| 1 | // Copyright (c) 2017-2022, The rav1e contributors. All rights reserved |
| 2 | // |
| 3 | // This source code is subject to the terms of the BSD 2 Clause License and |
| 4 | // the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| 5 | // was not distributed with this source code in the LICENSE file, you can |
| 6 | // obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| 7 | // Media Patent License 1.0 was not distributed with this source code in the |
| 8 | // PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| 9 | |
| 10 | cfg_if::cfg_if! { |
| 11 | if #[cfg(nasm_x86_64)] { |
| 12 | use crate::asm::x86::lrf::*; |
| 13 | } else { |
| 14 | use self::rust::*; |
| 15 | } |
| 16 | } |
| 17 | |
| 18 | use crate::api::SGRComplexityLevel; |
| 19 | use crate::color::ChromaSampling::Cs400; |
| 20 | use crate::context::{MAX_PLANES, SB_SIZE}; |
| 21 | use crate::encoder::FrameInvariants; |
| 22 | use crate::frame::{ |
| 23 | AsRegion, Frame, Plane, PlaneConfig, PlaneOffset, PlaneSlice, |
| 24 | }; |
| 25 | use crate::tiling::{Area, PlaneRegion, PlaneRegionMut, Rect}; |
| 26 | use crate::util::{clamp, CastFromPrimitive, ILog, Pixel}; |
| 27 | use std::cmp; |
| 28 | use std::iter::FusedIterator; |
| 29 | use std::ops::{Index, IndexMut}; |
| 30 | |
| 31 | pub const RESTORATION_TILESIZE_MAX_LOG2: usize = 8; |
| 32 | |
| 33 | pub const RESTORE_NONE: u8 = 0; |
| 34 | pub const RESTORE_SWITCHABLE: u8 = 1; |
| 35 | pub const RESTORE_WIENER: u8 = 2; |
| 36 | pub const RESTORE_SGRPROJ: u8 = 3; |
| 37 | |
| 38 | pub const WIENER_TAPS_MIN: [i8; 3] = [-5, -23, -17]; |
| 39 | pub const WIENER_TAPS_MID: [i8; 3] = [3, -7, 15]; |
| 40 | pub const WIENER_TAPS_MAX: [i8; 3] = [10, 8, 46]; |
| 41 | #[allow (unused)] |
| 42 | pub const WIENER_TAPS_K: [i8; 3] = [1, 2, 3]; |
| 43 | pub const WIENER_BITS: usize = 7; |
| 44 | |
| 45 | pub const SGRPROJ_XQD_MIN: [i8; 2] = [-96, -32]; |
| 46 | pub const SGRPROJ_XQD_MID: [i8; 2] = [-32, 31]; |
| 47 | pub const SGRPROJ_XQD_MAX: [i8; 2] = [31, 95]; |
| 48 | pub const SGRPROJ_PRJ_SUBEXP_K: u8 = 4; |
| 49 | pub const SGRPROJ_PRJ_BITS: u8 = 7; |
| 50 | pub const SGRPROJ_PARAMS_BITS: u8 = 4; |
| 51 | pub const SGRPROJ_MTABLE_BITS: u8 = 20; |
| 52 | pub const SGRPROJ_SGR_BITS: u8 = 8; |
| 53 | pub const SGRPROJ_RECIP_BITS: u8 = 12; |
| 54 | pub const SGRPROJ_RST_BITS: u8 = 4; |
| 55 | pub const SGRPROJ_PARAMS_S: [[u32; 2]; 1 << SGRPROJ_PARAMS_BITS] = [ |
| 56 | [140, 3236], |
| 57 | [112, 2158], |
| 58 | [93, 1618], |
| 59 | [80, 1438], |
| 60 | [70, 1295], |
| 61 | [58, 1177], |
| 62 | [47, 1079], |
| 63 | [37, 996], |
| 64 | [30, 925], |
| 65 | [25, 863], |
| 66 | [0, 2589], |
| 67 | [0, 1618], |
| 68 | [0, 1177], |
| 69 | [0, 925], |
| 70 | [56, 0], |
| 71 | [22, 0], |
| 72 | ]; |
| 73 | |
| 74 | // List of indices to SGRPROJ_PARAMS_S values that at a given complexity level. |
| 75 | // SGRPROJ_ALL_SETS contains every possible index |
| 76 | const SGRPROJ_ALL_SETS: &[u8] = |
| 77 | &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; |
| 78 | // SGRPROJ_REDUCED_SETS has half of the values. Using only these values gives |
| 79 | // most of the gains from sgr. The decision of which values to use is somewhat |
| 80 | // arbitrary. The sgr parameters has 3 discontinuous groups. The first has both |
| 81 | // parameters as non-zero. The other two are distinguishable by which of the |
| 82 | // two parameters is zero. There are an even number of each of these groups and |
| 83 | // the non-zero parameters grow as the indices increase. This array uses the |
| 84 | // 1st, 3rd, ... smallest params of each group. |
| 85 | const SGRPROJ_REDUCED_SETS: &[u8] = &[1, 3, 5, 7, 9, 11, 13, 15]; |
| 86 | |
| 87 | pub const fn get_sgr_sets(complexity: SGRComplexityLevel) -> &'static [u8] { |
| 88 | match complexity { |
| 89 | SGRComplexityLevel::Full => SGRPROJ_ALL_SETS, |
| 90 | SGRComplexityLevel::Reduced => SGRPROJ_REDUCED_SETS, |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | pub const SOLVE_IMAGE_MAX: usize = 1 << RESTORATION_TILESIZE_MAX_LOG2; |
| 95 | pub const SOLVE_IMAGE_STRIDE: usize = SOLVE_IMAGE_MAX + 6 + 2; |
| 96 | pub const SOLVE_IMAGE_HEIGHT: usize = SOLVE_IMAGE_STRIDE; |
| 97 | pub const SOLVE_IMAGE_SIZE: usize = SOLVE_IMAGE_STRIDE * SOLVE_IMAGE_HEIGHT; |
| 98 | |
| 99 | pub const STRIPE_IMAGE_MAX: usize = (1 << RESTORATION_TILESIZE_MAX_LOG2) |
| 100 | + (1 << (RESTORATION_TILESIZE_MAX_LOG2 - 1)); |
| 101 | pub const STRIPE_IMAGE_STRIDE: usize = STRIPE_IMAGE_MAX + 6 + 2; |
| 102 | pub const STRIPE_IMAGE_HEIGHT: usize = 64 + 6 + 2; |
| 103 | pub const STRIPE_IMAGE_SIZE: usize = STRIPE_IMAGE_STRIDE * STRIPE_IMAGE_HEIGHT; |
| 104 | |
| 105 | pub const IMAGE_WIDTH_MAX: usize = [STRIPE_IMAGE_MAX, SOLVE_IMAGE_MAX] |
| 106 | [(STRIPE_IMAGE_MAX < SOLVE_IMAGE_MAX) as usize]; |
| 107 | |
| 108 | /// The buffer used in `sgrproj_stripe_filter()` and `sgrproj_solve()`. |
| 109 | #[derive (Debug)] |
| 110 | pub struct IntegralImageBuffer { |
| 111 | pub integral_image: Vec<u32>, |
| 112 | pub sq_integral_image: Vec<u32>, |
| 113 | } |
| 114 | |
| 115 | impl IntegralImageBuffer { |
| 116 | /// Creates a new buffer with the given size, filled with zeros. |
| 117 | #[inline ] |
| 118 | pub fn zeroed(size: usize) -> Self { |
| 119 | Self { integral_image: vec![0; size], sq_integral_image: vec![0; size] } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | #[allow (unused)] // Wiener coming soon! |
| 124 | #[derive (Copy, Clone, Debug, PartialEq, Eq, Default)] |
| 125 | pub enum RestorationFilter { |
| 126 | #[default] |
| 127 | None, |
| 128 | Wiener { |
| 129 | coeffs: [[i8; 3]; 2], |
| 130 | }, |
| 131 | Sgrproj { |
| 132 | set: u8, |
| 133 | xqd: [i8; 2], |
| 134 | }, |
| 135 | } |
| 136 | |
| 137 | impl RestorationFilter { |
| 138 | pub const fn notequal(self, cmp: RestorationFilter) -> bool { |
| 139 | match self { |
| 140 | RestorationFilter::None {} => !matches!(cmp, RestorationFilter::None {}), |
| 141 | RestorationFilter::Sgrproj { set, xqd } => { |
| 142 | if let RestorationFilter::Sgrproj { set: set2, xqd: xqd2 } = cmp { |
| 143 | !(set == set2 && xqd[0] == xqd2[0] && xqd[1] == xqd2[1]) |
| 144 | } else { |
| 145 | true |
| 146 | } |
| 147 | } |
| 148 | RestorationFilter::Wiener { coeffs } => { |
| 149 | if let RestorationFilter::Wiener { coeffs: coeffs2 } = cmp { |
| 150 | !(coeffs[0][0] == coeffs2[0][0] |
| 151 | && coeffs[0][1] == coeffs2[0][1] |
| 152 | && coeffs[0][2] == coeffs2[0][2] |
| 153 | && coeffs[1][0] == coeffs2[1][0] |
| 154 | && coeffs[1][1] == coeffs2[1][1] |
| 155 | && coeffs[1][2] == coeffs2[1][2]) |
| 156 | } else { |
| 157 | true |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | pub(crate) mod rust { |
| 165 | use crate::cpu_features::CpuFeatureLevel; |
| 166 | use crate::frame::PlaneSlice; |
| 167 | use crate::lrf::{ |
| 168 | get_integral_square, sgrproj_sum_finish, SGRPROJ_RST_BITS, |
| 169 | SGRPROJ_SGR_BITS, |
| 170 | }; |
| 171 | use crate::util::CastFromPrimitive; |
| 172 | use crate::Pixel; |
| 173 | |
| 174 | #[inline (always)] |
| 175 | pub(crate) fn sgrproj_box_ab_internal<const BD: usize>( |
| 176 | r: usize, af: &mut [u32], bf: &mut [u32], iimg: &[u32], iimg_sq: &[u32], |
| 177 | iimg_stride: usize, start_x: usize, y: usize, stripe_w: usize, s: u32, |
| 178 | ) { |
| 179 | let d: usize = r * 2 + 1; |
| 180 | let n: usize = d * d; |
| 181 | let one_over_n = if r == 1 { 455 } else { 164 }; |
| 182 | |
| 183 | assert!(iimg.len() > (y + d) * iimg_stride + stripe_w + 1 + d); |
| 184 | assert!(iimg_sq.len() > (y + d) * iimg_stride + stripe_w + 1 + d); |
| 185 | assert!(af.len() > stripe_w + 1); |
| 186 | assert!(bf.len() > stripe_w + 1); |
| 187 | |
| 188 | for x in start_x..stripe_w + 2 { |
| 189 | // SAFETY: We perform the bounds checks above, once for the whole loop |
| 190 | unsafe { |
| 191 | let sum = get_integral_square(iimg, iimg_stride, x, y, d); |
| 192 | let ssq = get_integral_square(iimg_sq, iimg_stride, x, y, d); |
| 193 | let (reta, retb) = |
| 194 | sgrproj_sum_finish::<BD>(ssq, sum, n as u32, one_over_n, s); |
| 195 | *af.get_unchecked_mut(x) = reta; |
| 196 | *bf.get_unchecked_mut(x) = retb; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // computes an intermediate (ab) row for stripe_w + 2 columns at row y |
| 202 | pub(crate) fn sgrproj_box_ab_r1<const BD: usize>( |
| 203 | af: &mut [u32], bf: &mut [u32], iimg: &[u32], iimg_sq: &[u32], |
| 204 | iimg_stride: usize, y: usize, stripe_w: usize, s: u32, |
| 205 | _cpu: CpuFeatureLevel, |
| 206 | ) { |
| 207 | sgrproj_box_ab_internal::<BD>( |
| 208 | 1, |
| 209 | af, |
| 210 | bf, |
| 211 | iimg, |
| 212 | iimg_sq, |
| 213 | iimg_stride, |
| 214 | 0, |
| 215 | y, |
| 216 | stripe_w, |
| 217 | s, |
| 218 | ); |
| 219 | } |
| 220 | |
| 221 | // computes an intermediate (ab) row for stripe_w + 2 columns at row y |
| 222 | pub(crate) fn sgrproj_box_ab_r2<const BD: usize>( |
| 223 | af: &mut [u32], bf: &mut [u32], iimg: &[u32], iimg_sq: &[u32], |
| 224 | iimg_stride: usize, y: usize, stripe_w: usize, s: u32, |
| 225 | _cpu: CpuFeatureLevel, |
| 226 | ) { |
| 227 | sgrproj_box_ab_internal::<BD>( |
| 228 | 2, |
| 229 | af, |
| 230 | bf, |
| 231 | iimg, |
| 232 | iimg_sq, |
| 233 | iimg_stride, |
| 234 | 0, |
| 235 | y, |
| 236 | stripe_w, |
| 237 | s, |
| 238 | ); |
| 239 | } |
| 240 | |
| 241 | pub(crate) fn sgrproj_box_f_r0<T: Pixel>( |
| 242 | f: &mut [u32], y: usize, w: usize, cdeffed: &PlaneSlice<T>, |
| 243 | _cpu: CpuFeatureLevel, |
| 244 | ) { |
| 245 | sgrproj_box_f_r0_internal(f, 0, y, w, cdeffed); |
| 246 | } |
| 247 | |
| 248 | #[inline (always)] |
| 249 | pub(crate) fn sgrproj_box_f_r0_internal<T: Pixel>( |
| 250 | f: &mut [u32], start_x: usize, y: usize, w: usize, cdeffed: &PlaneSlice<T>, |
| 251 | ) { |
| 252 | let line = cdeffed.row(y); |
| 253 | for (fp, &v) in f[start_x..w].iter_mut().zip(line[start_x..w].iter()) { |
| 254 | *fp = u32::cast_from(v) << SGRPROJ_RST_BITS; |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | pub(crate) fn sgrproj_box_f_r1<T: Pixel>( |
| 259 | af: &[&[u32]; 3], bf: &[&[u32]; 3], f: &mut [u32], y: usize, w: usize, |
| 260 | cdeffed: &PlaneSlice<T>, _cpu: CpuFeatureLevel, |
| 261 | ) { |
| 262 | sgrproj_box_f_r1_internal(af, bf, f, 0, y, w, cdeffed); |
| 263 | } |
| 264 | |
| 265 | #[inline (always)] |
| 266 | pub(crate) fn sgrproj_box_f_r1_internal<T: Pixel>( |
| 267 | af: &[&[u32]; 3], bf: &[&[u32]; 3], f: &mut [u32], start_x: usize, |
| 268 | y: usize, w: usize, cdeffed: &PlaneSlice<T>, |
| 269 | ) { |
| 270 | let shift = 5 + SGRPROJ_SGR_BITS - SGRPROJ_RST_BITS; |
| 271 | let line = cdeffed.row(y); |
| 272 | for x in start_x..w { |
| 273 | let a = 3 * (af[0][x] + af[2][x] + af[0][x + 2] + af[2][x + 2]) |
| 274 | + 4 |
| 275 | * (af[1][x] |
| 276 | + af[0][x + 1] |
| 277 | + af[1][x + 1] |
| 278 | + af[2][x + 1] |
| 279 | + af[1][x + 2]); |
| 280 | let b = 3 * (bf[0][x] + bf[2][x] + bf[0][x + 2] + bf[2][x + 2]) |
| 281 | + 4 |
| 282 | * (bf[1][x] |
| 283 | + bf[0][x + 1] |
| 284 | + bf[1][x + 1] |
| 285 | + bf[2][x + 1] |
| 286 | + bf[1][x + 2]); |
| 287 | let v = a * u32::cast_from(line[x]) + b; |
| 288 | f[x] = (v + (1 << shift >> 1)) >> shift; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | pub(crate) fn sgrproj_box_f_r2<T: Pixel>( |
| 293 | af: &[&[u32]; 2], bf: &[&[u32]; 2], f0: &mut [u32], f1: &mut [u32], |
| 294 | y: usize, w: usize, cdeffed: &PlaneSlice<T>, _cpu: CpuFeatureLevel, |
| 295 | ) { |
| 296 | sgrproj_box_f_r2_internal(af, bf, f0, f1, 0, y, w, cdeffed); |
| 297 | } |
| 298 | |
| 299 | #[inline (always)] |
| 300 | pub(crate) fn sgrproj_box_f_r2_internal<T: Pixel>( |
| 301 | af: &[&[u32]; 2], bf: &[&[u32]; 2], f0: &mut [u32], f1: &mut [u32], |
| 302 | start_x: usize, y: usize, w: usize, cdeffed: &PlaneSlice<T>, |
| 303 | ) { |
| 304 | let shift = 5 + SGRPROJ_SGR_BITS - SGRPROJ_RST_BITS; |
| 305 | let shifto = 4 + SGRPROJ_SGR_BITS - SGRPROJ_RST_BITS; |
| 306 | let line = cdeffed.row(y); |
| 307 | let line1 = cdeffed.row(y + 1); |
| 308 | |
| 309 | let af0 = af[0][start_x..w + 3].windows(3); |
| 310 | let af1 = af[1][start_x..w + 3].windows(3); |
| 311 | let bf0 = bf[0][start_x..w + 3].windows(3); |
| 312 | let bf1 = bf[1][start_x..w + 3].windows(3); |
| 313 | |
| 314 | let af_it = af0.zip(af1); |
| 315 | let bf_it = bf0.zip(bf1); |
| 316 | |
| 317 | let in0 = line[start_x..w].iter(); |
| 318 | let in1 = line1[start_x..w].iter(); |
| 319 | |
| 320 | let o0 = f0[start_x..w].iter_mut(); |
| 321 | let o1 = f1[start_x..w].iter_mut(); |
| 322 | |
| 323 | let in_iter = in0.zip(in1); |
| 324 | let out_iter = o0.zip(o1); |
| 325 | |
| 326 | let io_iter = out_iter.zip(in_iter); |
| 327 | |
| 328 | for (((o0, o1), (&p0, &p1)), ((af_0, af_1), (bf_0, bf_1))) in |
| 329 | io_iter.zip(af_it.zip(bf_it)) |
| 330 | { |
| 331 | let a = 5 * (af_0[0] + af_0[2]) + 6 * af_0[1]; |
| 332 | let b = 5 * (bf_0[0] + bf_0[2]) + 6 * bf_0[1]; |
| 333 | let ao = 5 * (af_1[0] + af_1[2]) + 6 * af_1[1]; |
| 334 | let bo = 5 * (bf_1[0] + bf_1[2]) + 6 * bf_1[1]; |
| 335 | let v = (a + ao) * u32::cast_from(p0) + b + bo; |
| 336 | *o0 = (v + (1 << shift >> 1)) >> shift; |
| 337 | let vo = ao * u32::cast_from(p1) + bo; |
| 338 | *o1 = (vo + (1 << shifto >> 1)) >> shifto; |
| 339 | } |
| 340 | } |
| 341 | } |
| 342 | |
| 343 | #[inline (always)] |
| 344 | fn sgrproj_sum_finish<const BD: usize>( |
| 345 | ssq: u32, sum: u32, n: u32, one_over_n: u32, s: u32, |
| 346 | ) -> (u32, u32) { |
| 347 | let bdm8: usize = BD - 8; |
| 348 | let scaled_ssq: u32 = (ssq + (1 << (2 * bdm8) >> 1)) >> (2 * bdm8); |
| 349 | let scaled_sum: u32 = (sum + (1 << bdm8 >> 1)) >> bdm8; |
| 350 | let p: u32 = (scaled_ssq * n).saturating_sub(scaled_sum * scaled_sum); |
| 351 | let z: u32 = (p * s + (1 << SGRPROJ_MTABLE_BITS >> 1)) >> SGRPROJ_MTABLE_BITS; |
| 352 | let a: u32 = if z >= 255 { |
| 353 | 256 |
| 354 | } else if z == 0 { |
| 355 | 1 |
| 356 | } else { |
| 357 | ((z << SGRPROJ_SGR_BITS) + z / 2) / (z + 1) |
| 358 | }; |
| 359 | let b: u32 = ((1 << SGRPROJ_SGR_BITS) - a) * sum * one_over_n; |
| 360 | (a, (b + (1 << SGRPROJ_RECIP_BITS >> 1)) >> SGRPROJ_RECIP_BITS) |
| 361 | } |
| 362 | |
| 363 | // Using an integral image, compute the sum of a square region |
| 364 | // SAFETY: The size of `iimg` must be at least `(y + size) * stride + x + size` |
| 365 | #[inline (always)] |
| 366 | unsafe fn get_integral_square( |
| 367 | iimg: &[u32], stride: usize, x: usize, y: usize, size: usize, |
| 368 | ) -> u32 { |
| 369 | // Cancel out overflow in iimg by using wrapping arithmetic |
| 370 | let top_left: u32 = *iimg.get_unchecked(index:y * stride + x); |
| 371 | let top_right: u32 = *iimg.get_unchecked(index:y * stride + x + size); |
| 372 | let bottom_left: u32 = *iimg.get_unchecked((y + size) * stride + x); |
| 373 | let bottom_right: u32 = *iimg.get_unchecked((y + size) * stride + x + size); |
| 374 | top_leftu32 |
| 375 | .wrapping_add(bottom_right) |
| 376 | .wrapping_sub(bottom_left) |
| 377 | .wrapping_sub(top_right) |
| 378 | } |
| 379 | |
| 380 | struct VertPaddedIter<'a, T: Pixel> { |
| 381 | // The two sources that can be selected when clipping |
| 382 | deblocked: &'a Plane<T>, |
| 383 | cdeffed: &'a Plane<T>, |
| 384 | // x index to choice where on the row to start |
| 385 | x: isize, |
| 386 | // y index that will be mutated |
| 387 | y: isize, |
| 388 | // The index at which to terminate. Can be larger than the slice length. |
| 389 | end: isize, |
| 390 | // Used for source buffer choice/clipping. May (and regularly will) |
| 391 | // be negative. |
| 392 | stripe_begin: isize, |
| 393 | // Also used for source buffer choice/clipping. May specify a stripe boundary |
| 394 | // less than, equal to, or larger than the buffers we're accessing. |
| 395 | stripe_end: isize, |
| 396 | // Active area cropping is done by specifying a value smaller than the height |
| 397 | // of the plane. |
| 398 | crop: isize, |
| 399 | } |
| 400 | |
| 401 | impl<'a, T: Pixel> VertPaddedIter<'a, T> { |
| 402 | fn new( |
| 403 | cdeffed: &PlaneSlice<'a, T>, deblocked: &PlaneSlice<'a, T>, |
| 404 | stripe_h: usize, crop: usize, |
| 405 | ) -> VertPaddedIter<'a, T> { |
| 406 | // cdeffed and deblocked must start at the same coordinates from their |
| 407 | // underlying planes. Since cropping is provided via a separate params, the |
| 408 | // height of the underlying planes do not need to match. |
| 409 | assert_eq!(cdeffed.x, deblocked.x); |
| 410 | assert_eq!(cdeffed.y, deblocked.y); |
| 411 | |
| 412 | // To share integral images, always use the max box filter radius of 2 |
| 413 | let r = 2; |
| 414 | |
| 415 | // The number of rows outside the stripe are needed |
| 416 | let rows_above = r + 2; |
| 417 | let rows_below = 2; |
| 418 | |
| 419 | // Offset crop and stripe_h so they are relative to the underlying plane |
| 420 | // and not the plane slice. |
| 421 | let crop = crop as isize + deblocked.y; |
| 422 | let stripe_end = stripe_h as isize + deblocked.y; |
| 423 | |
| 424 | // Move y up the number rows above. |
| 425 | // If y is negative we repeat the first row |
| 426 | let y = deblocked.y - rows_above as isize; |
| 427 | |
| 428 | VertPaddedIter { |
| 429 | deblocked: deblocked.plane, |
| 430 | cdeffed: cdeffed.plane, |
| 431 | x: deblocked.x, |
| 432 | y, |
| 433 | end: (rows_above + stripe_h + rows_below) as isize + y, |
| 434 | stripe_begin: deblocked.y, |
| 435 | stripe_end, |
| 436 | crop, |
| 437 | } |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | impl<'a, T: Pixel> Iterator for VertPaddedIter<'a, T> { |
| 442 | type Item = &'a [T]; |
| 443 | |
| 444 | #[inline (always)] |
| 445 | fn next(&mut self) -> Option<Self::Item> { |
| 446 | if self.end > self.y { |
| 447 | // clamp before deciding the source |
| 448 | // clamp vertically to storage at top and passed-in height at bottom |
| 449 | let cropped_y = clamp(self.y, 0, self.crop - 1); |
| 450 | // clamp vertically to stripe limits |
| 451 | let ly = clamp(cropped_y, self.stripe_begin - 2, self.stripe_end + 1); |
| 452 | |
| 453 | // decide if we're vertically inside or outside the strip |
| 454 | let src_plane = if ly >= self.stripe_begin && ly < self.stripe_end { |
| 455 | self.cdeffed |
| 456 | } else { |
| 457 | self.deblocked |
| 458 | }; |
| 459 | // cannot directly return self.ps.row(row) due to lifetime issue |
| 460 | let range = src_plane.row_range(self.x, ly); |
| 461 | self.y += 1; |
| 462 | Some(&src_plane.data[range]) |
| 463 | } else { |
| 464 | None |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 469 | let remaining = self.end - self.y; |
| 470 | debug_assert!(remaining >= 0); |
| 471 | let remaining = remaining as usize; |
| 472 | |
| 473 | (remaining, Some(remaining)) |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | impl<T: Pixel> ExactSizeIterator for VertPaddedIter<'_, T> {} |
| 478 | impl<T: Pixel> FusedIterator for VertPaddedIter<'_, T> {} |
| 479 | |
| 480 | struct HorzPaddedIter<'a, T: Pixel> { |
| 481 | // Active area cropping is done using the length of the slice |
| 482 | slice: &'a [T], |
| 483 | // x index of the iterator |
| 484 | // When less than 0, repeat the first element. When greater than end, repeat |
| 485 | // the last element |
| 486 | index: isize, |
| 487 | // The index at which to terminate. Can be larger than the slice length. |
| 488 | end: usize, |
| 489 | } |
| 490 | |
| 491 | impl<'a, T: Pixel> HorzPaddedIter<'a, T> { |
| 492 | fn new( |
| 493 | slice: &'a [T], start_index: isize, width: usize, |
| 494 | ) -> HorzPaddedIter<'a, T> { |
| 495 | HorzPaddedIter { |
| 496 | slice, |
| 497 | index: start_index, |
| 498 | end: (width as isize + start_index) as usize, |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | impl<'a, T: Pixel> Iterator for HorzPaddedIter<'a, T> { |
| 504 | type Item = &'a T; |
| 505 | |
| 506 | #[inline (always)] |
| 507 | fn next(&mut self) -> Option<Self::Item> { |
| 508 | if self.index < self.end as isize { |
| 509 | // clamp to the edges of the frame |
| 510 | let x: usize = clamp(self.index, min:0, self.slice.len() as isize - 1) as usize; |
| 511 | self.index += 1; |
| 512 | Some(&self.slice[x]) |
| 513 | } else { |
| 514 | None |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | #[inline (always)] |
| 519 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 520 | let size: usize = (self.end as isize - self.index) as usize; |
| 521 | (size, Some(size)) |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | impl<T: Pixel> ExactSizeIterator for HorzPaddedIter<'_, T> {} |
| 526 | impl<T: Pixel> FusedIterator for HorzPaddedIter<'_, T> {} |
| 527 | |
| 528 | #[profiling::function ] |
| 529 | pub fn setup_integral_image<T: Pixel>( |
| 530 | integral_image_buffer: &mut IntegralImageBuffer, |
| 531 | integral_image_stride: usize, crop_w: usize, crop_h: usize, stripe_w: usize, |
| 532 | stripe_h: usize, cdeffed: &PlaneSlice<T>, deblocked: &PlaneSlice<T>, |
| 533 | ) { |
| 534 | let integral_image = &mut integral_image_buffer.integral_image; |
| 535 | let sq_integral_image = &mut integral_image_buffer.sq_integral_image; |
| 536 | |
| 537 | // Number of elements outside the stripe |
| 538 | let left_w = 4; // max radius of 2 + 2 padding |
| 539 | let right_w = 3; // max radius of 2 + 1 padding |
| 540 | |
| 541 | assert_eq!(cdeffed.x, deblocked.x); |
| 542 | |
| 543 | // Find how many unique elements to use to the left and right |
| 544 | let left_uniques = if cdeffed.x == 0 { 0 } else { left_w }; |
| 545 | let right_uniques = right_w.min(crop_w - stripe_w); |
| 546 | |
| 547 | // Find the total number of unique elements used |
| 548 | let row_uniques = left_uniques + stripe_w + right_uniques; |
| 549 | |
| 550 | // Negative start indices result in repeating the first element of the row |
| 551 | let start_index_x = if cdeffed.x == 0 { -(left_w as isize) } else { 0 }; |
| 552 | |
| 553 | let mut rows_iter = VertPaddedIter::new( |
| 554 | // Move left to encompass all the used data |
| 555 | &cdeffed.go_left(left_uniques), |
| 556 | &deblocked.go_left(left_uniques), |
| 557 | // since r2 uses every other row, we need an extra row if stripe_h is odd |
| 558 | stripe_h + (stripe_h & 1), |
| 559 | crop_h, |
| 560 | ) |
| 561 | .map(|row: &[T]| { |
| 562 | HorzPaddedIter::new( |
| 563 | // Limit how many unique elements we use |
| 564 | &row[..row_uniques], |
| 565 | start_index_x, |
| 566 | left_w + stripe_w + right_w, |
| 567 | ) |
| 568 | }); |
| 569 | |
| 570 | // Setup the first row |
| 571 | { |
| 572 | let mut sum: u32 = 0; |
| 573 | let mut sq_sum: u32 = 0; |
| 574 | // Remove the first row and use it outside of the main loop |
| 575 | let row = rows_iter.next().unwrap(); |
| 576 | for (src, (integral, sq_integral)) in |
| 577 | row.zip(integral_image.iter_mut().zip(sq_integral_image.iter_mut())) |
| 578 | { |
| 579 | let current = u32::cast_from(*src); |
| 580 | |
| 581 | // Wrap adds to prevent undefined behaviour on overflow. Overflow is |
| 582 | // cancelled out when calculating the sum of a region. |
| 583 | sum = sum.wrapping_add(current); |
| 584 | *integral = sum; |
| 585 | sq_sum = sq_sum.wrapping_add(current * current); |
| 586 | *sq_integral = sq_sum; |
| 587 | } |
| 588 | } |
| 589 | // Calculate all other rows |
| 590 | let mut integral_slice = &mut integral_image[..]; |
| 591 | let mut sq_integral_slice = &mut sq_integral_image[..]; |
| 592 | for row in rows_iter { |
| 593 | let mut sum: u32 = 0; |
| 594 | let mut sq_sum: u32 = 0; |
| 595 | |
| 596 | // Split the data between the previous row and future rows. |
| 597 | // This allows us to mutate the current row while accessing the |
| 598 | // previous row. |
| 599 | let (integral_row_prev, integral_row) = |
| 600 | integral_slice.split_at_mut(integral_image_stride); |
| 601 | let (sq_integral_row_prev, sq_integral_row) = |
| 602 | sq_integral_slice.split_at_mut(integral_image_stride); |
| 603 | for ( |
| 604 | src, |
| 605 | ((integral_above, sq_integral_above), (integral, sq_integral)), |
| 606 | ) in row.zip( |
| 607 | integral_row_prev |
| 608 | .iter() |
| 609 | .zip(sq_integral_row_prev.iter()) |
| 610 | .zip(integral_row.iter_mut().zip(sq_integral_row.iter_mut())), |
| 611 | ) { |
| 612 | let current = u32::cast_from(*src); |
| 613 | // Wrap adds to prevent undefined behaviour on overflow. Overflow is |
| 614 | // cancelled out when calculating the sum of a region. |
| 615 | sum = sum.wrapping_add(current); |
| 616 | *integral = sum.wrapping_add(*integral_above); |
| 617 | sq_sum = sq_sum.wrapping_add(current * current); |
| 618 | *sq_integral = sq_sum.wrapping_add(*sq_integral_above); |
| 619 | } |
| 620 | |
| 621 | // The current row also contains all future rows. Replacing the slice with |
| 622 | // it moves down a row. |
| 623 | integral_slice = integral_row; |
| 624 | sq_integral_slice = sq_integral_row; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | #[profiling::function ] |
| 629 | pub fn sgrproj_stripe_filter<T: Pixel, U: Pixel>( |
| 630 | set: u8, xqd: [i8; 2], fi: &FrameInvariants<T>, |
| 631 | integral_image_buffer: &IntegralImageBuffer, integral_image_stride: usize, |
| 632 | cdeffed: &PlaneSlice<U>, out: &mut PlaneRegionMut<U>, |
| 633 | ) { |
| 634 | let &Rect { width: stripe_w, height: stripe_h, .. } = out.rect(); |
| 635 | let mut a_r2: [[u32; IMAGE_WIDTH_MAX + 2]; 2] = |
| 636 | [[0; IMAGE_WIDTH_MAX + 2]; 2]; |
| 637 | let mut b_r2: [[u32; IMAGE_WIDTH_MAX + 2]; 2] = |
| 638 | [[0; IMAGE_WIDTH_MAX + 2]; 2]; |
| 639 | let mut f_r2_0: [u32; IMAGE_WIDTH_MAX] = [0; IMAGE_WIDTH_MAX]; |
| 640 | let mut f_r2_1: [u32; IMAGE_WIDTH_MAX] = [0; IMAGE_WIDTH_MAX]; |
| 641 | let mut a_r1: [[u32; IMAGE_WIDTH_MAX + 2]; 3] = |
| 642 | [[0; IMAGE_WIDTH_MAX + 2]; 3]; |
| 643 | let mut b_r1: [[u32; IMAGE_WIDTH_MAX + 2]; 3] = |
| 644 | [[0; IMAGE_WIDTH_MAX + 2]; 3]; |
| 645 | let mut f_r1: [u32; IMAGE_WIDTH_MAX] = [0; IMAGE_WIDTH_MAX]; |
| 646 | |
| 647 | let s_r2: u32 = SGRPROJ_PARAMS_S[set as usize][0]; |
| 648 | let s_r1: u32 = SGRPROJ_PARAMS_S[set as usize][1]; |
| 649 | |
| 650 | let fn_ab_r1 = match fi.sequence.bit_depth { |
| 651 | 8 => sgrproj_box_ab_r1::<8>, |
| 652 | 10 => sgrproj_box_ab_r1::<10>, |
| 653 | 12 => sgrproj_box_ab_r1::<12>, |
| 654 | _ => unimplemented!(), |
| 655 | }; |
| 656 | let fn_ab_r2 = match fi.sequence.bit_depth { |
| 657 | 8 => sgrproj_box_ab_r2::<8>, |
| 658 | 10 => sgrproj_box_ab_r2::<10>, |
| 659 | 12 => sgrproj_box_ab_r2::<12>, |
| 660 | _ => unimplemented!(), |
| 661 | }; |
| 662 | |
| 663 | /* prime the intermediate arrays */ |
| 664 | // One oddness about the radius=2 intermediate array computations that |
| 665 | // the spec doesn't make clear: Although the spec defines computation |
| 666 | // of every row (of a, b and f), only half of the rows (every-other |
| 667 | // row) are actually used. |
| 668 | let integral_image = &integral_image_buffer.integral_image; |
| 669 | let sq_integral_image = &integral_image_buffer.sq_integral_image; |
| 670 | if s_r2 > 0 { |
| 671 | fn_ab_r2( |
| 672 | &mut a_r2[0], |
| 673 | &mut b_r2[0], |
| 674 | integral_image, |
| 675 | sq_integral_image, |
| 676 | integral_image_stride, |
| 677 | 0, |
| 678 | stripe_w, |
| 679 | s_r2, |
| 680 | fi.cpu_feature_level, |
| 681 | ); |
| 682 | } |
| 683 | if s_r1 > 0 { |
| 684 | let integral_image_offset = integral_image_stride + 1; |
| 685 | fn_ab_r1( |
| 686 | &mut a_r1[0], |
| 687 | &mut b_r1[0], |
| 688 | &integral_image[integral_image_offset..], |
| 689 | &sq_integral_image[integral_image_offset..], |
| 690 | integral_image_stride, |
| 691 | 0, |
| 692 | stripe_w, |
| 693 | s_r1, |
| 694 | fi.cpu_feature_level, |
| 695 | ); |
| 696 | fn_ab_r1( |
| 697 | &mut a_r1[1], |
| 698 | &mut b_r1[1], |
| 699 | &integral_image[integral_image_offset..], |
| 700 | &sq_integral_image[integral_image_offset..], |
| 701 | integral_image_stride, |
| 702 | 1, |
| 703 | stripe_w, |
| 704 | s_r1, |
| 705 | fi.cpu_feature_level, |
| 706 | ); |
| 707 | } |
| 708 | |
| 709 | /* iterate by row */ |
| 710 | // Increment by two to handle the use of even rows by r=2 and run a nested |
| 711 | // loop to handle increments of one. |
| 712 | for y in (0..stripe_h).step_by(2) { |
| 713 | // get results to use y and y+1 |
| 714 | let f_r2_ab: [&[u32]; 2] = if s_r2 > 0 { |
| 715 | fn_ab_r2( |
| 716 | &mut a_r2[(y / 2 + 1) % 2], |
| 717 | &mut b_r2[(y / 2 + 1) % 2], |
| 718 | integral_image, |
| 719 | sq_integral_image, |
| 720 | integral_image_stride, |
| 721 | y + 2, |
| 722 | stripe_w, |
| 723 | s_r2, |
| 724 | fi.cpu_feature_level, |
| 725 | ); |
| 726 | let ap0: [&[u32]; 2] = [&a_r2[(y / 2) % 2], &a_r2[(y / 2 + 1) % 2]]; |
| 727 | let bp0: [&[u32]; 2] = [&b_r2[(y / 2) % 2], &b_r2[(y / 2 + 1) % 2]]; |
| 728 | sgrproj_box_f_r2( |
| 729 | &ap0, |
| 730 | &bp0, |
| 731 | &mut f_r2_0, |
| 732 | &mut f_r2_1, |
| 733 | y, |
| 734 | stripe_w, |
| 735 | cdeffed, |
| 736 | fi.cpu_feature_level, |
| 737 | ); |
| 738 | [&f_r2_0, &f_r2_1] |
| 739 | } else { |
| 740 | sgrproj_box_f_r0( |
| 741 | &mut f_r2_0, |
| 742 | y, |
| 743 | stripe_w, |
| 744 | cdeffed, |
| 745 | fi.cpu_feature_level, |
| 746 | ); |
| 747 | // share results for both rows |
| 748 | [&f_r2_0, &f_r2_0] |
| 749 | }; |
| 750 | for dy in 0..(2.min(stripe_h - y)) { |
| 751 | let y = y + dy; |
| 752 | if s_r1 > 0 { |
| 753 | let integral_image_offset = integral_image_stride + 1; |
| 754 | fn_ab_r1( |
| 755 | &mut a_r1[(y + 2) % 3], |
| 756 | &mut b_r1[(y + 2) % 3], |
| 757 | &integral_image[integral_image_offset..], |
| 758 | &sq_integral_image[integral_image_offset..], |
| 759 | integral_image_stride, |
| 760 | y + 2, |
| 761 | stripe_w, |
| 762 | s_r1, |
| 763 | fi.cpu_feature_level, |
| 764 | ); |
| 765 | let ap1: [&[u32]; 3] = |
| 766 | [&a_r1[y % 3], &a_r1[(y + 1) % 3], &a_r1[(y + 2) % 3]]; |
| 767 | let bp1: [&[u32]; 3] = |
| 768 | [&b_r1[y % 3], &b_r1[(y + 1) % 3], &b_r1[(y + 2) % 3]]; |
| 769 | sgrproj_box_f_r1( |
| 770 | &ap1, |
| 771 | &bp1, |
| 772 | &mut f_r1, |
| 773 | y, |
| 774 | stripe_w, |
| 775 | cdeffed, |
| 776 | fi.cpu_feature_level, |
| 777 | ); |
| 778 | } else { |
| 779 | sgrproj_box_f_r0( |
| 780 | &mut f_r1, |
| 781 | y, |
| 782 | stripe_w, |
| 783 | cdeffed, |
| 784 | fi.cpu_feature_level, |
| 785 | ); |
| 786 | } |
| 787 | |
| 788 | /* apply filter */ |
| 789 | let w0 = xqd[0] as i32; |
| 790 | let w1 = xqd[1] as i32; |
| 791 | let w2 = (1 << SGRPROJ_PRJ_BITS) - w0 - w1; |
| 792 | |
| 793 | let line = &cdeffed[y]; |
| 794 | |
| 795 | #[inline (always)] |
| 796 | fn apply_filter<U: Pixel>( |
| 797 | out: &mut [U], line: &[U], f_r1: &[u32], f_r2_ab: &[u32], |
| 798 | stripe_w: usize, bit_depth: usize, w0: i32, w1: i32, w2: i32, |
| 799 | ) { |
| 800 | let line_it = line[..stripe_w].iter(); |
| 801 | let f_r2_ab_it = f_r2_ab[..stripe_w].iter(); |
| 802 | let f_r1_it = f_r1[..stripe_w].iter(); |
| 803 | let out_it = out[..stripe_w].iter_mut(); |
| 804 | |
| 805 | for ((o, &u), (&f_r2_ab, &f_r1)) in |
| 806 | out_it.zip(line_it).zip(f_r2_ab_it.zip(f_r1_it)) |
| 807 | { |
| 808 | let u = i32::cast_from(u) << SGRPROJ_RST_BITS; |
| 809 | let v = w0 * f_r2_ab as i32 + w1 * u + w2 * f_r1 as i32; |
| 810 | let s = (v + (1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) >> 1)) |
| 811 | >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS); |
| 812 | *o = U::cast_from(clamp(s, 0, (1 << bit_depth) - 1)); |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | apply_filter( |
| 817 | &mut out[y], |
| 818 | line, |
| 819 | &f_r1, |
| 820 | f_r2_ab[dy], |
| 821 | stripe_w, |
| 822 | fi.sequence.bit_depth, |
| 823 | w0, |
| 824 | w1, |
| 825 | w2, |
| 826 | ); |
| 827 | } |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | // Frame inputs below aren't all equal, and will change as work |
| 832 | // continues. There's no deblocked reconstruction available at this |
| 833 | // point of RDO, so we use the non-deblocked reconstruction, cdef and |
| 834 | // input. The input can be a full-sized frame. Cdef input is a partial |
| 835 | // frame constructed specifically for RDO. |
| 836 | |
| 837 | // For simplicity, this ignores stripe segmentation (it's possible the |
| 838 | // extra complexity isn't worth it and we'll ignore stripes |
| 839 | // permanently during RDO, but that's not been tested yet). Data |
| 840 | // access inside the cdef frame is monolithic and clipped to the cdef |
| 841 | // borders. |
| 842 | |
| 843 | // Input params follow the same rules as sgrproj_stripe_filter. |
| 844 | // Inputs are relative to the colocated slice views. |
| 845 | #[profiling::function ] |
| 846 | pub fn sgrproj_solve<T: Pixel>( |
| 847 | set: u8, fi: &FrameInvariants<T>, |
| 848 | integral_image_buffer: &IntegralImageBuffer, input: &PlaneRegion<'_, T>, |
| 849 | cdeffed: &PlaneSlice<T>, cdef_w: usize, cdef_h: usize, |
| 850 | ) -> (i8, i8) { |
| 851 | let mut a_r2: [[u32; IMAGE_WIDTH_MAX + 2]; 2] = |
| 852 | [[0; IMAGE_WIDTH_MAX + 2]; 2]; |
| 853 | let mut b_r2: [[u32; IMAGE_WIDTH_MAX + 2]; 2] = |
| 854 | [[0; IMAGE_WIDTH_MAX + 2]; 2]; |
| 855 | let mut f_r2_0: [u32; IMAGE_WIDTH_MAX] = [0; IMAGE_WIDTH_MAX]; |
| 856 | let mut f_r2_1: [u32; IMAGE_WIDTH_MAX] = [0; IMAGE_WIDTH_MAX]; |
| 857 | let mut a_r1: [[u32; IMAGE_WIDTH_MAX + 2]; 3] = |
| 858 | [[0; IMAGE_WIDTH_MAX + 2]; 3]; |
| 859 | let mut b_r1: [[u32; IMAGE_WIDTH_MAX + 2]; 3] = |
| 860 | [[0; IMAGE_WIDTH_MAX + 2]; 3]; |
| 861 | let mut f_r1: [u32; IMAGE_WIDTH_MAX] = [0; IMAGE_WIDTH_MAX]; |
| 862 | |
| 863 | let s_r2: u32 = SGRPROJ_PARAMS_S[set as usize][0]; |
| 864 | let s_r1: u32 = SGRPROJ_PARAMS_S[set as usize][1]; |
| 865 | |
| 866 | let mut h: [[f64; 2]; 2] = [[0., 0.], [0., 0.]]; |
| 867 | let mut c: [f64; 2] = [0., 0.]; |
| 868 | |
| 869 | let fn_ab_r1 = match fi.sequence.bit_depth { |
| 870 | 8 => sgrproj_box_ab_r1::<8>, |
| 871 | 10 => sgrproj_box_ab_r1::<10>, |
| 872 | 12 => sgrproj_box_ab_r1::<12>, |
| 873 | _ => unimplemented!(), |
| 874 | }; |
| 875 | let fn_ab_r2 = match fi.sequence.bit_depth { |
| 876 | 8 => sgrproj_box_ab_r2::<8>, |
| 877 | 10 => sgrproj_box_ab_r2::<10>, |
| 878 | 12 => sgrproj_box_ab_r2::<12>, |
| 879 | _ => unimplemented!(), |
| 880 | }; |
| 881 | |
| 882 | /* prime the intermediate arrays */ |
| 883 | // One oddness about the radius=2 intermediate array computations that |
| 884 | // the spec doesn't make clear: Although the spec defines computation |
| 885 | // of every row (of a, b and f), only half of the rows (every-other |
| 886 | // row) are actually used. |
| 887 | let integral_image = &integral_image_buffer.integral_image; |
| 888 | let sq_integral_image = &integral_image_buffer.sq_integral_image; |
| 889 | if s_r2 > 0 { |
| 890 | fn_ab_r2( |
| 891 | &mut a_r2[0], |
| 892 | &mut b_r2[0], |
| 893 | integral_image, |
| 894 | sq_integral_image, |
| 895 | SOLVE_IMAGE_STRIDE, |
| 896 | 0, |
| 897 | cdef_w, |
| 898 | s_r2, |
| 899 | fi.cpu_feature_level, |
| 900 | ); |
| 901 | } |
| 902 | if s_r1 > 0 { |
| 903 | let integral_image_offset = SOLVE_IMAGE_STRIDE + 1; |
| 904 | fn_ab_r1( |
| 905 | &mut a_r1[0], |
| 906 | &mut b_r1[0], |
| 907 | &integral_image[integral_image_offset..], |
| 908 | &sq_integral_image[integral_image_offset..], |
| 909 | SOLVE_IMAGE_STRIDE, |
| 910 | 0, |
| 911 | cdef_w, |
| 912 | s_r1, |
| 913 | fi.cpu_feature_level, |
| 914 | ); |
| 915 | fn_ab_r1( |
| 916 | &mut a_r1[1], |
| 917 | &mut b_r1[1], |
| 918 | &integral_image[integral_image_offset..], |
| 919 | &sq_integral_image[integral_image_offset..], |
| 920 | SOLVE_IMAGE_STRIDE, |
| 921 | 1, |
| 922 | cdef_w, |
| 923 | s_r1, |
| 924 | fi.cpu_feature_level, |
| 925 | ); |
| 926 | } |
| 927 | |
| 928 | /* iterate by row */ |
| 929 | // Increment by two to handle the use of even rows by r=2 and run a nested |
| 930 | // loop to handle increments of one. |
| 931 | for y in (0..cdef_h).step_by(2) { |
| 932 | // get results to use y and y+1 |
| 933 | let f_r2_01: [&[u32]; 2] = if s_r2 > 0 { |
| 934 | fn_ab_r2( |
| 935 | &mut a_r2[(y / 2 + 1) % 2], |
| 936 | &mut b_r2[(y / 2 + 1) % 2], |
| 937 | integral_image, |
| 938 | sq_integral_image, |
| 939 | SOLVE_IMAGE_STRIDE, |
| 940 | y + 2, |
| 941 | cdef_w, |
| 942 | s_r2, |
| 943 | fi.cpu_feature_level, |
| 944 | ); |
| 945 | let ap0: [&[u32]; 2] = [&a_r2[(y / 2) % 2], &a_r2[(y / 2 + 1) % 2]]; |
| 946 | let bp0: [&[u32]; 2] = [&b_r2[(y / 2) % 2], &b_r2[(y / 2 + 1) % 2]]; |
| 947 | sgrproj_box_f_r2( |
| 948 | &ap0, |
| 949 | &bp0, |
| 950 | &mut f_r2_0, |
| 951 | &mut f_r2_1, |
| 952 | y, |
| 953 | cdef_w, |
| 954 | cdeffed, |
| 955 | fi.cpu_feature_level, |
| 956 | ); |
| 957 | [&f_r2_0, &f_r2_1] |
| 958 | } else { |
| 959 | sgrproj_box_f_r0(&mut f_r2_0, y, cdef_w, cdeffed, fi.cpu_feature_level); |
| 960 | // share results for both rows |
| 961 | [&f_r2_0, &f_r2_0] |
| 962 | }; |
| 963 | for dy in 0..(2.min(cdef_h - y)) { |
| 964 | let y = y + dy; |
| 965 | if s_r1 > 0 { |
| 966 | let integral_image_offset = SOLVE_IMAGE_STRIDE + 1; |
| 967 | fn_ab_r1( |
| 968 | &mut a_r1[(y + 2) % 3], |
| 969 | &mut b_r1[(y + 2) % 3], |
| 970 | &integral_image[integral_image_offset..], |
| 971 | &sq_integral_image[integral_image_offset..], |
| 972 | SOLVE_IMAGE_STRIDE, |
| 973 | y + 2, |
| 974 | cdef_w, |
| 975 | s_r1, |
| 976 | fi.cpu_feature_level, |
| 977 | ); |
| 978 | let ap1: [&[u32]; 3] = |
| 979 | [&a_r1[y % 3], &a_r1[(y + 1) % 3], &a_r1[(y + 2) % 3]]; |
| 980 | let bp1: [&[u32]; 3] = |
| 981 | [&b_r1[y % 3], &b_r1[(y + 1) % 3], &b_r1[(y + 2) % 3]]; |
| 982 | sgrproj_box_f_r1( |
| 983 | &ap1, |
| 984 | &bp1, |
| 985 | &mut f_r1, |
| 986 | y, |
| 987 | cdef_w, |
| 988 | cdeffed, |
| 989 | fi.cpu_feature_level, |
| 990 | ); |
| 991 | } else { |
| 992 | sgrproj_box_f_r0(&mut f_r1, y, cdef_w, cdeffed, fi.cpu_feature_level); |
| 993 | } |
| 994 | |
| 995 | #[inline (always)] |
| 996 | fn process_line<T: Pixel>( |
| 997 | h: &mut [[f64; 2]; 2], c: &mut [f64; 2], cdeffed: &[T], input: &[T], |
| 998 | f_r1: &[u32], f_r2_ab: &[u32], cdef_w: usize, |
| 999 | ) { |
| 1000 | let cdeffed_it = cdeffed[..cdef_w].iter(); |
| 1001 | let input_it = input[..cdef_w].iter(); |
| 1002 | let f_r2_ab_it = f_r2_ab[..cdef_w].iter(); |
| 1003 | let f_r1_it = f_r1[..cdef_w].iter(); |
| 1004 | |
| 1005 | #[derive (Debug, Copy, Clone)] |
| 1006 | struct Sums { |
| 1007 | h: [[i64; 2]; 2], |
| 1008 | c: [i64; 2], |
| 1009 | } |
| 1010 | |
| 1011 | let sums: Sums = cdeffed_it |
| 1012 | .zip(input_it) |
| 1013 | .zip(f_r2_ab_it.zip(f_r1_it)) |
| 1014 | .map(|((&u, &i), (&f2, &f1))| { |
| 1015 | let u = i32::cast_from(u) << SGRPROJ_RST_BITS; |
| 1016 | let s = (i32::cast_from(i) << SGRPROJ_RST_BITS) - u; |
| 1017 | let f2 = f2 as i32 - u; |
| 1018 | let f1 = f1 as i32 - u; |
| 1019 | (s as i64, f1 as i64, f2 as i64) |
| 1020 | }) |
| 1021 | .fold(Sums { h: [[0; 2]; 2], c: [0; 2] }, |sums, (s, f1, f2)| { |
| 1022 | let mut ret: Sums = sums; |
| 1023 | ret.h[0][0] += f2 * f2; |
| 1024 | ret.h[1][1] += f1 * f1; |
| 1025 | ret.h[0][1] += f1 * f2; |
| 1026 | ret.c[0] += f2 * s; |
| 1027 | ret.c[1] += f1 * s; |
| 1028 | ret |
| 1029 | }); |
| 1030 | |
| 1031 | h[0][0] += sums.h[0][0] as f64; |
| 1032 | h[1][1] += sums.h[1][1] as f64; |
| 1033 | h[0][1] += sums.h[0][1] as f64; |
| 1034 | c[0] += sums.c[0] as f64; |
| 1035 | c[1] += sums.c[1] as f64; |
| 1036 | } |
| 1037 | |
| 1038 | process_line( |
| 1039 | &mut h, |
| 1040 | &mut c, |
| 1041 | &cdeffed[y], |
| 1042 | &input[y], |
| 1043 | &f_r1, |
| 1044 | f_r2_01[dy], |
| 1045 | cdef_w, |
| 1046 | ); |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | // this is lifted almost in-tact from libaom |
| 1051 | let n = cdef_w as f64 * cdef_h as f64; |
| 1052 | h[0][0] /= n; |
| 1053 | h[0][1] /= n; |
| 1054 | h[1][1] /= n; |
| 1055 | h[1][0] = h[0][1]; |
| 1056 | c[0] *= (1 << SGRPROJ_PRJ_BITS) as f64 / n; |
| 1057 | c[1] *= (1 << SGRPROJ_PRJ_BITS) as f64 / n; |
| 1058 | let (xq0, xq1) = if s_r2 == 0 { |
| 1059 | // H matrix is now only the scalar h[1][1] |
| 1060 | // C vector is now only the scalar c[1] |
| 1061 | if h[1][1] == 0. { |
| 1062 | (0, 0) |
| 1063 | } else { |
| 1064 | (0, (c[1] / h[1][1]).round() as i32) |
| 1065 | } |
| 1066 | } else if s_r1 == 0 { |
| 1067 | // H matrix is now only the scalar h[0][0] |
| 1068 | // C vector is now only the scalar c[0] |
| 1069 | if h[0][0] == 0. { |
| 1070 | (0, 0) |
| 1071 | } else { |
| 1072 | ((c[0] / h[0][0]).round() as i32, 0) |
| 1073 | } |
| 1074 | } else { |
| 1075 | let det = h[0][0].mul_add(h[1][1], -h[0][1] * h[1][0]); |
| 1076 | if det == 0. { |
| 1077 | (0, 0) |
| 1078 | } else { |
| 1079 | // If scaling up dividend would overflow, instead scale down the divisor |
| 1080 | let div1 = h[1][1].mul_add(c[0], -h[0][1] * c[1]); |
| 1081 | let div2 = h[0][0].mul_add(c[1], -h[1][0] * c[0]); |
| 1082 | ((div1 / det).round() as i32, (div2 / det).round() as i32) |
| 1083 | } |
| 1084 | }; |
| 1085 | { |
| 1086 | let xqd0 = |
| 1087 | clamp(xq0, SGRPROJ_XQD_MIN[0] as i32, SGRPROJ_XQD_MAX[0] as i32); |
| 1088 | let xqd1 = clamp( |
| 1089 | (1 << SGRPROJ_PRJ_BITS) - xqd0 - xq1, |
| 1090 | SGRPROJ_XQD_MIN[1] as i32, |
| 1091 | SGRPROJ_XQD_MAX[1] as i32, |
| 1092 | ); |
| 1093 | (xqd0 as i8, xqd1 as i8) |
| 1094 | } |
| 1095 | } |
| 1096 | |
| 1097 | #[profiling::function ] |
| 1098 | fn wiener_stripe_filter<T: Pixel>( |
| 1099 | coeffs: [[i8; 3]; 2], fi: &FrameInvariants<T>, crop_w: usize, crop_h: usize, |
| 1100 | stripe_w: usize, stripe_h: usize, stripe_x: usize, stripe_y: isize, |
| 1101 | cdeffed: &Plane<T>, deblocked: &Plane<T>, out: &mut Plane<T>, |
| 1102 | ) { |
| 1103 | let bit_depth = fi.sequence.bit_depth; |
| 1104 | let round_h = if bit_depth == 12 { 5 } else { 3 }; |
| 1105 | let round_v = if bit_depth == 12 { 9 } else { 11 }; |
| 1106 | let offset = 1 << (bit_depth + WIENER_BITS - round_h - 1); |
| 1107 | let limit = (1 << (bit_depth + 1 + WIENER_BITS - round_h)) - 1; |
| 1108 | |
| 1109 | let mut coeffs_ = [[0; 3]; 2]; |
| 1110 | for i in 0..2 { |
| 1111 | for j in 0..3 { |
| 1112 | coeffs_[i][j] = i32::from(coeffs[i][j]); |
| 1113 | } |
| 1114 | } |
| 1115 | |
| 1116 | let mut work: [i32; SB_SIZE + 7] = [0; SB_SIZE + 7]; |
| 1117 | let vfilter: [i32; 7] = [ |
| 1118 | coeffs_[0][0], |
| 1119 | coeffs_[0][1], |
| 1120 | coeffs_[0][2], |
| 1121 | 128 - 2 * (coeffs_[0][0] + coeffs_[0][1] + coeffs_[0][2]), |
| 1122 | coeffs_[0][2], |
| 1123 | coeffs_[0][1], |
| 1124 | coeffs_[0][0], |
| 1125 | ]; |
| 1126 | let hfilter: [i32; 7] = [ |
| 1127 | coeffs_[1][0], |
| 1128 | coeffs_[1][1], |
| 1129 | coeffs_[1][2], |
| 1130 | 128 - 2 * (coeffs_[1][0] + coeffs_[1][1] + coeffs_[1][2]), |
| 1131 | coeffs_[1][2], |
| 1132 | coeffs_[1][1], |
| 1133 | coeffs_[1][0], |
| 1134 | ]; |
| 1135 | |
| 1136 | // unlike x, our y can be negative to start as the first stripe |
| 1137 | // starts off the top of the frame by 8 pixels, and can also run off the end of the frame |
| 1138 | let start_wi = if stripe_y < 0 { -stripe_y } else { 0 } as usize; |
| 1139 | let start_yi = if stripe_y < 0 { 0 } else { stripe_y } as usize; |
| 1140 | let end_i = cmp::max( |
| 1141 | 0, |
| 1142 | if stripe_h as isize + stripe_y > crop_h as isize { |
| 1143 | crop_h as isize - stripe_y - start_wi as isize |
| 1144 | } else { |
| 1145 | stripe_h as isize - start_wi as isize |
| 1146 | }, |
| 1147 | ) as usize; |
| 1148 | |
| 1149 | let mut out_slice = |
| 1150 | out.mut_slice(PlaneOffset { x: 0, y: start_yi as isize }); |
| 1151 | |
| 1152 | for xi in stripe_x..stripe_x + stripe_w { |
| 1153 | let n = cmp::min(7, crop_w as isize + 3 - xi as isize); |
| 1154 | for yi in stripe_y - 3..stripe_y + stripe_h as isize + 4 { |
| 1155 | let mut acc = 0; |
| 1156 | let src = if yi < stripe_y { |
| 1157 | let ly = cmp::max(clamp(yi, 0, crop_h as isize - 1), stripe_y - 2); |
| 1158 | deblocked.row(ly) |
| 1159 | } else if yi < stripe_y + stripe_h as isize { |
| 1160 | let ly = clamp(yi, 0, crop_h as isize - 1); |
| 1161 | cdeffed.row(ly) |
| 1162 | } else { |
| 1163 | let ly = cmp::min( |
| 1164 | clamp(yi, 0, crop_h as isize - 1), |
| 1165 | stripe_y + stripe_h as isize + 1, |
| 1166 | ); |
| 1167 | deblocked.row(ly) |
| 1168 | }; |
| 1169 | let start = i32::cast_from(src[0]); |
| 1170 | let end = i32::cast_from(src[crop_w - 1]); |
| 1171 | for i in 0..3 - xi as isize { |
| 1172 | acc += hfilter[i as usize] * start; |
| 1173 | } |
| 1174 | |
| 1175 | let off = 3 - (xi as isize); |
| 1176 | let s = cmp::max(0, off) as usize; |
| 1177 | let s1 = (s as isize - off) as usize; |
| 1178 | let n1 = (n - off) as usize; |
| 1179 | |
| 1180 | for (hf, &v) in hfilter[s..n as usize].iter().zip(src[s1..n1].iter()) { |
| 1181 | acc += hf * i32::cast_from(v); |
| 1182 | } |
| 1183 | |
| 1184 | for i in n..7 { |
| 1185 | acc += hfilter[i as usize] * end; |
| 1186 | } |
| 1187 | |
| 1188 | acc = (acc + (1 << round_h >> 1)) >> round_h; |
| 1189 | work[(yi - stripe_y + 3) as usize] = clamp(acc, -offset, limit - offset); |
| 1190 | } |
| 1191 | |
| 1192 | for (wi, dst) in (start_wi..start_wi + end_i) |
| 1193 | .zip(out_slice.rows_iter_mut().map(|row| &mut row[xi]).take(end_i)) |
| 1194 | { |
| 1195 | let mut acc = 0; |
| 1196 | for (i, src) in (0..7).zip(work[wi..wi + 7].iter_mut()) { |
| 1197 | acc += vfilter[i] * *src; |
| 1198 | } |
| 1199 | *dst = T::cast_from(clamp( |
| 1200 | (acc + (1 << round_v >> 1)) >> round_v, |
| 1201 | 0, |
| 1202 | (1 << bit_depth) - 1, |
| 1203 | )); |
| 1204 | } |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | #[derive (Copy, Clone, Debug, Default)] |
| 1209 | pub struct RestorationUnit { |
| 1210 | pub filter: RestorationFilter, |
| 1211 | } |
| 1212 | |
| 1213 | #[derive (Clone, Debug)] |
| 1214 | pub struct FrameRestorationUnits { |
| 1215 | units: Box<[RestorationUnit]>, |
| 1216 | pub cols: usize, |
| 1217 | pub rows: usize, |
| 1218 | } |
| 1219 | |
| 1220 | impl FrameRestorationUnits { |
| 1221 | pub fn new(cols: usize, rows: usize) -> Self { |
| 1222 | Self { |
| 1223 | units: vec![RestorationUnit::default(); cols * rows].into_boxed_slice(), |
| 1224 | cols, |
| 1225 | rows, |
| 1226 | } |
| 1227 | } |
| 1228 | } |
| 1229 | |
| 1230 | impl Index<usize> for FrameRestorationUnits { |
| 1231 | type Output = [RestorationUnit]; |
| 1232 | #[inline (always)] |
| 1233 | fn index(&self, index: usize) -> &Self::Output { |
| 1234 | &self.units[index * self.cols..(index + 1) * self.cols] |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | impl IndexMut<usize> for FrameRestorationUnits { |
| 1239 | #[inline (always)] |
| 1240 | fn index_mut(&mut self, index: usize) -> &mut Self::Output { |
| 1241 | &mut self.units[index * self.cols..(index + 1) * self.cols] |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | #[derive (Clone, Debug)] |
| 1246 | pub struct RestorationPlaneConfig { |
| 1247 | pub lrf_type: u8, |
| 1248 | pub unit_size: usize, |
| 1249 | // (1 << sb_x_shift) gives the number of superblocks horizontally or |
| 1250 | // vertically in a restoration unit, not accounting for RU stretching |
| 1251 | pub sb_h_shift: usize, |
| 1252 | pub sb_v_shift: usize, |
| 1253 | pub sb_cols: usize, // actual number of SB cols in this LRU (accounting for stretch and crop) |
| 1254 | pub sb_rows: usize, // actual number of SB rows in this LRU (accounting for stretch and crop) |
| 1255 | // stripe height is 64 in all cases except 4:2:0 chroma planes where |
| 1256 | // it is 32. This is independent of all other setup parameters |
| 1257 | pub stripe_height: usize, |
| 1258 | pub cols: usize, |
| 1259 | pub rows: usize, |
| 1260 | } |
| 1261 | |
| 1262 | #[derive (Clone, Debug)] |
| 1263 | pub struct RestorationPlane { |
| 1264 | pub cfg: RestorationPlaneConfig, |
| 1265 | pub units: FrameRestorationUnits, |
| 1266 | } |
| 1267 | |
| 1268 | #[derive (Clone, Default)] |
| 1269 | pub struct RestorationPlaneOffset { |
| 1270 | pub row: usize, |
| 1271 | pub col: usize, |
| 1272 | } |
| 1273 | |
| 1274 | impl RestorationPlane { |
| 1275 | pub fn new( |
| 1276 | lrf_type: u8, unit_size: usize, sb_h_shift: usize, sb_v_shift: usize, |
| 1277 | sb_cols: usize, sb_rows: usize, stripe_decimate: usize, cols: usize, |
| 1278 | rows: usize, |
| 1279 | ) -> RestorationPlane { |
| 1280 | let stripe_height = if stripe_decimate != 0 { 32 } else { 64 }; |
| 1281 | RestorationPlane { |
| 1282 | cfg: RestorationPlaneConfig { |
| 1283 | lrf_type, |
| 1284 | unit_size, |
| 1285 | sb_h_shift, |
| 1286 | sb_v_shift, |
| 1287 | sb_cols, |
| 1288 | sb_rows, |
| 1289 | stripe_height, |
| 1290 | cols, |
| 1291 | rows, |
| 1292 | }, |
| 1293 | units: FrameRestorationUnits::new(cols, rows), |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | // Stripes are always 64 pixels high in a non-subsampled |
| 1298 | // frame, and decimated from 64 pixels in chroma. When |
| 1299 | // filtering, they are not co-located on Y with superblocks. |
| 1300 | fn restoration_unit_index_by_stripe( |
| 1301 | &self, stripenum: usize, rux: usize, |
| 1302 | ) -> (usize, usize) { |
| 1303 | ( |
| 1304 | cmp::min(rux, self.cfg.cols - 1), |
| 1305 | cmp::min( |
| 1306 | stripenum * self.cfg.stripe_height / self.cfg.unit_size, |
| 1307 | self.cfg.rows - 1, |
| 1308 | ), |
| 1309 | ) |
| 1310 | } |
| 1311 | |
| 1312 | pub fn restoration_unit_by_stripe( |
| 1313 | &self, stripenum: usize, rux: usize, |
| 1314 | ) -> &RestorationUnit { |
| 1315 | let (x, y) = self.restoration_unit_index_by_stripe(stripenum, rux); |
| 1316 | &self.units[y][x] |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | #[derive (Clone, Debug)] |
| 1321 | pub struct RestorationState { |
| 1322 | pub planes: [RestorationPlane; MAX_PLANES], |
| 1323 | } |
| 1324 | |
| 1325 | impl RestorationState { |
| 1326 | pub fn new<T: Pixel>(fi: &FrameInvariants<T>, input: &Frame<T>) -> Self { |
| 1327 | let PlaneConfig { xdec, ydec, .. } = input.planes[1].cfg; |
| 1328 | // stripe size is decimated in 4:2:0 (and only 4:2:0) |
| 1329 | let stripe_uv_decimate = usize::from(xdec > 0 && ydec > 0); |
| 1330 | let y_sb_log2 = if fi.sequence.use_128x128_superblock { 7 } else { 6 }; |
| 1331 | let uv_sb_h_log2 = y_sb_log2 - xdec; |
| 1332 | let uv_sb_v_log2 = y_sb_log2 - ydec; |
| 1333 | |
| 1334 | let (lrf_y_shift, lrf_uv_shift) = if fi.sequence.enable_large_lru |
| 1335 | && fi.sequence.enable_restoration |
| 1336 | { |
| 1337 | assert!( |
| 1338 | fi.width > 1 && fi.height > 1, |
| 1339 | "Width and height must be higher than 1 for LRF setup" |
| 1340 | ); |
| 1341 | |
| 1342 | // Specific content does affect optimal LRU size choice, but the |
| 1343 | // quantizer in use is a surprisingly strong selector. |
| 1344 | let lrf_base_shift = if fi.base_q_idx > 200 { |
| 1345 | 0 // big |
| 1346 | } else if fi.base_q_idx > 160 { |
| 1347 | 1 |
| 1348 | } else { |
| 1349 | 2 // small |
| 1350 | }; |
| 1351 | let lrf_chroma_shift = if stripe_uv_decimate > 0 { |
| 1352 | // 4:2:0 only |
| 1353 | if lrf_base_shift == 2 { |
| 1354 | 1 // smallest chroma LRU is a win at low quant |
| 1355 | } else { |
| 1356 | // Will a down-shifted chroma LRU eliminate stretch in chroma? |
| 1357 | // If so, that's generally a win. |
| 1358 | let lrf_unit_size = |
| 1359 | 1 << (RESTORATION_TILESIZE_MAX_LOG2 - lrf_base_shift); |
| 1360 | let unshifted_stretch = ((fi.width >> xdec) - 1) % lrf_unit_size |
| 1361 | <= lrf_unit_size / 2 |
| 1362 | || ((fi.height >> ydec) - 1) % lrf_unit_size <= lrf_unit_size / 2; |
| 1363 | let shifted_stretch = ((fi.width >> xdec) - 1) |
| 1364 | % (lrf_unit_size >> 1) |
| 1365 | <= lrf_unit_size / 4 |
| 1366 | || ((fi.height >> ydec) - 1) % (lrf_unit_size >> 1) |
| 1367 | <= lrf_unit_size / 4; |
| 1368 | // shift to eliminate stretch if needed, |
| 1369 | // otherwise do not shift and save the signaling bits |
| 1370 | usize::from(unshifted_stretch && !shifted_stretch) |
| 1371 | } |
| 1372 | } else { |
| 1373 | 0 |
| 1374 | }; |
| 1375 | (lrf_base_shift, lrf_base_shift + lrf_chroma_shift) |
| 1376 | } else { |
| 1377 | // Explicit request to tie LRU size to superblock size == |
| 1378 | // smallest possible LRU size |
| 1379 | let lrf_y_shift = if fi.sequence.use_128x128_superblock { 1 } else { 2 }; |
| 1380 | (lrf_y_shift, lrf_y_shift + stripe_uv_decimate) |
| 1381 | }; |
| 1382 | |
| 1383 | let mut y_unit_size = 1 << (RESTORATION_TILESIZE_MAX_LOG2 - lrf_y_shift); |
| 1384 | let mut uv_unit_size = 1 << (RESTORATION_TILESIZE_MAX_LOG2 - lrf_uv_shift); |
| 1385 | |
| 1386 | let tiling = fi.sequence.tiling; |
| 1387 | // Right now we defer to tiling setup: don't choose an LRU size |
| 1388 | // large enough that a tile is not an integer number of LRUs |
| 1389 | // wide/high. |
| 1390 | if tiling.cols > 1 || tiling.rows > 1 { |
| 1391 | // despite suggestions to the contrary, tiles can be |
| 1392 | // non-powers-of-2. |
| 1393 | let trailing_h_zeros = tiling.tile_width_sb.trailing_zeros() as usize; |
| 1394 | let trailing_v_zeros = tiling.tile_height_sb.trailing_zeros() as usize; |
| 1395 | let tile_aligned_y_unit_size = |
| 1396 | 1 << (y_sb_log2 + trailing_h_zeros.min(trailing_v_zeros)); |
| 1397 | let tile_aligned_uv_h_unit_size = 1 << (uv_sb_h_log2 + trailing_h_zeros); |
| 1398 | let tile_aligned_uv_v_unit_size = 1 << (uv_sb_v_log2 + trailing_v_zeros); |
| 1399 | y_unit_size = y_unit_size.min(tile_aligned_y_unit_size); |
| 1400 | uv_unit_size = uv_unit_size |
| 1401 | .min(tile_aligned_uv_h_unit_size.min(tile_aligned_uv_v_unit_size)); |
| 1402 | |
| 1403 | // But it's actually worse: LRUs can't span tiles (in our |
| 1404 | // one-pass design that is, spec allows it). However, the spec |
| 1405 | // mandates the last LRU stretches forward into any |
| 1406 | // less-than-half-LRU span of superblocks at the right and |
| 1407 | // bottom of a frame. These superblocks may well be in a |
| 1408 | // different tile! Even if LRUs are minimum size (one |
| 1409 | // superblock), when the right or bottom edge of the frame is a |
| 1410 | // superblock that's less than half the width/height of a normal |
| 1411 | // superblock, the LRU is forced by the spec to span into it |
| 1412 | // (and thus a different tile). Tiling is under no such |
| 1413 | // restriction; it could decide the right/left sliver will be in |
| 1414 | // its own tile row/column. We can't disallow the combination |
| 1415 | // here. The tiling code will have to either prevent it or |
| 1416 | // tolerate it. (prayer mechanic == Issue #1629). |
| 1417 | } |
| 1418 | |
| 1419 | // When coding 4:2:2 and 4:4:4, spec requires Y and UV LRU sizes |
| 1420 | // to be the same*. If they differ at this |
| 1421 | // point, it's due to a tiling restriction enforcing a maximum |
| 1422 | // size, so force both to the smaller value. |
| 1423 | // |
| 1424 | // *see sec 5.9.20, "Loop restoration params syntax". The |
| 1425 | // bitstream provides means of coding a different UV LRU size only |
| 1426 | // when chroma is in use and both x and y are subsampled in the |
| 1427 | // chroma planes. |
| 1428 | if ydec == 0 && y_unit_size != uv_unit_size { |
| 1429 | y_unit_size = uv_unit_size.min(y_unit_size); |
| 1430 | uv_unit_size = y_unit_size; |
| 1431 | } |
| 1432 | |
| 1433 | // derive the rest |
| 1434 | let y_unit_log2 = y_unit_size.ilog() - 1; |
| 1435 | let uv_unit_log2 = uv_unit_size.ilog() - 1; |
| 1436 | let y_cols = ((fi.width + (y_unit_size >> 1)) / y_unit_size).max(1); |
| 1437 | let y_rows = ((fi.height + (y_unit_size >> 1)) / y_unit_size).max(1); |
| 1438 | let uv_cols = ((((fi.width + (1 << xdec >> 1)) >> xdec) |
| 1439 | + (uv_unit_size >> 1)) |
| 1440 | / uv_unit_size) |
| 1441 | .max(1); |
| 1442 | let uv_rows = ((((fi.height + (1 << ydec >> 1)) >> ydec) |
| 1443 | + (uv_unit_size >> 1)) |
| 1444 | / uv_unit_size) |
| 1445 | .max(1); |
| 1446 | |
| 1447 | RestorationState { |
| 1448 | planes: [ |
| 1449 | RestorationPlane::new( |
| 1450 | RESTORE_SWITCHABLE, |
| 1451 | y_unit_size, |
| 1452 | y_unit_log2 - y_sb_log2, |
| 1453 | y_unit_log2 - y_sb_log2, |
| 1454 | fi.sb_width, |
| 1455 | fi.sb_height, |
| 1456 | 0, |
| 1457 | y_cols, |
| 1458 | y_rows, |
| 1459 | ), |
| 1460 | RestorationPlane::new( |
| 1461 | RESTORE_SWITCHABLE, |
| 1462 | uv_unit_size, |
| 1463 | uv_unit_log2 - uv_sb_h_log2, |
| 1464 | uv_unit_log2 - uv_sb_v_log2, |
| 1465 | fi.sb_width, |
| 1466 | fi.sb_height, |
| 1467 | stripe_uv_decimate, |
| 1468 | uv_cols, |
| 1469 | uv_rows, |
| 1470 | ), |
| 1471 | RestorationPlane::new( |
| 1472 | RESTORE_SWITCHABLE, |
| 1473 | uv_unit_size, |
| 1474 | uv_unit_log2 - uv_sb_h_log2, |
| 1475 | uv_unit_log2 - uv_sb_v_log2, |
| 1476 | fi.sb_width, |
| 1477 | fi.sb_height, |
| 1478 | stripe_uv_decimate, |
| 1479 | uv_cols, |
| 1480 | uv_rows, |
| 1481 | ), |
| 1482 | ], |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | #[profiling::function ] |
| 1487 | pub fn lrf_filter_frame<T: Pixel>( |
| 1488 | &mut self, out: &mut Frame<T>, pre_cdef: &Frame<T>, |
| 1489 | fi: &FrameInvariants<T>, |
| 1490 | ) { |
| 1491 | let cdeffed = out.clone(); |
| 1492 | let planes = |
| 1493 | if fi.sequence.chroma_sampling == Cs400 { 1 } else { MAX_PLANES }; |
| 1494 | |
| 1495 | // unlike the other loop filters that operate over the padded |
| 1496 | // frame dimensions, restoration filtering and source pixel |
| 1497 | // accesses are clipped to the original frame dimensions |
| 1498 | // that's why we use fi.width and fi.height instead of PlaneConfig fields |
| 1499 | |
| 1500 | // number of stripes (counted according to colocated Y luma position) |
| 1501 | let stripe_n = (fi.height + 7) / 64 + 1; |
| 1502 | |
| 1503 | // Buffers for the stripe filter. |
| 1504 | let mut stripe_filter_buffer = |
| 1505 | IntegralImageBuffer::zeroed(STRIPE_IMAGE_SIZE); |
| 1506 | |
| 1507 | for pli in 0..planes { |
| 1508 | let rp = &self.planes[pli]; |
| 1509 | let xdec = out.planes[pli].cfg.xdec; |
| 1510 | let ydec = out.planes[pli].cfg.ydec; |
| 1511 | let crop_w = (fi.width + (1 << xdec >> 1)) >> xdec; |
| 1512 | let crop_h = (fi.height + (1 << ydec >> 1)) >> ydec; |
| 1513 | |
| 1514 | for si in 0..stripe_n { |
| 1515 | let (stripe_start_y, stripe_size) = if si == 0 { |
| 1516 | (0, (64 - 8) >> ydec) |
| 1517 | } else { |
| 1518 | let start = (si * 64 - 8) >> ydec; |
| 1519 | ( |
| 1520 | start as isize, |
| 1521 | // one past, unlike spec |
| 1522 | (64 >> ydec).min(crop_h - start), |
| 1523 | ) |
| 1524 | }; |
| 1525 | |
| 1526 | // horizontally, go rdu-by-rdu |
| 1527 | for rux in 0..rp.cfg.cols { |
| 1528 | // stripe x pixel locations must be clipped to frame, last may need to stretch |
| 1529 | let x = rux * rp.cfg.unit_size; |
| 1530 | let size = |
| 1531 | if rux == rp.cfg.cols - 1 { crop_w - x } else { rp.cfg.unit_size }; |
| 1532 | let ru = rp.restoration_unit_by_stripe(si, rux); |
| 1533 | match ru.filter { |
| 1534 | RestorationFilter::Wiener { coeffs } => { |
| 1535 | wiener_stripe_filter( |
| 1536 | coeffs, |
| 1537 | fi, |
| 1538 | crop_w, |
| 1539 | crop_h, |
| 1540 | size, |
| 1541 | stripe_size, |
| 1542 | x, |
| 1543 | stripe_start_y, |
| 1544 | &cdeffed.planes[pli], |
| 1545 | &pre_cdef.planes[pli], |
| 1546 | &mut out.planes[pli], |
| 1547 | ); |
| 1548 | } |
| 1549 | RestorationFilter::Sgrproj { set, xqd } => { |
| 1550 | if !fi.sequence.enable_cdef { |
| 1551 | continue; |
| 1552 | } |
| 1553 | |
| 1554 | setup_integral_image( |
| 1555 | &mut stripe_filter_buffer, |
| 1556 | STRIPE_IMAGE_STRIDE, |
| 1557 | crop_w - x, |
| 1558 | (crop_h as isize - stripe_start_y) as usize, |
| 1559 | size, |
| 1560 | stripe_size, |
| 1561 | &cdeffed.planes[pli] |
| 1562 | .slice(PlaneOffset { x: x as isize, y: stripe_start_y }), |
| 1563 | &pre_cdef.planes[pli] |
| 1564 | .slice(PlaneOffset { x: x as isize, y: stripe_start_y }), |
| 1565 | ); |
| 1566 | |
| 1567 | sgrproj_stripe_filter( |
| 1568 | set, |
| 1569 | xqd, |
| 1570 | fi, |
| 1571 | &stripe_filter_buffer, |
| 1572 | STRIPE_IMAGE_STRIDE, |
| 1573 | &cdeffed.planes[pli] |
| 1574 | .slice(PlaneOffset { x: x as isize, y: stripe_start_y }), |
| 1575 | &mut out.planes[pli].region_mut(Area::Rect { |
| 1576 | x: x as isize, |
| 1577 | y: stripe_start_y, |
| 1578 | width: size, |
| 1579 | height: stripe_size, |
| 1580 | }), |
| 1581 | ); |
| 1582 | } |
| 1583 | RestorationFilter::None => { |
| 1584 | // do nothing |
| 1585 | } |
| 1586 | } |
| 1587 | } |
| 1588 | } |
| 1589 | } |
| 1590 | } |
| 1591 | } |
| 1592 | |