1 | use super::header::{Header, ImageType, ALPHA_BIT_MASK, SCREEN_ORIGIN_BIT_MASK}; |
2 | use crate::{ |
3 | color::{ColorType, ExtendedColorType}, |
4 | error::{ |
5 | ImageError, ImageResult, LimitError, LimitErrorKind, UnsupportedError, UnsupportedErrorKind, |
6 | }, |
7 | image::{ImageDecoder, ImageFormat}, |
8 | }; |
9 | use byteorder_lite::ReadBytesExt; |
10 | use std::io::{self, Read}; |
11 | |
12 | struct ColorMap { |
13 | /// sizes in bytes |
14 | start_offset: usize, |
15 | entry_size: usize, |
16 | bytes: Vec<u8>, |
17 | } |
18 | |
19 | impl ColorMap { |
20 | pub(crate) fn from_reader( |
21 | r: &mut dyn Read, |
22 | start_offset: u16, |
23 | num_entries: u16, |
24 | bits_per_entry: u8, |
25 | ) -> ImageResult<ColorMap> { |
26 | let bytes_per_entry = (bits_per_entry as usize + 7) / 8; |
27 | |
28 | let mut bytes = vec![0; bytes_per_entry * num_entries as usize]; |
29 | r.read_exact(&mut bytes)?; |
30 | |
31 | Ok(ColorMap { |
32 | entry_size: bytes_per_entry, |
33 | start_offset: start_offset as usize, |
34 | bytes, |
35 | }) |
36 | } |
37 | |
38 | /// Get one entry from the color map |
39 | pub(crate) fn get(&self, index: usize) -> Option<&[u8]> { |
40 | let entry = self.start_offset + self.entry_size * index; |
41 | self.bytes.get(entry..entry + self.entry_size) |
42 | } |
43 | } |
44 | |
45 | /// The representation of a TGA decoder |
46 | pub struct TgaDecoder<R> { |
47 | r: R, |
48 | |
49 | width: usize, |
50 | height: usize, |
51 | bytes_per_pixel: usize, |
52 | has_loaded_metadata: bool, |
53 | |
54 | image_type: ImageType, |
55 | color_type: ColorType, |
56 | original_color_type: Option<ExtendedColorType>, |
57 | |
58 | header: Header, |
59 | color_map: Option<ColorMap>, |
60 | } |
61 | |
62 | impl<R: Read> TgaDecoder<R> { |
63 | /// Create a new decoder that decodes from the stream `r` |
64 | pub fn new(r: R) -> ImageResult<TgaDecoder<R>> { |
65 | let mut decoder = TgaDecoder { |
66 | r, |
67 | |
68 | width: 0, |
69 | height: 0, |
70 | bytes_per_pixel: 0, |
71 | has_loaded_metadata: false, |
72 | |
73 | image_type: ImageType::Unknown, |
74 | color_type: ColorType::L8, |
75 | original_color_type: None, |
76 | |
77 | header: Header::default(), |
78 | color_map: None, |
79 | }; |
80 | decoder.read_metadata()?; |
81 | Ok(decoder) |
82 | } |
83 | |
84 | fn read_header(&mut self) -> ImageResult<()> { |
85 | self.header = Header::from_reader(&mut self.r)?; |
86 | self.image_type = ImageType::new(self.header.image_type); |
87 | self.width = self.header.image_width as usize; |
88 | self.height = self.header.image_height as usize; |
89 | self.bytes_per_pixel = (self.header.pixel_depth as usize + 7) / 8; |
90 | Ok(()) |
91 | } |
92 | |
93 | fn read_metadata(&mut self) -> ImageResult<()> { |
94 | if !self.has_loaded_metadata { |
95 | self.read_header()?; |
96 | self.read_image_id()?; |
97 | self.read_color_map()?; |
98 | self.read_color_information()?; |
99 | self.has_loaded_metadata = true; |
100 | } |
101 | Ok(()) |
102 | } |
103 | |
104 | /// Loads the color information for the decoder |
105 | /// |
106 | /// To keep things simple, we won't handle bit depths that aren't divisible |
107 | /// by 8 and are larger than 32. |
108 | fn read_color_information(&mut self) -> ImageResult<()> { |
109 | if self.header.pixel_depth % 8 != 0 || self.header.pixel_depth > 32 { |
110 | // Bit depth must be divisible by 8, and must be less than or equal |
111 | // to 32. |
112 | return Err(ImageError::Unsupported( |
113 | UnsupportedError::from_format_and_kind( |
114 | ImageFormat::Tga.into(), |
115 | UnsupportedErrorKind::Color(ExtendedColorType::Unknown( |
116 | self.header.pixel_depth, |
117 | )), |
118 | ), |
119 | )); |
120 | } |
121 | |
122 | let num_alpha_bits = self.header.image_desc & ALPHA_BIT_MASK; |
123 | |
124 | let other_channel_bits = if self.header.map_type != 0 { |
125 | self.header.map_entry_size |
126 | } else { |
127 | if num_alpha_bits > self.header.pixel_depth { |
128 | return Err(ImageError::Unsupported( |
129 | UnsupportedError::from_format_and_kind( |
130 | ImageFormat::Tga.into(), |
131 | UnsupportedErrorKind::Color(ExtendedColorType::Unknown( |
132 | self.header.pixel_depth, |
133 | )), |
134 | ), |
135 | )); |
136 | } |
137 | |
138 | self.header.pixel_depth - num_alpha_bits |
139 | }; |
140 | let color = self.image_type.is_color(); |
141 | |
142 | match (num_alpha_bits, other_channel_bits, color) { |
143 | // really, the encoding is BGR and BGRA, this is fixed |
144 | // up with `TgaDecoder::reverse_encoding`. |
145 | (0, 32, true) => self.color_type = ColorType::Rgba8, |
146 | (8, 24, true) => self.color_type = ColorType::Rgba8, |
147 | (0, 24, true) => self.color_type = ColorType::Rgb8, |
148 | (8, 8, false) => self.color_type = ColorType::La8, |
149 | (0, 8, false) => self.color_type = ColorType::L8, |
150 | (8, 0, false) => { |
151 | // alpha-only image is treated as L8 |
152 | self.color_type = ColorType::L8; |
153 | self.original_color_type = Some(ExtendedColorType::A8); |
154 | } |
155 | _ => { |
156 | return Err(ImageError::Unsupported( |
157 | UnsupportedError::from_format_and_kind( |
158 | ImageFormat::Tga.into(), |
159 | UnsupportedErrorKind::Color(ExtendedColorType::Unknown( |
160 | self.header.pixel_depth, |
161 | )), |
162 | ), |
163 | )) |
164 | } |
165 | } |
166 | Ok(()) |
167 | } |
168 | |
169 | /// Read the image id field |
170 | /// |
171 | /// We're not interested in this field, so this function skips it if it |
172 | /// is present |
173 | fn read_image_id(&mut self) -> ImageResult<()> { |
174 | self.r |
175 | .read_exact(&mut vec![0; self.header.id_length as usize])?; |
176 | Ok(()) |
177 | } |
178 | |
179 | fn read_color_map(&mut self) -> ImageResult<()> { |
180 | if self.header.map_type == 1 { |
181 | // FIXME: we could reverse the map entries, which avoids having to reverse all pixels |
182 | // in the final output individually. |
183 | self.color_map = Some(ColorMap::from_reader( |
184 | &mut self.r, |
185 | self.header.map_origin, |
186 | self.header.map_length, |
187 | self.header.map_entry_size, |
188 | )?); |
189 | } |
190 | Ok(()) |
191 | } |
192 | |
193 | /// Expands indices into its mapped color |
194 | fn expand_color_map(&self, pixel_data: &[u8]) -> io::Result<Vec<u8>> { |
195 | #[inline ] |
196 | fn bytes_to_index(bytes: &[u8]) -> usize { |
197 | let mut result = 0usize; |
198 | for byte in bytes { |
199 | result = (result << 8) | *byte as usize; |
200 | } |
201 | result |
202 | } |
203 | |
204 | let bytes_per_entry = (self.header.map_entry_size as usize + 7) / 8; |
205 | let mut result = Vec::with_capacity(self.width * self.height * bytes_per_entry); |
206 | |
207 | if self.bytes_per_pixel == 0 { |
208 | return Err(io::ErrorKind::Other.into()); |
209 | } |
210 | |
211 | let color_map = self |
212 | .color_map |
213 | .as_ref() |
214 | .ok_or_else(|| io::Error::from(io::ErrorKind::Other))?; |
215 | |
216 | for chunk in pixel_data.chunks(self.bytes_per_pixel) { |
217 | let index = bytes_to_index(chunk); |
218 | if let Some(color) = color_map.get(index) { |
219 | result.extend_from_slice(color); |
220 | } else { |
221 | return Err(io::ErrorKind::Other.into()); |
222 | } |
223 | } |
224 | |
225 | Ok(result) |
226 | } |
227 | |
228 | /// Reads a run length encoded data for given number of bytes |
229 | fn read_encoded_data(&mut self, num_bytes: usize) -> io::Result<Vec<u8>> { |
230 | let mut pixel_data = Vec::with_capacity(num_bytes); |
231 | let mut repeat_buf = Vec::with_capacity(self.bytes_per_pixel); |
232 | |
233 | while pixel_data.len() < num_bytes { |
234 | let run_packet = self.r.read_u8()?; |
235 | // If the highest bit in `run_packet` is set, then we repeat pixels |
236 | // |
237 | // Note: the TGA format adds 1 to both counts because having a count |
238 | // of 0 would be pointless. |
239 | if (run_packet & 0x80) != 0 { |
240 | // high bit set, so we will repeat the data |
241 | let repeat_count = ((run_packet & !0x80) + 1) as usize; |
242 | self.r |
243 | .by_ref() |
244 | .take(self.bytes_per_pixel as u64) |
245 | .read_to_end(&mut repeat_buf)?; |
246 | |
247 | // get the repeating pixels from the bytes of the pixel stored in `repeat_buf` |
248 | let data = repeat_buf |
249 | .iter() |
250 | .cycle() |
251 | .take(repeat_count * self.bytes_per_pixel); |
252 | pixel_data.extend(data); |
253 | repeat_buf.clear(); |
254 | } else { |
255 | // not set, so `run_packet+1` is the number of non-encoded pixels |
256 | let num_raw_bytes = (run_packet + 1) as usize * self.bytes_per_pixel; |
257 | self.r |
258 | .by_ref() |
259 | .take(num_raw_bytes as u64) |
260 | .read_to_end(&mut pixel_data)?; |
261 | } |
262 | } |
263 | |
264 | if pixel_data.len() > num_bytes { |
265 | // FIXME: the last packet contained more data than we asked for! |
266 | // This is at least a warning. We truncate the data since some methods rely on the |
267 | // length to be accurate in the success case. |
268 | pixel_data.truncate(num_bytes); |
269 | } |
270 | |
271 | Ok(pixel_data) |
272 | } |
273 | |
274 | /// Reads a run length encoded packet |
275 | fn read_all_encoded_data(&mut self) -> ImageResult<Vec<u8>> { |
276 | let num_bytes = self.width * self.height * self.bytes_per_pixel; |
277 | |
278 | Ok(self.read_encoded_data(num_bytes)?) |
279 | } |
280 | |
281 | /// Reverse from BGR encoding to RGB encoding |
282 | /// |
283 | /// TGA files are stored in the BGRA encoding. This function swaps |
284 | /// the blue and red bytes in the `pixels` array. |
285 | fn reverse_encoding_in_output(&mut self, pixels: &mut [u8]) { |
286 | // We only need to reverse the encoding of color images |
287 | match self.color_type { |
288 | ColorType::Rgb8 | ColorType::Rgba8 => { |
289 | for chunk in pixels.chunks_mut(self.color_type.bytes_per_pixel().into()) { |
290 | chunk.swap(0, 2); |
291 | } |
292 | } |
293 | _ => {} |
294 | } |
295 | } |
296 | |
297 | /// Flip the image vertically depending on the screen origin bit |
298 | /// |
299 | /// The bit in position 5 of the image descriptor byte is the screen origin bit. |
300 | /// If it's 1, the origin is in the top left corner. |
301 | /// If it's 0, the origin is in the bottom left corner. |
302 | /// This function checks the bit, and if it's 0, flips the image vertically. |
303 | fn flip_vertically(&mut self, pixels: &mut [u8]) { |
304 | if self.is_flipped_vertically() { |
305 | if self.height == 0 { |
306 | return; |
307 | } |
308 | |
309 | let num_bytes = pixels.len(); |
310 | |
311 | let width_bytes = num_bytes / self.height; |
312 | |
313 | // Flip the image vertically. |
314 | for vertical_index in 0..(self.height / 2) { |
315 | let vertical_target = (self.height - vertical_index) * width_bytes - width_bytes; |
316 | |
317 | for horizontal_index in 0..width_bytes { |
318 | let source = vertical_index * width_bytes + horizontal_index; |
319 | let target = vertical_target + horizontal_index; |
320 | |
321 | pixels.swap(target, source); |
322 | } |
323 | } |
324 | } |
325 | } |
326 | |
327 | /// Check whether the image is vertically flipped |
328 | /// |
329 | /// The bit in position 5 of the image descriptor byte is the screen origin bit. |
330 | /// If it's 1, the origin is in the top left corner. |
331 | /// If it's 0, the origin is in the bottom left corner. |
332 | /// This function checks the bit, and if it's 0, flips the image vertically. |
333 | fn is_flipped_vertically(&self) -> bool { |
334 | let screen_origin_bit = SCREEN_ORIGIN_BIT_MASK & self.header.image_desc != 0; |
335 | !screen_origin_bit |
336 | } |
337 | } |
338 | |
339 | impl<R: Read> ImageDecoder for TgaDecoder<R> { |
340 | fn dimensions(&self) -> (u32, u32) { |
341 | (self.width as u32, self.height as u32) |
342 | } |
343 | |
344 | fn color_type(&self) -> ColorType { |
345 | self.color_type |
346 | } |
347 | |
348 | fn original_color_type(&self) -> ExtendedColorType { |
349 | self.original_color_type |
350 | .unwrap_or_else(|| self.color_type().into()) |
351 | } |
352 | |
353 | fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> { |
354 | assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes())); |
355 | |
356 | // In indexed images, we might need more bytes than pixels to read them. That's nonsensical |
357 | // to encode but we'll not want to crash. |
358 | let mut fallback_buf = vec![]; |
359 | // read the pixels from the data region |
360 | let rawbuf = if self.image_type.is_encoded() { |
361 | let pixel_data = self.read_all_encoded_data()?; |
362 | if self.bytes_per_pixel <= usize::from(self.color_type.bytes_per_pixel()) { |
363 | buf[..pixel_data.len()].copy_from_slice(&pixel_data); |
364 | &buf[..pixel_data.len()] |
365 | } else { |
366 | fallback_buf = pixel_data; |
367 | &fallback_buf[..] |
368 | } |
369 | } else { |
370 | let num_raw_bytes = self.width * self.height * self.bytes_per_pixel; |
371 | if self.bytes_per_pixel <= usize::from(self.color_type.bytes_per_pixel()) { |
372 | self.r.by_ref().read_exact(&mut buf[..num_raw_bytes])?; |
373 | &buf[..num_raw_bytes] |
374 | } else { |
375 | fallback_buf.resize(num_raw_bytes, 0u8); |
376 | self.r |
377 | .by_ref() |
378 | .read_exact(&mut fallback_buf[..num_raw_bytes])?; |
379 | &fallback_buf[..num_raw_bytes] |
380 | } |
381 | }; |
382 | |
383 | // expand the indices using the color map if necessary |
384 | if self.image_type.is_color_mapped() { |
385 | let pixel_data = self.expand_color_map(rawbuf)?; |
386 | // not enough data to fill the buffer, or would overflow the buffer |
387 | if pixel_data.len() != buf.len() { |
388 | return Err(ImageError::Limits(LimitError::from_kind( |
389 | LimitErrorKind::DimensionError, |
390 | ))); |
391 | } |
392 | buf.copy_from_slice(&pixel_data); |
393 | } |
394 | |
395 | self.reverse_encoding_in_output(buf); |
396 | |
397 | self.flip_vertically(buf); |
398 | |
399 | Ok(()) |
400 | } |
401 | |
402 | fn read_image_boxed(self: Box<Self>, buf: &mut [u8]) -> ImageResult<()> { |
403 | (*self).read_image(buf) |
404 | } |
405 | } |
406 | |