// } |
| 276 | /// |
| 277 | /// // Note that we need to drop float_buffer before using int_buffer again or we will get a borrow error. |
| 278 | /// assert_eq!(int_buffer, [f16::from_f32(0.).to_bits(), f16::from_f32(2.).to_bits(), f16::from_f32(3.).to_bits()]); |
| 279 | /// |
| 280 | /// // You may have to specify the cast type directly if the compiler can't infer the type. |
| 281 | /// // The following is also valid in Rust. |
| 282 | /// let typed_buffer = int_buffer.reinterpret_cast_mut::<f16>(); |
| 283 | /// ``` |
| 284 | #[must_use ] |
| 285 | fn reinterpret_cast_mut<H>(&mut self) -> &mut [H] |
| 286 | where |
| 287 | H: crate::private::SealedHalf; |
| 288 | } |
| 289 | |
| 290 | mod private { |
| 291 | use crate::{bf16, f16}; |
| 292 | |
| 293 | pub trait SealedHalfFloatSlice {} |
| 294 | impl SealedHalfFloatSlice for [f16] {} |
| 295 | impl SealedHalfFloatSlice for [bf16] {} |
| 296 | |
| 297 | pub trait SealedHalfBitsSlice {} |
| 298 | impl SealedHalfBitsSlice for [u16] {} |
| 299 | } |
| 300 | |
| 301 | impl HalfFloatSliceExt for [f16] { |
| 302 | #[inline ] |
| 303 | fn reinterpret_cast(&self) -> &[u16] { |
| 304 | let pointer = self.as_ptr() as *const u16; |
| 305 | let length = self.len(); |
| 306 | // SAFETY: We are reconstructing full length of original slice, using its same lifetime, |
| 307 | // and the size of elements are identical |
| 308 | unsafe { slice::from_raw_parts(pointer, length) } |
| 309 | } |
| 310 | |
| 311 | #[inline ] |
| 312 | fn reinterpret_cast_mut(&mut self) -> &mut [u16] { |
| 313 | let pointer = self.as_mut_ptr().cast::<u16>(); |
| 314 | let length = self.len(); |
| 315 | // SAFETY: We are reconstructing full length of original slice, using its same lifetime, |
| 316 | // and the size of elements are identical |
| 317 | unsafe { slice::from_raw_parts_mut(pointer, length) } |
| 318 | } |
| 319 | |
| 320 | #[inline ] |
| 321 | fn convert_from_f32_slice(&mut self, src: &[f32]) { |
| 322 | assert_eq!( |
| 323 | self.len(), |
| 324 | src.len(), |
| 325 | "destination and source slices have different lengths" |
| 326 | ); |
| 327 | |
| 328 | arch::f32_to_f16_slice(src, self.reinterpret_cast_mut()) |
| 329 | } |
| 330 | |
| 331 | #[inline ] |
| 332 | fn convert_from_f64_slice(&mut self, src: &[f64]) { |
| 333 | assert_eq!( |
| 334 | self.len(), |
| 335 | src.len(), |
| 336 | "destination and source slices have different lengths" |
| 337 | ); |
| 338 | |
| 339 | arch::f64_to_f16_slice(src, self.reinterpret_cast_mut()) |
| 340 | } |
| 341 | |
| 342 | #[inline ] |
| 343 | fn convert_to_f32_slice(&self, dst: &mut [f32]) { |
| 344 | assert_eq!( |
| 345 | self.len(), |
| 346 | dst.len(), |
| 347 | "destination and source slices have different lengths" |
| 348 | ); |
| 349 | |
| 350 | arch::f16_to_f32_slice(self.reinterpret_cast(), dst) |
| 351 | } |
| 352 | |
| 353 | #[inline ] |
| 354 | fn convert_to_f64_slice(&self, dst: &mut [f64]) { |
| 355 | assert_eq!( |
| 356 | self.len(), |
| 357 | dst.len(), |
| 358 | "destination and source slices have different lengths" |
| 359 | ); |
| 360 | |
| 361 | arch::f16_to_f64_slice(self.reinterpret_cast(), dst) |
| 362 | } |
| 363 | |
| 364 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
| 365 | #[inline ] |
| 366 | #[allow (clippy::uninit_vec)] |
| 367 | fn to_f32_vec(&self) -> Vec<f32> { |
| 368 | let mut vec = vec![0f32; self.len()]; |
| 369 | self.convert_to_f32_slice(&mut vec); |
| 370 | vec |
| 371 | } |
| 372 | |
| 373 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
| 374 | #[inline ] |
| 375 | #[allow (clippy::uninit_vec)] |
| 376 | fn to_f64_vec(&self) -> Vec<f64> { |
| 377 | let mut vec = vec![0f64; self.len()]; |
| 378 | self.convert_to_f64_slice(&mut vec); |
| 379 | vec |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | impl HalfFloatSliceExt for [bf16] { |
| 384 | #[inline ] |
| 385 | fn reinterpret_cast(&self) -> &[u16] { |
| 386 | let pointer = self.as_ptr() as *const u16; |
| 387 | let length = self.len(); |
| 388 | // SAFETY: We are reconstructing full length of original slice, using its same lifetime, |
| 389 | // and the size of elements are identical |
| 390 | unsafe { slice::from_raw_parts(pointer, length) } |
| 391 | } |
| 392 | |
| 393 | #[inline ] |
| 394 | fn reinterpret_cast_mut(&mut self) -> &mut [u16] { |
| 395 | let pointer = self.as_mut_ptr().cast::<u16>(); |
| 396 | let length = self.len(); |
| 397 | // SAFETY: We are reconstructing full length of original slice, using its same lifetime, |
| 398 | // and the size of elements are identical |
| 399 | unsafe { slice::from_raw_parts_mut(pointer, length) } |
| 400 | } |
| 401 | |
| 402 | #[inline ] |
| 403 | fn convert_from_f32_slice(&mut self, src: &[f32]) { |
| 404 | assert_eq!( |
| 405 | self.len(), |
| 406 | src.len(), |
| 407 | "destination and source slices have different lengths" |
| 408 | ); |
| 409 | |
| 410 | // Just use regular loop here until there's any bf16 SIMD support. |
| 411 | for (i, f) in src.iter().enumerate() { |
| 412 | self[i] = bf16::from_f32(*f); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | #[inline ] |
| 417 | fn convert_from_f64_slice(&mut self, src: &[f64]) { |
| 418 | assert_eq!( |
| 419 | self.len(), |
| 420 | src.len(), |
| 421 | "destination and source slices have different lengths" |
| 422 | ); |
| 423 | |
| 424 | // Just use regular loop here until there's any bf16 SIMD support. |
| 425 | for (i, f) in src.iter().enumerate() { |
| 426 | self[i] = bf16::from_f64(*f); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | #[inline ] |
| 431 | fn convert_to_f32_slice(&self, dst: &mut [f32]) { |
| 432 | assert_eq!( |
| 433 | self.len(), |
| 434 | dst.len(), |
| 435 | "destination and source slices have different lengths" |
| 436 | ); |
| 437 | |
| 438 | // Just use regular loop here until there's any bf16 SIMD support. |
| 439 | for (i, f) in self.iter().enumerate() { |
| 440 | dst[i] = f.to_f32(); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | #[inline ] |
| 445 | fn convert_to_f64_slice(&self, dst: &mut [f64]) { |
| 446 | assert_eq!( |
| 447 | self.len(), |
| 448 | dst.len(), |
| 449 | "destination and source slices have different lengths" |
| 450 | ); |
| 451 | |
| 452 | // Just use regular loop here until there's any bf16 SIMD support. |
| 453 | for (i, f) in self.iter().enumerate() { |
| 454 | dst[i] = f.to_f64(); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
| 459 | #[inline ] |
| 460 | #[allow (clippy::uninit_vec)] |
| 461 | fn to_f32_vec(&self) -> Vec<f32> { |
| 462 | let mut vec = vec![0f32; self.len()]; |
| 463 | self.convert_to_f32_slice(&mut vec); |
| 464 | vec |
| 465 | } |
| 466 | |
| 467 | #[cfg (any(feature = "alloc" , feature = "std" ))] |
| 468 | #[inline ] |
| 469 | #[allow (clippy::uninit_vec)] |
| 470 | fn to_f64_vec(&self) -> Vec<f64> { |
| 471 | let mut vec = vec![0f64; self.len()]; |
| 472 | self.convert_to_f64_slice(&mut vec); |
| 473 | vec |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | impl HalfBitsSliceExt for [u16] { |
| 478 | // Since we sealed all the traits involved, these are safe. |
| 479 | #[inline ] |
| 480 | fn reinterpret_cast<H>(&self) -> &[H] |
| 481 | where |
| 482 | H: crate::private::SealedHalf, |
| 483 | { |
| 484 | let pointer = self.as_ptr() as *const H; |
| 485 | let length = self.len(); |
| 486 | // SAFETY: We are reconstructing full length of original slice, using its same lifetime, |
| 487 | // and the size of elements are identical |
| 488 | unsafe { slice::from_raw_parts(pointer, length) } |
| 489 | } |
| 490 | |
| 491 | #[inline ] |
| 492 | fn reinterpret_cast_mut<H>(&mut self) -> &mut [H] |
| 493 | where |
| 494 | H: crate::private::SealedHalf, |
| 495 | { |
| 496 | let pointer = self.as_mut_ptr() as *mut H; |
| 497 | let length = self.len(); |
| 498 | // SAFETY: We are reconstructing full length of original slice, using its same lifetime, |
| 499 | // and the size of elements are identical |
| 500 | unsafe { slice::from_raw_parts_mut(pointer, length) } |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | #[allow (clippy::float_cmp)] |
| 505 | #[cfg (test)] |
| 506 | mod test { |
| 507 | use super::{HalfBitsSliceExt, HalfFloatSliceExt}; |
| 508 | use crate::{bf16, f16}; |
| 509 | |
| 510 | #[test ] |
| 511 | fn test_slice_conversions_f16() { |
| 512 | let bits = &[ |
| 513 | f16::E.to_bits(), |
| 514 | f16::PI.to_bits(), |
| 515 | f16::EPSILON.to_bits(), |
| 516 | f16::FRAC_1_SQRT_2.to_bits(), |
| 517 | ]; |
| 518 | let numbers = &[f16::E, f16::PI, f16::EPSILON, f16::FRAC_1_SQRT_2]; |
| 519 | |
| 520 | // Convert from bits to numbers |
| 521 | let from_bits = bits.reinterpret_cast::<f16>(); |
| 522 | assert_eq!(from_bits, numbers); |
| 523 | |
| 524 | // Convert from numbers back to bits |
| 525 | let to_bits = from_bits.reinterpret_cast(); |
| 526 | assert_eq!(to_bits, bits); |
| 527 | } |
| 528 | |
| 529 | #[test ] |
| 530 | fn test_mutablility_f16() { |
| 531 | let mut bits_array = [f16::PI.to_bits()]; |
| 532 | let bits = &mut bits_array[..]; |
| 533 | |
| 534 | { |
| 535 | // would not compile without these braces |
| 536 | let numbers = bits.reinterpret_cast_mut(); |
| 537 | numbers[0] = f16::E; |
| 538 | } |
| 539 | |
| 540 | assert_eq!(bits, &[f16::E.to_bits()]); |
| 541 | |
| 542 | bits[0] = f16::LN_2.to_bits(); |
| 543 | assert_eq!(bits, &[f16::LN_2.to_bits()]); |
| 544 | } |
| 545 | |
| 546 | #[test ] |
| 547 | fn test_slice_conversions_bf16() { |
| 548 | let bits = &[ |
| 549 | bf16::E.to_bits(), |
| 550 | bf16::PI.to_bits(), |
| 551 | bf16::EPSILON.to_bits(), |
| 552 | bf16::FRAC_1_SQRT_2.to_bits(), |
| 553 | ]; |
| 554 | let numbers = &[bf16::E, bf16::PI, bf16::EPSILON, bf16::FRAC_1_SQRT_2]; |
| 555 | |
| 556 | // Convert from bits to numbers |
| 557 | let from_bits = bits.reinterpret_cast::<bf16>(); |
| 558 | assert_eq!(from_bits, numbers); |
| 559 | |
| 560 | // Convert from numbers back to bits |
| 561 | let to_bits = from_bits.reinterpret_cast(); |
| 562 | assert_eq!(to_bits, bits); |
| 563 | } |
| 564 | |
| 565 | #[test ] |
| 566 | fn test_mutablility_bf16() { |
| 567 | let mut bits_array = [bf16::PI.to_bits()]; |
| 568 | let bits = &mut bits_array[..]; |
| 569 | |
| 570 | { |
| 571 | // would not compile without these braces |
| 572 | let numbers = bits.reinterpret_cast_mut(); |
| 573 | numbers[0] = bf16::E; |
| 574 | } |
| 575 | |
| 576 | assert_eq!(bits, &[bf16::E.to_bits()]); |
| 577 | |
| 578 | bits[0] = bf16::LN_2.to_bits(); |
| 579 | assert_eq!(bits, &[bf16::LN_2.to_bits()]); |
| 580 | } |
| 581 | |
| 582 | #[test ] |
| 583 | fn slice_convert_f16_f32() { |
| 584 | // Exact chunks |
| 585 | let vf32 = [1., 2., 3., 4., 5., 6., 7., 8.]; |
| 586 | let vf16 = [ |
| 587 | f16::from_f32(1.), |
| 588 | f16::from_f32(2.), |
| 589 | f16::from_f32(3.), |
| 590 | f16::from_f32(4.), |
| 591 | f16::from_f32(5.), |
| 592 | f16::from_f32(6.), |
| 593 | f16::from_f32(7.), |
| 594 | f16::from_f32(8.), |
| 595 | ]; |
| 596 | let mut buf32 = vf32; |
| 597 | let mut buf16 = vf16; |
| 598 | |
| 599 | vf16.convert_to_f32_slice(&mut buf32); |
| 600 | assert_eq!(&vf32, &buf32); |
| 601 | |
| 602 | buf16.convert_from_f32_slice(&vf32); |
| 603 | assert_eq!(&vf16, &buf16); |
| 604 | |
| 605 | // Partial with chunks |
| 606 | let vf32 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; |
| 607 | let vf16 = [ |
| 608 | f16::from_f32(1.), |
| 609 | f16::from_f32(2.), |
| 610 | f16::from_f32(3.), |
| 611 | f16::from_f32(4.), |
| 612 | f16::from_f32(5.), |
| 613 | f16::from_f32(6.), |
| 614 | f16::from_f32(7.), |
| 615 | f16::from_f32(8.), |
| 616 | f16::from_f32(9.), |
| 617 | ]; |
| 618 | let mut buf32 = vf32; |
| 619 | let mut buf16 = vf16; |
| 620 | |
| 621 | vf16.convert_to_f32_slice(&mut buf32); |
| 622 | assert_eq!(&vf32, &buf32); |
| 623 | |
| 624 | buf16.convert_from_f32_slice(&vf32); |
| 625 | assert_eq!(&vf16, &buf16); |
| 626 | |
| 627 | // Partial with chunks |
| 628 | let vf32 = [1., 2.]; |
| 629 | let vf16 = [f16::from_f32(1.), f16::from_f32(2.)]; |
| 630 | let mut buf32 = vf32; |
| 631 | let mut buf16 = vf16; |
| 632 | |
| 633 | vf16.convert_to_f32_slice(&mut buf32); |
| 634 | assert_eq!(&vf32, &buf32); |
| 635 | |
| 636 | buf16.convert_from_f32_slice(&vf32); |
| 637 | assert_eq!(&vf16, &buf16); |
| 638 | } |
| 639 | |
| 640 | #[test ] |
| 641 | fn slice_convert_bf16_f32() { |
| 642 | // Exact chunks |
| 643 | let vf32 = [1., 2., 3., 4., 5., 6., 7., 8.]; |
| 644 | let vf16 = [ |
| 645 | bf16::from_f32(1.), |
| 646 | bf16::from_f32(2.), |
| 647 | bf16::from_f32(3.), |
| 648 | bf16::from_f32(4.), |
| 649 | bf16::from_f32(5.), |
| 650 | bf16::from_f32(6.), |
| 651 | bf16::from_f32(7.), |
| 652 | bf16::from_f32(8.), |
| 653 | ]; |
| 654 | let mut buf32 = vf32; |
| 655 | let mut buf16 = vf16; |
| 656 | |
| 657 | vf16.convert_to_f32_slice(&mut buf32); |
| 658 | assert_eq!(&vf32, &buf32); |
| 659 | |
| 660 | buf16.convert_from_f32_slice(&vf32); |
| 661 | assert_eq!(&vf16, &buf16); |
| 662 | |
| 663 | // Partial with chunks |
| 664 | let vf32 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; |
| 665 | let vf16 = [ |
| 666 | bf16::from_f32(1.), |
| 667 | bf16::from_f32(2.), |
| 668 | bf16::from_f32(3.), |
| 669 | bf16::from_f32(4.), |
| 670 | bf16::from_f32(5.), |
| 671 | bf16::from_f32(6.), |
| 672 | bf16::from_f32(7.), |
| 673 | bf16::from_f32(8.), |
| 674 | bf16::from_f32(9.), |
| 675 | ]; |
| 676 | let mut buf32 = vf32; |
| 677 | let mut buf16 = vf16; |
| 678 | |
| 679 | vf16.convert_to_f32_slice(&mut buf32); |
| 680 | assert_eq!(&vf32, &buf32); |
| 681 | |
| 682 | buf16.convert_from_f32_slice(&vf32); |
| 683 | assert_eq!(&vf16, &buf16); |
| 684 | |
| 685 | // Partial with chunks |
| 686 | let vf32 = [1., 2.]; |
| 687 | let vf16 = [bf16::from_f32(1.), bf16::from_f32(2.)]; |
| 688 | let mut buf32 = vf32; |
| 689 | let mut buf16 = vf16; |
| 690 | |
| 691 | vf16.convert_to_f32_slice(&mut buf32); |
| 692 | assert_eq!(&vf32, &buf32); |
| 693 | |
| 694 | buf16.convert_from_f32_slice(&vf32); |
| 695 | assert_eq!(&vf16, &buf16); |
| 696 | } |
| 697 | |
| 698 | #[test ] |
| 699 | fn slice_convert_f16_f64() { |
| 700 | // Exact chunks |
| 701 | let vf64 = [1., 2., 3., 4., 5., 6., 7., 8.]; |
| 702 | let vf16 = [ |
| 703 | f16::from_f64(1.), |
| 704 | f16::from_f64(2.), |
| 705 | f16::from_f64(3.), |
| 706 | f16::from_f64(4.), |
| 707 | f16::from_f64(5.), |
| 708 | f16::from_f64(6.), |
| 709 | f16::from_f64(7.), |
| 710 | f16::from_f64(8.), |
| 711 | ]; |
| 712 | let mut buf64 = vf64; |
| 713 | let mut buf16 = vf16; |
| 714 | |
| 715 | vf16.convert_to_f64_slice(&mut buf64); |
| 716 | assert_eq!(&vf64, &buf64); |
| 717 | |
| 718 | buf16.convert_from_f64_slice(&vf64); |
| 719 | assert_eq!(&vf16, &buf16); |
| 720 | |
| 721 | // Partial with chunks |
| 722 | let vf64 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; |
| 723 | let vf16 = [ |
| 724 | f16::from_f64(1.), |
| 725 | f16::from_f64(2.), |
| 726 | f16::from_f64(3.), |
| 727 | f16::from_f64(4.), |
| 728 | f16::from_f64(5.), |
| 729 | f16::from_f64(6.), |
| 730 | f16::from_f64(7.), |
| 731 | f16::from_f64(8.), |
| 732 | f16::from_f64(9.), |
| 733 | ]; |
| 734 | let mut buf64 = vf64; |
| 735 | let mut buf16 = vf16; |
| 736 | |
| 737 | vf16.convert_to_f64_slice(&mut buf64); |
| 738 | assert_eq!(&vf64, &buf64); |
| 739 | |
| 740 | buf16.convert_from_f64_slice(&vf64); |
| 741 | assert_eq!(&vf16, &buf16); |
| 742 | |
| 743 | // Partial with chunks |
| 744 | let vf64 = [1., 2.]; |
| 745 | let vf16 = [f16::from_f64(1.), f16::from_f64(2.)]; |
| 746 | let mut buf64 = vf64; |
| 747 | let mut buf16 = vf16; |
| 748 | |
| 749 | vf16.convert_to_f64_slice(&mut buf64); |
| 750 | assert_eq!(&vf64, &buf64); |
| 751 | |
| 752 | buf16.convert_from_f64_slice(&vf64); |
| 753 | assert_eq!(&vf16, &buf16); |
| 754 | } |
| 755 | |
| 756 | #[test ] |
| 757 | fn slice_convert_bf16_f64() { |
| 758 | // Exact chunks |
| 759 | let vf64 = [1., 2., 3., 4., 5., 6., 7., 8.]; |
| 760 | let vf16 = [ |
| 761 | bf16::from_f64(1.), |
| 762 | bf16::from_f64(2.), |
| 763 | bf16::from_f64(3.), |
| 764 | bf16::from_f64(4.), |
| 765 | bf16::from_f64(5.), |
| 766 | bf16::from_f64(6.), |
| 767 | bf16::from_f64(7.), |
| 768 | bf16::from_f64(8.), |
| 769 | ]; |
| 770 | let mut buf64 = vf64; |
| 771 | let mut buf16 = vf16; |
| 772 | |
| 773 | vf16.convert_to_f64_slice(&mut buf64); |
| 774 | assert_eq!(&vf64, &buf64); |
| 775 | |
| 776 | buf16.convert_from_f64_slice(&vf64); |
| 777 | assert_eq!(&vf16, &buf16); |
| 778 | |
| 779 | // Partial with chunks |
| 780 | let vf64 = [1., 2., 3., 4., 5., 6., 7., 8., 9.]; |
| 781 | let vf16 = [ |
| 782 | bf16::from_f64(1.), |
| 783 | bf16::from_f64(2.), |
| 784 | bf16::from_f64(3.), |
| 785 | bf16::from_f64(4.), |
| 786 | bf16::from_f64(5.), |
| 787 | bf16::from_f64(6.), |
| 788 | bf16::from_f64(7.), |
| 789 | bf16::from_f64(8.), |
| 790 | bf16::from_f64(9.), |
| 791 | ]; |
| 792 | let mut buf64 = vf64; |
| 793 | let mut buf16 = vf16; |
| 794 | |
| 795 | vf16.convert_to_f64_slice(&mut buf64); |
| 796 | assert_eq!(&vf64, &buf64); |
| 797 | |
| 798 | buf16.convert_from_f64_slice(&vf64); |
| 799 | assert_eq!(&vf16, &buf16); |
| 800 | |
| 801 | // Partial with chunks |
| 802 | let vf64 = [1., 2.]; |
| 803 | let vf16 = [bf16::from_f64(1.), bf16::from_f64(2.)]; |
| 804 | let mut buf64 = vf64; |
| 805 | let mut buf16 = vf16; |
| 806 | |
| 807 | vf16.convert_to_f64_slice(&mut buf64); |
| 808 | assert_eq!(&vf64, &buf64); |
| 809 | |
| 810 | buf16.convert_from_f64_slice(&vf64); |
| 811 | assert_eq!(&vf16, &buf16); |
| 812 | } |
| 813 | |
| 814 | #[test ] |
| 815 | #[should_panic ] |
| 816 | fn convert_from_f32_slice_len_mismatch_panics() { |
| 817 | let mut slice1 = [f16::ZERO; 3]; |
| 818 | let slice2 = [0f32; 4]; |
| 819 | slice1.convert_from_f32_slice(&slice2); |
| 820 | } |
| 821 | |
| 822 | #[test ] |
| 823 | #[should_panic ] |
| 824 | fn convert_from_f64_slice_len_mismatch_panics() { |
| 825 | let mut slice1 = [f16::ZERO; 3]; |
| 826 | let slice2 = [0f64; 4]; |
| 827 | slice1.convert_from_f64_slice(&slice2); |
| 828 | } |
| 829 | |
| 830 | #[test ] |
| 831 | #[should_panic ] |
| 832 | fn convert_to_f32_slice_len_mismatch_panics() { |
| 833 | let slice1 = [f16::ZERO; 3]; |
| 834 | let mut slice2 = [0f32; 4]; |
| 835 | slice1.convert_to_f32_slice(&mut slice2); |
| 836 | } |
| 837 | |
| 838 | #[test ] |
| 839 | #[should_panic ] |
| 840 | fn convert_to_f64_slice_len_mismatch_panics() { |
| 841 | let slice1 = [f16::ZERO; 3]; |
| 842 | let mut slice2 = [0f64; 4]; |
| 843 | slice1.convert_to_f64_slice(&mut slice2); |
| 844 | } |
| 845 | } |
| 846 | |