| 1 | // Copyright 2015-2016 Brian Smith. |
| 2 | // |
| 3 | // Permission to use, copy, modify, and/or distribute this software for any |
| 4 | // purpose with or without fee is hereby granted, provided that the above |
| 5 | // copyright notice and this permission notice appear in all copies. |
| 6 | // |
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| 10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 14 | |
| 15 | use super::{ |
| 16 | padding::RsaEncoding, KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N, |
| 17 | }; |
| 18 | |
| 19 | /// RSA PKCS#1 1.5 signatures. |
| 20 | use crate::{ |
| 21 | arithmetic::{ |
| 22 | bigint, |
| 23 | montgomery::{R, RR, RRR}, |
| 24 | LimbSliceError, |
| 25 | }, |
| 26 | bits::BitLength, |
| 27 | cpu, digest, |
| 28 | error::{self, KeyRejected}, |
| 29 | io::der, |
| 30 | pkcs8, rand, signature, |
| 31 | }; |
| 32 | |
| 33 | /// An RSA key pair, used for signing. |
| 34 | pub struct KeyPair { |
| 35 | p: PrivateCrtPrime<P>, |
| 36 | q: PrivateCrtPrime<Q>, |
| 37 | qInv: bigint::Elem<P, R>, |
| 38 | public: PublicKey, |
| 39 | } |
| 40 | |
| 41 | derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public); |
| 42 | |
| 43 | impl KeyPair { |
| 44 | /// Parses an unencrypted PKCS#8-encoded RSA private key. |
| 45 | /// |
| 46 | /// This will generate a 2048-bit RSA private key of the correct form using |
| 47 | /// OpenSSL's command line tool: |
| 48 | /// |
| 49 | /// ```sh |
| 50 | /// openssl genpkey -algorithm RSA \ |
| 51 | /// -pkeyopt rsa_keygen_bits:2048 \ |
| 52 | /// -pkeyopt rsa_keygen_pubexp:65537 | \ |
| 53 | /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8 |
| 54 | /// ``` |
| 55 | /// |
| 56 | /// This will generate a 3072-bit RSA private key of the correct form: |
| 57 | /// |
| 58 | /// ```sh |
| 59 | /// openssl genpkey -algorithm RSA \ |
| 60 | /// -pkeyopt rsa_keygen_bits:3072 \ |
| 61 | /// -pkeyopt rsa_keygen_pubexp:65537 | \ |
| 62 | /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8 |
| 63 | /// ``` |
| 64 | /// |
| 65 | /// Often, keys generated for use in OpenSSL-based software are stored in |
| 66 | /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be |
| 67 | /// converted to binary PKCS#8 form using the OpenSSL command line tool like |
| 68 | /// this: |
| 69 | /// |
| 70 | /// ```sh |
| 71 | /// openssl pkcs8 -topk8 -nocrypt -outform der \ |
| 72 | /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 |
| 73 | /// ``` |
| 74 | /// |
| 75 | /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8 |
| 76 | /// form like this: |
| 77 | /// |
| 78 | /// ```sh |
| 79 | /// openssl pkcs8 -nocrypt -outform der \ |
| 80 | /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 |
| 81 | /// ``` |
| 82 | /// |
| 83 | /// See [`Self::from_components`] for more details on how the input is |
| 84 | /// validated. |
| 85 | /// |
| 86 | /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the |
| 87 | /// encoding of the key. |
| 88 | /// |
| 89 | /// [NIST SP-800-56B rev. 1]: |
| 90 | /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf |
| 91 | /// |
| 92 | /// [RFC 3447 Appendix A.1.2]: |
| 93 | /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 |
| 94 | /// |
| 95 | /// [RFC 5958]: |
| 96 | /// https://tools.ietf.org/html/rfc5958 |
| 97 | pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> { |
| 98 | const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der" ); |
| 99 | let (der, _) = pkcs8::unwrap_key_( |
| 100 | untrusted::Input::from(RSA_ENCRYPTION), |
| 101 | pkcs8::Version::V1Only, |
| 102 | untrusted::Input::from(pkcs8), |
| 103 | )?; |
| 104 | Self::from_der(der.as_slice_less_safe()) |
| 105 | } |
| 106 | |
| 107 | /// Parses an RSA private key that is not inside a PKCS#8 wrapper. |
| 108 | /// |
| 109 | /// The private key must be encoded as a binary DER-encoded ASN.1 |
| 110 | /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other |
| 111 | /// respects, this is just like `from_pkcs8()`. See the documentation for |
| 112 | /// `from_pkcs8()` for more details. |
| 113 | /// |
| 114 | /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key) |
| 115 | /// instead. |
| 116 | /// |
| 117 | /// See [`Self::from_components()`] for more details on how the input is |
| 118 | /// validated. |
| 119 | /// |
| 120 | /// [RFC 3447 Appendix A.1.2]: |
| 121 | /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 |
| 122 | /// |
| 123 | /// [NIST SP-800-56B rev. 1]: |
| 124 | /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf |
| 125 | pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> { |
| 126 | untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| { |
| 127 | der::nested( |
| 128 | input, |
| 129 | der::Tag::Sequence, |
| 130 | KeyRejected::invalid_encoding(), |
| 131 | Self::from_der_reader, |
| 132 | ) |
| 133 | }) |
| 134 | } |
| 135 | |
| 136 | fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> { |
| 137 | let version = der::small_nonnegative_integer(input) |
| 138 | .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?; |
| 139 | if version != 0 { |
| 140 | return Err(KeyRejected::version_not_supported()); |
| 141 | } |
| 142 | |
| 143 | fn nonnegative_integer<'a>( |
| 144 | input: &mut untrusted::Reader<'a>, |
| 145 | ) -> Result<&'a [u8], KeyRejected> { |
| 146 | der::nonnegative_integer(input) |
| 147 | .map(|input| input.as_slice_less_safe()) |
| 148 | .map_err(|error::Unspecified| KeyRejected::invalid_encoding()) |
| 149 | } |
| 150 | |
| 151 | let n = nonnegative_integer(input)?; |
| 152 | let e = nonnegative_integer(input)?; |
| 153 | let d = nonnegative_integer(input)?; |
| 154 | let p = nonnegative_integer(input)?; |
| 155 | let q = nonnegative_integer(input)?; |
| 156 | let dP = nonnegative_integer(input)?; |
| 157 | let dQ = nonnegative_integer(input)?; |
| 158 | let qInv = nonnegative_integer(input)?; |
| 159 | |
| 160 | let components = KeyPairComponents { |
| 161 | public_key: PublicKeyComponents { n, e }, |
| 162 | d, |
| 163 | p, |
| 164 | q, |
| 165 | dP, |
| 166 | dQ, |
| 167 | qInv, |
| 168 | }; |
| 169 | |
| 170 | Self::from_components(&components) |
| 171 | } |
| 172 | |
| 173 | /// Constructs an RSA private key from its big-endian-encoded components. |
| 174 | /// |
| 175 | /// Only two-prime (not multi-prime) keys are supported. The public modulus |
| 176 | /// (n) must be at least 2047 bits. The public modulus must be no larger |
| 177 | /// than 4096 bits. It is recommended that the public modulus be exactly |
| 178 | /// 2048 or 3072 bits. The public exponent must be at least 65537 and must |
| 179 | /// be no more than 33 bits long. |
| 180 | /// |
| 181 | /// The private key is validated according to [NIST SP-800-56B rev. 1] |
| 182 | /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown), |
| 183 | /// with the following exceptions: |
| 184 | /// |
| 185 | /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an |
| 186 | /// expected modulus length is provided as a parameter, so checks |
| 187 | /// regarding these expectations are not done. |
| 188 | /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the |
| 189 | /// expected modulus length is provided as a parameter, the consistency |
| 190 | /// check between these values and the private key's value of n isn't |
| 191 | /// done. |
| 192 | /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for |
| 193 | /// performance reasons and to avoid any side channels that such tests |
| 194 | /// would provide. |
| 195 | /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7: |
| 196 | /// * *ring* has a slightly looser lower bound for the values of `p` |
| 197 | /// and `q` than what the NIST document specifies. This looser lower |
| 198 | /// bound matches what most other crypto libraries do. The check might |
| 199 | /// be tightened to meet NIST's requirements in the future. Similarly, |
| 200 | /// the check that `p` and `q` are not too close together is skipped |
| 201 | /// currently, but may be added in the future. |
| 202 | /// * The validity of the mathematical relationship of `dP`, `dQ`, `e` |
| 203 | /// and `n` is verified only during signing. Some size checks of `d`, |
| 204 | /// `dP` and `dQ` are performed at construction, but some NIST checks |
| 205 | /// are skipped because they would be expensive and/or they would leak |
| 206 | /// information through side channels. If a preemptive check of the |
| 207 | /// consistency of `dP`, `dQ`, `e` and `n` with each other is |
| 208 | /// necessary, that can be done by signing any message with the key |
| 209 | /// pair. |
| 210 | /// |
| 211 | /// * `d` is not fully validated, neither at construction nor during |
| 212 | /// signing. This is OK as far as *ring*'s usage of the key is |
| 213 | /// concerned because *ring* never uses the value of `d` (*ring* always |
| 214 | /// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem, |
| 215 | /// instead). However, *ring*'s checks would not be sufficient for |
| 216 | /// validating a key pair for use by some other system; that other |
| 217 | /// system must check the value of `d` itself if `d` is to be used. |
| 218 | pub fn from_components<Public, Private>( |
| 219 | components: &KeyPairComponents<Public, Private>, |
| 220 | ) -> Result<Self, KeyRejected> |
| 221 | where |
| 222 | Public: AsRef<[u8]>, |
| 223 | Private: AsRef<[u8]>, |
| 224 | { |
| 225 | let components = KeyPairComponents { |
| 226 | public_key: PublicKeyComponents { |
| 227 | n: components.public_key.n.as_ref(), |
| 228 | e: components.public_key.e.as_ref(), |
| 229 | }, |
| 230 | d: components.d.as_ref(), |
| 231 | p: components.p.as_ref(), |
| 232 | q: components.q.as_ref(), |
| 233 | dP: components.dP.as_ref(), |
| 234 | dQ: components.dQ.as_ref(), |
| 235 | qInv: components.qInv.as_ref(), |
| 236 | }; |
| 237 | Self::from_components_(&components, cpu::features()) |
| 238 | } |
| 239 | |
| 240 | fn from_components_( |
| 241 | &KeyPairComponents { |
| 242 | public_key, |
| 243 | d, |
| 244 | p, |
| 245 | q, |
| 246 | dP, |
| 247 | dQ, |
| 248 | qInv, |
| 249 | }: &KeyPairComponents<&[u8]>, |
| 250 | cpu_features: cpu::Features, |
| 251 | ) -> Result<Self, KeyRejected> { |
| 252 | let d = untrusted::Input::from(d); |
| 253 | let p = untrusted::Input::from(p); |
| 254 | let q = untrusted::Input::from(q); |
| 255 | let dP = untrusted::Input::from(dP); |
| 256 | let dQ = untrusted::Input::from(dQ); |
| 257 | let qInv = untrusted::Input::from(qInv); |
| 258 | |
| 259 | // XXX: Some steps are done out of order, but the NIST steps are worded |
| 260 | // in such a way that it is clear that NIST intends for them to be done |
| 261 | // in order. TODO: Does this matter at all? |
| 262 | |
| 263 | // 6.4.1.4.3/6.4.1.2.1 - Step 1. |
| 264 | |
| 265 | // Step 1.a is omitted, as explained above. |
| 266 | |
| 267 | // Step 1.b is omitted per above. Instead, we check that the public |
| 268 | // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits. |
| 269 | // XXX: The maximum limit of 4096 bits is primarily due to lack of |
| 270 | // testing of larger key sizes; see, in particular, |
| 271 | // https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html |
| 272 | // and |
| 273 | // https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html. |
| 274 | // Also, this limit might help with memory management decisions later. |
| 275 | |
| 276 | // Step 1.c. We validate e >= 65537. |
| 277 | let n = untrusted::Input::from(public_key.n); |
| 278 | let e = untrusted::Input::from(public_key.e); |
| 279 | let public_key = PublicKey::from_modulus_and_exponent( |
| 280 | n, |
| 281 | e, |
| 282 | BitLength::from_bits(2048), |
| 283 | super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS, |
| 284 | PublicExponent::_65537, |
| 285 | cpu_features, |
| 286 | )?; |
| 287 | |
| 288 | let n_one = public_key.inner().n().oneRR(); |
| 289 | let n = &public_key.inner().n().value(cpu_features); |
| 290 | |
| 291 | // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2. |
| 292 | |
| 293 | // 6.4.1.4.3 Step 3. |
| 294 | |
| 295 | // Step 3.a is done below, out of order. |
| 296 | // Step 3.b is unneeded since `n_bits` is derived here from `n`. |
| 297 | |
| 298 | // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover |
| 299 | // the prime factors since they are already given.) |
| 300 | |
| 301 | // 6.4.1.4.3 - Step 5. |
| 302 | |
| 303 | // Steps 5.a and 5.b are omitted, as explained above. |
| 304 | |
| 305 | let n_bits = public_key.inner().n().len_bits(); |
| 306 | |
| 307 | let p = PrivatePrime::new(p, n_bits, cpu_features)?; |
| 308 | let q = PrivatePrime::new(q, n_bits, cpu_features)?; |
| 309 | |
| 310 | // TODO: Step 5.i |
| 311 | // |
| 312 | // 3.b is unneeded since `n_bits` is derived here from `n`. |
| 313 | |
| 314 | // 6.4.1.4.3 - Step 3.a (out of order). |
| 315 | // |
| 316 | // Verify that p * q == n. We restrict ourselves to modular |
| 317 | // multiplication. We rely on the fact that we've verified |
| 318 | // 0 < q < p < n. We check that q and p are close to sqrt(n) and then |
| 319 | // assume that these preconditions are enough to let us assume that |
| 320 | // checking p * q == 0 (mod n) is equivalent to checking p * q == n. |
| 321 | let q_mod_n = q |
| 322 | .modulus |
| 323 | .to_elem(n) |
| 324 | .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| 325 | let p_mod_n = p |
| 326 | .modulus |
| 327 | .to_elem(n) |
| 328 | .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| 329 | let p_mod_n = bigint::elem_mul(n_one, p_mod_n, n); |
| 330 | let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n); |
| 331 | if !pq_mod_n.is_zero() { |
| 332 | return Err(KeyRejected::inconsistent_components()); |
| 333 | } |
| 334 | |
| 335 | // 6.4.1.4.3/6.4.1.2.1 - Step 6. |
| 336 | |
| 337 | // Step 6.a, partial. |
| 338 | // |
| 339 | // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit |
| 340 | // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d, |
| 341 | // and knowing d is odd makes the inequality strict. |
| 342 | let d = bigint::OwnedModulusValue::<D>::from_be_bytes(d) |
| 343 | .map_err(|_| KeyRejected::invalid_component())?; |
| 344 | if !(n_bits.half_rounded_up() < d.len_bits()) { |
| 345 | return Err(KeyRejected::inconsistent_components()); |
| 346 | } |
| 347 | // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have |
| 348 | // a good way of calculating LCM, so it is omitted, as explained above. |
| 349 | d.verify_less_than(n) |
| 350 | .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| 351 | |
| 352 | // Step 6.b is omitted as explained above. |
| 353 | |
| 354 | let pm = &p.modulus.modulus(cpu_features); |
| 355 | |
| 356 | // 6.4.1.4.3 - Step 7. |
| 357 | |
| 358 | // Step 7.c. |
| 359 | let qInv = bigint::Elem::from_be_bytes_padded(qInv, pm) |
| 360 | .map_err(|error::Unspecified| KeyRejected::invalid_component())?; |
| 361 | |
| 362 | // Steps 7.d and 7.e are omitted per the documentation above, and |
| 363 | // because we don't (in the long term) have a good way to do modulo |
| 364 | // with an even modulus. |
| 365 | |
| 366 | // Step 7.f. |
| 367 | let qInv = bigint::elem_mul(p.oneRR.as_ref(), qInv, pm); |
| 368 | let q_mod_p = bigint::elem_reduced(pm.alloc_zero(), &q_mod_n, pm, q.modulus.len_bits()); |
| 369 | let q_mod_p = bigint::elem_mul(p.oneRR.as_ref(), q_mod_p, pm); |
| 370 | bigint::verify_inverses_consttime(&qInv, q_mod_p, pm) |
| 371 | .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| 372 | |
| 373 | // This should never fail since `n` and `e` were validated above. |
| 374 | |
| 375 | let p = PrivateCrtPrime::new(p, dP, cpu_features)?; |
| 376 | let q = PrivateCrtPrime::new(q, dQ, cpu_features)?; |
| 377 | |
| 378 | Ok(Self { |
| 379 | p, |
| 380 | q, |
| 381 | qInv, |
| 382 | public: public_key, |
| 383 | }) |
| 384 | } |
| 385 | |
| 386 | /// Returns a reference to the public key. |
| 387 | pub fn public(&self) -> &PublicKey { |
| 388 | &self.public |
| 389 | } |
| 390 | |
| 391 | /// Returns the length in bytes of the key pair's public modulus. |
| 392 | /// |
| 393 | /// A signature has the same length as the public modulus. |
| 394 | #[deprecated = "Use `public().modulus_len()`" ] |
| 395 | #[inline ] |
| 396 | pub fn public_modulus_len(&self) -> usize { |
| 397 | self.public().modulus_len() |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | impl signature::KeyPair for KeyPair { |
| 402 | type PublicKey = PublicKey; |
| 403 | |
| 404 | fn public_key(&self) -> &Self::PublicKey { |
| 405 | self.public() |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | struct PrivatePrime<M> { |
| 410 | modulus: bigint::OwnedModulus<M>, |
| 411 | oneRR: bigint::One<M, RR>, |
| 412 | } |
| 413 | |
| 414 | impl<M> PrivatePrime<M> { |
| 415 | fn new( |
| 416 | p: untrusted::Input, |
| 417 | n_bits: BitLength, |
| 418 | cpu_features: cpu::Features, |
| 419 | ) -> Result<Self, KeyRejected> { |
| 420 | let p = bigint::OwnedModulusValue::from_be_bytes(p)?; |
| 421 | |
| 422 | // 5.c / 5.g: |
| 423 | // |
| 424 | // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`. |
| 425 | // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`. |
| 426 | // |
| 427 | // Second, stop if `p > 2**(nBits/2) - 1`. |
| 428 | // Second, stop if `q > 2**(nBits/2) - 1`. |
| 429 | if p.len_bits() != n_bits.half_rounded_up() { |
| 430 | return Err(KeyRejected::inconsistent_components()); |
| 431 | } |
| 432 | |
| 433 | if p.len_bits().as_bits() % 512 != 0 { |
| 434 | return Err(KeyRejected::private_modulus_len_not_multiple_of_512_bits()); |
| 435 | } |
| 436 | |
| 437 | // TODO: Step 5.d: Verify GCD(p - 1, e) == 1. |
| 438 | // TODO: Step 5.h: Verify GCD(q - 1, e) == 1. |
| 439 | |
| 440 | // Steps 5.e and 5.f are omitted as explained above. |
| 441 | let p = bigint::OwnedModulus::from(p); |
| 442 | let pm = p.modulus(cpu_features); |
| 443 | let oneRR = bigint::One::newRR(pm.alloc_zero(), &pm); |
| 444 | |
| 445 | Ok(Self { modulus: p, oneRR }) |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | struct PrivateCrtPrime<M> { |
| 450 | modulus: bigint::OwnedModulus<M>, |
| 451 | oneRRR: bigint::One<M, RRR>, |
| 452 | exponent: bigint::PrivateExponent, |
| 453 | } |
| 454 | |
| 455 | impl<M> PrivateCrtPrime<M> { |
| 456 | /// Constructs a `PrivateCrtPrime` from the private prime `p` and `dP` where |
| 457 | /// dP == d % (p - 1). |
| 458 | fn new( |
| 459 | p: PrivatePrime<M>, |
| 460 | dP: untrusted::Input, |
| 461 | cpu_features: cpu::Features, |
| 462 | ) -> Result<Self, KeyRejected> { |
| 463 | let m = &p.modulus.modulus(cpu_features); |
| 464 | // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b. |
| 465 | let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, m) |
| 466 | .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?; |
| 467 | |
| 468 | // XXX: Steps 7.d and 7.e are omitted. We don't check that |
| 469 | // `dP == d % (p - 1)` because we don't (in the long term) have a good |
| 470 | // way to do modulo with an even modulus. Instead we just check that |
| 471 | // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we |
| 472 | // do the private key operation, since we verify that the result of the |
| 473 | // private key operation using the CRT parameters is consistent with `n` |
| 474 | // and `e`. TODO: Either prove that what we do is sufficient, or make |
| 475 | // it so. |
| 476 | |
| 477 | let oneRRR = bigint::One::newRRR(p.oneRR, m); |
| 478 | |
| 479 | Ok(Self { |
| 480 | modulus: p.modulus, |
| 481 | oneRRR, |
| 482 | exponent: dP, |
| 483 | }) |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | fn elem_exp_consttime<M>( |
| 488 | c: &bigint::Elem<N>, |
| 489 | p: &PrivateCrtPrime<M>, |
| 490 | other_prime_len_bits: BitLength, |
| 491 | cpu_features: cpu::Features, |
| 492 | ) -> Result<bigint::Elem<M>, error::Unspecified> { |
| 493 | let m: &Modulus<'_, M> = &p.modulus.modulus(cpu_features); |
| 494 | bigint::elem_exp_consttime( |
| 495 | m.alloc_zero(), |
| 496 | c, |
| 497 | &p.oneRRR, |
| 498 | &p.exponent, |
| 499 | m, |
| 500 | other_prime_len_bits, |
| 501 | ) |
| 502 | .map_err(op:error::erase::<LimbSliceError>) |
| 503 | } |
| 504 | |
| 505 | // Type-level representations of the different moduli used in RSA signing, in |
| 506 | // addition to `super::N`. See `super::bigint`'s modulue-level documentation. |
| 507 | |
| 508 | enum P {} |
| 509 | |
| 510 | enum Q {} |
| 511 | |
| 512 | enum D {} |
| 513 | |
| 514 | impl KeyPair { |
| 515 | /// Computes the signature of `msg` and writes it into `signature`. |
| 516 | /// |
| 517 | /// `msg` is digested using the digest algorithm from `padding_alg` and the |
| 518 | /// digest is then padded using the padding algorithm from `padding_alg`. |
| 519 | /// |
| 520 | /// The signature it written into `signature`; `signature`'s length must be |
| 521 | /// exactly the length returned by `self::public().modulus_len()` or else |
| 522 | /// an error will be returned. On failure, `signature` may contain |
| 523 | /// intermediate results, but won't contain anything that would endanger the |
| 524 | /// private key. |
| 525 | /// |
| 526 | /// `rng` may be used to randomize the padding (e.g. for PSS). |
| 527 | /// |
| 528 | /// Many other crypto libraries have signing functions that takes a |
| 529 | /// precomputed digest as input, instead of the message to digest. This |
| 530 | /// function does *not* take a precomputed digest; instead, `sign` |
| 531 | /// calculates the digest itself. |
| 532 | pub fn sign( |
| 533 | &self, |
| 534 | padding_alg: &'static dyn RsaEncoding, |
| 535 | rng: &dyn rand::SecureRandom, |
| 536 | msg: &[u8], |
| 537 | signature: &mut [u8], |
| 538 | ) -> Result<(), error::Unspecified> { |
| 539 | let cpu_features = cpu::features(); |
| 540 | |
| 541 | if signature.len() != self.public().modulus_len() { |
| 542 | return Err(error::Unspecified); |
| 543 | } |
| 544 | |
| 545 | let m_hash = digest::digest(padding_alg.digest_alg(), msg); |
| 546 | |
| 547 | // Use the output buffer as the scratch space for the signature to |
| 548 | // reduce the required stack space. |
| 549 | padding_alg.encode(m_hash, signature, self.public().inner().n().len_bits(), rng)?; |
| 550 | |
| 551 | // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem |
| 552 | // with Garner's algorithm. |
| 553 | |
| 554 | // Steps 1 and 2. |
| 555 | let m = self.private_exponentiate(signature, cpu_features)?; |
| 556 | |
| 557 | // Step 3. |
| 558 | m.fill_be_bytes(signature); |
| 559 | |
| 560 | Ok(()) |
| 561 | } |
| 562 | |
| 563 | /// Returns base**d (mod n). |
| 564 | /// |
| 565 | /// This does not return or write any intermediate results into any buffers |
| 566 | /// that are provided by the caller so that no intermediate state will be |
| 567 | /// leaked that would endanger the private key. |
| 568 | /// |
| 569 | /// Panics if `in_out` is not `self.public().modulus_len()`. |
| 570 | fn private_exponentiate( |
| 571 | &self, |
| 572 | base: &[u8], |
| 573 | cpu_features: cpu::Features, |
| 574 | ) -> Result<bigint::Elem<N>, error::Unspecified> { |
| 575 | assert_eq!(base.len(), self.public().modulus_len()); |
| 576 | |
| 577 | // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem |
| 578 | // with Garner's algorithm. |
| 579 | |
| 580 | let n = &self.public.inner().n().value(cpu_features); |
| 581 | let n_one = self.public.inner().n().oneRR(); |
| 582 | |
| 583 | // Step 1. The value zero is also rejected. |
| 584 | let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?; |
| 585 | |
| 586 | // Step 2 |
| 587 | let c = base; |
| 588 | |
| 589 | // Step 2.b.i. |
| 590 | let q_bits = self.q.modulus.len_bits(); |
| 591 | let m_1 = elem_exp_consttime(&c, &self.p, q_bits, cpu_features)?; |
| 592 | let m_2 = elem_exp_consttime(&c, &self.q, self.p.modulus.len_bits(), cpu_features)?; |
| 593 | |
| 594 | // Step 2.b.ii isn't needed since there are only two primes. |
| 595 | |
| 596 | // Step 2.b.iii. |
| 597 | let h = { |
| 598 | let p = &self.p.modulus.modulus(cpu_features); |
| 599 | let m_2 = bigint::elem_reduced_once(p.alloc_zero(), &m_2, p, q_bits); |
| 600 | let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p); |
| 601 | bigint::elem_mul(&self.qInv, m_1_minus_m_2, p) |
| 602 | }; |
| 603 | |
| 604 | // Step 2.b.iv. The reduction in the modular multiplication isn't |
| 605 | // necessary because `h < p` and `p * q == n` implies `h * q < n`. |
| 606 | // Modular arithmetic is used simply to avoid implementing |
| 607 | // non-modular arithmetic. |
| 608 | let p_bits = self.p.modulus.len_bits(); |
| 609 | let h = bigint::elem_widen(n.alloc_zero(), h, n, p_bits)?; |
| 610 | let q_mod_n = self.q.modulus.to_elem(n)?; |
| 611 | let q_mod_n = bigint::elem_mul(n_one, q_mod_n, n); |
| 612 | let q_times_h = bigint::elem_mul(&q_mod_n, h, n); |
| 613 | let m_2 = bigint::elem_widen(n.alloc_zero(), m_2, n, q_bits)?; |
| 614 | let m = bigint::elem_add(m_2, q_times_h, n); |
| 615 | |
| 616 | // Step 2.b.v isn't needed since there are only two primes. |
| 617 | |
| 618 | // Verify the result to protect against fault attacks as described |
| 619 | // in "On the Importance of Checking Cryptographic Protocols for |
| 620 | // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. |
| 621 | // This check is cheap assuming `e` is small, which is ensured during |
| 622 | // `KeyPair` construction. Note that this is the only validation of `e` |
| 623 | // that is done other than basic checks on its size, oddness, and |
| 624 | // minimum value, since the relationship of `e` to `d`, `p`, and `q` is |
| 625 | // not verified during `KeyPair` construction. |
| 626 | { |
| 627 | let verify = n.alloc_zero(); |
| 628 | let verify = self |
| 629 | .public |
| 630 | .inner() |
| 631 | .exponentiate_elem(verify, &m, cpu_features); |
| 632 | bigint::elem_verify_equal_consttime(&verify, &c)?; |
| 633 | } |
| 634 | |
| 635 | // Step 3 will be done by the caller. |
| 636 | |
| 637 | Ok(m) |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | #[cfg (test)] |
| 642 | mod tests { |
| 643 | use super::*; |
| 644 | use crate::test; |
| 645 | use alloc::vec; |
| 646 | |
| 647 | #[test ] |
| 648 | fn test_rsakeypair_private_exponentiate() { |
| 649 | let cpu = cpu::features(); |
| 650 | test::run( |
| 651 | test_file!("keypair_private_exponentiate_tests.txt" ), |
| 652 | |section, test_case| { |
| 653 | assert_eq!(section, "" ); |
| 654 | |
| 655 | let key = test_case .consume_bytes("Key" ); |
| 656 | let key = KeyPair::from_pkcs8(&key).unwrap(); |
| 657 | let test_cases = &[ |
| 658 | test_case .consume_bytes("p" ), |
| 659 | test_case .consume_bytes("p_plus_1" ), |
| 660 | test_case .consume_bytes("p_minus_1" ), |
| 661 | test_case .consume_bytes("q" ), |
| 662 | test_case .consume_bytes("q_plus_1" ), |
| 663 | test_case .consume_bytes("q_minus_1" ), |
| 664 | ]; |
| 665 | for test_case in test_cases { |
| 666 | // THe call to `elem_verify_equal_consttime` will cause |
| 667 | // `private_exponentiate` to fail if the computation is |
| 668 | // incorrect. |
| 669 | let mut padded = vec![0; key.public.modulus_len()]; |
| 670 | let zeroes = padded.len() - test_case .len(); |
| 671 | padded[zeroes..].copy_from_slice(test_case ); |
| 672 | let _: bigint::Elem<_> = key.private_exponentiate(&padded, cpu).unwrap(); |
| 673 | } |
| 674 | Ok(()) |
| 675 | }, |
| 676 | ); |
| 677 | } |
| 678 | } |
| 679 | |