1 | // Copyright 2019 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! An ellipse arc. |
5 | |
6 | use crate::{Affine, Ellipse, PathEl, Point, Rect, Shape, Vec2}; |
7 | use core::{ |
8 | f64::consts::{FRAC_PI_2, PI}, |
9 | iter, |
10 | ops::Mul, |
11 | }; |
12 | |
13 | #[cfg (not(feature = "std" ))] |
14 | use crate::common::FloatFuncs; |
15 | |
16 | /// A single arc segment. |
17 | #[derive (Clone, Copy, Debug, PartialEq)] |
18 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
19 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
20 | pub struct Arc { |
21 | /// The arc's centre point. |
22 | pub center: Point, |
23 | /// The arc's radii, where the vector's x-component is the radius in the |
24 | /// positive x direction after applying `x_rotation`. |
25 | pub radii: Vec2, |
26 | /// The start angle in radians. |
27 | pub start_angle: f64, |
28 | /// The angle between the start and end of the arc, in radians. |
29 | pub sweep_angle: f64, |
30 | /// How much the arc is rotated, in radians. |
31 | pub x_rotation: f64, |
32 | } |
33 | |
34 | impl Arc { |
35 | /// Create a new `Arc`. |
36 | pub fn new( |
37 | center: impl Into<Point>, |
38 | radii: impl Into<Vec2>, |
39 | start_angle: f64, |
40 | sweep_angle: f64, |
41 | x_rotation: f64, |
42 | ) -> Self { |
43 | Self { |
44 | center: center.into(), |
45 | radii: radii.into(), |
46 | start_angle, |
47 | sweep_angle, |
48 | x_rotation, |
49 | } |
50 | } |
51 | |
52 | /// Create an iterator generating Bezier path elements. |
53 | /// |
54 | /// The generated elements can be appended to an existing bezier path. |
55 | pub fn append_iter(&self, tolerance: f64) -> ArcAppendIter { |
56 | let sign = self.sweep_angle.signum(); |
57 | let scaled_err = self.radii.x.max(self.radii.y) / tolerance; |
58 | // Number of subdivisions per ellipse based on error tolerance. |
59 | // Note: this may slightly underestimate the error for quadrants. |
60 | let n_err = (1.1163 * scaled_err).powf(1.0 / 6.0).max(3.999_999); |
61 | let n = (n_err * self.sweep_angle.abs() * (1.0 / (2.0 * PI))).ceil(); |
62 | let angle_step = self.sweep_angle / n; |
63 | let n = n as usize; |
64 | let arm_len = (4.0 / 3.0) * (0.25 * angle_step).abs().tan() * sign; |
65 | let angle0 = self.start_angle; |
66 | let p0 = sample_ellipse(self.radii, self.x_rotation, angle0); |
67 | |
68 | ArcAppendIter { |
69 | idx: 0, |
70 | |
71 | center: self.center, |
72 | radii: self.radii, |
73 | x_rotation: self.x_rotation, |
74 | n, |
75 | arm_len, |
76 | angle_step, |
77 | |
78 | p0, |
79 | angle0, |
80 | } |
81 | } |
82 | |
83 | /// Converts an Arc into a series of cubic bezier segments. |
84 | /// |
85 | /// Closure will be invoked for each segment. |
86 | pub fn to_cubic_beziers<P>(self, tolerance: f64, mut p: P) |
87 | where |
88 | P: FnMut(Point, Point, Point), |
89 | { |
90 | let mut path = self.append_iter(tolerance); |
91 | while let Some(PathEl::CurveTo(p1, p2, p3)) = path.next() { |
92 | p(p1, p2, p3); |
93 | } |
94 | } |
95 | } |
96 | |
97 | #[doc (hidden)] |
98 | pub struct ArcAppendIter { |
99 | idx: usize, |
100 | |
101 | center: Point, |
102 | radii: Vec2, |
103 | x_rotation: f64, |
104 | n: usize, |
105 | arm_len: f64, |
106 | angle_step: f64, |
107 | |
108 | p0: Vec2, |
109 | angle0: f64, |
110 | } |
111 | |
112 | impl Iterator for ArcAppendIter { |
113 | type Item = PathEl; |
114 | |
115 | fn next(&mut self) -> Option<Self::Item> { |
116 | if self.idx >= self.n { |
117 | return None; |
118 | } |
119 | |
120 | let angle1 = self.angle0 + self.angle_step; |
121 | let p0 = self.p0; |
122 | let p1 = p0 |
123 | + self.arm_len * sample_ellipse(self.radii, self.x_rotation, self.angle0 + FRAC_PI_2); |
124 | let p3 = sample_ellipse(self.radii, self.x_rotation, angle1); |
125 | let p2 = |
126 | p3 - self.arm_len * sample_ellipse(self.radii, self.x_rotation, angle1 + FRAC_PI_2); |
127 | |
128 | self.angle0 = angle1; |
129 | self.p0 = p3; |
130 | self.idx += 1; |
131 | |
132 | Some(PathEl::CurveTo( |
133 | self.center + p1, |
134 | self.center + p2, |
135 | self.center + p3, |
136 | )) |
137 | } |
138 | } |
139 | |
140 | /// Take the ellipse radii, how the radii are rotated, and the sweep angle, and return a point on |
141 | /// the ellipse. |
142 | fn sample_ellipse(radii: Vec2, x_rotation: f64, angle: f64) -> Vec2 { |
143 | let (angle_sin: f64, angle_cos: f64) = angle.sin_cos(); |
144 | let u: f64 = radii.x * angle_cos; |
145 | let v: f64 = radii.y * angle_sin; |
146 | rotate_pt(pt:Vec2::new(u, v), angle:x_rotation) |
147 | } |
148 | |
149 | /// Rotate `pt` about the origin by `angle` radians. |
150 | fn rotate_pt(pt: Vec2, angle: f64) -> Vec2 { |
151 | let (angle_sin: f64, angle_cos: f64) = angle.sin_cos(); |
152 | Vec2::new( |
153 | x:pt.x * angle_cos - pt.y * angle_sin, |
154 | y:pt.x * angle_sin + pt.y * angle_cos, |
155 | ) |
156 | } |
157 | |
158 | impl Shape for Arc { |
159 | type PathElementsIter<'iter> = iter::Chain<iter::Once<PathEl>, ArcAppendIter>; |
160 | |
161 | fn path_elements(&self, tolerance: f64) -> Self::PathElementsIter<'_> { |
162 | let p0 = sample_ellipse(self.radii, self.x_rotation, self.start_angle); |
163 | iter::once(PathEl::MoveTo(self.center + p0)).chain(self.append_iter(tolerance)) |
164 | } |
165 | |
166 | /// Note: shape isn't closed so area is not well defined. |
167 | #[inline ] |
168 | fn area(&self) -> f64 { |
169 | let Vec2 { x, y } = self.radii; |
170 | PI * x * y |
171 | } |
172 | |
173 | /// The perimeter of the ellipse. |
174 | /// |
175 | /// Note: Finding the perimeter of an ellipse is [fairly involved][wikipedia], |
176 | /// so for now we just approximate by using the bezier curve representation. |
177 | /// |
178 | /// [wikipedia]: https://en.wikipedia.org/wiki/Ellipse#Circumference |
179 | #[inline ] |
180 | fn perimeter(&self, accuracy: f64) -> f64 { |
181 | self.path_segments(0.1).perimeter(accuracy) |
182 | } |
183 | |
184 | /// Note: shape isn't closed, so a point's winding number is not well defined. |
185 | #[inline ] |
186 | fn winding(&self, pt: Point) -> i32 { |
187 | self.path_segments(0.1).winding(pt) |
188 | } |
189 | |
190 | #[inline ] |
191 | fn bounding_box(&self) -> Rect { |
192 | self.path_segments(0.1).bounding_box() |
193 | } |
194 | } |
195 | |
196 | impl Mul<Arc> for Affine { |
197 | type Output = Arc; |
198 | |
199 | fn mul(self, arc: Arc) -> Self::Output { |
200 | let ellipse: Ellipse = self * Ellipse::new(arc.center, arc.radii, arc.x_rotation); |
201 | let center: Point = ellipse.center(); |
202 | let (radii: Vec2, rotation: f64) = ellipse.radii_and_rotation(); |
203 | Arc { |
204 | center, |
205 | radii, |
206 | x_rotation: rotation, |
207 | start_angle: arc.start_angle, |
208 | sweep_angle: arc.sweep_angle, |
209 | } |
210 | } |
211 | } |
212 | |