| 1 | use crate::error::{Error, Result, UnsupportedFeature}; |
| 2 | use crate::huffman::{fill_default_mjpeg_tables, HuffmanDecoder, HuffmanTable}; |
| 3 | use crate::marker::Marker; |
| 4 | use crate::parser::{ |
| 5 | parse_app, parse_com, parse_dht, parse_dqt, parse_dri, parse_sof, parse_sos, |
| 6 | AdobeColorTransform, AppData, CodingProcess, Component, Dimensions, EntropyCoding, FrameInfo, |
| 7 | IccChunk, ScanInfo, |
| 8 | }; |
| 9 | use crate::read_u8; |
| 10 | use crate::upsampler::Upsampler; |
| 11 | use crate::worker::{compute_image_parallel, PreferWorkerKind, RowData, Worker, WorkerScope}; |
| 12 | use alloc::borrow::ToOwned; |
| 13 | use alloc::sync::Arc; |
| 14 | use alloc::vec::Vec; |
| 15 | use alloc::{format, vec}; |
| 16 | use core::cmp; |
| 17 | use core::mem; |
| 18 | use core::ops::Range; |
| 19 | use std::io::Read; |
| 20 | |
| 21 | pub const MAX_COMPONENTS: usize = 4; |
| 22 | |
| 23 | mod lossless; |
| 24 | use self::lossless::compute_image_lossless; |
| 25 | |
| 26 | #[rustfmt::skip] |
| 27 | static UNZIGZAG: [u8; 64] = [ |
| 28 | 0, 1, 8, 16, 9, 2, 3, 10, |
| 29 | 17, 24, 32, 25, 18, 11, 4, 5, |
| 30 | 12, 19, 26, 33, 40, 48, 41, 34, |
| 31 | 27, 20, 13, 6, 7, 14, 21, 28, |
| 32 | 35, 42, 49, 56, 57, 50, 43, 36, |
| 33 | 29, 22, 15, 23, 30, 37, 44, 51, |
| 34 | 58, 59, 52, 45, 38, 31, 39, 46, |
| 35 | 53, 60, 61, 54, 47, 55, 62, 63, |
| 36 | ]; |
| 37 | |
| 38 | /// An enumeration over combinations of color spaces and bit depths a pixel can have. |
| 39 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 40 | pub enum PixelFormat { |
| 41 | /// Luminance (grayscale), 8 bits |
| 42 | L8, |
| 43 | /// Luminance (grayscale), 16 bits |
| 44 | L16, |
| 45 | /// RGB, 8 bits per channel |
| 46 | RGB24, |
| 47 | /// CMYK, 8 bits per channel |
| 48 | CMYK32, |
| 49 | } |
| 50 | |
| 51 | impl PixelFormat { |
| 52 | /// Determine the size in bytes of each pixel in this format |
| 53 | pub fn pixel_bytes(&self) -> usize { |
| 54 | match self { |
| 55 | PixelFormat::L8 => 1, |
| 56 | PixelFormat::L16 => 2, |
| 57 | PixelFormat::RGB24 => 3, |
| 58 | PixelFormat::CMYK32 => 4, |
| 59 | } |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | /// Represents metadata of an image. |
| 64 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 65 | pub struct ImageInfo { |
| 66 | /// The width of the image, in pixels. |
| 67 | pub width: u16, |
| 68 | /// The height of the image, in pixels. |
| 69 | pub height: u16, |
| 70 | /// The pixel format of the image. |
| 71 | pub pixel_format: PixelFormat, |
| 72 | /// The coding process of the image. |
| 73 | pub coding_process: CodingProcess, |
| 74 | } |
| 75 | |
| 76 | /// Describes the colour transform to apply before binary data is returned |
| 77 | #[derive (Debug, Clone, Copy, PartialEq, Eq, Hash)] |
| 78 | #[non_exhaustive ] |
| 79 | pub enum ColorTransform { |
| 80 | /// No transform should be applied and the data is returned as-is. |
| 81 | None, |
| 82 | /// Unknown colour transformation |
| 83 | Unknown, |
| 84 | /// Grayscale transform should be applied (expects 1 channel) |
| 85 | Grayscale, |
| 86 | /// RGB transform should be applied. |
| 87 | RGB, |
| 88 | /// YCbCr transform should be applied. |
| 89 | YCbCr, |
| 90 | /// CMYK transform should be applied. |
| 91 | CMYK, |
| 92 | /// YCCK transform should be applied. |
| 93 | YCCK, |
| 94 | /// big gamut Y/Cb/Cr, bg-sYCC |
| 95 | JcsBgYcc, |
| 96 | /// big gamut red/green/blue, bg-sRGB |
| 97 | JcsBgRgb, |
| 98 | } |
| 99 | |
| 100 | /// JPEG decoder |
| 101 | pub struct Decoder<R> { |
| 102 | reader: R, |
| 103 | |
| 104 | frame: Option<FrameInfo>, |
| 105 | dc_huffman_tables: Vec<Option<HuffmanTable>>, |
| 106 | ac_huffman_tables: Vec<Option<HuffmanTable>>, |
| 107 | quantization_tables: [Option<Arc<[u16; 64]>>; 4], |
| 108 | |
| 109 | restart_interval: u16, |
| 110 | |
| 111 | adobe_color_transform: Option<AdobeColorTransform>, |
| 112 | color_transform: Option<ColorTransform>, |
| 113 | |
| 114 | is_jfif: bool, |
| 115 | is_mjpeg: bool, |
| 116 | |
| 117 | icc_markers: Vec<IccChunk>, |
| 118 | |
| 119 | exif_data: Option<Vec<u8>>, |
| 120 | xmp_data: Option<Vec<u8>>, |
| 121 | psir_data: Option<Vec<u8>>, |
| 122 | |
| 123 | // Used for progressive JPEGs. |
| 124 | coefficients: Vec<Vec<i16>>, |
| 125 | // Bitmask of which coefficients has been completely decoded. |
| 126 | coefficients_finished: [u64; MAX_COMPONENTS], |
| 127 | |
| 128 | // Maximum allowed size of decoded image buffer |
| 129 | decoding_buffer_size_limit: usize, |
| 130 | } |
| 131 | |
| 132 | impl<R: Read> Decoder<R> { |
| 133 | /// Creates a new `Decoder` using the reader `reader`. |
| 134 | pub fn new(reader: R) -> Decoder<R> { |
| 135 | Decoder { |
| 136 | reader, |
| 137 | frame: None, |
| 138 | dc_huffman_tables: vec![None, None, None, None], |
| 139 | ac_huffman_tables: vec![None, None, None, None], |
| 140 | quantization_tables: [None, None, None, None], |
| 141 | restart_interval: 0, |
| 142 | adobe_color_transform: None, |
| 143 | color_transform: None, |
| 144 | is_jfif: false, |
| 145 | is_mjpeg: false, |
| 146 | icc_markers: Vec::new(), |
| 147 | exif_data: None, |
| 148 | xmp_data: None, |
| 149 | psir_data: None, |
| 150 | coefficients: Vec::new(), |
| 151 | coefficients_finished: [0; MAX_COMPONENTS], |
| 152 | decoding_buffer_size_limit: usize::MAX, |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | /// Colour transform to use when decoding the image. App segments relating to colour transforms |
| 157 | /// will be ignored. |
| 158 | pub fn set_color_transform(&mut self, transform: ColorTransform) { |
| 159 | self.color_transform = Some(transform); |
| 160 | } |
| 161 | |
| 162 | /// Set maximum buffer size allowed for decoded images |
| 163 | pub fn set_max_decoding_buffer_size(&mut self, max: usize) { |
| 164 | self.decoding_buffer_size_limit = max; |
| 165 | } |
| 166 | |
| 167 | /// Returns metadata about the image. |
| 168 | /// |
| 169 | /// The returned value will be `None` until a call to either `read_info` or `decode` has |
| 170 | /// returned `Ok`. |
| 171 | pub fn info(&self) -> Option<ImageInfo> { |
| 172 | match self.frame { |
| 173 | Some(ref frame) => { |
| 174 | let pixel_format = match frame.components.len() { |
| 175 | 1 => match frame.precision { |
| 176 | 2..=8 => PixelFormat::L8, |
| 177 | 9..=16 => PixelFormat::L16, |
| 178 | _ => panic!(), |
| 179 | }, |
| 180 | 3 => PixelFormat::RGB24, |
| 181 | 4 => PixelFormat::CMYK32, |
| 182 | _ => panic!(), |
| 183 | }; |
| 184 | |
| 185 | Some(ImageInfo { |
| 186 | width: frame.output_size.width, |
| 187 | height: frame.output_size.height, |
| 188 | pixel_format, |
| 189 | coding_process: frame.coding_process, |
| 190 | }) |
| 191 | } |
| 192 | None => None, |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /// Returns raw exif data, starting at the TIFF header, if the image contains any. |
| 197 | /// |
| 198 | /// The returned value will be `None` until a call to `decode` has returned `Ok`. |
| 199 | pub fn exif_data(&self) -> Option<&[u8]> { |
| 200 | self.exif_data.as_deref() |
| 201 | } |
| 202 | |
| 203 | /// Returns the raw XMP packet if there is any. |
| 204 | /// |
| 205 | /// The returned value will be `None` until a call to `decode` has returned `Ok`. |
| 206 | pub fn xmp_data(&self) -> Option<&[u8]> { |
| 207 | self.xmp_data.as_deref() |
| 208 | } |
| 209 | |
| 210 | /// Returns the embeded icc profile if the image contains one. |
| 211 | pub fn icc_profile(&self) -> Option<Vec<u8>> { |
| 212 | let mut marker_present: [Option<&IccChunk>; 256] = [None; 256]; |
| 213 | let num_markers = self.icc_markers.len(); |
| 214 | if num_markers == 0 || num_markers >= 255 { |
| 215 | return None; |
| 216 | } |
| 217 | // check the validity of the markers |
| 218 | for chunk in &self.icc_markers { |
| 219 | if usize::from(chunk.num_markers) != num_markers { |
| 220 | // all the lengths must match |
| 221 | return None; |
| 222 | } |
| 223 | if chunk.seq_no == 0 { |
| 224 | return None; |
| 225 | } |
| 226 | if marker_present[usize::from(chunk.seq_no)].is_some() { |
| 227 | // duplicate seq_no |
| 228 | return None; |
| 229 | } else { |
| 230 | marker_present[usize::from(chunk.seq_no)] = Some(chunk); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // assemble them together by seq_no failing if any are missing |
| 235 | let mut data = Vec::new(); |
| 236 | // seq_no's start at 1 |
| 237 | for &chunk in marker_present.get(1..=num_markers)? { |
| 238 | data.extend_from_slice(&chunk?.data); |
| 239 | } |
| 240 | Some(data) |
| 241 | } |
| 242 | |
| 243 | /// Heuristic to avoid starting thread, synchronization if we expect a small amount of |
| 244 | /// parallelism to be utilized. |
| 245 | fn select_worker(frame: &FrameInfo, worker_preference: PreferWorkerKind) -> PreferWorkerKind { |
| 246 | const PARALLELISM_THRESHOLD: u64 = 128 * 128; |
| 247 | |
| 248 | match worker_preference { |
| 249 | PreferWorkerKind::Immediate => PreferWorkerKind::Immediate, |
| 250 | PreferWorkerKind::Multithreaded => { |
| 251 | let width: u64 = frame.output_size.width.into(); |
| 252 | let height: u64 = frame.output_size.width.into(); |
| 253 | if width * height > PARALLELISM_THRESHOLD { |
| 254 | PreferWorkerKind::Multithreaded |
| 255 | } else { |
| 256 | PreferWorkerKind::Immediate |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | /// Tries to read metadata from the image without decoding it. |
| 263 | /// |
| 264 | /// If successful, the metadata can be obtained using the `info` method. |
| 265 | pub fn read_info(&mut self) -> Result<()> { |
| 266 | WorkerScope::with(|worker| self.decode_internal(true, worker)).map(|_| ()) |
| 267 | } |
| 268 | |
| 269 | /// Configure the decoder to scale the image during decoding. |
| 270 | /// |
| 271 | /// This efficiently scales the image by the smallest supported scale |
| 272 | /// factor that produces an image larger than or equal to the requested |
| 273 | /// size in at least one axis. The currently implemented scale factors |
| 274 | /// are 1/8, 1/4, 1/2 and 1. |
| 275 | /// |
| 276 | /// To generate a thumbnail of an exact size, pass the desired size and |
| 277 | /// then scale to the final size using a traditional resampling algorithm. |
| 278 | pub fn scale(&mut self, requested_width: u16, requested_height: u16) -> Result<(u16, u16)> { |
| 279 | self.read_info()?; |
| 280 | let frame = self.frame.as_mut().unwrap(); |
| 281 | let idct_size = crate::idct::choose_idct_size( |
| 282 | frame.image_size, |
| 283 | Dimensions { |
| 284 | width: requested_width, |
| 285 | height: requested_height, |
| 286 | }, |
| 287 | ); |
| 288 | frame.update_idct_size(idct_size)?; |
| 289 | Ok((frame.output_size.width, frame.output_size.height)) |
| 290 | } |
| 291 | |
| 292 | /// Decodes the image and returns the decoded pixels if successful. |
| 293 | pub fn decode(&mut self) -> Result<Vec<u8>> { |
| 294 | WorkerScope::with(|worker| self.decode_internal(false, worker)) |
| 295 | } |
| 296 | |
| 297 | fn decode_internal( |
| 298 | &mut self, |
| 299 | stop_after_metadata: bool, |
| 300 | worker_scope: &WorkerScope, |
| 301 | ) -> Result<Vec<u8>> { |
| 302 | if stop_after_metadata && self.frame.is_some() { |
| 303 | // The metadata has already been read. |
| 304 | return Ok(Vec::new()); |
| 305 | } else if self.frame.is_none() |
| 306 | && (read_u8(&mut self.reader)? != 0xFF |
| 307 | || Marker::from_u8(read_u8(&mut self.reader)?) != Some(Marker::SOI)) |
| 308 | { |
| 309 | return Err(Error::Format( |
| 310 | "first two bytes are not an SOI marker" .to_owned(), |
| 311 | )); |
| 312 | } |
| 313 | |
| 314 | let mut previous_marker = Marker::SOI; |
| 315 | let mut pending_marker = None; |
| 316 | let mut scans_processed = 0; |
| 317 | let mut planes = vec![ |
| 318 | Vec::<u8>::new(); |
| 319 | self.frame |
| 320 | .as_ref() |
| 321 | .map_or(0, |frame| frame.components.len()) |
| 322 | ]; |
| 323 | let mut planes_u16 = vec![ |
| 324 | Vec::<u16>::new(); |
| 325 | self.frame |
| 326 | .as_ref() |
| 327 | .map_or(0, |frame| frame.components.len()) |
| 328 | ]; |
| 329 | |
| 330 | loop { |
| 331 | let marker = match pending_marker.take() { |
| 332 | Some(m) => m, |
| 333 | None => self.read_marker()?, |
| 334 | }; |
| 335 | |
| 336 | match marker { |
| 337 | // Frame header |
| 338 | Marker::SOF(..) => { |
| 339 | // Section 4.10 |
| 340 | // "An image contains only one frame in the cases of sequential and |
| 341 | // progressive coding processes; an image contains multiple frames for the |
| 342 | // hierarchical mode." |
| 343 | if self.frame.is_some() { |
| 344 | return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)); |
| 345 | } |
| 346 | |
| 347 | let frame = parse_sof(&mut self.reader, marker)?; |
| 348 | let component_count = frame.components.len(); |
| 349 | |
| 350 | if frame.is_differential { |
| 351 | return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)); |
| 352 | } |
| 353 | if frame.entropy_coding == EntropyCoding::Arithmetic { |
| 354 | return Err(Error::Unsupported( |
| 355 | UnsupportedFeature::ArithmeticEntropyCoding, |
| 356 | )); |
| 357 | } |
| 358 | if frame.precision != 8 && frame.coding_process != CodingProcess::Lossless { |
| 359 | return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision( |
| 360 | frame.precision, |
| 361 | ))); |
| 362 | } |
| 363 | if !(2..=16).contains(&frame.precision) { |
| 364 | return Err(Error::Unsupported(UnsupportedFeature::SamplePrecision( |
| 365 | frame.precision, |
| 366 | ))); |
| 367 | } |
| 368 | if component_count != 1 && component_count != 3 && component_count != 4 { |
| 369 | return Err(Error::Unsupported(UnsupportedFeature::ComponentCount( |
| 370 | component_count as u8, |
| 371 | ))); |
| 372 | } |
| 373 | |
| 374 | // Make sure we support the subsampling ratios used. |
| 375 | let _ = Upsampler::new( |
| 376 | &frame.components, |
| 377 | frame.image_size.width, |
| 378 | frame.image_size.height, |
| 379 | )?; |
| 380 | |
| 381 | self.frame = Some(frame); |
| 382 | |
| 383 | if stop_after_metadata { |
| 384 | return Ok(Vec::new()); |
| 385 | } |
| 386 | |
| 387 | planes = vec![Vec::new(); component_count]; |
| 388 | planes_u16 = vec![Vec::new(); component_count]; |
| 389 | } |
| 390 | |
| 391 | // Scan header |
| 392 | Marker::SOS => { |
| 393 | if self.frame.is_none() { |
| 394 | return Err(Error::Format("scan encountered before frame" .to_owned())); |
| 395 | } |
| 396 | |
| 397 | let frame = self.frame.clone().unwrap(); |
| 398 | let scan = parse_sos(&mut self.reader, &frame)?; |
| 399 | |
| 400 | if frame.coding_process == CodingProcess::DctProgressive |
| 401 | && self.coefficients.is_empty() |
| 402 | { |
| 403 | self.coefficients = frame |
| 404 | .components |
| 405 | .iter() |
| 406 | .map(|c| { |
| 407 | let block_count = |
| 408 | c.block_size.width as usize * c.block_size.height as usize; |
| 409 | vec![0; block_count * 64] |
| 410 | }) |
| 411 | .collect(); |
| 412 | } |
| 413 | |
| 414 | if frame.coding_process == CodingProcess::Lossless { |
| 415 | let (marker, data) = self.decode_scan_lossless(&frame, &scan)?; |
| 416 | |
| 417 | for (i, plane) in data |
| 418 | .into_iter() |
| 419 | .enumerate() |
| 420 | .filter(|(_, plane)| !plane.is_empty()) |
| 421 | { |
| 422 | planes_u16[i] = plane; |
| 423 | } |
| 424 | pending_marker = marker; |
| 425 | } else { |
| 426 | // This was previously buggy, so let's explain the log here a bit. When a |
| 427 | // progressive frame is encoded then the coefficients (DC, AC) of each |
| 428 | // component (=color plane) can be split amongst scans. In particular it can |
| 429 | // happen or at least occurs in the wild that a scan contains coefficient 0 of |
| 430 | // all components. If now one but not all components had all other coefficients |
| 431 | // delivered in previous scans then such a scan contains all components but |
| 432 | // completes only some of them! (This is technically NOT permitted for all |
| 433 | // other coefficients as the standard dictates that scans with coefficients |
| 434 | // other than the 0th must only contain ONE component so we would either |
| 435 | // complete it or not. We may want to detect and error in case more component |
| 436 | // are part of a scan than allowed.) What a weird edge case. |
| 437 | // |
| 438 | // But this means we track precisely which components get completed here. |
| 439 | let mut finished = [false; MAX_COMPONENTS]; |
| 440 | |
| 441 | if scan.successive_approximation_low == 0 { |
| 442 | for (&i, component_finished) in |
| 443 | scan.component_indices.iter().zip(&mut finished) |
| 444 | { |
| 445 | if self.coefficients_finished[i] == !0 { |
| 446 | continue; |
| 447 | } |
| 448 | for j in scan.spectral_selection.clone() { |
| 449 | self.coefficients_finished[i] |= 1 << j; |
| 450 | } |
| 451 | if self.coefficients_finished[i] == !0 { |
| 452 | *component_finished = true; |
| 453 | } |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | let preference = |
| 458 | Self::select_worker(&frame, PreferWorkerKind::Multithreaded); |
| 459 | |
| 460 | let (marker, data) = worker_scope |
| 461 | .get_or_init_worker(preference, |worker| { |
| 462 | self.decode_scan(&frame, &scan, worker, &finished) |
| 463 | })?; |
| 464 | |
| 465 | if let Some(data) = data { |
| 466 | for (i, plane) in data |
| 467 | .into_iter() |
| 468 | .enumerate() |
| 469 | .filter(|(_, plane)| !plane.is_empty()) |
| 470 | { |
| 471 | if self.coefficients_finished[i] == !0 { |
| 472 | planes[i] = plane; |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | pending_marker = marker; |
| 478 | } |
| 479 | |
| 480 | scans_processed += 1; |
| 481 | } |
| 482 | |
| 483 | // Table-specification and miscellaneous markers |
| 484 | // Quantization table-specification |
| 485 | Marker::DQT => { |
| 486 | let tables = parse_dqt(&mut self.reader)?; |
| 487 | |
| 488 | for (i, &table) in tables.iter().enumerate() { |
| 489 | if let Some(table) = table { |
| 490 | let mut unzigzagged_table = [0u16; 64]; |
| 491 | |
| 492 | for j in 0..64 { |
| 493 | unzigzagged_table[UNZIGZAG[j] as usize] = table[j]; |
| 494 | } |
| 495 | |
| 496 | self.quantization_tables[i] = Some(Arc::new(unzigzagged_table)); |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | // Huffman table-specification |
| 501 | Marker::DHT => { |
| 502 | let is_baseline = self.frame.as_ref().map(|frame| frame.is_baseline); |
| 503 | let (dc_tables, ac_tables) = parse_dht(&mut self.reader, is_baseline)?; |
| 504 | |
| 505 | let current_dc_tables = mem::take(&mut self.dc_huffman_tables); |
| 506 | self.dc_huffman_tables = dc_tables |
| 507 | .into_iter() |
| 508 | .zip(current_dc_tables) |
| 509 | .map(|(a, b)| a.or(b)) |
| 510 | .collect(); |
| 511 | |
| 512 | let current_ac_tables = mem::take(&mut self.ac_huffman_tables); |
| 513 | self.ac_huffman_tables = ac_tables |
| 514 | .into_iter() |
| 515 | .zip(current_ac_tables) |
| 516 | .map(|(a, b)| a.or(b)) |
| 517 | .collect(); |
| 518 | } |
| 519 | // Arithmetic conditioning table-specification |
| 520 | Marker::DAC => { |
| 521 | return Err(Error::Unsupported( |
| 522 | UnsupportedFeature::ArithmeticEntropyCoding, |
| 523 | )) |
| 524 | } |
| 525 | // Restart interval definition |
| 526 | Marker::DRI => self.restart_interval = parse_dri(&mut self.reader)?, |
| 527 | // Comment |
| 528 | Marker::COM => { |
| 529 | let _comment = parse_com(&mut self.reader)?; |
| 530 | } |
| 531 | // Application data |
| 532 | Marker::APP(..) => { |
| 533 | if let Some(data) = parse_app(&mut self.reader, marker)? { |
| 534 | match data { |
| 535 | AppData::Adobe(color_transform) => { |
| 536 | self.adobe_color_transform = Some(color_transform) |
| 537 | } |
| 538 | AppData::Jfif => { |
| 539 | // From the JFIF spec: |
| 540 | // "The APP0 marker is used to identify a JPEG FIF file. |
| 541 | // The JPEG FIF APP0 marker is mandatory right after the SOI marker." |
| 542 | // Some JPEGs in the wild does not follow this though, so we allow |
| 543 | // JFIF headers anywhere APP0 markers are allowed. |
| 544 | /* |
| 545 | if previous_marker != Marker::SOI { |
| 546 | return Err(Error::Format("the JFIF APP0 marker must come right after the SOI marker".to_owned())); |
| 547 | } |
| 548 | */ |
| 549 | |
| 550 | self.is_jfif = true; |
| 551 | } |
| 552 | AppData::Avi1 => self.is_mjpeg = true, |
| 553 | AppData::Icc(icc) => self.icc_markers.push(icc), |
| 554 | AppData::Exif(data) => self.exif_data = Some(data), |
| 555 | AppData::Xmp(data) => self.xmp_data = Some(data), |
| 556 | AppData::Psir(data) => self.psir_data = Some(data), |
| 557 | } |
| 558 | } |
| 559 | } |
| 560 | // Restart |
| 561 | Marker::RST(..) => { |
| 562 | // Some encoders emit a final RST marker after entropy-coded data, which |
| 563 | // decode_scan does not take care of. So if we encounter one, we ignore it. |
| 564 | if previous_marker != Marker::SOS { |
| 565 | return Err(Error::Format( |
| 566 | "RST found outside of entropy-coded data" .to_owned(), |
| 567 | )); |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | // Define number of lines |
| 572 | Marker::DNL => { |
| 573 | // Section B.2.1 |
| 574 | // "If a DNL segment (see B.2.5) is present, it shall immediately follow the first scan." |
| 575 | if previous_marker != Marker::SOS || scans_processed != 1 { |
| 576 | return Err(Error::Format( |
| 577 | "DNL is only allowed immediately after the first scan" .to_owned(), |
| 578 | )); |
| 579 | } |
| 580 | |
| 581 | return Err(Error::Unsupported(UnsupportedFeature::DNL)); |
| 582 | } |
| 583 | |
| 584 | // Hierarchical mode markers |
| 585 | Marker::DHP | Marker::EXP => { |
| 586 | return Err(Error::Unsupported(UnsupportedFeature::Hierarchical)) |
| 587 | } |
| 588 | |
| 589 | // End of image |
| 590 | Marker::EOI => break, |
| 591 | |
| 592 | _ => { |
| 593 | return Err(Error::Format(format!( |
| 594 | " {:?} marker found where not allowed" , |
| 595 | marker |
| 596 | ))) |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | previous_marker = marker; |
| 601 | } |
| 602 | |
| 603 | if self.frame.is_none() { |
| 604 | return Err(Error::Format( |
| 605 | "end of image encountered before frame" .to_owned(), |
| 606 | )); |
| 607 | } |
| 608 | |
| 609 | let frame = self.frame.as_ref().unwrap(); |
| 610 | let preference = Self::select_worker(frame, PreferWorkerKind::Multithreaded); |
| 611 | |
| 612 | worker_scope.get_or_init_worker(preference, |worker| { |
| 613 | self.decode_planes(worker, planes, planes_u16) |
| 614 | }) |
| 615 | } |
| 616 | |
| 617 | fn decode_planes( |
| 618 | &mut self, |
| 619 | worker: &mut dyn Worker, |
| 620 | mut planes: Vec<Vec<u8>>, |
| 621 | planes_u16: Vec<Vec<u16>>, |
| 622 | ) -> Result<Vec<u8>> { |
| 623 | if self.frame.is_none() { |
| 624 | return Err(Error::Format( |
| 625 | "end of image encountered before frame" .to_owned(), |
| 626 | )); |
| 627 | } |
| 628 | |
| 629 | let frame = self.frame.as_ref().unwrap(); |
| 630 | |
| 631 | if frame |
| 632 | .components |
| 633 | .len() |
| 634 | .checked_mul(frame.output_size.width.into()) |
| 635 | .and_then(|m| m.checked_mul(frame.output_size.height.into())) |
| 636 | .map_or(true, |m| self.decoding_buffer_size_limit < m) |
| 637 | { |
| 638 | return Err(Error::Format( |
| 639 | "size of decoded image exceeds maximum allowed size" .to_owned(), |
| 640 | )); |
| 641 | } |
| 642 | |
| 643 | // If we're decoding a progressive jpeg and a component is unfinished, render what we've got |
| 644 | if frame.coding_process == CodingProcess::DctProgressive |
| 645 | && self.coefficients.len() == frame.components.len() |
| 646 | { |
| 647 | for (i, component) in frame.components.iter().enumerate() { |
| 648 | // Only dealing with unfinished components |
| 649 | if self.coefficients_finished[i] == !0 { |
| 650 | continue; |
| 651 | } |
| 652 | |
| 653 | let quantization_table = |
| 654 | match self.quantization_tables[component.quantization_table_index].clone() { |
| 655 | Some(quantization_table) => quantization_table, |
| 656 | None => continue, |
| 657 | }; |
| 658 | |
| 659 | // Get the worker prepared |
| 660 | let row_data = RowData { |
| 661 | index: i, |
| 662 | component: component.clone(), |
| 663 | quantization_table, |
| 664 | }; |
| 665 | worker.start(row_data)?; |
| 666 | |
| 667 | // Send the rows over to the worker and collect the result |
| 668 | let coefficients_per_mcu_row = usize::from(component.block_size.width) |
| 669 | * usize::from(component.vertical_sampling_factor) |
| 670 | * 64; |
| 671 | |
| 672 | let mut tasks = (0..frame.mcu_size.height).map(|mcu_y| { |
| 673 | let offset = usize::from(mcu_y) * coefficients_per_mcu_row; |
| 674 | let row_coefficients = |
| 675 | self.coefficients[i][offset..offset + coefficients_per_mcu_row].to_vec(); |
| 676 | (i, row_coefficients) |
| 677 | }); |
| 678 | |
| 679 | // FIXME: additional potential work stealing opportunities for rayon case if we |
| 680 | // also internally can parallelize over components. |
| 681 | worker.append_rows(&mut tasks)?; |
| 682 | planes[i] = worker.get_result(i)?; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | if frame.coding_process == CodingProcess::Lossless { |
| 687 | compute_image_lossless(frame, planes_u16) |
| 688 | } else { |
| 689 | compute_image( |
| 690 | &frame.components, |
| 691 | planes, |
| 692 | frame.output_size, |
| 693 | self.determine_color_transform(), |
| 694 | ) |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | fn determine_color_transform(&self) -> ColorTransform { |
| 699 | if let Some(color_transform) = self.color_transform { |
| 700 | return color_transform; |
| 701 | } |
| 702 | |
| 703 | let frame = self.frame.as_ref().unwrap(); |
| 704 | |
| 705 | if frame.components.len() == 1 { |
| 706 | return ColorTransform::Grayscale; |
| 707 | } |
| 708 | |
| 709 | // Using logic for determining colour as described here: https://entropymine.wordpress.com/2018/10/22/how-is-a-jpeg-images-color-type-determined/ |
| 710 | |
| 711 | if frame.components.len() == 3 { |
| 712 | match ( |
| 713 | frame.components[0].identifier, |
| 714 | frame.components[1].identifier, |
| 715 | frame.components[2].identifier, |
| 716 | ) { |
| 717 | (1, 2, 3) => { |
| 718 | return ColorTransform::YCbCr; |
| 719 | } |
| 720 | (1, 34, 35) => { |
| 721 | return ColorTransform::JcsBgYcc; |
| 722 | } |
| 723 | (82, 71, 66) => { |
| 724 | return ColorTransform::RGB; |
| 725 | } |
| 726 | (114, 103, 98) => { |
| 727 | return ColorTransform::JcsBgRgb; |
| 728 | } |
| 729 | _ => {} |
| 730 | } |
| 731 | |
| 732 | if self.is_jfif { |
| 733 | return ColorTransform::YCbCr; |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | if let Some(colour_transform) = self.adobe_color_transform { |
| 738 | match colour_transform { |
| 739 | AdobeColorTransform::Unknown => { |
| 740 | if frame.components.len() == 3 { |
| 741 | return ColorTransform::RGB; |
| 742 | } else if frame.components.len() == 4 { |
| 743 | return ColorTransform::CMYK; |
| 744 | } |
| 745 | } |
| 746 | AdobeColorTransform::YCbCr => { |
| 747 | return ColorTransform::YCbCr; |
| 748 | } |
| 749 | AdobeColorTransform::YCCK => { |
| 750 | return ColorTransform::YCCK; |
| 751 | } |
| 752 | } |
| 753 | } else if frame.components.len() == 4 { |
| 754 | return ColorTransform::CMYK; |
| 755 | } |
| 756 | |
| 757 | if frame.components.len() == 4 { |
| 758 | ColorTransform::YCCK |
| 759 | } else if frame.components.len() == 3 { |
| 760 | ColorTransform::YCbCr |
| 761 | } else { |
| 762 | ColorTransform::Unknown |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | fn read_marker(&mut self) -> Result<Marker> { |
| 767 | loop { |
| 768 | // This should be an error as the JPEG spec doesn't allow extraneous data between marker segments. |
| 769 | // libjpeg allows this though and there are images in the wild utilising it, so we are |
| 770 | // forced to support this behavior. |
| 771 | // Sony Ericsson P990i is an example of a device which produce this sort of JPEGs. |
| 772 | while read_u8(&mut self.reader)? != 0xFF {} |
| 773 | |
| 774 | // Section B.1.1.2 |
| 775 | // All markers are assigned two-byte codes: an X’FF’ byte followed by a |
| 776 | // byte which is not equal to 0 or X’FF’ (see Table B.1). Any marker may |
| 777 | // optionally be preceded by any number of fill bytes, which are bytes |
| 778 | // assigned code X’FF’. |
| 779 | let mut byte = read_u8(&mut self.reader)?; |
| 780 | |
| 781 | // Section B.1.1.2 |
| 782 | // "Any marker may optionally be preceded by any number of fill bytes, which are bytes assigned code X’FF’." |
| 783 | while byte == 0xFF { |
| 784 | byte = read_u8(&mut self.reader)?; |
| 785 | } |
| 786 | |
| 787 | if byte != 0x00 && byte != 0xFF { |
| 788 | return Ok(Marker::from_u8(byte).unwrap()); |
| 789 | } |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | #[allow (clippy::type_complexity)] |
| 794 | fn decode_scan( |
| 795 | &mut self, |
| 796 | frame: &FrameInfo, |
| 797 | scan: &ScanInfo, |
| 798 | worker: &mut dyn Worker, |
| 799 | finished: &[bool; MAX_COMPONENTS], |
| 800 | ) -> Result<(Option<Marker>, Option<Vec<Vec<u8>>>)> { |
| 801 | assert!(scan.component_indices.len() <= MAX_COMPONENTS); |
| 802 | |
| 803 | let components: Vec<Component> = scan |
| 804 | .component_indices |
| 805 | .iter() |
| 806 | .map(|&i| frame.components[i].clone()) |
| 807 | .collect(); |
| 808 | |
| 809 | // Verify that all required quantization tables has been set. |
| 810 | if components |
| 811 | .iter() |
| 812 | .any(|component| self.quantization_tables[component.quantization_table_index].is_none()) |
| 813 | { |
| 814 | return Err(Error::Format("use of unset quantization table" .to_owned())); |
| 815 | } |
| 816 | |
| 817 | if self.is_mjpeg { |
| 818 | fill_default_mjpeg_tables( |
| 819 | scan, |
| 820 | &mut self.dc_huffman_tables, |
| 821 | &mut self.ac_huffman_tables, |
| 822 | ); |
| 823 | } |
| 824 | |
| 825 | // Verify that all required huffman tables has been set. |
| 826 | if scan.spectral_selection.start == 0 |
| 827 | && scan |
| 828 | .dc_table_indices |
| 829 | .iter() |
| 830 | .any(|&i| self.dc_huffman_tables[i].is_none()) |
| 831 | { |
| 832 | return Err(Error::Format( |
| 833 | "scan makes use of unset dc huffman table" .to_owned(), |
| 834 | )); |
| 835 | } |
| 836 | if scan.spectral_selection.end > 1 |
| 837 | && scan |
| 838 | .ac_table_indices |
| 839 | .iter() |
| 840 | .any(|&i| self.ac_huffman_tables[i].is_none()) |
| 841 | { |
| 842 | return Err(Error::Format( |
| 843 | "scan makes use of unset ac huffman table" .to_owned(), |
| 844 | )); |
| 845 | } |
| 846 | |
| 847 | // Prepare the worker thread for the work to come. |
| 848 | for (i, component) in components.iter().enumerate() { |
| 849 | if finished[i] { |
| 850 | let row_data = RowData { |
| 851 | index: i, |
| 852 | component: component.clone(), |
| 853 | quantization_table: self.quantization_tables |
| 854 | [component.quantization_table_index] |
| 855 | .clone() |
| 856 | .unwrap(), |
| 857 | }; |
| 858 | |
| 859 | worker.start(row_data)?; |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | let is_progressive = frame.coding_process == CodingProcess::DctProgressive; |
| 864 | let is_interleaved = components.len() > 1; |
| 865 | let mut dummy_block = [0i16; 64]; |
| 866 | let mut huffman = HuffmanDecoder::new(); |
| 867 | let mut dc_predictors = [0i16; MAX_COMPONENTS]; |
| 868 | let mut mcus_left_until_restart = self.restart_interval; |
| 869 | let mut expected_rst_num = 0; |
| 870 | let mut eob_run = 0; |
| 871 | let mut mcu_row_coefficients = vec![vec![]; components.len()]; |
| 872 | |
| 873 | if !is_progressive { |
| 874 | for (i, component) in components.iter().enumerate().filter(|&(i, _)| finished[i]) { |
| 875 | let coefficients_per_mcu_row = component.block_size.width as usize |
| 876 | * component.vertical_sampling_factor as usize |
| 877 | * 64; |
| 878 | mcu_row_coefficients[i] = vec![0i16; coefficients_per_mcu_row]; |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | // 4.8.2 |
| 883 | // When reading from the stream, if the data is non-interleaved then an MCU consists of |
| 884 | // exactly one block (effectively a 1x1 sample). |
| 885 | let (mcu_horizontal_samples, mcu_vertical_samples) = if is_interleaved { |
| 886 | let horizontal = components |
| 887 | .iter() |
| 888 | .map(|component| component.horizontal_sampling_factor as u16) |
| 889 | .collect::<Vec<_>>(); |
| 890 | let vertical = components |
| 891 | .iter() |
| 892 | .map(|component| component.vertical_sampling_factor as u16) |
| 893 | .collect::<Vec<_>>(); |
| 894 | (horizontal, vertical) |
| 895 | } else { |
| 896 | (vec![1], vec![1]) |
| 897 | }; |
| 898 | |
| 899 | // This also affects how many MCU values we read from stream. If it's a non-interleaved stream, |
| 900 | // the MCUs will be exactly the block count. |
| 901 | let (max_mcu_x, max_mcu_y) = if is_interleaved { |
| 902 | (frame.mcu_size.width, frame.mcu_size.height) |
| 903 | } else { |
| 904 | ( |
| 905 | components[0].block_size.width, |
| 906 | components[0].block_size.height, |
| 907 | ) |
| 908 | }; |
| 909 | |
| 910 | for mcu_y in 0..max_mcu_y { |
| 911 | if mcu_y * 8 >= frame.image_size.height { |
| 912 | break; |
| 913 | } |
| 914 | |
| 915 | for mcu_x in 0..max_mcu_x { |
| 916 | if mcu_x * 8 >= frame.image_size.width { |
| 917 | break; |
| 918 | } |
| 919 | |
| 920 | if self.restart_interval > 0 { |
| 921 | if mcus_left_until_restart == 0 { |
| 922 | match huffman.take_marker(&mut self.reader)? { |
| 923 | Some(Marker::RST(n)) => { |
| 924 | if n != expected_rst_num { |
| 925 | return Err(Error::Format(format!( |
| 926 | "found RST {} where RST {} was expected" , |
| 927 | n, expected_rst_num |
| 928 | ))); |
| 929 | } |
| 930 | |
| 931 | huffman.reset(); |
| 932 | // Section F.2.1.3.1 |
| 933 | dc_predictors = [0i16; MAX_COMPONENTS]; |
| 934 | // Section G.1.2.2 |
| 935 | eob_run = 0; |
| 936 | |
| 937 | expected_rst_num = (expected_rst_num + 1) % 8; |
| 938 | mcus_left_until_restart = self.restart_interval; |
| 939 | } |
| 940 | Some(marker) => { |
| 941 | return Err(Error::Format(format!( |
| 942 | "found marker {:?} inside scan where RST {} was expected" , |
| 943 | marker, expected_rst_num |
| 944 | ))) |
| 945 | } |
| 946 | None => { |
| 947 | return Err(Error::Format(format!( |
| 948 | "no marker found where RST {} was expected" , |
| 949 | expected_rst_num |
| 950 | ))) |
| 951 | } |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | mcus_left_until_restart -= 1; |
| 956 | } |
| 957 | |
| 958 | for (i, component) in components.iter().enumerate() { |
| 959 | for v_pos in 0..mcu_vertical_samples[i] { |
| 960 | for h_pos in 0..mcu_horizontal_samples[i] { |
| 961 | let coefficients = if is_progressive { |
| 962 | let block_y = (mcu_y * mcu_vertical_samples[i] + v_pos) as usize; |
| 963 | let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize; |
| 964 | let block_offset = |
| 965 | (block_y * component.block_size.width as usize + block_x) * 64; |
| 966 | &mut self.coefficients[scan.component_indices[i]] |
| 967 | [block_offset..block_offset + 64] |
| 968 | } else if finished[i] { |
| 969 | // Because the worker thread operates in batches as if we were always interleaved, we |
| 970 | // need to distinguish between a single-shot buffer and one that's currently in process |
| 971 | // (for a non-interleaved) stream |
| 972 | let mcu_batch_current_row = if is_interleaved { |
| 973 | 0 |
| 974 | } else { |
| 975 | mcu_y % component.vertical_sampling_factor as u16 |
| 976 | }; |
| 977 | |
| 978 | let block_y = (mcu_batch_current_row * mcu_vertical_samples[i] |
| 979 | + v_pos) as usize; |
| 980 | let block_x = (mcu_x * mcu_horizontal_samples[i] + h_pos) as usize; |
| 981 | let block_offset = |
| 982 | (block_y * component.block_size.width as usize + block_x) * 64; |
| 983 | &mut mcu_row_coefficients[i][block_offset..block_offset + 64] |
| 984 | } else { |
| 985 | &mut dummy_block[..64] |
| 986 | } |
| 987 | .try_into() |
| 988 | .unwrap(); |
| 989 | |
| 990 | if scan.successive_approximation_high == 0 { |
| 991 | decode_block( |
| 992 | &mut self.reader, |
| 993 | coefficients, |
| 994 | &mut huffman, |
| 995 | self.dc_huffman_tables[scan.dc_table_indices[i]].as_ref(), |
| 996 | self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(), |
| 997 | scan.spectral_selection.clone(), |
| 998 | scan.successive_approximation_low, |
| 999 | &mut eob_run, |
| 1000 | &mut dc_predictors[i], |
| 1001 | )?; |
| 1002 | } else { |
| 1003 | decode_block_successive_approximation( |
| 1004 | &mut self.reader, |
| 1005 | coefficients, |
| 1006 | &mut huffman, |
| 1007 | self.ac_huffman_tables[scan.ac_table_indices[i]].as_ref(), |
| 1008 | scan.spectral_selection.clone(), |
| 1009 | scan.successive_approximation_low, |
| 1010 | &mut eob_run, |
| 1011 | )?; |
| 1012 | } |
| 1013 | } |
| 1014 | } |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | // Send the coefficients from this MCU row to the worker thread for dequantization and idct. |
| 1019 | for (i, component) in components.iter().enumerate() { |
| 1020 | if finished[i] { |
| 1021 | // In the event of non-interleaved streams, if we're still building the buffer out, |
| 1022 | // keep going; don't send it yet. We also need to ensure we don't skip over the last |
| 1023 | // row(s) of the image. |
| 1024 | if !is_interleaved |
| 1025 | && (mcu_y + 1) * 8 < frame.image_size.height |
| 1026 | && (mcu_y + 1) % component.vertical_sampling_factor as u16 > 0 |
| 1027 | { |
| 1028 | continue; |
| 1029 | } |
| 1030 | |
| 1031 | let coefficients_per_mcu_row = component.block_size.width as usize |
| 1032 | * component.vertical_sampling_factor as usize |
| 1033 | * 64; |
| 1034 | |
| 1035 | let row_coefficients = if is_progressive { |
| 1036 | // Because non-interleaved streams will have multiple MCU rows concatenated together, |
| 1037 | // the row for calculating the offset is different. |
| 1038 | let worker_mcu_y = if is_interleaved { |
| 1039 | mcu_y |
| 1040 | } else { |
| 1041 | // Explicitly doing floor-division here |
| 1042 | mcu_y / component.vertical_sampling_factor as u16 |
| 1043 | }; |
| 1044 | |
| 1045 | let offset = worker_mcu_y as usize * coefficients_per_mcu_row; |
| 1046 | self.coefficients[scan.component_indices[i]] |
| 1047 | [offset..offset + coefficients_per_mcu_row] |
| 1048 | .to_vec() |
| 1049 | } else { |
| 1050 | mem::replace( |
| 1051 | &mut mcu_row_coefficients[i], |
| 1052 | vec![0i16; coefficients_per_mcu_row], |
| 1053 | ) |
| 1054 | }; |
| 1055 | |
| 1056 | // FIXME: additional potential work stealing opportunities for rayon case if we |
| 1057 | // also internally can parallelize over components. |
| 1058 | worker.append_row((i, row_coefficients))?; |
| 1059 | } |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | let mut marker = huffman.take_marker(&mut self.reader)?; |
| 1064 | while let Some(Marker::RST(_)) = marker { |
| 1065 | marker = self.read_marker().ok(); |
| 1066 | } |
| 1067 | |
| 1068 | if finished.iter().any(|&c| c) { |
| 1069 | // Retrieve all the data from the worker thread. |
| 1070 | let mut data = vec![Vec::new(); frame.components.len()]; |
| 1071 | |
| 1072 | for (i, &component_index) in scan.component_indices.iter().enumerate() { |
| 1073 | if finished[i] { |
| 1074 | data[component_index] = worker.get_result(i)?; |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | Ok((marker, Some(data))) |
| 1079 | } else { |
| 1080 | Ok((marker, None)) |
| 1081 | } |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | #[allow (clippy::too_many_arguments)] |
| 1086 | fn decode_block<R: Read>( |
| 1087 | reader: &mut R, |
| 1088 | coefficients: &mut [i16; 64], |
| 1089 | huffman: &mut HuffmanDecoder, |
| 1090 | dc_table: Option<&HuffmanTable>, |
| 1091 | ac_table: Option<&HuffmanTable>, |
| 1092 | spectral_selection: Range<u8>, |
| 1093 | successive_approximation_low: u8, |
| 1094 | eob_run: &mut u16, |
| 1095 | dc_predictor: &mut i16, |
| 1096 | ) -> Result<()> { |
| 1097 | debug_assert_eq!(coefficients.len(), 64); |
| 1098 | |
| 1099 | if spectral_selection.start == 0 { |
| 1100 | // Section F.2.2.1 |
| 1101 | // Figure F.12 |
| 1102 | let value = huffman.decode(reader, dc_table.unwrap())?; |
| 1103 | let diff = match value { |
| 1104 | 0 => 0, |
| 1105 | 1..=11 => huffman.receive_extend(reader, value)?, |
| 1106 | _ => { |
| 1107 | // Section F.1.2.1.1 |
| 1108 | // Table F.1 |
| 1109 | return Err(Error::Format( |
| 1110 | "invalid DC difference magnitude category" .to_owned(), |
| 1111 | )); |
| 1112 | } |
| 1113 | }; |
| 1114 | |
| 1115 | // Malicious JPEG files can cause this add to overflow, therefore we use wrapping_add. |
| 1116 | // One example of such a file is tests/crashtest/images/dc-predictor-overflow.jpg |
| 1117 | *dc_predictor = dc_predictor.wrapping_add(diff); |
| 1118 | coefficients[0] = *dc_predictor << successive_approximation_low; |
| 1119 | } |
| 1120 | |
| 1121 | let mut index = cmp::max(spectral_selection.start, 1); |
| 1122 | |
| 1123 | if index < spectral_selection.end && *eob_run > 0 { |
| 1124 | *eob_run -= 1; |
| 1125 | return Ok(()); |
| 1126 | } |
| 1127 | |
| 1128 | // Section F.1.2.2.1 |
| 1129 | while index < spectral_selection.end { |
| 1130 | if let Some((value, run)) = huffman.decode_fast_ac(reader, ac_table.unwrap())? { |
| 1131 | index += run; |
| 1132 | |
| 1133 | if index >= spectral_selection.end { |
| 1134 | break; |
| 1135 | } |
| 1136 | |
| 1137 | coefficients[UNZIGZAG[index as usize] as usize] = value << successive_approximation_low; |
| 1138 | index += 1; |
| 1139 | } else { |
| 1140 | let byte = huffman.decode(reader, ac_table.unwrap())?; |
| 1141 | let r = byte >> 4; |
| 1142 | let s = byte & 0x0f; |
| 1143 | |
| 1144 | if s == 0 { |
| 1145 | match r { |
| 1146 | 15 => index += 16, // Run length of 16 zero coefficients. |
| 1147 | _ => { |
| 1148 | *eob_run = (1 << r) - 1; |
| 1149 | |
| 1150 | if r > 0 { |
| 1151 | *eob_run += huffman.get_bits(reader, r)?; |
| 1152 | } |
| 1153 | |
| 1154 | break; |
| 1155 | } |
| 1156 | } |
| 1157 | } else { |
| 1158 | index += r; |
| 1159 | |
| 1160 | if index >= spectral_selection.end { |
| 1161 | break; |
| 1162 | } |
| 1163 | |
| 1164 | coefficients[UNZIGZAG[index as usize] as usize] = |
| 1165 | huffman.receive_extend(reader, s)? << successive_approximation_low; |
| 1166 | index += 1; |
| 1167 | } |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | Ok(()) |
| 1172 | } |
| 1173 | |
| 1174 | fn decode_block_successive_approximation<R: Read>( |
| 1175 | reader: &mut R, |
| 1176 | coefficients: &mut [i16; 64], |
| 1177 | huffman: &mut HuffmanDecoder, |
| 1178 | ac_table: Option<&HuffmanTable>, |
| 1179 | spectral_selection: Range<u8>, |
| 1180 | successive_approximation_low: u8, |
| 1181 | eob_run: &mut u16, |
| 1182 | ) -> Result<()> { |
| 1183 | debug_assert_eq!(coefficients.len(), 64); |
| 1184 | |
| 1185 | let bit = 1 << successive_approximation_low; |
| 1186 | |
| 1187 | if spectral_selection.start == 0 { |
| 1188 | // Section G.1.2.1 |
| 1189 | |
| 1190 | if huffman.get_bits(reader, 1)? == 1 { |
| 1191 | coefficients[0] |= bit; |
| 1192 | } |
| 1193 | } else { |
| 1194 | // Section G.1.2.3 |
| 1195 | |
| 1196 | if *eob_run > 0 { |
| 1197 | *eob_run -= 1; |
| 1198 | refine_non_zeroes(reader, coefficients, huffman, spectral_selection, 64, bit)?; |
| 1199 | return Ok(()); |
| 1200 | } |
| 1201 | |
| 1202 | let mut index = spectral_selection.start; |
| 1203 | |
| 1204 | while index < spectral_selection.end { |
| 1205 | let byte = huffman.decode(reader, ac_table.unwrap())?; |
| 1206 | let r = byte >> 4; |
| 1207 | let s = byte & 0x0f; |
| 1208 | |
| 1209 | let mut zero_run_length = r; |
| 1210 | let mut value = 0; |
| 1211 | |
| 1212 | match s { |
| 1213 | 0 => { |
| 1214 | match r { |
| 1215 | 15 => { |
| 1216 | // Run length of 16 zero coefficients. |
| 1217 | // We don't need to do anything special here, zero_run_length is 15 |
| 1218 | // and then value (which is zero) gets written, resulting in 16 |
| 1219 | // zero coefficients. |
| 1220 | } |
| 1221 | _ => { |
| 1222 | *eob_run = (1 << r) - 1; |
| 1223 | |
| 1224 | if r > 0 { |
| 1225 | *eob_run += huffman.get_bits(reader, r)?; |
| 1226 | } |
| 1227 | |
| 1228 | // Force end of block. |
| 1229 | zero_run_length = 64; |
| 1230 | } |
| 1231 | } |
| 1232 | } |
| 1233 | 1 => { |
| 1234 | if huffman.get_bits(reader, 1)? == 1 { |
| 1235 | value = bit; |
| 1236 | } else { |
| 1237 | value = -bit; |
| 1238 | } |
| 1239 | } |
| 1240 | _ => return Err(Error::Format("unexpected huffman code" .to_owned())), |
| 1241 | } |
| 1242 | |
| 1243 | let range = Range { |
| 1244 | start: index, |
| 1245 | end: spectral_selection.end, |
| 1246 | }; |
| 1247 | index = refine_non_zeroes(reader, coefficients, huffman, range, zero_run_length, bit)?; |
| 1248 | |
| 1249 | if value != 0 { |
| 1250 | coefficients[UNZIGZAG[index as usize] as usize] = value; |
| 1251 | } |
| 1252 | |
| 1253 | index += 1; |
| 1254 | } |
| 1255 | } |
| 1256 | |
| 1257 | Ok(()) |
| 1258 | } |
| 1259 | |
| 1260 | fn refine_non_zeroes<R: Read>( |
| 1261 | reader: &mut R, |
| 1262 | coefficients: &mut [i16; 64], |
| 1263 | huffman: &mut HuffmanDecoder, |
| 1264 | range: Range<u8>, |
| 1265 | zrl: u8, |
| 1266 | bit: i16, |
| 1267 | ) -> Result<u8> { |
| 1268 | debug_assert_eq!(coefficients.len(), 64); |
| 1269 | |
| 1270 | let last = range.end - 1; |
| 1271 | let mut zero_run_length = zrl; |
| 1272 | |
| 1273 | for i in range { |
| 1274 | let index = UNZIGZAG[i as usize] as usize; |
| 1275 | |
| 1276 | let coefficient = &mut coefficients[index]; |
| 1277 | |
| 1278 | if *coefficient == 0 { |
| 1279 | if zero_run_length == 0 { |
| 1280 | return Ok(i); |
| 1281 | } |
| 1282 | |
| 1283 | zero_run_length -= 1; |
| 1284 | } else if huffman.get_bits(reader, 1)? == 1 && *coefficient & bit == 0 { |
| 1285 | if *coefficient > 0 { |
| 1286 | *coefficient = coefficient |
| 1287 | .checked_add(bit) |
| 1288 | .ok_or_else(|| Error::Format("Coefficient overflow" .to_owned()))?; |
| 1289 | } else { |
| 1290 | *coefficient = coefficient |
| 1291 | .checked_sub(bit) |
| 1292 | .ok_or_else(|| Error::Format("Coefficient overflow" .to_owned()))?; |
| 1293 | } |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | Ok(last) |
| 1298 | } |
| 1299 | |
| 1300 | fn compute_image( |
| 1301 | components: &[Component], |
| 1302 | mut data: Vec<Vec<u8>>, |
| 1303 | output_size: Dimensions, |
| 1304 | color_transform: ColorTransform, |
| 1305 | ) -> Result<Vec<u8>> { |
| 1306 | if data.is_empty() || data.iter().any(Vec::is_empty) { |
| 1307 | return Err(Error::Format("not all components have data" .to_owned())); |
| 1308 | } |
| 1309 | |
| 1310 | if components.len() == 1 { |
| 1311 | let component = &components[0]; |
| 1312 | let mut decoded: Vec<u8> = data.remove(0); |
| 1313 | |
| 1314 | let width = component.size.width as usize; |
| 1315 | let height = component.size.height as usize; |
| 1316 | let size = width * height; |
| 1317 | let line_stride = component.block_size.width as usize * component.dct_scale; |
| 1318 | |
| 1319 | // if the image width is a multiple of the block size, |
| 1320 | // then we don't have to move bytes in the decoded data |
| 1321 | if usize::from(output_size.width) != line_stride { |
| 1322 | // The first line already starts at index 0, so we need to move only lines 1..height |
| 1323 | // We move from the top down because all lines are being moved backwards. |
| 1324 | for y in 1..height { |
| 1325 | let destination_idx = y * width; |
| 1326 | let source_idx = y * line_stride; |
| 1327 | let end = source_idx + width; |
| 1328 | decoded.copy_within(source_idx..end, destination_idx); |
| 1329 | } |
| 1330 | } |
| 1331 | decoded.resize(size, 0); |
| 1332 | Ok(decoded) |
| 1333 | } else { |
| 1334 | compute_image_parallel(components, data, output_size, color_transform) |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | #[allow (clippy::type_complexity)] |
| 1339 | pub(crate) fn choose_color_convert_func( |
| 1340 | component_count: usize, |
| 1341 | color_transform: ColorTransform, |
| 1342 | ) -> Result<fn(&[Vec<u8>], &mut [u8])> { |
| 1343 | match component_count { |
| 1344 | 3 => match color_transform { |
| 1345 | ColorTransform::None => Ok(color_no_convert), |
| 1346 | ColorTransform::Grayscale => Err(Error::Format( |
| 1347 | "Invalid number of channels (3) for Grayscale data" .to_string(), |
| 1348 | )), |
| 1349 | ColorTransform::RGB => Ok(color_convert_line_rgb), |
| 1350 | ColorTransform::YCbCr => Ok(color_convert_line_ycbcr), |
| 1351 | ColorTransform::CMYK => Err(Error::Format( |
| 1352 | "Invalid number of channels (3) for CMYK data" .to_string(), |
| 1353 | )), |
| 1354 | ColorTransform::YCCK => Err(Error::Format( |
| 1355 | "Invalid number of channels (3) for YCCK data" .to_string(), |
| 1356 | )), |
| 1357 | ColorTransform::JcsBgYcc => Err(Error::Unsupported( |
| 1358 | UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc), |
| 1359 | )), |
| 1360 | ColorTransform::JcsBgRgb => Err(Error::Unsupported( |
| 1361 | UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb), |
| 1362 | )), |
| 1363 | ColorTransform::Unknown => Err(Error::Format("Unknown colour transform" .to_string())), |
| 1364 | }, |
| 1365 | 4 => match color_transform { |
| 1366 | ColorTransform::None => Ok(color_no_convert), |
| 1367 | ColorTransform::Grayscale => Err(Error::Format( |
| 1368 | "Invalid number of channels (4) for Grayscale data" .to_string(), |
| 1369 | )), |
| 1370 | ColorTransform::RGB => Err(Error::Format( |
| 1371 | "Invalid number of channels (4) for RGB data" .to_string(), |
| 1372 | )), |
| 1373 | ColorTransform::YCbCr => Err(Error::Format( |
| 1374 | "Invalid number of channels (4) for YCbCr data" .to_string(), |
| 1375 | )), |
| 1376 | ColorTransform::CMYK => Ok(color_convert_line_cmyk), |
| 1377 | ColorTransform::YCCK => Ok(color_convert_line_ycck), |
| 1378 | |
| 1379 | ColorTransform::JcsBgYcc => Err(Error::Unsupported( |
| 1380 | UnsupportedFeature::ColorTransform(ColorTransform::JcsBgYcc), |
| 1381 | )), |
| 1382 | ColorTransform::JcsBgRgb => Err(Error::Unsupported( |
| 1383 | UnsupportedFeature::ColorTransform(ColorTransform::JcsBgRgb), |
| 1384 | )), |
| 1385 | ColorTransform::Unknown => Err(Error::Format("Unknown colour transform" .to_string())), |
| 1386 | }, |
| 1387 | _ => panic!(), |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | fn color_convert_line_rgb(data: &[Vec<u8>], output: &mut [u8]) { |
| 1392 | assert!(data.len() == 3, "wrong number of components for rgb" ); |
| 1393 | let [r: &Vec, g: &Vec, b: &Vec]: &[Vec<u8>; 3] = data.try_into().unwrap(); |
| 1394 | for (((chunk: &mut [u8], r: &u8), g: &u8), b: &u8) in outputimpl Iterator |
| 1395 | .chunks_exact_mut(chunk_size:3) |
| 1396 | .zip(r.iter()) |
| 1397 | .zip(g.iter()) |
| 1398 | .zip(b.iter()) |
| 1399 | { |
| 1400 | chunk[0] = *r; |
| 1401 | chunk[1] = *g; |
| 1402 | chunk[2] = *b; |
| 1403 | } |
| 1404 | } |
| 1405 | |
| 1406 | fn color_convert_line_ycbcr(data: &[Vec<u8>], output: &mut [u8]) { |
| 1407 | assert!(data.len() == 3, "wrong number of components for ycbcr" ); |
| 1408 | let [y, cb, cr]: &[_; 3] = data.try_into().unwrap(); |
| 1409 | |
| 1410 | #[cfg (not(feature = "platform_independent" ))] |
| 1411 | let arch_specific_pixels = { |
| 1412 | if let Some(ycbcr) = crate::arch::get_color_convert_line_ycbcr() { |
| 1413 | #[allow (unsafe_code)] |
| 1414 | unsafe { |
| 1415 | ycbcr(y, cb, cr, output) |
| 1416 | } |
| 1417 | } else { |
| 1418 | 0 |
| 1419 | } |
| 1420 | }; |
| 1421 | |
| 1422 | #[cfg (feature = "platform_independent" )] |
| 1423 | let arch_specific_pixels = 0; |
| 1424 | |
| 1425 | for (((chunk, y), cb), cr) in output |
| 1426 | .chunks_exact_mut(3) |
| 1427 | .zip(y.iter()) |
| 1428 | .zip(cb.iter()) |
| 1429 | .zip(cr.iter()) |
| 1430 | .skip(arch_specific_pixels) |
| 1431 | { |
| 1432 | let (r, g, b) = ycbcr_to_rgb(*y, *cb, *cr); |
| 1433 | chunk[0] = r; |
| 1434 | chunk[1] = g; |
| 1435 | chunk[2] = b; |
| 1436 | } |
| 1437 | } |
| 1438 | |
| 1439 | fn color_convert_line_ycck(data: &[Vec<u8>], output: &mut [u8]) { |
| 1440 | assert!(data.len() == 4, "wrong number of components for ycck" ); |
| 1441 | let [c: &Vec, m: &Vec, y: &Vec, k: &Vec]: &[Vec<u8>; 4] = data.try_into().unwrap(); |
| 1442 | |
| 1443 | for ((((chunk: &mut [u8], c: &u8), m: &u8), y: &u8), k: &u8) in outputimpl Iterator |
| 1444 | .chunks_exact_mut(chunk_size:4) |
| 1445 | .zip(c.iter()) |
| 1446 | .zip(m.iter()) |
| 1447 | .zip(y.iter()) |
| 1448 | .zip(k.iter()) |
| 1449 | { |
| 1450 | let (r: u8, g: u8, b: u8) = ycbcr_to_rgb(*c, *m, *y); |
| 1451 | chunk[0] = r; |
| 1452 | chunk[1] = g; |
| 1453 | chunk[2] = b; |
| 1454 | chunk[3] = 255 - *k; |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | fn color_convert_line_cmyk(data: &[Vec<u8>], output: &mut [u8]) { |
| 1459 | assert!(data.len() == 4, "wrong number of components for cmyk" ); |
| 1460 | let [c: &Vec, m: &Vec, y: &Vec, k: &Vec]: &[Vec<u8>; 4] = data.try_into().unwrap(); |
| 1461 | |
| 1462 | for ((((chunk: &mut [u8], c: &u8), m: &u8), y: &u8), k: &u8) in outputimpl Iterator |
| 1463 | .chunks_exact_mut(chunk_size:4) |
| 1464 | .zip(c.iter()) |
| 1465 | .zip(m.iter()) |
| 1466 | .zip(y.iter()) |
| 1467 | .zip(k.iter()) |
| 1468 | { |
| 1469 | chunk[0] = 255 - c; |
| 1470 | chunk[1] = 255 - m; |
| 1471 | chunk[2] = 255 - y; |
| 1472 | chunk[3] = 255 - k; |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | fn color_no_convert(data: &[Vec<u8>], output: &mut [u8]) { |
| 1477 | let mut output_iter: IterMut<'_, u8> = output.iter_mut(); |
| 1478 | |
| 1479 | for pixel: &Vec in data { |
| 1480 | for d: &u8 in pixel { |
| 1481 | *(output_iter.next().unwrap()) = *d; |
| 1482 | } |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | const FIXED_POINT_OFFSET: i32 = 20; |
| 1487 | const HALF: i32 = (1 << FIXED_POINT_OFFSET) / 2; |
| 1488 | |
| 1489 | // ITU-R BT.601 |
| 1490 | // Based on libjpeg-turbo's jdcolext.c |
| 1491 | fn ycbcr_to_rgb(y: u8, cb: u8, cr: u8) -> (u8, u8, u8) { |
| 1492 | let y: i32 = y as i32 * (1 << FIXED_POINT_OFFSET) + HALF; |
| 1493 | let cb: i32 = cb as i32 - 128; |
| 1494 | let cr: i32 = cr as i32 - 128; |
| 1495 | |
| 1496 | let r: u8 = clamp_fixed_point(y + stbi_f2f(1.40200) * cr); |
| 1497 | let g: u8 = clamp_fixed_point(y - stbi_f2f(0.34414) * cb - stbi_f2f(0.71414) * cr); |
| 1498 | let b: u8 = clamp_fixed_point(y + stbi_f2f(1.77200) * cb); |
| 1499 | (r, g, b) |
| 1500 | } |
| 1501 | |
| 1502 | fn stbi_f2f(x: f32) -> i32 { |
| 1503 | (x * ((1 << FIXED_POINT_OFFSET) as f32) + 0.5) as i32 |
| 1504 | } |
| 1505 | |
| 1506 | fn clamp_fixed_point(value: i32) -> u8 { |
| 1507 | (value >> FIXED_POINT_OFFSET).min(255).max(0) as u8 |
| 1508 | } |
| 1509 | |