| 1 | #![cfg (feature = "use_alloc" )] |
| 2 | use Option::{self as State, None as ProductEnded, Some as ProductInProgress}; |
| 3 | use Option::{self as CurrentItems, None as NotYetPopulated, Some as Populated}; |
| 4 | |
| 5 | use alloc::vec::Vec; |
| 6 | |
| 7 | use crate::size_hint; |
| 8 | |
| 9 | #[derive (Clone)] |
| 10 | /// An iterator adaptor that iterates over the cartesian product of |
| 11 | /// multiple iterators of type `I`. |
| 12 | /// |
| 13 | /// An iterator element type is `Vec<I::Item>`. |
| 14 | /// |
| 15 | /// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product) |
| 16 | /// for more information. |
| 17 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 18 | pub struct MultiProduct<I>(State<MultiProductInner<I>>) |
| 19 | where |
| 20 | I: Iterator + Clone, |
| 21 | I::Item: Clone; |
| 22 | |
| 23 | #[derive (Clone)] |
| 24 | /// Internals for `MultiProduct`. |
| 25 | struct MultiProductInner<I> |
| 26 | where |
| 27 | I: Iterator + Clone, |
| 28 | I::Item: Clone, |
| 29 | { |
| 30 | /// Holds the iterators. |
| 31 | iters: Vec<MultiProductIter<I>>, |
| 32 | /// Not populated at the beginning then it holds the current item of each iterator. |
| 33 | cur: CurrentItems<Vec<I::Item>>, |
| 34 | } |
| 35 | |
| 36 | impl<I> std::fmt::Debug for MultiProduct<I> |
| 37 | where |
| 38 | I: Iterator + Clone + std::fmt::Debug, |
| 39 | I::Item: Clone + std::fmt::Debug, |
| 40 | { |
| 41 | debug_fmt_fields!(MultiProduct, 0); |
| 42 | } |
| 43 | |
| 44 | impl<I> std::fmt::Debug for MultiProductInner<I> |
| 45 | where |
| 46 | I: Iterator + Clone + std::fmt::Debug, |
| 47 | I::Item: Clone + std::fmt::Debug, |
| 48 | { |
| 49 | debug_fmt_fields!(MultiProductInner, iters, cur); |
| 50 | } |
| 51 | |
| 52 | /// Create a new cartesian product iterator over an arbitrary number |
| 53 | /// of iterators of the same type. |
| 54 | /// |
| 55 | /// Iterator element is of type `Vec<H::Item::Item>`. |
| 56 | pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter> |
| 57 | where |
| 58 | H: Iterator, |
| 59 | H::Item: IntoIterator, |
| 60 | <H::Item as IntoIterator>::IntoIter: Clone, |
| 61 | <H::Item as IntoIterator>::Item: Clone, |
| 62 | { |
| 63 | let inner: MultiProductInner<::IntoIter> = MultiProductInner { |
| 64 | iters: itersimpl Iterator- >
|
| 65 | .map(|i: impl IntoIterator + Clone + Clone| MultiProductIter::new(i.into_iter())) |
| 66 | .collect(), |
| 67 | cur: NotYetPopulated, |
| 68 | }; |
| 69 | MultiProduct(ProductInProgress(inner)) |
| 70 | } |
| 71 | |
| 72 | #[derive (Clone, Debug)] |
| 73 | /// Holds the state of a single iterator within a `MultiProduct`. |
| 74 | struct MultiProductIter<I> |
| 75 | where |
| 76 | I: Iterator + Clone, |
| 77 | I::Item: Clone, |
| 78 | { |
| 79 | iter: I, |
| 80 | iter_orig: I, |
| 81 | } |
| 82 | |
| 83 | impl<I> MultiProductIter<I> |
| 84 | where |
| 85 | I: Iterator + Clone, |
| 86 | I::Item: Clone, |
| 87 | { |
| 88 | fn new(iter: I) -> Self { |
| 89 | Self { |
| 90 | iter: iter.clone(), |
| 91 | iter_orig: iter, |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | impl<I> Iterator for MultiProduct<I> |
| 97 | where |
| 98 | I: Iterator + Clone, |
| 99 | I::Item: Clone, |
| 100 | { |
| 101 | type Item = Vec<I::Item>; |
| 102 | |
| 103 | fn next(&mut self) -> Option<Self::Item> { |
| 104 | // This fuses the iterator. |
| 105 | let inner = self.0.as_mut()?; |
| 106 | match &mut inner.cur { |
| 107 | Populated(values) => { |
| 108 | debug_assert!(!inner.iters.is_empty()); |
| 109 | // Find (from the right) a non-finished iterator and |
| 110 | // reset the finished ones encountered. |
| 111 | for (iter, item) in inner.iters.iter_mut().zip(values.iter_mut()).rev() { |
| 112 | if let Some(new) = iter.iter.next() { |
| 113 | *item = new; |
| 114 | return Some(values.clone()); |
| 115 | } else { |
| 116 | iter.iter = iter.iter_orig.clone(); |
| 117 | // `cur` is populated so the untouched `iter_orig` can not be empty. |
| 118 | *item = iter.iter.next().unwrap(); |
| 119 | } |
| 120 | } |
| 121 | self.0 = ProductEnded; |
| 122 | None |
| 123 | } |
| 124 | // Only the first time. |
| 125 | NotYetPopulated => { |
| 126 | let next: Option<Vec<_>> = inner.iters.iter_mut().map(|i| i.iter.next()).collect(); |
| 127 | if next.is_none() || inner.iters.is_empty() { |
| 128 | // This cartesian product had at most one item to generate and now ends. |
| 129 | self.0 = ProductEnded; |
| 130 | } else { |
| 131 | inner.cur.clone_from(&next); |
| 132 | } |
| 133 | next |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | fn count(self) -> usize { |
| 139 | match self.0 { |
| 140 | ProductEnded => 0, |
| 141 | // The iterator is fresh so the count is the product of the length of each iterator: |
| 142 | // - If one of them is empty, stop counting. |
| 143 | // - Less `count()` calls than the general case. |
| 144 | ProductInProgress(MultiProductInner { |
| 145 | iters, |
| 146 | cur: NotYetPopulated, |
| 147 | }) => iters |
| 148 | .into_iter() |
| 149 | .map(|iter| iter.iter_orig.count()) |
| 150 | .try_fold(1, |product, count| { |
| 151 | if count == 0 { |
| 152 | None |
| 153 | } else { |
| 154 | Some(product * count) |
| 155 | } |
| 156 | }) |
| 157 | .unwrap_or_default(), |
| 158 | // The general case. |
| 159 | ProductInProgress(MultiProductInner { |
| 160 | iters, |
| 161 | cur: Populated(_), |
| 162 | }) => iters.into_iter().fold(0, |mut acc, iter| { |
| 163 | if acc != 0 { |
| 164 | acc *= iter.iter_orig.count(); |
| 165 | } |
| 166 | acc + iter.iter.count() |
| 167 | }), |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 172 | match &self.0 { |
| 173 | ProductEnded => (0, Some(0)), |
| 174 | ProductInProgress(MultiProductInner { |
| 175 | iters, |
| 176 | cur: NotYetPopulated, |
| 177 | }) => iters |
| 178 | .iter() |
| 179 | .map(|iter| iter.iter_orig.size_hint()) |
| 180 | .fold((1, Some(1)), size_hint::mul), |
| 181 | ProductInProgress(MultiProductInner { |
| 182 | iters, |
| 183 | cur: Populated(_), |
| 184 | }) => { |
| 185 | if let [first, tail @ ..] = &iters[..] { |
| 186 | tail.iter().fold(first.iter.size_hint(), |mut sh, iter| { |
| 187 | sh = size_hint::mul(sh, iter.iter_orig.size_hint()); |
| 188 | size_hint::add(sh, iter.iter.size_hint()) |
| 189 | }) |
| 190 | } else { |
| 191 | // Since it is populated, this cartesian product has started so `iters` is not empty. |
| 192 | unreachable!() |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | fn last(self) -> Option<Self::Item> { |
| 199 | let MultiProductInner { iters, cur } = self.0?; |
| 200 | // Collect the last item of each iterator of the product. |
| 201 | if let Populated(values) = cur { |
| 202 | let mut count = iters.len(); |
| 203 | let last = iters |
| 204 | .into_iter() |
| 205 | .zip(values) |
| 206 | .map(|(i, value)| { |
| 207 | i.iter.last().unwrap_or_else(|| { |
| 208 | // The iterator is empty, use its current `value`. |
| 209 | count -= 1; |
| 210 | value |
| 211 | }) |
| 212 | }) |
| 213 | .collect(); |
| 214 | if count == 0 { |
| 215 | // `values` was the last item. |
| 216 | None |
| 217 | } else { |
| 218 | Some(last) |
| 219 | } |
| 220 | } else { |
| 221 | iters.into_iter().map(|i| i.iter.last()).collect() |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | impl<I> std::iter::FusedIterator for MultiProduct<I> |
| 227 | where |
| 228 | I: Iterator + Clone, |
| 229 | I::Item: Clone, |
| 230 | { |
| 231 | } |
| 232 | |