1 | use crate::iter::Bytes; |
2 | |
3 | #[inline ] |
4 | #[target_feature (enable = "avx2" )] |
5 | pub unsafe fn match_uri_vectored(bytes: &mut Bytes) { |
6 | while bytes.as_ref().len() >= 32 { |
7 | |
8 | let advance: usize = match_url_char_32_avx(buf:bytes.as_ref()); |
9 | |
10 | bytes.advance(advance); |
11 | |
12 | if advance != 32 { |
13 | return; |
14 | } |
15 | } |
16 | // NOTE: use SWAR for <32B, more efficient than falling back to SSE4.2 |
17 | super::swar::match_uri_vectored(bytes) |
18 | } |
19 | |
20 | #[inline (always)] |
21 | #[allow (non_snake_case, overflowing_literals)] |
22 | #[allow (unused)] |
23 | unsafe fn match_url_char_32_avx(buf: &[u8]) -> usize { |
24 | // NOTE: This check might be not necessary since this function is only used in |
25 | // `match_uri_vectored` where buffer overflow is taken care of. |
26 | debug_assert!(buf.len() >= 32); |
27 | |
28 | #[cfg (target_arch = "x86" )] |
29 | use core::arch::x86::*; |
30 | #[cfg (target_arch = "x86_64" )] |
31 | use core::arch::x86_64::*; |
32 | |
33 | // pointer to buffer |
34 | let ptr = buf.as_ptr(); |
35 | |
36 | // %x21-%x7e %x80-%xff |
37 | // |
38 | // Character ranges allowed by this function, can also be interpreted as: |
39 | // 33 =< (x != 127) =< 255 |
40 | // |
41 | // Create a vector full of DEL (0x7f) characters. |
42 | let DEL: __m256i = _mm256_set1_epi8(0x7f); |
43 | // Create a vector full of exclamation mark (!) (0x21) characters. |
44 | // Used as lower threshold, characters in URLs cannot be smaller than this. |
45 | let LOW: __m256i = _mm256_set1_epi8(0x21); |
46 | |
47 | // Load a chunk of 32 bytes from `ptr` as a vector. |
48 | // We can check 32 bytes in parallel at most with AVX2 since |
49 | // YMM registers can only have 256 bits most. |
50 | let dat = _mm256_lddqu_si256(ptr as *const _); |
51 | |
52 | // unsigned comparison dat >= LOW |
53 | // |
54 | // `_mm256_max_epu8` creates a new vector by comparing vectors `dat` and `LOW` |
55 | // and picks the max. values from each for all indices. |
56 | // So if a byte in `dat` is <= 32, it'll be represented as 33 |
57 | // which is the smallest valid character. |
58 | // |
59 | // Then, we compare the new vector with `dat` for equality. |
60 | // |
61 | // `_mm256_cmpeq_epi8` returns a new vector where; |
62 | // * matching bytes are set to 0xFF (all bits set), |
63 | // * nonmatching bytes are set to 0 (no bits set). |
64 | let low = _mm256_cmpeq_epi8(_mm256_max_epu8(dat, LOW), dat); |
65 | // Similar to what we did before, but now invalid characters are set to 0xFF. |
66 | let del = _mm256_cmpeq_epi8(dat, DEL); |
67 | |
68 | // We glue the both comparisons via `_mm256_andnot_si256`. |
69 | // |
70 | // Since the representation of truthiness differ in these comparisons, |
71 | // we are in need of bitwise NOT to convert valid characters of `del`. |
72 | let bit = _mm256_andnot_si256(del, low); |
73 | // This creates a bitmask from the most significant bit of each byte. |
74 | // Simply, we're converting a vector value to scalar value here. |
75 | let res = _mm256_movemask_epi8(bit) as u32; |
76 | |
77 | // Count trailing zeros to find the first encountered invalid character. |
78 | // Bitwise NOT is required once again to flip truthiness. |
79 | // TODO: use .trailing_ones() once MSRV >= 1.46 |
80 | (!res).trailing_zeros() as usize |
81 | } |
82 | |
83 | #[target_feature (enable = "avx2" )] |
84 | pub unsafe fn match_header_value_vectored(bytes: &mut Bytes) { |
85 | while bytes.as_ref().len() >= 32 { |
86 | let advance: usize = match_header_value_char_32_avx(buf:bytes.as_ref()); |
87 | bytes.advance(advance); |
88 | |
89 | if advance != 32 { |
90 | return; |
91 | } |
92 | } |
93 | // NOTE: use SWAR for <32B, more efficient than falling back to SSE4.2 |
94 | super::swar::match_header_value_vectored(bytes) |
95 | } |
96 | |
97 | #[inline (always)] |
98 | #[allow (non_snake_case)] |
99 | #[allow (unused)] |
100 | unsafe fn match_header_value_char_32_avx(buf: &[u8]) -> usize { |
101 | debug_assert!(buf.len() >= 32); |
102 | |
103 | #[cfg (target_arch = "x86" )] |
104 | use core::arch::x86::*; |
105 | #[cfg (target_arch = "x86_64" )] |
106 | use core::arch::x86_64::*; |
107 | |
108 | let ptr = buf.as_ptr(); |
109 | |
110 | // %x09 %x20-%x7e %x80-%xff |
111 | // Create a vector full of horizontal tab (\t) (0x09) characters. |
112 | let TAB: __m256i = _mm256_set1_epi8(0x09); |
113 | // Create a vector full of DEL (0x7f) characters. |
114 | let DEL: __m256i = _mm256_set1_epi8(0x7f); |
115 | // Create a vector full of space (0x20) characters. |
116 | let LOW: __m256i = _mm256_set1_epi8(0x20); |
117 | |
118 | // Load a chunk of 32 bytes from `ptr` as a vector. |
119 | let dat = _mm256_lddqu_si256(ptr as *const _); |
120 | |
121 | // unsigned comparison dat >= LOW |
122 | // |
123 | // Same as what we do in `match_url_char_32_avx`. |
124 | // This time the lower threshold is set to space character though. |
125 | let low = _mm256_cmpeq_epi8(_mm256_max_epu8(dat, LOW), dat); |
126 | // Check if `dat` includes `TAB` characters. |
127 | let tab = _mm256_cmpeq_epi8(dat, TAB); |
128 | // Check if `dat` includes `DEL` characters. |
129 | let del = _mm256_cmpeq_epi8(dat, DEL); |
130 | |
131 | // Combine all comparisons together, notice that we're also using OR |
132 | // to connect `low` and `tab` but flip bits of `del`. |
133 | // |
134 | // In the end, this is simply: |
135 | // ~del & (low | tab) |
136 | let bit = _mm256_andnot_si256(del, _mm256_or_si256(low, tab)); |
137 | // This creates a bitmask from the most significant bit of each byte. |
138 | // Creates a scalar value from vector value. |
139 | let res = _mm256_movemask_epi8(bit) as u32; |
140 | |
141 | // Count trailing zeros to find the first encountered invalid character. |
142 | // Bitwise NOT is required once again to flip truthiness. |
143 | // TODO: use .trailing_ones() once MSRV >= 1.46 |
144 | (!res).trailing_zeros() as usize |
145 | } |
146 | |
147 | #[test ] |
148 | fn avx2_code_matches_uri_chars_table() { |
149 | if !is_x86_feature_detected!("avx2" ) { |
150 | return; |
151 | } |
152 | |
153 | #[allow (clippy::undocumented_unsafe_blocks)] |
154 | unsafe { |
155 | assert!(byte_is_allowed(b'_' , match_uri_vectored)); |
156 | |
157 | for (b, allowed) in crate::URI_MAP.iter().cloned().enumerate() { |
158 | assert_eq!( |
159 | byte_is_allowed(b as u8, match_uri_vectored), allowed, |
160 | "byte_is_allowed({:?}) should be {:?}" , b, allowed, |
161 | ); |
162 | } |
163 | } |
164 | } |
165 | |
166 | #[test ] |
167 | fn avx2_code_matches_header_value_chars_table() { |
168 | if !is_x86_feature_detected!("avx2" ) { |
169 | return; |
170 | } |
171 | |
172 | #[allow (clippy::undocumented_unsafe_blocks)] |
173 | unsafe { |
174 | assert!(byte_is_allowed(b'_' , match_header_value_vectored)); |
175 | |
176 | for (b, allowed) in crate::HEADER_VALUE_MAP.iter().cloned().enumerate() { |
177 | assert_eq!( |
178 | byte_is_allowed(b as u8, match_header_value_vectored), allowed, |
179 | "byte_is_allowed({:?}) should be {:?}" , b, allowed, |
180 | ); |
181 | } |
182 | } |
183 | } |
184 | |
185 | #[cfg (test)] |
186 | unsafe fn byte_is_allowed(byte: u8, f: unsafe fn(bytes: &mut Bytes<'_>)) -> bool { |
187 | let slice = [ |
188 | b'_' , b'_' , b'_' , b'_' , |
189 | b'_' , b'_' , b'_' , b'_' , |
190 | b'_' , b'_' , b'_' , b'_' , |
191 | b'_' , b'_' , b'_' , b'_' , |
192 | b'_' , b'_' , b'_' , b'_' , |
193 | b'_' , b'_' , b'_' , b'_' , |
194 | b'_' , b'_' , byte, b'_' , |
195 | b'_' , b'_' , b'_' , b'_' , |
196 | ]; |
197 | let mut bytes = Bytes::new(&slice); |
198 | |
199 | f(&mut bytes); |
200 | |
201 | match bytes.pos() { |
202 | 32 => true, |
203 | 26 => false, |
204 | _ => unreachable!(), |
205 | } |
206 | } |
207 | |