1 | use std::cmp::{self, Ordering}; |
2 | use std::io::{self, BufRead, Seek, SeekFrom}; |
3 | use std::iter::{repeat, Rev}; |
4 | use std::slice::ChunksMut; |
5 | use std::{error, fmt}; |
6 | |
7 | use byteorder_lite::{LittleEndian, ReadBytesExt}; |
8 | |
9 | use crate::color::ColorType; |
10 | use crate::error::{ |
11 | DecodingError, ImageError, ImageResult, UnsupportedError, UnsupportedErrorKind, |
12 | }; |
13 | use crate::image::{self, ImageDecoder, ImageFormat}; |
14 | use crate::ImageDecoderRect; |
15 | |
16 | const BITMAPCOREHEADER_SIZE: u32 = 12; |
17 | const BITMAPINFOHEADER_SIZE: u32 = 40; |
18 | const BITMAPV2HEADER_SIZE: u32 = 52; |
19 | const BITMAPV3HEADER_SIZE: u32 = 56; |
20 | const BITMAPV4HEADER_SIZE: u32 = 108; |
21 | const BITMAPV5HEADER_SIZE: u32 = 124; |
22 | |
23 | static LOOKUP_TABLE_3_BIT_TO_8_BIT: [u8; 8] = [0, 36, 73, 109, 146, 182, 219, 255]; |
24 | static LOOKUP_TABLE_4_BIT_TO_8_BIT: [u8; 16] = [ |
25 | 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, |
26 | ]; |
27 | static LOOKUP_TABLE_5_BIT_TO_8_BIT: [u8; 32] = [ |
28 | 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, |
29 | 181, 189, 197, 206, 214, 222, 230, 239, 247, 255, |
30 | ]; |
31 | static LOOKUP_TABLE_6_BIT_TO_8_BIT: [u8; 64] = [ |
32 | 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, |
33 | 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, |
34 | 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, |
35 | 251, 255, |
36 | ]; |
37 | |
38 | static R5_G5_B5_COLOR_MASK: Bitfields = Bitfields { |
39 | r: Bitfield { len: 5, shift: 10 }, |
40 | g: Bitfield { len: 5, shift: 5 }, |
41 | b: Bitfield { len: 5, shift: 0 }, |
42 | a: Bitfield { len: 0, shift: 0 }, |
43 | }; |
44 | const R8_G8_B8_COLOR_MASK: Bitfields = Bitfields { |
45 | r: Bitfield { len: 8, shift: 24 }, |
46 | g: Bitfield { len: 8, shift: 16 }, |
47 | b: Bitfield { len: 8, shift: 8 }, |
48 | a: Bitfield { len: 0, shift: 0 }, |
49 | }; |
50 | const R8_G8_B8_A8_COLOR_MASK: Bitfields = Bitfields { |
51 | r: Bitfield { len: 8, shift: 16 }, |
52 | g: Bitfield { len: 8, shift: 8 }, |
53 | b: Bitfield { len: 8, shift: 0 }, |
54 | a: Bitfield { len: 8, shift: 24 }, |
55 | }; |
56 | |
57 | const RLE_ESCAPE: u8 = 0; |
58 | const RLE_ESCAPE_EOL: u8 = 0; |
59 | const RLE_ESCAPE_EOF: u8 = 1; |
60 | const RLE_ESCAPE_DELTA: u8 = 2; |
61 | |
62 | /// The maximum width/height the decoder will process. |
63 | const MAX_WIDTH_HEIGHT: i32 = 0xFFFF; |
64 | |
65 | #[derive (PartialEq, Copy, Clone)] |
66 | enum ImageType { |
67 | Palette, |
68 | RGB16, |
69 | RGB24, |
70 | RGB32, |
71 | RGBA32, |
72 | RLE8, |
73 | RLE4, |
74 | Bitfields16, |
75 | Bitfields32, |
76 | } |
77 | |
78 | #[derive (PartialEq)] |
79 | enum BMPHeaderType { |
80 | Core, |
81 | Info, |
82 | V2, |
83 | V3, |
84 | V4, |
85 | V5, |
86 | } |
87 | |
88 | #[derive (PartialEq)] |
89 | enum FormatFullBytes { |
90 | RGB24, |
91 | RGB32, |
92 | RGBA32, |
93 | Format888, |
94 | } |
95 | |
96 | enum Chunker<'a> { |
97 | FromTop(ChunksMut<'a, u8>), |
98 | FromBottom(Rev<ChunksMut<'a, u8>>), |
99 | } |
100 | |
101 | pub(crate) struct RowIterator<'a> { |
102 | chunks: Chunker<'a>, |
103 | } |
104 | |
105 | impl<'a> Iterator for RowIterator<'a> { |
106 | type Item = &'a mut [u8]; |
107 | |
108 | #[inline (always)] |
109 | fn next(&mut self) -> Option<&'a mut [u8]> { |
110 | match self.chunks { |
111 | Chunker::FromTop(ref mut chunks: &mut ChunksMut<'_, u8>) => chunks.next(), |
112 | Chunker::FromBottom(ref mut chunks: impl Iterator ) => chunks.next(), |
113 | } |
114 | } |
115 | } |
116 | |
117 | /// All errors that can occur when attempting to parse a BMP |
118 | #[derive (Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] |
119 | enum DecoderError { |
120 | // Failed to decompress RLE data. |
121 | CorruptRleData, |
122 | |
123 | /// The bitfield mask interleaves set and unset bits |
124 | BitfieldMaskNonContiguous, |
125 | /// Bitfield mask invalid (e.g. too long for specified type) |
126 | BitfieldMaskInvalid, |
127 | /// Bitfield (of the specified width – 16- or 32-bit) mask not present |
128 | BitfieldMaskMissing(u32), |
129 | /// Bitfield (of the specified width – 16- or 32-bit) masks not present |
130 | BitfieldMasksMissing(u32), |
131 | |
132 | /// BMP's "BM" signature wrong or missing |
133 | BmpSignatureInvalid, |
134 | /// More than the exactly one allowed plane specified by the format |
135 | MoreThanOnePlane, |
136 | /// Invalid amount of bits per channel for the specified image type |
137 | InvalidChannelWidth(ChannelWidthError, u16), |
138 | |
139 | /// The width is negative |
140 | NegativeWidth(i32), |
141 | /// One of the dimensions is larger than a soft limit |
142 | ImageTooLarge(i32, i32), |
143 | /// The height is `i32::min_value()` |
144 | /// |
145 | /// General negative heights specify top-down DIBs |
146 | InvalidHeight, |
147 | |
148 | /// Specified image type is invalid for top-down BMPs (i.e. is compressed) |
149 | ImageTypeInvalidForTopDown(u32), |
150 | /// Image type not currently recognized by the decoder |
151 | ImageTypeUnknown(u32), |
152 | |
153 | /// Bitmap header smaller than the core header |
154 | HeaderTooSmall(u32), |
155 | |
156 | /// The palette is bigger than allowed by the bit count of the BMP |
157 | PaletteSizeExceeded { |
158 | colors_used: u32, |
159 | bit_count: u16, |
160 | }, |
161 | } |
162 | |
163 | impl fmt::Display for DecoderError { |
164 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
165 | match self { |
166 | DecoderError::CorruptRleData => f.write_str("Corrupt RLE data" ), |
167 | DecoderError::BitfieldMaskNonContiguous => f.write_str("Non-contiguous bitfield mask" ), |
168 | DecoderError::BitfieldMaskInvalid => f.write_str("Invalid bitfield mask" ), |
169 | DecoderError::BitfieldMaskMissing(bb) => { |
170 | f.write_fmt(format_args!("Missing {bb}-bit bitfield mask" )) |
171 | } |
172 | DecoderError::BitfieldMasksMissing(bb) => { |
173 | f.write_fmt(format_args!("Missing {bb}-bit bitfield masks" )) |
174 | } |
175 | DecoderError::BmpSignatureInvalid => f.write_str("BMP signature not found" ), |
176 | DecoderError::MoreThanOnePlane => f.write_str("More than one plane" ), |
177 | DecoderError::InvalidChannelWidth(tp, n) => { |
178 | f.write_fmt(format_args!("Invalid channel bit count for {tp}: {n}" )) |
179 | } |
180 | DecoderError::NegativeWidth(w) => f.write_fmt(format_args!("Negative width ( {w})" )), |
181 | DecoderError::ImageTooLarge(w, h) => f.write_fmt(format_args!( |
182 | "Image too large (one of ( {w}, {h}) > soft limit of {MAX_WIDTH_HEIGHT})" |
183 | )), |
184 | DecoderError::InvalidHeight => f.write_str("Invalid height" ), |
185 | DecoderError::ImageTypeInvalidForTopDown(tp) => f.write_fmt(format_args!( |
186 | "Invalid image type {tp} for top-down image." |
187 | )), |
188 | DecoderError::ImageTypeUnknown(tp) => { |
189 | f.write_fmt(format_args!("Unknown image compression type {tp}" )) |
190 | } |
191 | DecoderError::HeaderTooSmall(s) => { |
192 | f.write_fmt(format_args!("Bitmap header too small ( {s} bytes)" )) |
193 | } |
194 | DecoderError::PaletteSizeExceeded { |
195 | colors_used, |
196 | bit_count, |
197 | } => f.write_fmt(format_args!( |
198 | "Palette size {colors_used} exceeds maximum size for BMP with bit count of {bit_count}" |
199 | )), |
200 | } |
201 | } |
202 | } |
203 | |
204 | impl From<DecoderError> for ImageError { |
205 | fn from(e: DecoderError) -> ImageError { |
206 | ImageError::Decoding(DecodingError::new(format:ImageFormat::Bmp.into(), err:e)) |
207 | } |
208 | } |
209 | |
210 | impl error::Error for DecoderError {} |
211 | |
212 | /// Distinct image types whose saved channel width can be invalid |
213 | #[derive (Debug, Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] |
214 | enum ChannelWidthError { |
215 | /// RGB |
216 | Rgb, |
217 | /// 8-bit run length encoding |
218 | Rle8, |
219 | /// 4-bit run length encoding |
220 | Rle4, |
221 | /// Bitfields (16- or 32-bit) |
222 | Bitfields, |
223 | } |
224 | |
225 | impl fmt::Display for ChannelWidthError { |
226 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
227 | f.write_str(data:match self { |
228 | ChannelWidthError::Rgb => "RGB" , |
229 | ChannelWidthError::Rle8 => "RLE8" , |
230 | ChannelWidthError::Rle4 => "RLE4" , |
231 | ChannelWidthError::Bitfields => "bitfields" , |
232 | }) |
233 | } |
234 | } |
235 | |
236 | /// Convenience function to check if the combination of width, length and number of |
237 | /// channels would result in a buffer that would overflow. |
238 | fn check_for_overflow(width: i32, length: i32, channels: usize) -> ImageResult<()> { |
239 | num_bytes(width, length, channels) |
240 | .map(|_| ()) |
241 | .ok_or_else(|| { |
242 | ImageError::Unsupported(UnsupportedError::from_format_and_kind( |
243 | format:ImageFormat::Bmp.into(), |
244 | kind:UnsupportedErrorKind::GenericFeature(format!( |
245 | "Image dimensions ( {width}x {length} w/ {channels} channels) are too large" |
246 | )), |
247 | )) |
248 | }) |
249 | } |
250 | |
251 | /// Calculate how many many bytes a buffer holding a decoded image with these properties would |
252 | /// require. Returns `None` if the buffer size would overflow or if one of the sizes are negative. |
253 | fn num_bytes(width: i32, length: i32, channels: usize) -> Option<usize> { |
254 | if width <= 0 || length <= 0 { |
255 | None |
256 | } else { |
257 | match channels.checked_mul(width as usize) { |
258 | Some(n: usize) => n.checked_mul(length as usize), |
259 | None => None, |
260 | } |
261 | } |
262 | } |
263 | |
264 | /// Call the provided function on each row of the provided buffer, returning Err if the provided |
265 | /// function returns an error, extends the buffer if it's not large enough. |
266 | fn with_rows<F>( |
267 | buffer: &mut [u8], |
268 | width: i32, |
269 | height: i32, |
270 | channels: usize, |
271 | top_down: bool, |
272 | mut func: F, |
273 | ) -> io::Result<()> |
274 | where |
275 | F: FnMut(&mut [u8]) -> io::Result<()>, |
276 | { |
277 | // An overflow should already have been checked for when this is called, |
278 | // though we check anyhow, as it somehow seems to increase performance slightly. |
279 | let row_width: usize = channels.checked_mul(width as usize).unwrap(); |
280 | let full_image_size: usize = row_width.checked_mul(height as usize).unwrap(); |
281 | assert_eq!(buffer.len(), full_image_size); |
282 | |
283 | if !top_down { |
284 | for row: &mut [u8] in buffer.chunks_mut(chunk_size:row_width).rev() { |
285 | func(row)?; |
286 | } |
287 | } else { |
288 | for row: &mut [u8] in buffer.chunks_mut(chunk_size:row_width) { |
289 | func(row)?; |
290 | } |
291 | } |
292 | Ok(()) |
293 | } |
294 | |
295 | fn set_8bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
296 | pixel_iter: &mut ChunksMut<u8>, |
297 | palette: &[[u8; 3]], |
298 | indices: T, |
299 | n_pixels: usize, |
300 | ) -> bool { |
301 | for idx: &'a u8 in indices.take(n_pixels) { |
302 | if let Some(pixel: &mut [u8]) = pixel_iter.next() { |
303 | let rgb: [u8; 3] = palette[*idx as usize]; |
304 | pixel[0] = rgb[0]; |
305 | pixel[1] = rgb[1]; |
306 | pixel[2] = rgb[2]; |
307 | } else { |
308 | return false; |
309 | } |
310 | } |
311 | true |
312 | } |
313 | |
314 | fn set_4bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
315 | pixel_iter: &mut ChunksMut<u8>, |
316 | palette: &[[u8; 3]], |
317 | indices: T, |
318 | mut n_pixels: usize, |
319 | ) -> bool { |
320 | for idx: &'a u8 in indices { |
321 | macro_rules! set_pixel { |
322 | ($i:expr) => { |
323 | if n_pixels == 0 { |
324 | break; |
325 | } |
326 | if let Some(pixel) = pixel_iter.next() { |
327 | let rgb = palette[$i as usize]; |
328 | pixel[0] = rgb[0]; |
329 | pixel[1] = rgb[1]; |
330 | pixel[2] = rgb[2]; |
331 | } else { |
332 | return false; |
333 | } |
334 | n_pixels -= 1; |
335 | }; |
336 | } |
337 | set_pixel!(idx >> 4); |
338 | set_pixel!(idx & 0xf); |
339 | } |
340 | true |
341 | } |
342 | |
343 | #[rustfmt::skip] |
344 | fn set_2bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
345 | pixel_iter: &mut ChunksMut<u8>, |
346 | palette: &[[u8; 3]], |
347 | indices: T, |
348 | mut n_pixels: usize, |
349 | ) -> bool { |
350 | for idx in indices { |
351 | macro_rules! set_pixel { |
352 | ($i:expr) => { |
353 | if n_pixels == 0 { |
354 | break; |
355 | } |
356 | if let Some(pixel) = pixel_iter.next() { |
357 | let rgb = palette[$i as usize]; |
358 | pixel[0] = rgb[0]; |
359 | pixel[1] = rgb[1]; |
360 | pixel[2] = rgb[2]; |
361 | } else { |
362 | return false; |
363 | } |
364 | n_pixels -= 1; |
365 | }; |
366 | } |
367 | set_pixel!((idx >> 6) & 0x3u8); |
368 | set_pixel!((idx >> 4) & 0x3u8); |
369 | set_pixel!((idx >> 2) & 0x3u8); |
370 | set_pixel!( idx & 0x3u8); |
371 | } |
372 | true |
373 | } |
374 | |
375 | fn set_1bit_pixel_run<'a, T: Iterator<Item = &'a u8>>( |
376 | pixel_iter: &mut ChunksMut<u8>, |
377 | palette: &[[u8; 3]], |
378 | indices: T, |
379 | ) { |
380 | for idx: &'a u8 in indices { |
381 | let mut bit: u8 = 0x80; |
382 | loop { |
383 | if let Some(pixel: &mut [u8]) = pixel_iter.next() { |
384 | let rgb: [u8; 3] = palette[usize::from((idx & bit) != 0)]; |
385 | pixel[0] = rgb[0]; |
386 | pixel[1] = rgb[1]; |
387 | pixel[2] = rgb[2]; |
388 | } else { |
389 | return; |
390 | } |
391 | |
392 | bit >>= 1; |
393 | if bit == 0 { |
394 | break; |
395 | } |
396 | } |
397 | } |
398 | } |
399 | |
400 | #[derive (PartialEq, Eq)] |
401 | struct Bitfield { |
402 | shift: u32, |
403 | len: u32, |
404 | } |
405 | |
406 | impl Bitfield { |
407 | fn from_mask(mask: u32, max_len: u32) -> ImageResult<Bitfield> { |
408 | if mask == 0 { |
409 | return Ok(Bitfield { shift: 0, len: 0 }); |
410 | } |
411 | let mut shift = mask.trailing_zeros(); |
412 | let mut len = (!(mask >> shift)).trailing_zeros(); |
413 | if len != mask.count_ones() { |
414 | return Err(DecoderError::BitfieldMaskNonContiguous.into()); |
415 | } |
416 | if len + shift > max_len { |
417 | return Err(DecoderError::BitfieldMaskInvalid.into()); |
418 | } |
419 | if len > 8 { |
420 | shift += len - 8; |
421 | len = 8; |
422 | } |
423 | Ok(Bitfield { shift, len }) |
424 | } |
425 | |
426 | fn read(&self, data: u32) -> u8 { |
427 | let data = data >> self.shift; |
428 | match self.len { |
429 | 1 => ((data & 0b1) * 0xff) as u8, |
430 | 2 => ((data & 0b11) * 0x55) as u8, |
431 | 3 => LOOKUP_TABLE_3_BIT_TO_8_BIT[(data & 0b00_0111) as usize], |
432 | 4 => LOOKUP_TABLE_4_BIT_TO_8_BIT[(data & 0b00_1111) as usize], |
433 | 5 => LOOKUP_TABLE_5_BIT_TO_8_BIT[(data & 0b01_1111) as usize], |
434 | 6 => LOOKUP_TABLE_6_BIT_TO_8_BIT[(data & 0b11_1111) as usize], |
435 | 7 => (((data & 0x7f) << 1) | ((data & 0x7f) >> 6)) as u8, |
436 | 8 => (data & 0xff) as u8, |
437 | _ => panic!(), |
438 | } |
439 | } |
440 | } |
441 | |
442 | #[derive (PartialEq, Eq)] |
443 | struct Bitfields { |
444 | r: Bitfield, |
445 | g: Bitfield, |
446 | b: Bitfield, |
447 | a: Bitfield, |
448 | } |
449 | |
450 | impl Bitfields { |
451 | fn from_mask( |
452 | r_mask: u32, |
453 | g_mask: u32, |
454 | b_mask: u32, |
455 | a_mask: u32, |
456 | max_len: u32, |
457 | ) -> ImageResult<Bitfields> { |
458 | let bitfields: Bitfields = Bitfields { |
459 | r: Bitfield::from_mask(r_mask, max_len)?, |
460 | g: Bitfield::from_mask(g_mask, max_len)?, |
461 | b: Bitfield::from_mask(b_mask, max_len)?, |
462 | a: Bitfield::from_mask(a_mask, max_len)?, |
463 | }; |
464 | if bitfields.r.len == 0 || bitfields.g.len == 0 || bitfields.b.len == 0 { |
465 | return Err(DecoderError::BitfieldMaskMissing(max_len).into()); |
466 | } |
467 | Ok(bitfields) |
468 | } |
469 | } |
470 | |
471 | /// A bmp decoder |
472 | pub struct BmpDecoder<R> { |
473 | reader: R, |
474 | |
475 | bmp_header_type: BMPHeaderType, |
476 | indexed_color: bool, |
477 | |
478 | width: i32, |
479 | height: i32, |
480 | data_offset: u64, |
481 | top_down: bool, |
482 | no_file_header: bool, |
483 | add_alpha_channel: bool, |
484 | has_loaded_metadata: bool, |
485 | image_type: ImageType, |
486 | |
487 | bit_count: u16, |
488 | colors_used: u32, |
489 | palette: Option<Vec<[u8; 3]>>, |
490 | bitfields: Option<Bitfields>, |
491 | } |
492 | |
493 | enum RLEInsn { |
494 | EndOfFile, |
495 | EndOfRow, |
496 | Delta(u8, u8), |
497 | Absolute(u8, Vec<u8>), |
498 | PixelRun(u8, u8), |
499 | } |
500 | |
501 | impl<R: BufRead + Seek> BmpDecoder<R> { |
502 | fn new_decoder(reader: R) -> BmpDecoder<R> { |
503 | BmpDecoder { |
504 | reader, |
505 | |
506 | bmp_header_type: BMPHeaderType::Info, |
507 | indexed_color: false, |
508 | |
509 | width: 0, |
510 | height: 0, |
511 | data_offset: 0, |
512 | top_down: false, |
513 | no_file_header: false, |
514 | add_alpha_channel: false, |
515 | has_loaded_metadata: false, |
516 | image_type: ImageType::Palette, |
517 | |
518 | bit_count: 0, |
519 | colors_used: 0, |
520 | palette: None, |
521 | bitfields: None, |
522 | } |
523 | } |
524 | |
525 | /// Create a new decoder that decodes from the stream ```r``` |
526 | pub fn new(reader: R) -> ImageResult<BmpDecoder<R>> { |
527 | let mut decoder = Self::new_decoder(reader); |
528 | decoder.read_metadata()?; |
529 | Ok(decoder) |
530 | } |
531 | |
532 | /// Create a new decoder that decodes from the stream ```r``` without first |
533 | /// reading a BITMAPFILEHEADER. This is useful for decoding the `CF_DIB` format |
534 | /// directly from the Windows clipboard. |
535 | pub fn new_without_file_header(reader: R) -> ImageResult<BmpDecoder<R>> { |
536 | let mut decoder = Self::new_decoder(reader); |
537 | decoder.no_file_header = true; |
538 | decoder.read_metadata()?; |
539 | Ok(decoder) |
540 | } |
541 | |
542 | #[cfg (feature = "ico" )] |
543 | pub(crate) fn new_with_ico_format(reader: R) -> ImageResult<BmpDecoder<R>> { |
544 | let mut decoder = Self::new_decoder(reader); |
545 | decoder.read_metadata_in_ico_format()?; |
546 | Ok(decoder) |
547 | } |
548 | |
549 | /// If true, the palette in BMP does not apply to the image even if it is found. |
550 | /// In other words, the output image is the indexed color. |
551 | pub fn set_indexed_color(&mut self, indexed_color: bool) { |
552 | self.indexed_color = indexed_color; |
553 | } |
554 | |
555 | #[cfg (feature = "ico" )] |
556 | pub(crate) fn reader(&mut self) -> &mut R { |
557 | &mut self.reader |
558 | } |
559 | |
560 | fn read_file_header(&mut self) -> ImageResult<()> { |
561 | if self.no_file_header { |
562 | return Ok(()); |
563 | } |
564 | let mut signature = [0; 2]; |
565 | self.reader.read_exact(&mut signature)?; |
566 | |
567 | if signature != b"BM" [..] { |
568 | return Err(DecoderError::BmpSignatureInvalid.into()); |
569 | } |
570 | |
571 | // The next 8 bytes represent file size, followed the 4 reserved bytes |
572 | // We're not interesting these values |
573 | self.reader.read_u32::<LittleEndian>()?; |
574 | self.reader.read_u32::<LittleEndian>()?; |
575 | |
576 | self.data_offset = u64::from(self.reader.read_u32::<LittleEndian>()?); |
577 | |
578 | Ok(()) |
579 | } |
580 | |
581 | /// Read BITMAPCOREHEADER <https://msdn.microsoft.com/en-us/library/vs/alm/dd183372(v=vs.85).aspx> |
582 | /// |
583 | /// returns Err if any of the values are invalid. |
584 | fn read_bitmap_core_header(&mut self) -> ImageResult<()> { |
585 | // As height/width values in BMP files with core headers are only 16 bits long, |
586 | // they won't be larger than `MAX_WIDTH_HEIGHT`. |
587 | self.width = i32::from(self.reader.read_u16::<LittleEndian>()?); |
588 | self.height = i32::from(self.reader.read_u16::<LittleEndian>()?); |
589 | |
590 | check_for_overflow(self.width, self.height, self.num_channels())?; |
591 | |
592 | // Number of planes (format specifies that this should be 1). |
593 | if self.reader.read_u16::<LittleEndian>()? != 1 { |
594 | return Err(DecoderError::MoreThanOnePlane.into()); |
595 | } |
596 | |
597 | self.bit_count = self.reader.read_u16::<LittleEndian>()?; |
598 | self.image_type = match self.bit_count { |
599 | 1 | 4 | 8 => ImageType::Palette, |
600 | 24 => ImageType::RGB24, |
601 | _ => { |
602 | return Err(DecoderError::InvalidChannelWidth( |
603 | ChannelWidthError::Rgb, |
604 | self.bit_count, |
605 | ) |
606 | .into()) |
607 | } |
608 | }; |
609 | |
610 | Ok(()) |
611 | } |
612 | |
613 | /// Read BITMAPINFOHEADER <https://msdn.microsoft.com/en-us/library/vs/alm/dd183376(v=vs.85).aspx> |
614 | /// or BITMAPV{2|3|4|5}HEADER. |
615 | /// |
616 | /// returns Err if any of the values are invalid. |
617 | fn read_bitmap_info_header(&mut self) -> ImageResult<()> { |
618 | self.width = self.reader.read_i32::<LittleEndian>()?; |
619 | self.height = self.reader.read_i32::<LittleEndian>()?; |
620 | |
621 | // Width can not be negative |
622 | if self.width < 0 { |
623 | return Err(DecoderError::NegativeWidth(self.width).into()); |
624 | } else if self.width > MAX_WIDTH_HEIGHT || self.height > MAX_WIDTH_HEIGHT { |
625 | // Limit very large image sizes to avoid OOM issues. Images with these sizes are |
626 | // unlikely to be valid anyhow. |
627 | return Err(DecoderError::ImageTooLarge(self.width, self.height).into()); |
628 | } |
629 | |
630 | if self.height == i32::MIN { |
631 | return Err(DecoderError::InvalidHeight.into()); |
632 | } |
633 | |
634 | // A negative height indicates a top-down DIB. |
635 | if self.height < 0 { |
636 | self.height *= -1; |
637 | self.top_down = true; |
638 | } |
639 | |
640 | check_for_overflow(self.width, self.height, self.num_channels())?; |
641 | |
642 | // Number of planes (format specifies that this should be 1). |
643 | if self.reader.read_u16::<LittleEndian>()? != 1 { |
644 | return Err(DecoderError::MoreThanOnePlane.into()); |
645 | } |
646 | |
647 | self.bit_count = self.reader.read_u16::<LittleEndian>()?; |
648 | let image_type_u32 = self.reader.read_u32::<LittleEndian>()?; |
649 | |
650 | // Top-down dibs can not be compressed. |
651 | if self.top_down && image_type_u32 != 0 && image_type_u32 != 3 { |
652 | return Err(DecoderError::ImageTypeInvalidForTopDown(image_type_u32).into()); |
653 | } |
654 | self.image_type = match image_type_u32 { |
655 | 0 => match self.bit_count { |
656 | 1 | 2 | 4 | 8 => ImageType::Palette, |
657 | 16 => ImageType::RGB16, |
658 | 24 => ImageType::RGB24, |
659 | 32 if self.add_alpha_channel => ImageType::RGBA32, |
660 | 32 => ImageType::RGB32, |
661 | _ => { |
662 | return Err(DecoderError::InvalidChannelWidth( |
663 | ChannelWidthError::Rgb, |
664 | self.bit_count, |
665 | ) |
666 | .into()) |
667 | } |
668 | }, |
669 | 1 => match self.bit_count { |
670 | 8 => ImageType::RLE8, |
671 | _ => { |
672 | return Err(DecoderError::InvalidChannelWidth( |
673 | ChannelWidthError::Rle8, |
674 | self.bit_count, |
675 | ) |
676 | .into()) |
677 | } |
678 | }, |
679 | 2 => match self.bit_count { |
680 | 4 => ImageType::RLE4, |
681 | _ => { |
682 | return Err(DecoderError::InvalidChannelWidth( |
683 | ChannelWidthError::Rle4, |
684 | self.bit_count, |
685 | ) |
686 | .into()) |
687 | } |
688 | }, |
689 | 3 => match self.bit_count { |
690 | 16 => ImageType::Bitfields16, |
691 | 32 => ImageType::Bitfields32, |
692 | _ => { |
693 | return Err(DecoderError::InvalidChannelWidth( |
694 | ChannelWidthError::Bitfields, |
695 | self.bit_count, |
696 | ) |
697 | .into()) |
698 | } |
699 | }, |
700 | 4 => { |
701 | // JPEG compression is not implemented yet. |
702 | return Err(ImageError::Unsupported( |
703 | UnsupportedError::from_format_and_kind( |
704 | ImageFormat::Bmp.into(), |
705 | UnsupportedErrorKind::GenericFeature("JPEG compression" .to_owned()), |
706 | ), |
707 | )); |
708 | } |
709 | 5 => { |
710 | // PNG compression is not implemented yet. |
711 | return Err(ImageError::Unsupported( |
712 | UnsupportedError::from_format_and_kind( |
713 | ImageFormat::Bmp.into(), |
714 | UnsupportedErrorKind::GenericFeature("PNG compression" .to_owned()), |
715 | ), |
716 | )); |
717 | } |
718 | 11..=13 => { |
719 | // CMYK types are not implemented yet. |
720 | return Err(ImageError::Unsupported( |
721 | UnsupportedError::from_format_and_kind( |
722 | ImageFormat::Bmp.into(), |
723 | UnsupportedErrorKind::GenericFeature("CMYK format" .to_owned()), |
724 | ), |
725 | )); |
726 | } |
727 | _ => { |
728 | // Unknown compression type. |
729 | return Err(DecoderError::ImageTypeUnknown(image_type_u32).into()); |
730 | } |
731 | }; |
732 | |
733 | // The next 12 bytes represent data array size in bytes, |
734 | // followed the horizontal and vertical printing resolutions |
735 | // We will calculate the pixel array size using width & height of image |
736 | // We're not interesting the horz or vert printing resolutions |
737 | self.reader.read_u32::<LittleEndian>()?; |
738 | self.reader.read_u32::<LittleEndian>()?; |
739 | self.reader.read_u32::<LittleEndian>()?; |
740 | |
741 | self.colors_used = self.reader.read_u32::<LittleEndian>()?; |
742 | |
743 | // The next 4 bytes represent number of "important" colors |
744 | // We're not interested in this value, so we'll skip it |
745 | self.reader.read_u32::<LittleEndian>()?; |
746 | |
747 | Ok(()) |
748 | } |
749 | |
750 | fn read_bitmasks(&mut self) -> ImageResult<()> { |
751 | let r_mask = self.reader.read_u32::<LittleEndian>()?; |
752 | let g_mask = self.reader.read_u32::<LittleEndian>()?; |
753 | let b_mask = self.reader.read_u32::<LittleEndian>()?; |
754 | |
755 | let a_mask = match self.bmp_header_type { |
756 | BMPHeaderType::V3 | BMPHeaderType::V4 | BMPHeaderType::V5 => { |
757 | self.reader.read_u32::<LittleEndian>()? |
758 | } |
759 | _ => 0, |
760 | }; |
761 | |
762 | self.bitfields = match self.image_type { |
763 | ImageType::Bitfields16 => { |
764 | Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 16)?) |
765 | } |
766 | ImageType::Bitfields32 => { |
767 | Some(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 32)?) |
768 | } |
769 | _ => None, |
770 | }; |
771 | |
772 | if self.bitfields.is_some() && a_mask != 0 { |
773 | self.add_alpha_channel = true; |
774 | } |
775 | |
776 | Ok(()) |
777 | } |
778 | |
779 | fn read_metadata(&mut self) -> ImageResult<()> { |
780 | if !self.has_loaded_metadata { |
781 | self.read_file_header()?; |
782 | let bmp_header_offset = self.reader.stream_position()?; |
783 | let bmp_header_size = self.reader.read_u32::<LittleEndian>()?; |
784 | let bmp_header_end = bmp_header_offset + u64::from(bmp_header_size); |
785 | |
786 | self.bmp_header_type = match bmp_header_size { |
787 | BITMAPCOREHEADER_SIZE => BMPHeaderType::Core, |
788 | BITMAPINFOHEADER_SIZE => BMPHeaderType::Info, |
789 | BITMAPV2HEADER_SIZE => BMPHeaderType::V2, |
790 | BITMAPV3HEADER_SIZE => BMPHeaderType::V3, |
791 | BITMAPV4HEADER_SIZE => BMPHeaderType::V4, |
792 | BITMAPV5HEADER_SIZE => BMPHeaderType::V5, |
793 | _ if bmp_header_size < BITMAPCOREHEADER_SIZE => { |
794 | // Size of any valid header types won't be smaller than core header type. |
795 | return Err(DecoderError::HeaderTooSmall(bmp_header_size).into()); |
796 | } |
797 | _ => { |
798 | return Err(ImageError::Unsupported( |
799 | UnsupportedError::from_format_and_kind( |
800 | ImageFormat::Bmp.into(), |
801 | UnsupportedErrorKind::GenericFeature(format!( |
802 | "Unknown bitmap header type (size= {bmp_header_size})" |
803 | )), |
804 | ), |
805 | )) |
806 | } |
807 | }; |
808 | |
809 | match self.bmp_header_type { |
810 | BMPHeaderType::Core => { |
811 | self.read_bitmap_core_header()?; |
812 | } |
813 | BMPHeaderType::Info |
814 | | BMPHeaderType::V2 |
815 | | BMPHeaderType::V3 |
816 | | BMPHeaderType::V4 |
817 | | BMPHeaderType::V5 => { |
818 | self.read_bitmap_info_header()?; |
819 | } |
820 | }; |
821 | |
822 | match self.image_type { |
823 | ImageType::Bitfields16 | ImageType::Bitfields32 => self.read_bitmasks()?, |
824 | _ => {} |
825 | }; |
826 | |
827 | self.reader.seek(SeekFrom::Start(bmp_header_end))?; |
828 | |
829 | match self.image_type { |
830 | ImageType::Palette | ImageType::RLE4 | ImageType::RLE8 => self.read_palette()?, |
831 | _ => {} |
832 | }; |
833 | |
834 | if self.no_file_header { |
835 | // Use the offset of the end of metadata instead of reading a BMP file header. |
836 | self.data_offset = self.reader.stream_position()?; |
837 | } |
838 | |
839 | self.has_loaded_metadata = true; |
840 | } |
841 | Ok(()) |
842 | } |
843 | |
844 | #[cfg (feature = "ico" )] |
845 | #[doc (hidden)] |
846 | pub fn read_metadata_in_ico_format(&mut self) -> ImageResult<()> { |
847 | self.no_file_header = true; |
848 | self.add_alpha_channel = true; |
849 | self.read_metadata()?; |
850 | |
851 | // The height field in an ICO file is doubled to account for the AND mask |
852 | // (whether or not an AND mask is actually present). |
853 | self.height /= 2; |
854 | Ok(()) |
855 | } |
856 | |
857 | fn get_palette_size(&mut self) -> ImageResult<usize> { |
858 | match self.colors_used { |
859 | 0 => Ok(1 << self.bit_count), |
860 | _ => { |
861 | if self.colors_used > 1 << self.bit_count { |
862 | return Err(DecoderError::PaletteSizeExceeded { |
863 | colors_used: self.colors_used, |
864 | bit_count: self.bit_count, |
865 | } |
866 | .into()); |
867 | } |
868 | Ok(self.colors_used as usize) |
869 | } |
870 | } |
871 | } |
872 | |
873 | fn bytes_per_color(&self) -> usize { |
874 | match self.bmp_header_type { |
875 | BMPHeaderType::Core => 3, |
876 | _ => 4, |
877 | } |
878 | } |
879 | |
880 | fn read_palette(&mut self) -> ImageResult<()> { |
881 | const MAX_PALETTE_SIZE: usize = 256; // Palette indices are u8. |
882 | |
883 | let bytes_per_color = self.bytes_per_color(); |
884 | let palette_size = self.get_palette_size()?; |
885 | let max_length = MAX_PALETTE_SIZE * bytes_per_color; |
886 | |
887 | let length = palette_size * bytes_per_color; |
888 | let mut buf = Vec::with_capacity(max_length); |
889 | |
890 | // Resize and read the palette entries to the buffer. |
891 | // We limit the buffer to at most 256 colours to avoid any oom issues as |
892 | // 8-bit images can't reference more than 256 indexes anyhow. |
893 | buf.resize(cmp::min(length, max_length), 0); |
894 | self.reader.by_ref().read_exact(&mut buf)?; |
895 | |
896 | // Allocate 256 entries even if palette_size is smaller, to prevent corrupt files from |
897 | // causing an out-of-bounds array access. |
898 | match length.cmp(&max_length) { |
899 | Ordering::Greater => { |
900 | self.reader |
901 | .seek(SeekFrom::Current((length - max_length) as i64))?; |
902 | } |
903 | Ordering::Less => buf.resize(max_length, 0), |
904 | Ordering::Equal => (), |
905 | } |
906 | |
907 | let p: Vec<[u8; 3]> = (0..MAX_PALETTE_SIZE) |
908 | .map(|i| { |
909 | let b = buf[bytes_per_color * i]; |
910 | let g = buf[bytes_per_color * i + 1]; |
911 | let r = buf[bytes_per_color * i + 2]; |
912 | [r, g, b] |
913 | }) |
914 | .collect(); |
915 | |
916 | self.palette = Some(p); |
917 | |
918 | Ok(()) |
919 | } |
920 | |
921 | /// Get the palette that is embedded in the BMP image, if any. |
922 | pub fn get_palette(&self) -> Option<&[[u8; 3]]> { |
923 | self.palette.as_ref().map(|vec| &vec[..]) |
924 | } |
925 | |
926 | fn num_channels(&self) -> usize { |
927 | if self.indexed_color { |
928 | 1 |
929 | } else if self.add_alpha_channel { |
930 | 4 |
931 | } else { |
932 | 3 |
933 | } |
934 | } |
935 | |
936 | fn rows<'a>(&self, pixel_data: &'a mut [u8]) -> RowIterator<'a> { |
937 | let stride = self.width as usize * self.num_channels(); |
938 | if self.top_down { |
939 | RowIterator { |
940 | chunks: Chunker::FromTop(pixel_data.chunks_mut(stride)), |
941 | } |
942 | } else { |
943 | RowIterator { |
944 | chunks: Chunker::FromBottom(pixel_data.chunks_mut(stride).rev()), |
945 | } |
946 | } |
947 | } |
948 | |
949 | fn read_palettized_pixel_data(&mut self, buf: &mut [u8]) -> ImageResult<()> { |
950 | let num_channels = self.num_channels(); |
951 | let row_byte_length = ((i32::from(self.bit_count) * self.width + 31) / 32 * 4) as usize; |
952 | let mut indices = vec![0; row_byte_length]; |
953 | let palette = self.palette.as_ref().unwrap(); |
954 | let bit_count = self.bit_count; |
955 | let reader = &mut self.reader; |
956 | let width = self.width as usize; |
957 | let skip_palette = self.indexed_color; |
958 | |
959 | reader.seek(SeekFrom::Start(self.data_offset))?; |
960 | |
961 | if num_channels == 4 { |
962 | buf.chunks_exact_mut(4).for_each(|c| c[3] = 0xFF); |
963 | } |
964 | |
965 | with_rows( |
966 | buf, |
967 | self.width, |
968 | self.height, |
969 | num_channels, |
970 | self.top_down, |
971 | |row| { |
972 | reader.read_exact(&mut indices)?; |
973 | if skip_palette { |
974 | row.clone_from_slice(&indices[0..width]); |
975 | } else { |
976 | let mut pixel_iter = row.chunks_mut(num_channels); |
977 | match bit_count { |
978 | 1 => { |
979 | set_1bit_pixel_run(&mut pixel_iter, palette, indices.iter()); |
980 | } |
981 | 2 => { |
982 | set_2bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width); |
983 | } |
984 | 4 => { |
985 | set_4bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width); |
986 | } |
987 | 8 => { |
988 | set_8bit_pixel_run(&mut pixel_iter, palette, indices.iter(), width); |
989 | } |
990 | _ => panic!(), |
991 | }; |
992 | } |
993 | Ok(()) |
994 | }, |
995 | )?; |
996 | |
997 | Ok(()) |
998 | } |
999 | |
1000 | fn read_16_bit_pixel_data( |
1001 | &mut self, |
1002 | buf: &mut [u8], |
1003 | bitfields: Option<&Bitfields>, |
1004 | ) -> ImageResult<()> { |
1005 | let num_channels = self.num_channels(); |
1006 | let row_padding_len = self.width as usize % 2 * 2; |
1007 | let row_padding = &mut [0; 2][..row_padding_len]; |
1008 | let bitfields = match bitfields { |
1009 | Some(b) => b, |
1010 | None => self.bitfields.as_ref().unwrap(), |
1011 | }; |
1012 | let reader = &mut self.reader; |
1013 | |
1014 | reader.seek(SeekFrom::Start(self.data_offset))?; |
1015 | |
1016 | with_rows( |
1017 | buf, |
1018 | self.width, |
1019 | self.height, |
1020 | num_channels, |
1021 | self.top_down, |
1022 | |row| { |
1023 | for pixel in row.chunks_mut(num_channels) { |
1024 | let data = u32::from(reader.read_u16::<LittleEndian>()?); |
1025 | |
1026 | pixel[0] = bitfields.r.read(data); |
1027 | pixel[1] = bitfields.g.read(data); |
1028 | pixel[2] = bitfields.b.read(data); |
1029 | if num_channels == 4 { |
1030 | if bitfields.a.len != 0 { |
1031 | pixel[3] = bitfields.a.read(data); |
1032 | } else { |
1033 | pixel[3] = 0xFF; |
1034 | } |
1035 | } |
1036 | } |
1037 | reader.read_exact(row_padding) |
1038 | }, |
1039 | )?; |
1040 | |
1041 | Ok(()) |
1042 | } |
1043 | |
1044 | /// Read image data from a reader in 32-bit formats that use bitfields. |
1045 | fn read_32_bit_pixel_data(&mut self, buf: &mut [u8]) -> ImageResult<()> { |
1046 | let num_channels = self.num_channels(); |
1047 | |
1048 | let bitfields = self.bitfields.as_ref().unwrap(); |
1049 | |
1050 | let reader = &mut self.reader; |
1051 | reader.seek(SeekFrom::Start(self.data_offset))?; |
1052 | |
1053 | with_rows( |
1054 | buf, |
1055 | self.width, |
1056 | self.height, |
1057 | num_channels, |
1058 | self.top_down, |
1059 | |row| { |
1060 | for pixel in row.chunks_mut(num_channels) { |
1061 | let data = reader.read_u32::<LittleEndian>()?; |
1062 | |
1063 | pixel[0] = bitfields.r.read(data); |
1064 | pixel[1] = bitfields.g.read(data); |
1065 | pixel[2] = bitfields.b.read(data); |
1066 | if num_channels == 4 { |
1067 | if bitfields.a.len != 0 { |
1068 | pixel[3] = bitfields.a.read(data); |
1069 | } else { |
1070 | pixel[3] = 0xff; |
1071 | } |
1072 | } |
1073 | } |
1074 | Ok(()) |
1075 | }, |
1076 | )?; |
1077 | |
1078 | Ok(()) |
1079 | } |
1080 | |
1081 | /// Read image data from a reader where the colours are stored as 8-bit values (24 or 32-bit). |
1082 | fn read_full_byte_pixel_data( |
1083 | &mut self, |
1084 | buf: &mut [u8], |
1085 | format: &FormatFullBytes, |
1086 | ) -> ImageResult<()> { |
1087 | let num_channels = self.num_channels(); |
1088 | let row_padding_len = match *format { |
1089 | FormatFullBytes::RGB24 => (4 - (self.width as usize * 3) % 4) % 4, |
1090 | _ => 0, |
1091 | }; |
1092 | let row_padding = &mut [0; 4][..row_padding_len]; |
1093 | |
1094 | self.reader.seek(SeekFrom::Start(self.data_offset))?; |
1095 | |
1096 | let reader = &mut self.reader; |
1097 | |
1098 | with_rows( |
1099 | buf, |
1100 | self.width, |
1101 | self.height, |
1102 | num_channels, |
1103 | self.top_down, |
1104 | |row| { |
1105 | for pixel in row.chunks_mut(num_channels) { |
1106 | if *format == FormatFullBytes::Format888 { |
1107 | reader.read_u8()?; |
1108 | } |
1109 | |
1110 | // Read the colour values (b, g, r). |
1111 | // Reading 3 bytes and reversing them is significantly faster than reading one |
1112 | // at a time. |
1113 | reader.read_exact(&mut pixel[0..3])?; |
1114 | pixel[0..3].reverse(); |
1115 | |
1116 | if *format == FormatFullBytes::RGB32 { |
1117 | reader.read_u8()?; |
1118 | } |
1119 | |
1120 | // Read the alpha channel if present |
1121 | if *format == FormatFullBytes::RGBA32 { |
1122 | reader.read_exact(&mut pixel[3..4])?; |
1123 | } else if num_channels == 4 { |
1124 | pixel[3] = 0xFF; |
1125 | } |
1126 | } |
1127 | reader.read_exact(row_padding) |
1128 | }, |
1129 | )?; |
1130 | |
1131 | Ok(()) |
1132 | } |
1133 | |
1134 | fn read_rle_data(&mut self, buf: &mut [u8], image_type: ImageType) -> ImageResult<()> { |
1135 | // Seek to the start of the actual image data. |
1136 | self.reader.seek(SeekFrom::Start(self.data_offset))?; |
1137 | |
1138 | let num_channels = self.num_channels(); |
1139 | let p = self.palette.as_ref().unwrap(); |
1140 | |
1141 | // Handling deltas in the RLE scheme means that we need to manually |
1142 | // iterate through rows and pixels. Even if we didn't have to handle |
1143 | // deltas, we have to ensure that a single runlength doesn't straddle |
1144 | // two rows. |
1145 | let mut row_iter = self.rows(buf); |
1146 | |
1147 | while let Some(row) = row_iter.next() { |
1148 | let mut pixel_iter = row.chunks_mut(num_channels); |
1149 | |
1150 | let mut x = 0; |
1151 | loop { |
1152 | let instruction = { |
1153 | let control_byte = self.reader.read_u8()?; |
1154 | match control_byte { |
1155 | RLE_ESCAPE => { |
1156 | let op = self.reader.read_u8()?; |
1157 | |
1158 | match op { |
1159 | RLE_ESCAPE_EOL => RLEInsn::EndOfRow, |
1160 | RLE_ESCAPE_EOF => RLEInsn::EndOfFile, |
1161 | RLE_ESCAPE_DELTA => { |
1162 | let xdelta = self.reader.read_u8()?; |
1163 | let ydelta = self.reader.read_u8()?; |
1164 | RLEInsn::Delta(xdelta, ydelta) |
1165 | } |
1166 | _ => { |
1167 | let mut length = op as usize; |
1168 | if self.image_type == ImageType::RLE4 { |
1169 | length = (length + 1) / 2; |
1170 | } |
1171 | length += length & 1; |
1172 | let mut buffer = vec![0; length]; |
1173 | self.reader.read_exact(&mut buffer)?; |
1174 | RLEInsn::Absolute(op, buffer) |
1175 | } |
1176 | } |
1177 | } |
1178 | _ => { |
1179 | let palette_index = self.reader.read_u8()?; |
1180 | RLEInsn::PixelRun(control_byte, palette_index) |
1181 | } |
1182 | } |
1183 | }; |
1184 | |
1185 | match instruction { |
1186 | RLEInsn::EndOfFile => { |
1187 | pixel_iter.for_each(|p| p.fill(0)); |
1188 | row_iter.for_each(|r| r.fill(0)); |
1189 | return Ok(()); |
1190 | } |
1191 | RLEInsn::EndOfRow => { |
1192 | pixel_iter.for_each(|p| p.fill(0)); |
1193 | break; |
1194 | } |
1195 | RLEInsn::Delta(x_delta, y_delta) => { |
1196 | // The msdn site on bitmap compression doesn't specify |
1197 | // what happens to the values skipped when encountering |
1198 | // a delta code, however IE and the windows image |
1199 | // preview seems to replace them with black pixels, |
1200 | // so we stick to that. |
1201 | |
1202 | if y_delta > 0 { |
1203 | // Zero out the remainder of the current row. |
1204 | pixel_iter.for_each(|p| p.fill(0)); |
1205 | |
1206 | // If any full rows are skipped, zero them out. |
1207 | for _ in 1..y_delta { |
1208 | let row = row_iter.next().ok_or(DecoderError::CorruptRleData)?; |
1209 | row.fill(0); |
1210 | } |
1211 | |
1212 | // Set the pixel iterator to the start of the next row. |
1213 | pixel_iter = row_iter |
1214 | .next() |
1215 | .ok_or(DecoderError::CorruptRleData)? |
1216 | .chunks_mut(num_channels); |
1217 | |
1218 | // Zero out the pixels up to the current point in the row. |
1219 | for _ in 0..x { |
1220 | pixel_iter |
1221 | .next() |
1222 | .ok_or(DecoderError::CorruptRleData)? |
1223 | .fill(0); |
1224 | } |
1225 | } |
1226 | |
1227 | for _ in 0..x_delta { |
1228 | let pixel = pixel_iter.next().ok_or(DecoderError::CorruptRleData)?; |
1229 | pixel.fill(0); |
1230 | } |
1231 | x += x_delta as usize; |
1232 | } |
1233 | RLEInsn::Absolute(length, indices) => { |
1234 | // Absolute mode cannot span rows, so if we run |
1235 | // out of pixels to process, we should stop |
1236 | // processing the image. |
1237 | match image_type { |
1238 | ImageType::RLE8 => { |
1239 | if !set_8bit_pixel_run( |
1240 | &mut pixel_iter, |
1241 | p, |
1242 | indices.iter(), |
1243 | length as usize, |
1244 | ) { |
1245 | return Err(DecoderError::CorruptRleData.into()); |
1246 | } |
1247 | } |
1248 | ImageType::RLE4 => { |
1249 | if !set_4bit_pixel_run( |
1250 | &mut pixel_iter, |
1251 | p, |
1252 | indices.iter(), |
1253 | length as usize, |
1254 | ) { |
1255 | return Err(DecoderError::CorruptRleData.into()); |
1256 | } |
1257 | } |
1258 | _ => unreachable!(), |
1259 | } |
1260 | x += length as usize; |
1261 | } |
1262 | RLEInsn::PixelRun(n_pixels, palette_index) => { |
1263 | // A pixel run isn't allowed to span rows, but we |
1264 | // simply continue on to the next row if we run |
1265 | // out of pixels to set. |
1266 | match image_type { |
1267 | ImageType::RLE8 => { |
1268 | if !set_8bit_pixel_run( |
1269 | &mut pixel_iter, |
1270 | p, |
1271 | repeat(&palette_index), |
1272 | n_pixels as usize, |
1273 | ) { |
1274 | return Err(DecoderError::CorruptRleData.into()); |
1275 | } |
1276 | } |
1277 | ImageType::RLE4 => { |
1278 | if !set_4bit_pixel_run( |
1279 | &mut pixel_iter, |
1280 | p, |
1281 | repeat(&palette_index), |
1282 | n_pixels as usize, |
1283 | ) { |
1284 | return Err(DecoderError::CorruptRleData.into()); |
1285 | } |
1286 | } |
1287 | _ => unreachable!(), |
1288 | } |
1289 | x += n_pixels as usize; |
1290 | } |
1291 | } |
1292 | } |
1293 | } |
1294 | |
1295 | Ok(()) |
1296 | } |
1297 | |
1298 | /// Read the actual data of the image. This function is deliberately not public because it |
1299 | /// cannot be called multiple times without seeking back the underlying reader in between. |
1300 | pub(crate) fn read_image_data(&mut self, buf: &mut [u8]) -> ImageResult<()> { |
1301 | match self.image_type { |
1302 | ImageType::Palette => self.read_palettized_pixel_data(buf), |
1303 | ImageType::RGB16 => self.read_16_bit_pixel_data(buf, Some(&R5_G5_B5_COLOR_MASK)), |
1304 | ImageType::RGB24 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGB24), |
1305 | ImageType::RGB32 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGB32), |
1306 | ImageType::RGBA32 => self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGBA32), |
1307 | ImageType::RLE8 => self.read_rle_data(buf, ImageType::RLE8), |
1308 | ImageType::RLE4 => self.read_rle_data(buf, ImageType::RLE4), |
1309 | ImageType::Bitfields16 => match self.bitfields { |
1310 | Some(_) => self.read_16_bit_pixel_data(buf, None), |
1311 | None => Err(DecoderError::BitfieldMasksMissing(16).into()), |
1312 | }, |
1313 | ImageType::Bitfields32 => match self.bitfields { |
1314 | Some(R8_G8_B8_COLOR_MASK) => { |
1315 | self.read_full_byte_pixel_data(buf, &FormatFullBytes::Format888) |
1316 | } |
1317 | Some(R8_G8_B8_A8_COLOR_MASK) => { |
1318 | self.read_full_byte_pixel_data(buf, &FormatFullBytes::RGBA32) |
1319 | } |
1320 | Some(_) => self.read_32_bit_pixel_data(buf), |
1321 | None => Err(DecoderError::BitfieldMasksMissing(32).into()), |
1322 | }, |
1323 | } |
1324 | } |
1325 | } |
1326 | |
1327 | impl<R: BufRead + Seek> ImageDecoder for BmpDecoder<R> { |
1328 | fn dimensions(&self) -> (u32, u32) { |
1329 | (self.width as u32, self.height as u32) |
1330 | } |
1331 | |
1332 | fn color_type(&self) -> ColorType { |
1333 | if self.indexed_color { |
1334 | ColorType::L8 |
1335 | } else if self.add_alpha_channel { |
1336 | ColorType::Rgba8 |
1337 | } else { |
1338 | ColorType::Rgb8 |
1339 | } |
1340 | } |
1341 | |
1342 | fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> { |
1343 | assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes())); |
1344 | self.read_image_data(buf) |
1345 | } |
1346 | |
1347 | fn read_image_boxed(self: Box<Self>, buf: &mut [u8]) -> ImageResult<()> { |
1348 | (*self).read_image(buf) |
1349 | } |
1350 | } |
1351 | |
1352 | impl<R: BufRead + Seek> ImageDecoderRect for BmpDecoder<R> { |
1353 | fn read_rect( |
1354 | &mut self, |
1355 | x: u32, |
1356 | y: u32, |
1357 | width: u32, |
1358 | height: u32, |
1359 | buf: &mut [u8], |
1360 | row_pitch: usize, |
1361 | ) -> ImageResult<()> { |
1362 | let start = self.reader.stream_position()?; |
1363 | image::load_rect( |
1364 | x, |
1365 | y, |
1366 | width, |
1367 | height, |
1368 | buf, |
1369 | row_pitch, |
1370 | self, |
1371 | self.total_bytes() as usize, |
1372 | |_, _| Ok(()), |
1373 | |s, buf| s.read_image_data(buf), |
1374 | )?; |
1375 | self.reader.seek(SeekFrom::Start(start))?; |
1376 | Ok(()) |
1377 | } |
1378 | } |
1379 | |
1380 | #[cfg (test)] |
1381 | mod test { |
1382 | use std::io::{BufReader, Cursor}; |
1383 | |
1384 | use super::*; |
1385 | |
1386 | #[test ] |
1387 | fn test_bitfield_len() { |
1388 | for len in 1..9 { |
1389 | let bitfield = Bitfield { shift: 0, len }; |
1390 | for i in 0..(1 << len) { |
1391 | let read = bitfield.read(i); |
1392 | let calc = (f64::from(i) / f64::from((1 << len) - 1) * 255f64).round() as u8; |
1393 | if read != calc { |
1394 | println!("len:{len} i:{i} read:{read} calc:{calc}" ); |
1395 | } |
1396 | assert_eq!(read, calc); |
1397 | } |
1398 | } |
1399 | } |
1400 | |
1401 | #[test ] |
1402 | fn read_rect() { |
1403 | let f = |
1404 | BufReader::new(std::fs::File::open("tests/images/bmp/images/Core_8_Bit.bmp" ).unwrap()); |
1405 | let mut decoder = BmpDecoder::new(f).unwrap(); |
1406 | |
1407 | let mut buf: Vec<u8> = vec![0; 8 * 8 * 3]; |
1408 | decoder.read_rect(0, 0, 8, 8, &mut buf, 8 * 3).unwrap(); |
1409 | } |
1410 | |
1411 | #[test ] |
1412 | fn read_rle_too_short() { |
1413 | let data = vec![ |
1414 | 0x42, 0x4d, 0x04, 0xee, 0xfe, 0xff, 0xff, 0x10, 0xff, 0x00, 0x04, 0x00, 0x00, 0x00, |
1415 | 0x7c, 0x00, 0x00, 0x00, 0x0c, 0x41, 0x00, 0x00, 0x07, 0x10, 0x00, 0x00, 0x01, 0x00, |
1416 | 0x04, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x00, 0x00, |
1417 | 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xfe, 0x21, |
1418 | 0xff, 0x00, 0x66, 0x61, 0x72, 0x62, 0x66, 0x65, 0x6c, 0x64, 0x00, 0x00, 0x00, 0x00, |
1419 | 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
1420 | 0xff, 0xd8, 0xff, 0x00, 0x00, 0x19, 0x51, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
1421 | 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfa, 0xff, 0x00, 0x00, 0x00, |
1422 | 0x00, 0x01, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0f, 0x00, |
1423 | 0x00, 0x00, 0x00, 0x2d, 0x31, 0x31, 0x35, 0x36, 0x00, 0xff, 0x00, 0x00, 0x52, 0x3a, |
1424 | 0x37, 0x30, 0x7e, 0x71, 0x63, 0x91, 0x5a, 0x04, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, |
1425 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, |
1426 | 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2d, 0x35, 0x37, 0x00, 0xff, 0x00, 0x00, 0x52, |
1427 | 0x3a, 0x37, 0x30, 0x7e, 0x71, 0x63, 0x91, 0x5a, 0x04, 0x05, 0x3c, 0x00, 0x00, 0x11, |
1428 | 0x00, 0x5d, 0x7a, 0x82, 0xb7, 0xca, 0x2d, 0x31, 0xff, 0xff, 0xc7, 0x95, 0x33, 0x2e, |
1429 | 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00, |
1430 | 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x66, 0x00, 0x4d, |
1431 | 0x4d, 0x00, 0x2a, 0x00, |
1432 | ]; |
1433 | |
1434 | let decoder = BmpDecoder::new(Cursor::new(&data)).unwrap(); |
1435 | let mut buf = vec![0; usize::try_from(decoder.total_bytes()).unwrap()]; |
1436 | assert!(decoder.read_image(&mut buf).is_ok()); |
1437 | } |
1438 | |
1439 | #[test ] |
1440 | fn test_no_header() { |
1441 | let tests = [ |
1442 | "Info_R8_G8_B8.bmp" , |
1443 | "Info_A8_R8_G8_B8.bmp" , |
1444 | "Info_8_Bit.bmp" , |
1445 | "Info_4_Bit.bmp" , |
1446 | "Info_1_Bit.bmp" , |
1447 | ]; |
1448 | |
1449 | for name in &tests { |
1450 | let path = format!("tests/images/bmp/images/{name}" ); |
1451 | let ref_img = crate::open(&path).unwrap(); |
1452 | let mut data = std::fs::read(&path).unwrap(); |
1453 | // skip the BITMAPFILEHEADER |
1454 | let slice = &mut data[14..]; |
1455 | let decoder = BmpDecoder::new_without_file_header(Cursor::new(slice)).unwrap(); |
1456 | let no_hdr_img = crate::DynamicImage::from_decoder(decoder).unwrap(); |
1457 | assert_eq!(ref_img, no_hdr_img); |
1458 | } |
1459 | } |
1460 | } |
1461 | |