1 | use alloc::boxed::Box; |
2 | use alloc::vec::Vec; |
3 | use std::fmt; |
4 | use std::iter::FusedIterator; |
5 | |
6 | use super::lazy_buffer::LazyBuffer; |
7 | use crate::adaptors::checked_binomial; |
8 | |
9 | /// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement. |
10 | /// |
11 | /// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement) |
12 | /// for more information. |
13 | #[derive (Clone)] |
14 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
15 | pub struct CombinationsWithReplacement<I> |
16 | where |
17 | I: Iterator, |
18 | I::Item: Clone, |
19 | { |
20 | indices: Box<[usize]>, |
21 | pool: LazyBuffer<I>, |
22 | first: bool, |
23 | } |
24 | |
25 | impl<I> fmt::Debug for CombinationsWithReplacement<I> |
26 | where |
27 | I: Iterator + fmt::Debug, |
28 | I::Item: fmt::Debug + Clone, |
29 | { |
30 | debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first); |
31 | } |
32 | |
33 | /// Create a new `CombinationsWithReplacement` from a clonable iterator. |
34 | pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I> |
35 | where |
36 | I: Iterator, |
37 | I::Item: Clone, |
38 | { |
39 | let indices: Box<[usize]> = alloc::vec![0; k].into_boxed_slice(); |
40 | let pool: LazyBuffer<I> = LazyBuffer::new(it:iter); |
41 | |
42 | CombinationsWithReplacement { |
43 | indices, |
44 | pool, |
45 | first: true, |
46 | } |
47 | } |
48 | |
49 | impl<I> CombinationsWithReplacement<I> |
50 | where |
51 | I: Iterator, |
52 | I::Item: Clone, |
53 | { |
54 | /// Increments indices representing the combination to advance to the next |
55 | /// (in lexicographic order by increasing sequence) combination. |
56 | /// |
57 | /// Returns true if we've run out of combinations, false otherwise. |
58 | fn increment_indices(&mut self) -> bool { |
59 | // Check if we need to consume more from the iterator |
60 | // This will run while we increment our first index digit |
61 | self.pool.get_next(); |
62 | |
63 | // Work out where we need to update our indices |
64 | let mut increment = None; |
65 | for (i, indices_int) in self.indices.iter().enumerate().rev() { |
66 | if *indices_int < self.pool.len() - 1 { |
67 | increment = Some((i, indices_int + 1)); |
68 | break; |
69 | } |
70 | } |
71 | match increment { |
72 | // If we can update the indices further |
73 | Some((increment_from, increment_value)) => { |
74 | // We need to update the rightmost non-max value |
75 | // and all those to the right |
76 | for i in &mut self.indices[increment_from..] { |
77 | *i = increment_value; |
78 | } |
79 | // TODO: once MSRV >= 1.50, use `fill` instead: |
80 | // self.indices[increment_from..].fill(increment_value); |
81 | false |
82 | } |
83 | // Otherwise, we're done |
84 | None => true, |
85 | } |
86 | } |
87 | } |
88 | |
89 | impl<I> Iterator for CombinationsWithReplacement<I> |
90 | where |
91 | I: Iterator, |
92 | I::Item: Clone, |
93 | { |
94 | type Item = Vec<I::Item>; |
95 | |
96 | fn next(&mut self) -> Option<Self::Item> { |
97 | if self.first { |
98 | // In empty edge cases, stop iterating immediately |
99 | if !(self.indices.is_empty() || self.pool.get_next()) { |
100 | return None; |
101 | } |
102 | self.first = false; |
103 | } else if self.increment_indices() { |
104 | return None; |
105 | } |
106 | Some(self.pool.get_at(&self.indices)) |
107 | } |
108 | |
109 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
110 | if self.first { |
111 | // In empty edge cases, stop iterating immediately |
112 | if !(self.indices.is_empty() || self.pool.get_next()) { |
113 | return None; |
114 | } |
115 | self.first = false; |
116 | } else if self.increment_indices() { |
117 | return None; |
118 | } |
119 | for _ in 0..n { |
120 | if self.increment_indices() { |
121 | return None; |
122 | } |
123 | } |
124 | Some(self.pool.get_at(&self.indices)) |
125 | } |
126 | |
127 | fn size_hint(&self) -> (usize, Option<usize>) { |
128 | let (mut low, mut upp) = self.pool.size_hint(); |
129 | low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX); |
130 | upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices)); |
131 | (low, upp) |
132 | } |
133 | |
134 | fn count(self) -> usize { |
135 | let Self { |
136 | indices, |
137 | pool, |
138 | first, |
139 | } = self; |
140 | let n = pool.count(); |
141 | remaining_for(n, first, &indices).unwrap() |
142 | } |
143 | } |
144 | |
145 | impl<I> FusedIterator for CombinationsWithReplacement<I> |
146 | where |
147 | I: Iterator, |
148 | I::Item: Clone, |
149 | { |
150 | } |
151 | |
152 | /// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow. |
153 | fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { |
154 | // With a "stars and bars" representation, choose k values with replacement from n values is |
155 | // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities) |
156 | // to place k stars and therefore n - 1 bars. |
157 | // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3]. |
158 | let count = |n: usize, k: usize| { |
159 | let positions = if n == 0 { |
160 | k.saturating_sub(1) |
161 | } else { |
162 | (n - 1).checked_add(k)? |
163 | }; |
164 | checked_binomial(positions, k) |
165 | }; |
166 | let k = indices.len(); |
167 | if first { |
168 | count(n, k) |
169 | } else { |
170 | // The algorithm is similar to the one for combinations *without replacement*, |
171 | // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted. |
172 | |
173 | // The combinations generated after the current one can be counted by counting as follows: |
174 | // - The subsequent combinations that differ in indices[0]: |
175 | // If subsequent combinations differ in indices[0], then their value for indices[0] |
176 | // must be at least 1 greater than the current indices[0]. |
177 | // As indices is monotonically sorted, this means we can effectively choose k values with |
178 | // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities. |
179 | // - The subsequent combinations with same indices[0], but differing indices[1]: |
180 | // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values, |
181 | // leading to count(n - 1 - indices[1], k - 1) possibilities. |
182 | // - (...) |
183 | // - The subsequent combinations with same indices[0..=i], but differing indices[i]: |
184 | // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i). |
185 | // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. |
186 | |
187 | // Below, `n0` resembles indices[i]. |
188 | indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { |
189 | sum.checked_add(count(n - 1 - *n0, k - i)?) |
190 | }) |
191 | } |
192 | } |
193 | |