| 1 | // Copyright 2015-2021 Brian Smith. |
| 2 | // |
| 3 | // Permission to use, copy, modify, and/or distribute this software for any |
| 4 | // purpose with or without fee is hereby granted, provided that the above |
| 5 | // copyright notice and this permission notice appear in all copies. |
| 6 | // |
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| 10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 14 | |
| 15 | use super::{PublicExponent, PublicModulus, N, PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN}; |
| 16 | use crate::{ |
| 17 | arithmetic::bigint, |
| 18 | bits, cpu, error, |
| 19 | io::{self, der, der_writer}, |
| 20 | limb::LIMB_BYTES, |
| 21 | }; |
| 22 | use alloc::boxed::Box; |
| 23 | use core::num::NonZeroU64; |
| 24 | |
| 25 | /// An RSA Public Key. |
| 26 | #[derive (Clone)] |
| 27 | pub struct PublicKey { |
| 28 | inner: Inner, |
| 29 | serialized: Box<[u8]>, |
| 30 | } |
| 31 | |
| 32 | derive_debug_self_as_ref_hex_bytes!(PublicKey); |
| 33 | |
| 34 | impl PublicKey { |
| 35 | pub(super) fn from_modulus_and_exponent( |
| 36 | n: untrusted::Input, |
| 37 | e: untrusted::Input, |
| 38 | n_min_bits: bits::BitLength, |
| 39 | n_max_bits: bits::BitLength, |
| 40 | e_min_value: PublicExponent, |
| 41 | cpu_features: cpu::Features, |
| 42 | ) -> Result<Self, error::KeyRejected> { |
| 43 | let inner = Inner::from_modulus_and_exponent( |
| 44 | n, |
| 45 | e, |
| 46 | n_min_bits, |
| 47 | n_max_bits, |
| 48 | e_min_value, |
| 49 | cpu_features, |
| 50 | )?; |
| 51 | |
| 52 | let n_bytes = n; |
| 53 | let e_bytes = e; |
| 54 | |
| 55 | // TODO: Remove this re-parsing, and stop allocating this here. |
| 56 | // Instead we should serialize on demand without allocation, from |
| 57 | // `Modulus::be_bytes()` and `Exponent::be_bytes()`. Once this is |
| 58 | // fixed, merge `Inner` back into `PublicKey`. |
| 59 | let n_bytes = io::Positive::from_be_bytes(n_bytes) |
| 60 | .map_err(|_: error::Unspecified| error::KeyRejected::unexpected_error())?; |
| 61 | let e_bytes = io::Positive::from_be_bytes(e_bytes) |
| 62 | .map_err(|_: error::Unspecified| error::KeyRejected::unexpected_error())?; |
| 63 | let serialized = der_writer::write_all(der::Tag::Sequence, &|output| { |
| 64 | der_writer::write_positive_integer(output, &n_bytes)?; |
| 65 | der_writer::write_positive_integer(output, &e_bytes) |
| 66 | }) |
| 67 | .map_err(|_: io::TooLongError| error::KeyRejected::unexpected_error())?; |
| 68 | |
| 69 | Ok(Self { inner, serialized }) |
| 70 | } |
| 71 | |
| 72 | /// The length, in bytes, of the public modulus. |
| 73 | /// |
| 74 | /// The modulus length is rounded up to a whole number of bytes if its |
| 75 | /// bit length isn't a multiple of 8. |
| 76 | pub fn modulus_len(&self) -> usize { |
| 77 | self.inner.n().len_bits().as_usize_bytes_rounded_up() |
| 78 | } |
| 79 | |
| 80 | pub(super) fn inner(&self) -> &Inner { |
| 81 | &self.inner |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | /// `PublicKey` but without any superfluous allocations, optimized for one-shot |
| 86 | /// RSA signature verification. |
| 87 | #[derive (Clone)] |
| 88 | pub(crate) struct Inner { |
| 89 | n: PublicModulus, |
| 90 | e: PublicExponent, |
| 91 | } |
| 92 | |
| 93 | impl Inner { |
| 94 | pub(super) fn from_modulus_and_exponent( |
| 95 | n: untrusted::Input, |
| 96 | e: untrusted::Input, |
| 97 | n_min_bits: bits::BitLength, |
| 98 | n_max_bits: bits::BitLength, |
| 99 | e_min_value: PublicExponent, |
| 100 | cpu_features: cpu::Features, |
| 101 | ) -> Result<Self, error::KeyRejected> { |
| 102 | // This is an incomplete implementation of NIST SP800-56Br1 Section |
| 103 | // 6.4.2.2, "Partial Public-Key Validation for RSA." That spec defers |
| 104 | // to NIST SP800-89 Section 5.3.3, "(Explicit) Partial Public Key |
| 105 | // Validation for RSA," "with the caveat that the length of the modulus |
| 106 | // shall be a length that is specified in this Recommendation." In |
| 107 | // SP800-89, two different sets of steps are given, one set numbered, |
| 108 | // and one set lettered. TODO: Document this in the end-user |
| 109 | // documentation for RSA keys. |
| 110 | |
| 111 | let n = PublicModulus::from_be_bytes(n, n_min_bits..=n_max_bits, cpu_features)?; |
| 112 | |
| 113 | let e = PublicExponent::from_be_bytes(e, e_min_value)?; |
| 114 | |
| 115 | // If `n` is less than `e` then somebody has probably accidentally swapped |
| 116 | // them. The largest acceptable `e` is smaller than the smallest acceptable |
| 117 | // `n`, so no additional checks need to be done. |
| 118 | |
| 119 | // XXX: Steps 4 & 5 / Steps d, e, & f are not implemented. This is also the |
| 120 | // case in most other commonly-used crypto libraries. |
| 121 | |
| 122 | Ok(Self { n, e }) |
| 123 | } |
| 124 | |
| 125 | /// The public modulus. |
| 126 | #[inline ] |
| 127 | pub(super) fn n(&self) -> &PublicModulus { |
| 128 | &self.n |
| 129 | } |
| 130 | |
| 131 | /// The public exponent. |
| 132 | #[inline ] |
| 133 | pub(super) fn e(&self) -> PublicExponent { |
| 134 | self.e |
| 135 | } |
| 136 | |
| 137 | /// Calculates base**e (mod n), filling the first part of `out_buffer` with |
| 138 | /// the result. |
| 139 | /// |
| 140 | /// This is constant-time with respect to the value in `base` (only). |
| 141 | /// |
| 142 | /// The result will be a slice of the encoded bytes of the result within |
| 143 | /// `out_buffer`, if successful. |
| 144 | pub(super) fn exponentiate<'out>( |
| 145 | &self, |
| 146 | base: untrusted::Input, |
| 147 | out_buffer: &'out mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN], |
| 148 | cpu_features: cpu::Features, |
| 149 | ) -> Result<&'out [u8], error::Unspecified> { |
| 150 | let n = &self.n.value(cpu_features); |
| 151 | |
| 152 | // The encoded value of the base must be the same length as the modulus, |
| 153 | // in bytes. |
| 154 | if base.len() != self.n.len_bits().as_usize_bytes_rounded_up() { |
| 155 | return Err(error::Unspecified); |
| 156 | } |
| 157 | |
| 158 | // RFC 8017 Section 5.2.2: RSAVP1. |
| 159 | |
| 160 | // Step 1. |
| 161 | let s = bigint::Elem::from_be_bytes_padded(base, n)?; |
| 162 | if s.is_zero() { |
| 163 | return Err(error::Unspecified); |
| 164 | } |
| 165 | |
| 166 | // Step 2. |
| 167 | let m = n.alloc_zero(); |
| 168 | let m = self.exponentiate_elem(m, &s, cpu_features); |
| 169 | |
| 170 | // Step 3. |
| 171 | Ok(fill_be_bytes_n(m, self.n.len_bits(), out_buffer)) |
| 172 | } |
| 173 | |
| 174 | /// Calculates base**e (mod n). |
| 175 | /// |
| 176 | /// This is constant-time with respect to `base` only. |
| 177 | pub(super) fn exponentiate_elem( |
| 178 | &self, |
| 179 | out: bigint::Storage<N>, |
| 180 | base: &bigint::Elem<N>, |
| 181 | cpu_features: cpu::Features, |
| 182 | ) -> bigint::Elem<N> { |
| 183 | // The exponent was already checked to be at least 3. |
| 184 | let exponent_without_low_bit = NonZeroU64::try_from(self.e.value().get() & !1).unwrap(); |
| 185 | // The exponent was already checked to be odd. |
| 186 | debug_assert_ne!(exponent_without_low_bit, self.e.value()); |
| 187 | |
| 188 | let n = &self.n.value(cpu_features); |
| 189 | |
| 190 | let tmp = n.alloc_zero(); |
| 191 | let base_r = bigint::elem_mul_into(tmp, self.n.oneRR(), base, n); |
| 192 | |
| 193 | // During RSA public key operations the exponent is almost always either |
| 194 | // 65537 (0b10000000000000001) or 3 (0b11), both of which have a Hamming |
| 195 | // weight of 2. The maximum bit length and maximum Hamming weight of the |
| 196 | // exponent is bounded by the value of `PublicExponent::MAX`. |
| 197 | let acc = bigint::elem_exp_vartime(out, base_r, exponent_without_low_bit, n); |
| 198 | |
| 199 | // Now do the multiplication for the low bit and convert out of the Montgomery domain. |
| 200 | bigint::elem_mul(base, acc, n) |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | // XXX: Refactor `signature::KeyPair` to get rid of this. |
| 205 | impl AsRef<[u8]> for PublicKey { |
| 206 | fn as_ref(&self) -> &[u8] { |
| 207 | &self.serialized |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | /// Returns the big-endian representation of `elem` that is |
| 212 | /// the same length as the minimal-length big-endian representation of |
| 213 | /// the modulus `n`. |
| 214 | /// |
| 215 | /// `n_bits` must be the bit length of the public modulus `n`. |
| 216 | fn fill_be_bytes_n( |
| 217 | elem: bigint::Elem<N>, |
| 218 | n_bits: bits::BitLength, |
| 219 | out: &mut [u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN], |
| 220 | ) -> &[u8] { |
| 221 | let n_bytes: usize = n_bits.as_usize_bytes_rounded_up(); |
| 222 | let n_bytes_padded: usize = ((n_bytes + (LIMB_BYTES - 1)) / LIMB_BYTES) * LIMB_BYTES; |
| 223 | let out: &mut [u8] = &mut out[..n_bytes_padded]; |
| 224 | elem.fill_be_bytes(out); |
| 225 | let (padding: &[u8], out: &[u8]) = out.split_at(mid:n_bytes_padded - n_bytes); |
| 226 | assert!(padding.iter().all(|&b| b == 0)); |
| 227 | out |
| 228 | } |
| 229 | |