1 | use alloc::boxed::Box; |
2 | use core::fmt::Debug; |
3 | use core::mem; |
4 | use core::ops::{Deref, DerefMut, Range}; |
5 | #[cfg (feature = "std" )] |
6 | use std::io; |
7 | |
8 | use crate::common_state::{CommonState, Context, DEFAULT_BUFFER_LIMIT, IoState, State}; |
9 | use crate::enums::{AlertDescription, ContentType, ProtocolVersion}; |
10 | use crate::error::{Error, PeerMisbehaved}; |
11 | use crate::log::trace; |
12 | use crate::msgs::deframer::DeframerIter; |
13 | use crate::msgs::deframer::buffers::{BufferProgress, DeframerVecBuffer, Delocator, Locator}; |
14 | use crate::msgs::deframer::handshake::HandshakeDeframer; |
15 | use crate::msgs::handshake::Random; |
16 | use crate::msgs::message::{InboundPlainMessage, Message, MessagePayload}; |
17 | use crate::record_layer::Decrypted; |
18 | use crate::suites::{ExtractedSecrets, PartiallyExtractedSecrets}; |
19 | use crate::vecbuf::ChunkVecBuffer; |
20 | |
21 | pub(crate) mod unbuffered; |
22 | |
23 | #[cfg (feature = "std" )] |
24 | mod connection { |
25 | use alloc::vec::Vec; |
26 | use core::fmt::Debug; |
27 | use core::ops::{Deref, DerefMut}; |
28 | use std::io::{self, BufRead, Read}; |
29 | |
30 | use crate::ConnectionCommon; |
31 | use crate::common_state::{CommonState, IoState}; |
32 | use crate::error::Error; |
33 | use crate::msgs::message::OutboundChunks; |
34 | use crate::suites::ExtractedSecrets; |
35 | use crate::vecbuf::ChunkVecBuffer; |
36 | |
37 | /// A client or server connection. |
38 | #[derive (Debug)] |
39 | pub enum Connection { |
40 | /// A client connection |
41 | Client(crate::client::ClientConnection), |
42 | /// A server connection |
43 | Server(crate::server::ServerConnection), |
44 | } |
45 | |
46 | impl Connection { |
47 | /// Read TLS content from `rd`. |
48 | /// |
49 | /// See [`ConnectionCommon::read_tls()`] for more information. |
50 | pub fn read_tls(&mut self, rd: &mut dyn Read) -> Result<usize, io::Error> { |
51 | match self { |
52 | Self::Client(conn) => conn.read_tls(rd), |
53 | Self::Server(conn) => conn.read_tls(rd), |
54 | } |
55 | } |
56 | |
57 | /// Writes TLS messages to `wr`. |
58 | /// |
59 | /// See [`ConnectionCommon::write_tls()`] for more information. |
60 | pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> { |
61 | self.sendable_tls.write_to(wr) |
62 | } |
63 | |
64 | /// Returns an object that allows reading plaintext. |
65 | pub fn reader(&mut self) -> Reader<'_> { |
66 | match self { |
67 | Self::Client(conn) => conn.reader(), |
68 | Self::Server(conn) => conn.reader(), |
69 | } |
70 | } |
71 | |
72 | /// Returns an object that allows writing plaintext. |
73 | pub fn writer(&mut self) -> Writer<'_> { |
74 | match self { |
75 | Self::Client(conn) => Writer::new(&mut **conn), |
76 | Self::Server(conn) => Writer::new(&mut **conn), |
77 | } |
78 | } |
79 | |
80 | /// Processes any new packets read by a previous call to [`Connection::read_tls`]. |
81 | /// |
82 | /// See [`ConnectionCommon::process_new_packets()`] for more information. |
83 | pub fn process_new_packets(&mut self) -> Result<IoState, Error> { |
84 | match self { |
85 | Self::Client(conn) => conn.process_new_packets(), |
86 | Self::Server(conn) => conn.process_new_packets(), |
87 | } |
88 | } |
89 | |
90 | /// Derives key material from the agreed connection secrets. |
91 | /// |
92 | /// See [`ConnectionCommon::export_keying_material()`] for more information. |
93 | pub fn export_keying_material<T: AsMut<[u8]>>( |
94 | &self, |
95 | output: T, |
96 | label: &[u8], |
97 | context: Option<&[u8]>, |
98 | ) -> Result<T, Error> { |
99 | match self { |
100 | Self::Client(conn) => conn.export_keying_material(output, label, context), |
101 | Self::Server(conn) => conn.export_keying_material(output, label, context), |
102 | } |
103 | } |
104 | |
105 | /// This function uses `io` to complete any outstanding IO for this connection. |
106 | /// |
107 | /// See [`ConnectionCommon::complete_io()`] for more information. |
108 | pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error> |
109 | where |
110 | Self: Sized, |
111 | T: Read + io::Write, |
112 | { |
113 | match self { |
114 | Self::Client(conn) => conn.complete_io(io), |
115 | Self::Server(conn) => conn.complete_io(io), |
116 | } |
117 | } |
118 | |
119 | /// Extract secrets, so they can be used when configuring kTLS, for example. |
120 | /// Should be used with care as it exposes secret key material. |
121 | pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> { |
122 | match self { |
123 | Self::Client(client) => client.dangerous_extract_secrets(), |
124 | Self::Server(server) => server.dangerous_extract_secrets(), |
125 | } |
126 | } |
127 | |
128 | /// Sets a limit on the internal buffers |
129 | /// |
130 | /// See [`ConnectionCommon::set_buffer_limit()`] for more information. |
131 | pub fn set_buffer_limit(&mut self, limit: Option<usize>) { |
132 | match self { |
133 | Self::Client(client) => client.set_buffer_limit(limit), |
134 | Self::Server(server) => server.set_buffer_limit(limit), |
135 | } |
136 | } |
137 | |
138 | /// Sends a TLS1.3 `key_update` message to refresh a connection's keys |
139 | /// |
140 | /// See [`ConnectionCommon::refresh_traffic_keys()`] for more information. |
141 | pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> { |
142 | match self { |
143 | Self::Client(client) => client.refresh_traffic_keys(), |
144 | Self::Server(server) => server.refresh_traffic_keys(), |
145 | } |
146 | } |
147 | } |
148 | |
149 | impl Deref for Connection { |
150 | type Target = CommonState; |
151 | |
152 | fn deref(&self) -> &Self::Target { |
153 | match self { |
154 | Self::Client(conn) => &conn.core.common_state, |
155 | Self::Server(conn) => &conn.core.common_state, |
156 | } |
157 | } |
158 | } |
159 | |
160 | impl DerefMut for Connection { |
161 | fn deref_mut(&mut self) -> &mut Self::Target { |
162 | match self { |
163 | Self::Client(conn) => &mut conn.core.common_state, |
164 | Self::Server(conn) => &mut conn.core.common_state, |
165 | } |
166 | } |
167 | } |
168 | |
169 | /// A structure that implements [`std::io::Read`] for reading plaintext. |
170 | pub struct Reader<'a> { |
171 | pub(super) received_plaintext: &'a mut ChunkVecBuffer, |
172 | pub(super) has_received_close_notify: bool, |
173 | pub(super) has_seen_eof: bool, |
174 | } |
175 | |
176 | impl<'a> Reader<'a> { |
177 | /// Check the connection's state if no bytes are available for reading. |
178 | fn check_no_bytes_state(&self) -> io::Result<()> { |
179 | match (self.has_received_close_notify, self.has_seen_eof) { |
180 | // cleanly closed; don't care about TCP EOF: express this as Ok(0) |
181 | (true, _) => Ok(()), |
182 | // unclean closure |
183 | (false, true) => Err(io::Error::new( |
184 | io::ErrorKind::UnexpectedEof, |
185 | UNEXPECTED_EOF_MESSAGE, |
186 | )), |
187 | // connection still going, but needs more data: signal `WouldBlock` so that |
188 | // the caller knows this |
189 | (false, false) => Err(io::ErrorKind::WouldBlock.into()), |
190 | } |
191 | } |
192 | |
193 | /// Obtain a chunk of plaintext data received from the peer over this TLS connection. |
194 | /// |
195 | /// This method consumes `self` so that it can return a slice whose lifetime is bounded by |
196 | /// the [`ConnectionCommon`] that created this `Reader`. |
197 | pub fn into_first_chunk(self) -> io::Result<&'a [u8]> { |
198 | match self.received_plaintext.chunk() { |
199 | Some(chunk) => Ok(chunk), |
200 | None => { |
201 | self.check_no_bytes_state()?; |
202 | Ok(&[]) |
203 | } |
204 | } |
205 | } |
206 | } |
207 | |
208 | impl Read for Reader<'_> { |
209 | /// Obtain plaintext data received from the peer over this TLS connection. |
210 | /// |
211 | /// If the peer closes the TLS session cleanly, this returns `Ok(0)` once all |
212 | /// the pending data has been read. No further data can be received on that |
213 | /// connection, so the underlying TCP connection should be half-closed too. |
214 | /// |
215 | /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a |
216 | /// `close_notify` alert) this function returns a `std::io::Error` of type |
217 | /// `ErrorKind::UnexpectedEof` once any pending data has been read. |
218 | /// |
219 | /// Note that support for `close_notify` varies in peer TLS libraries: many do not |
220 | /// support it and uncleanly close the TCP connection (this might be |
221 | /// vulnerable to truncation attacks depending on the application protocol). |
222 | /// This means applications using rustls must both handle EOF |
223 | /// from this function, *and* unexpected EOF of the underlying TCP connection. |
224 | /// |
225 | /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`. |
226 | /// |
227 | /// You may learn the number of bytes available at any time by inspecting |
228 | /// the return of [`Connection::process_new_packets`]. |
229 | fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { |
230 | let len = self.received_plaintext.read(buf)?; |
231 | if len > 0 || buf.is_empty() { |
232 | return Ok(len); |
233 | } |
234 | |
235 | self.check_no_bytes_state() |
236 | .map(|()| len) |
237 | } |
238 | |
239 | /// Obtain plaintext data received from the peer over this TLS connection. |
240 | /// |
241 | /// If the peer closes the TLS session, this returns `Ok(())` without filling |
242 | /// any more of the buffer once all the pending data has been read. No further |
243 | /// data can be received on that connection, so the underlying TCP connection |
244 | /// should be half-closed too. |
245 | /// |
246 | /// If the peer closes the TLS session uncleanly (a TCP EOF without sending a |
247 | /// `close_notify` alert) this function returns a `std::io::Error` of type |
248 | /// `ErrorKind::UnexpectedEof` once any pending data has been read. |
249 | /// |
250 | /// Note that support for `close_notify` varies in peer TLS libraries: many do not |
251 | /// support it and uncleanly close the TCP connection (this might be |
252 | /// vulnerable to truncation attacks depending on the application protocol). |
253 | /// This means applications using rustls must both handle EOF |
254 | /// from this function, *and* unexpected EOF of the underlying TCP connection. |
255 | /// |
256 | /// If there are no bytes to read, this returns `Err(ErrorKind::WouldBlock.into())`. |
257 | /// |
258 | /// You may learn the number of bytes available at any time by inspecting |
259 | /// the return of [`Connection::process_new_packets`]. |
260 | #[cfg (read_buf)] |
261 | fn read_buf(&mut self, mut cursor: core::io::BorrowedCursor<'_>) -> io::Result<()> { |
262 | let before = cursor.written(); |
263 | self.received_plaintext |
264 | .read_buf(cursor.reborrow())?; |
265 | let len = cursor.written() - before; |
266 | if len > 0 || cursor.capacity() == 0 { |
267 | return Ok(()); |
268 | } |
269 | |
270 | self.check_no_bytes_state() |
271 | } |
272 | } |
273 | |
274 | impl BufRead for Reader<'_> { |
275 | /// Obtain a chunk of plaintext data received from the peer over this TLS connection. |
276 | /// This reads the same data as [`Reader::read()`], but returns a reference instead of |
277 | /// copying the data. |
278 | /// |
279 | /// The caller should call [`Reader::consume()`] afterward to advance the buffer. |
280 | /// |
281 | /// See [`Reader::into_first_chunk()`] for a version of this function that returns a |
282 | /// buffer with a longer lifetime. |
283 | fn fill_buf(&mut self) -> io::Result<&[u8]> { |
284 | Reader { |
285 | // reborrow |
286 | received_plaintext: self.received_plaintext, |
287 | ..*self |
288 | } |
289 | .into_first_chunk() |
290 | } |
291 | |
292 | fn consume(&mut self, amt: usize) { |
293 | self.received_plaintext |
294 | .consume_first_chunk(amt) |
295 | } |
296 | } |
297 | |
298 | const UNEXPECTED_EOF_MESSAGE: &str = "peer closed connection without sending TLS close_notify: \ |
299 | https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#unexpected-eof" ; |
300 | |
301 | /// A structure that implements [`std::io::Write`] for writing plaintext. |
302 | pub struct Writer<'a> { |
303 | sink: &'a mut dyn PlaintextSink, |
304 | } |
305 | |
306 | impl<'a> Writer<'a> { |
307 | /// Create a new Writer. |
308 | /// |
309 | /// This is not an external interface. Get one of these objects |
310 | /// from [`Connection::writer`]. |
311 | pub(crate) fn new(sink: &'a mut dyn PlaintextSink) -> Self { |
312 | Writer { sink } |
313 | } |
314 | } |
315 | |
316 | impl io::Write for Writer<'_> { |
317 | /// Send the plaintext `buf` to the peer, encrypting |
318 | /// and authenticating it. Once this function succeeds |
319 | /// you should call [`Connection::write_tls`] which will output the |
320 | /// corresponding TLS records. |
321 | /// |
322 | /// This function buffers plaintext sent before the |
323 | /// TLS handshake completes, and sends it as soon |
324 | /// as it can. See [`ConnectionCommon::set_buffer_limit`] to control |
325 | /// the size of this buffer. |
326 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
327 | self.sink.write(buf) |
328 | } |
329 | |
330 | fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> { |
331 | self.sink.write_vectored(bufs) |
332 | } |
333 | |
334 | fn flush(&mut self) -> io::Result<()> { |
335 | self.sink.flush() |
336 | } |
337 | } |
338 | |
339 | /// Internal trait implemented by the [`ServerConnection`]/[`ClientConnection`] |
340 | /// allowing them to be the subject of a [`Writer`]. |
341 | /// |
342 | /// [`ServerConnection`]: crate::ServerConnection |
343 | /// [`ClientConnection`]: crate::ClientConnection |
344 | pub(crate) trait PlaintextSink { |
345 | fn write(&mut self, buf: &[u8]) -> io::Result<usize>; |
346 | fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize>; |
347 | fn flush(&mut self) -> io::Result<()>; |
348 | } |
349 | |
350 | impl<T> PlaintextSink for ConnectionCommon<T> { |
351 | fn write(&mut self, buf: &[u8]) -> io::Result<usize> { |
352 | let len = self |
353 | .core |
354 | .common_state |
355 | .buffer_plaintext(buf.into(), &mut self.sendable_plaintext); |
356 | self.core.maybe_refresh_traffic_keys(); |
357 | Ok(len) |
358 | } |
359 | |
360 | fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> { |
361 | let payload_owner: Vec<&[u8]>; |
362 | let payload = match bufs.len() { |
363 | 0 => return Ok(0), |
364 | 1 => OutboundChunks::Single(bufs[0].deref()), |
365 | _ => { |
366 | payload_owner = bufs |
367 | .iter() |
368 | .map(|io_slice| io_slice.deref()) |
369 | .collect(); |
370 | |
371 | OutboundChunks::new(&payload_owner) |
372 | } |
373 | }; |
374 | let len = self |
375 | .core |
376 | .common_state |
377 | .buffer_plaintext(payload, &mut self.sendable_plaintext); |
378 | self.core.maybe_refresh_traffic_keys(); |
379 | Ok(len) |
380 | } |
381 | |
382 | fn flush(&mut self) -> io::Result<()> { |
383 | Ok(()) |
384 | } |
385 | } |
386 | } |
387 | |
388 | #[cfg (feature = "std" )] |
389 | pub use connection::{Connection, Reader, Writer}; |
390 | |
391 | #[derive (Debug)] |
392 | pub(crate) struct ConnectionRandoms { |
393 | pub(crate) client: [u8; 32], |
394 | pub(crate) server: [u8; 32], |
395 | } |
396 | |
397 | impl ConnectionRandoms { |
398 | pub(crate) fn new(client: Random, server: Random) -> Self { |
399 | Self { |
400 | client: client.0, |
401 | server: server.0, |
402 | } |
403 | } |
404 | } |
405 | |
406 | /// Interface shared by client and server connections. |
407 | pub struct ConnectionCommon<Data> { |
408 | pub(crate) core: ConnectionCore<Data>, |
409 | deframer_buffer: DeframerVecBuffer, |
410 | sendable_plaintext: ChunkVecBuffer, |
411 | } |
412 | |
413 | impl<Data> ConnectionCommon<Data> { |
414 | /// Processes any new packets read by a previous call to |
415 | /// [`Connection::read_tls`]. |
416 | /// |
417 | /// Errors from this function relate to TLS protocol errors, and |
418 | /// are fatal to the connection. Future calls after an error will do |
419 | /// no new work and will return the same error. After an error is |
420 | /// received from [`process_new_packets`], you should not call [`read_tls`] |
421 | /// any more (it will fill up buffers to no purpose). However, you |
422 | /// may call the other methods on the connection, including `write`, |
423 | /// `send_close_notify`, and `write_tls`. Most likely you will want to |
424 | /// call `write_tls` to send any alerts queued by the error and then |
425 | /// close the underlying connection. |
426 | /// |
427 | /// Success from this function comes with some sundry state data |
428 | /// about the connection. |
429 | /// |
430 | /// [`read_tls`]: Connection::read_tls |
431 | /// [`process_new_packets`]: Connection::process_new_packets |
432 | #[inline ] |
433 | pub fn process_new_packets(&mut self) -> Result<IoState, Error> { |
434 | self.core |
435 | .process_new_packets(&mut self.deframer_buffer, &mut self.sendable_plaintext) |
436 | } |
437 | |
438 | /// Derives key material from the agreed connection secrets. |
439 | /// |
440 | /// This function fills in `output` with `output.len()` bytes of key |
441 | /// material derived from the master session secret using `label` |
442 | /// and `context` for diversification. Ownership of the buffer is taken |
443 | /// by the function and returned via the Ok result to ensure no key |
444 | /// material leaks if the function fails. |
445 | /// |
446 | /// See RFC5705 for more details on what this does and is for. |
447 | /// |
448 | /// For TLS1.3 connections, this function does not use the |
449 | /// "early" exporter at any point. |
450 | /// |
451 | /// This function fails if called prior to the handshake completing; |
452 | /// check with [`CommonState::is_handshaking`] first. |
453 | /// |
454 | /// This function fails if `output.len()` is zero. |
455 | #[inline ] |
456 | pub fn export_keying_material<T: AsMut<[u8]>>( |
457 | &self, |
458 | output: T, |
459 | label: &[u8], |
460 | context: Option<&[u8]>, |
461 | ) -> Result<T, Error> { |
462 | self.core |
463 | .export_keying_material(output, label, context) |
464 | } |
465 | |
466 | /// Extract secrets, so they can be used when configuring kTLS, for example. |
467 | /// Should be used with care as it exposes secret key material. |
468 | pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> { |
469 | self.core.dangerous_extract_secrets() |
470 | } |
471 | |
472 | /// Sets a limit on the internal buffers used to buffer |
473 | /// unsent plaintext (prior to completing the TLS handshake) |
474 | /// and unsent TLS records. This limit acts only on application |
475 | /// data written through [`Connection::writer`]. |
476 | /// |
477 | /// By default the limit is 64KB. The limit can be set |
478 | /// at any time, even if the current buffer use is higher. |
479 | /// |
480 | /// [`None`] means no limit applies, and will mean that written |
481 | /// data is buffered without bound -- it is up to the application |
482 | /// to appropriately schedule its plaintext and TLS writes to bound |
483 | /// memory usage. |
484 | /// |
485 | /// For illustration: `Some(1)` means a limit of one byte applies: |
486 | /// [`Connection::writer`] will accept only one byte, encrypt it and |
487 | /// add a TLS header. Once this is sent via [`Connection::write_tls`], |
488 | /// another byte may be sent. |
489 | /// |
490 | /// # Internal write-direction buffering |
491 | /// rustls has two buffers whose size are bounded by this setting: |
492 | /// |
493 | /// ## Buffering of unsent plaintext data prior to handshake completion |
494 | /// |
495 | /// Calls to [`Connection::writer`] before or during the handshake |
496 | /// are buffered (up to the limit specified here). Once the |
497 | /// handshake completes this data is encrypted and the resulting |
498 | /// TLS records are added to the outgoing buffer. |
499 | /// |
500 | /// ## Buffering of outgoing TLS records |
501 | /// |
502 | /// This buffer is used to store TLS records that rustls needs to |
503 | /// send to the peer. It is used in these two circumstances: |
504 | /// |
505 | /// - by [`Connection::process_new_packets`] when a handshake or alert |
506 | /// TLS record needs to be sent. |
507 | /// - by [`Connection::writer`] post-handshake: the plaintext is |
508 | /// encrypted and the resulting TLS record is buffered. |
509 | /// |
510 | /// This buffer is emptied by [`Connection::write_tls`]. |
511 | /// |
512 | /// [`Connection::writer`]: crate::Connection::writer |
513 | /// [`Connection::write_tls`]: crate::Connection::write_tls |
514 | /// [`Connection::process_new_packets`]: crate::Connection::process_new_packets |
515 | pub fn set_buffer_limit(&mut self, limit: Option<usize>) { |
516 | self.sendable_plaintext.set_limit(limit); |
517 | self.sendable_tls.set_limit(limit); |
518 | } |
519 | |
520 | /// Sends a TLS1.3 `key_update` message to refresh a connection's keys. |
521 | /// |
522 | /// This call refreshes our encryption keys. Once the peer receives the message, |
523 | /// it refreshes _its_ encryption and decryption keys and sends a response. |
524 | /// Once we receive that response, we refresh our decryption keys to match. |
525 | /// At the end of this process, keys in both directions have been refreshed. |
526 | /// |
527 | /// Note that this process does not happen synchronously: this call just |
528 | /// arranges that the `key_update` message will be included in the next |
529 | /// `write_tls` output. |
530 | /// |
531 | /// This fails with `Error::HandshakeNotComplete` if called before the initial |
532 | /// handshake is complete, or if a version prior to TLS1.3 is negotiated. |
533 | /// |
534 | /// # Usage advice |
535 | /// Note that other implementations (including rustls) may enforce limits on |
536 | /// the number of `key_update` messages allowed on a given connection to prevent |
537 | /// denial of service. Therefore, this should be called sparingly. |
538 | /// |
539 | /// rustls implicitly and automatically refreshes traffic keys when needed |
540 | /// according to the selected cipher suite's cryptographic constraints. There |
541 | /// is therefore no need to call this manually to avoid cryptographic keys |
542 | /// "wearing out". |
543 | /// |
544 | /// The main reason to call this manually is to roll keys when it is known |
545 | /// a connection will be idle for a long period. |
546 | pub fn refresh_traffic_keys(&mut self) -> Result<(), Error> { |
547 | self.core.refresh_traffic_keys() |
548 | } |
549 | } |
550 | |
551 | #[cfg (feature = "std" )] |
552 | impl<Data> ConnectionCommon<Data> { |
553 | /// Returns an object that allows reading plaintext. |
554 | pub fn reader(&mut self) -> Reader<'_> { |
555 | let common = &mut self.core.common_state; |
556 | Reader { |
557 | received_plaintext: &mut common.received_plaintext, |
558 | // Are we done? i.e., have we processed all received messages, and received a |
559 | // close_notify to indicate that no new messages will arrive? |
560 | has_received_close_notify: common.has_received_close_notify, |
561 | has_seen_eof: common.has_seen_eof, |
562 | } |
563 | } |
564 | |
565 | /// Returns an object that allows writing plaintext. |
566 | pub fn writer(&mut self) -> Writer<'_> { |
567 | Writer::new(self) |
568 | } |
569 | |
570 | /// This function uses `io` to complete any outstanding IO for |
571 | /// this connection. |
572 | /// |
573 | /// This is a convenience function which solely uses other parts |
574 | /// of the public API. |
575 | /// |
576 | /// What this means depends on the connection state: |
577 | /// |
578 | /// - If the connection [`is_handshaking`], then IO is performed until |
579 | /// the handshake is complete. |
580 | /// - Otherwise, if [`wants_write`] is true, [`write_tls`] is invoked |
581 | /// until it is all written. |
582 | /// - Otherwise, if [`wants_read`] is true, [`read_tls`] is invoked |
583 | /// once. |
584 | /// |
585 | /// The return value is the number of bytes read from and written |
586 | /// to `io`, respectively. |
587 | /// |
588 | /// This function will block if `io` blocks. |
589 | /// |
590 | /// Errors from TLS record handling (i.e., from [`process_new_packets`]) |
591 | /// are wrapped in an `io::ErrorKind::InvalidData`-kind error. |
592 | /// |
593 | /// [`is_handshaking`]: CommonState::is_handshaking |
594 | /// [`wants_read`]: CommonState::wants_read |
595 | /// [`wants_write`]: CommonState::wants_write |
596 | /// [`write_tls`]: ConnectionCommon::write_tls |
597 | /// [`read_tls`]: ConnectionCommon::read_tls |
598 | /// [`process_new_packets`]: ConnectionCommon::process_new_packets |
599 | pub fn complete_io<T>(&mut self, io: &mut T) -> Result<(usize, usize), io::Error> |
600 | where |
601 | Self: Sized, |
602 | T: io::Read + io::Write, |
603 | { |
604 | let mut eof = false; |
605 | let mut wrlen = 0; |
606 | let mut rdlen = 0; |
607 | |
608 | loop { |
609 | let until_handshaked = self.is_handshaking(); |
610 | |
611 | if !self.wants_write() && !self.wants_read() { |
612 | // We will make no further progress. |
613 | return Ok((rdlen, wrlen)); |
614 | } |
615 | |
616 | while self.wants_write() { |
617 | match self.write_tls(io)? { |
618 | 0 => { |
619 | io.flush()?; |
620 | return Ok((rdlen, wrlen)); // EOF. |
621 | } |
622 | n => wrlen += n, |
623 | } |
624 | } |
625 | io.flush()?; |
626 | |
627 | if !until_handshaked && wrlen > 0 { |
628 | return Ok((rdlen, wrlen)); |
629 | } |
630 | |
631 | while !eof && self.wants_read() { |
632 | let read_size = match self.read_tls(io) { |
633 | Ok(0) => { |
634 | eof = true; |
635 | Some(0) |
636 | } |
637 | Ok(n) => { |
638 | rdlen += n; |
639 | Some(n) |
640 | } |
641 | Err(err) if err.kind() == io::ErrorKind::Interrupted => None, // nothing to do |
642 | Err(err) => return Err(err), |
643 | }; |
644 | if read_size.is_some() { |
645 | break; |
646 | } |
647 | } |
648 | |
649 | match self.process_new_packets() { |
650 | Ok(_) => {} |
651 | Err(e) => { |
652 | // In case we have an alert to send describing this error, |
653 | // try a last-gasp write -- but don't predate the primary |
654 | // error. |
655 | let _ignored = self.write_tls(io); |
656 | let _ignored = io.flush(); |
657 | |
658 | return Err(io::Error::new(io::ErrorKind::InvalidData, e)); |
659 | } |
660 | }; |
661 | |
662 | // if we're doing IO until handshaked, and we believe we've finished handshaking, |
663 | // but process_new_packets() has queued TLS data to send, loop around again to write |
664 | // the queued messages. |
665 | if until_handshaked && !self.is_handshaking() && self.wants_write() { |
666 | continue; |
667 | } |
668 | |
669 | match (eof, until_handshaked, self.is_handshaking()) { |
670 | (_, true, false) => return Ok((rdlen, wrlen)), |
671 | (_, false, _) => return Ok((rdlen, wrlen)), |
672 | (true, true, true) => return Err(io::Error::from(io::ErrorKind::UnexpectedEof)), |
673 | (..) => {} |
674 | } |
675 | } |
676 | } |
677 | |
678 | /// Extract the first handshake message. |
679 | /// |
680 | /// This is a shortcut to the `process_new_packets()` -> `process_msg()` -> |
681 | /// `process_handshake_messages()` path, specialized for the first handshake message. |
682 | pub(crate) fn first_handshake_message(&mut self) -> Result<Option<Message<'static>>, Error> { |
683 | let mut buffer_progress = self.core.hs_deframer.progress(); |
684 | |
685 | let res = self |
686 | .core |
687 | .deframe( |
688 | None, |
689 | self.deframer_buffer.filled_mut(), |
690 | &mut buffer_progress, |
691 | ) |
692 | .map(|opt| opt.map(|pm| Message::try_from(pm).map(|m| m.into_owned()))); |
693 | |
694 | match res? { |
695 | Some(Ok(msg)) => { |
696 | self.deframer_buffer |
697 | .discard(buffer_progress.take_discard()); |
698 | Ok(Some(msg)) |
699 | } |
700 | Some(Err(err)) => Err(self.send_fatal_alert(AlertDescription::DecodeError, err)), |
701 | None => Ok(None), |
702 | } |
703 | } |
704 | |
705 | pub(crate) fn replace_state(&mut self, new: Box<dyn State<Data>>) { |
706 | self.core.state = Ok(new); |
707 | } |
708 | |
709 | /// Read TLS content from `rd` into the internal buffer. |
710 | /// |
711 | /// Due to the internal buffering, `rd` can supply TLS messages in arbitrary-sized chunks (like |
712 | /// a socket or pipe might). |
713 | /// |
714 | /// You should call [`process_new_packets()`] each time a call to this function succeeds in order |
715 | /// to empty the incoming TLS data buffer. |
716 | /// |
717 | /// This function returns `Ok(0)` when the underlying `rd` does so. This typically happens when |
718 | /// a socket is cleanly closed, or a file is at EOF. Errors may result from the IO done through |
719 | /// `rd`; additionally, errors of `ErrorKind::Other` are emitted to signal backpressure: |
720 | /// |
721 | /// * In order to empty the incoming TLS data buffer, you should call [`process_new_packets()`] |
722 | /// each time a call to this function succeeds. |
723 | /// * In order to empty the incoming plaintext data buffer, you should empty it through |
724 | /// the [`reader()`] after the call to [`process_new_packets()`]. |
725 | /// |
726 | /// This function also returns `Ok(0)` once a `close_notify` alert has been successfully |
727 | /// received. No additional data is ever read in this state. |
728 | /// |
729 | /// [`process_new_packets()`]: ConnectionCommon::process_new_packets |
730 | /// [`reader()`]: ConnectionCommon::reader |
731 | pub fn read_tls(&mut self, rd: &mut dyn io::Read) -> Result<usize, io::Error> { |
732 | if self.received_plaintext.is_full() { |
733 | return Err(io::Error::new( |
734 | io::ErrorKind::Other, |
735 | "received plaintext buffer full" , |
736 | )); |
737 | } |
738 | |
739 | if self.has_received_close_notify { |
740 | return Ok(0); |
741 | } |
742 | |
743 | let res = self |
744 | .deframer_buffer |
745 | .read(rd, self.core.hs_deframer.is_active()); |
746 | if let Ok(0) = res { |
747 | self.has_seen_eof = true; |
748 | } |
749 | res |
750 | } |
751 | |
752 | /// Writes TLS messages to `wr`. |
753 | /// |
754 | /// On success, this function returns `Ok(n)` where `n` is a number of bytes written to `wr` |
755 | /// (after encoding and encryption). |
756 | /// |
757 | /// After this function returns, the connection buffer may not yet be fully flushed. The |
758 | /// [`CommonState::wants_write`] function can be used to check if the output buffer is empty. |
759 | pub fn write_tls(&mut self, wr: &mut dyn io::Write) -> Result<usize, io::Error> { |
760 | self.sendable_tls.write_to(wr) |
761 | } |
762 | } |
763 | |
764 | impl<'a, Data> From<&'a mut ConnectionCommon<Data>> for Context<'a, Data> { |
765 | fn from(conn: &'a mut ConnectionCommon<Data>) -> Self { |
766 | Self { |
767 | common: &mut conn.core.common_state, |
768 | data: &mut conn.core.data, |
769 | sendable_plaintext: Some(&mut conn.sendable_plaintext), |
770 | } |
771 | } |
772 | } |
773 | |
774 | impl<T> Deref for ConnectionCommon<T> { |
775 | type Target = CommonState; |
776 | |
777 | fn deref(&self) -> &Self::Target { |
778 | &self.core.common_state |
779 | } |
780 | } |
781 | |
782 | impl<T> DerefMut for ConnectionCommon<T> { |
783 | fn deref_mut(&mut self) -> &mut Self::Target { |
784 | &mut self.core.common_state |
785 | } |
786 | } |
787 | |
788 | impl<Data> From<ConnectionCore<Data>> for ConnectionCommon<Data> { |
789 | fn from(core: ConnectionCore<Data>) -> Self { |
790 | Self { |
791 | core, |
792 | deframer_buffer: DeframerVecBuffer::default(), |
793 | sendable_plaintext: ChunkVecBuffer::new(limit:Some(DEFAULT_BUFFER_LIMIT)), |
794 | } |
795 | } |
796 | } |
797 | |
798 | /// Interface shared by unbuffered client and server connections. |
799 | pub struct UnbufferedConnectionCommon<Data> { |
800 | pub(crate) core: ConnectionCore<Data>, |
801 | wants_write: bool, |
802 | emitted_peer_closed_state: bool, |
803 | } |
804 | |
805 | impl<Data> From<ConnectionCore<Data>> for UnbufferedConnectionCommon<Data> { |
806 | fn from(core: ConnectionCore<Data>) -> Self { |
807 | Self { |
808 | core, |
809 | wants_write: false, |
810 | emitted_peer_closed_state: false, |
811 | } |
812 | } |
813 | } |
814 | |
815 | impl<Data> UnbufferedConnectionCommon<Data> { |
816 | /// Extract secrets, so they can be used when configuring kTLS, for example. |
817 | /// Should be used with care as it exposes secret key material. |
818 | pub fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> { |
819 | self.core.dangerous_extract_secrets() |
820 | } |
821 | } |
822 | |
823 | impl<T> Deref for UnbufferedConnectionCommon<T> { |
824 | type Target = CommonState; |
825 | |
826 | fn deref(&self) -> &Self::Target { |
827 | &self.core.common_state |
828 | } |
829 | } |
830 | |
831 | pub(crate) struct ConnectionCore<Data> { |
832 | pub(crate) state: Result<Box<dyn State<Data>>, Error>, |
833 | pub(crate) data: Data, |
834 | pub(crate) common_state: CommonState, |
835 | pub(crate) hs_deframer: HandshakeDeframer, |
836 | |
837 | /// We limit consecutive empty fragments to avoid a route for the peer to send |
838 | /// us significant but fruitless traffic. |
839 | seen_consecutive_empty_fragments: u8, |
840 | } |
841 | |
842 | impl<Data> ConnectionCore<Data> { |
843 | pub(crate) fn new(state: Box<dyn State<Data>>, data: Data, common_state: CommonState) -> Self { |
844 | Self { |
845 | state: Ok(state), |
846 | data, |
847 | common_state, |
848 | hs_deframer: HandshakeDeframer::default(), |
849 | seen_consecutive_empty_fragments: 0, |
850 | } |
851 | } |
852 | |
853 | pub(crate) fn process_new_packets( |
854 | &mut self, |
855 | deframer_buffer: &mut DeframerVecBuffer, |
856 | sendable_plaintext: &mut ChunkVecBuffer, |
857 | ) -> Result<IoState, Error> { |
858 | let mut state = match mem::replace(&mut self.state, Err(Error::HandshakeNotComplete)) { |
859 | Ok(state) => state, |
860 | Err(e) => { |
861 | self.state = Err(e.clone()); |
862 | return Err(e); |
863 | } |
864 | }; |
865 | |
866 | let mut buffer_progress = self.hs_deframer.progress(); |
867 | |
868 | loop { |
869 | let res = self.deframe( |
870 | Some(&*state), |
871 | deframer_buffer.filled_mut(), |
872 | &mut buffer_progress, |
873 | ); |
874 | |
875 | let opt_msg = match res { |
876 | Ok(opt_msg) => opt_msg, |
877 | Err(e) => { |
878 | self.state = Err(e.clone()); |
879 | deframer_buffer.discard(buffer_progress.take_discard()); |
880 | return Err(e); |
881 | } |
882 | }; |
883 | |
884 | let Some(msg) = opt_msg else { |
885 | break; |
886 | }; |
887 | |
888 | match self.process_msg(msg, state, Some(sendable_plaintext)) { |
889 | Ok(new) => state = new, |
890 | Err(e) => { |
891 | self.state = Err(e.clone()); |
892 | deframer_buffer.discard(buffer_progress.take_discard()); |
893 | return Err(e); |
894 | } |
895 | } |
896 | |
897 | if self |
898 | .common_state |
899 | .has_received_close_notify |
900 | { |
901 | // "Any data received after a closure alert has been received MUST be ignored." |
902 | // -- <https://datatracker.ietf.org/doc/html/rfc8446#section-6.1> |
903 | // This is data that has already been accepted in `read_tls`. |
904 | buffer_progress.add_discard(deframer_buffer.filled().len()); |
905 | break; |
906 | } |
907 | |
908 | deframer_buffer.discard(buffer_progress.take_discard()); |
909 | } |
910 | |
911 | deframer_buffer.discard(buffer_progress.take_discard()); |
912 | self.state = Ok(state); |
913 | Ok(self.common_state.current_io_state()) |
914 | } |
915 | |
916 | /// Pull a message out of the deframer and send any messages that need to be sent as a result. |
917 | fn deframe<'b>( |
918 | &mut self, |
919 | state: Option<&dyn State<Data>>, |
920 | buffer: &'b mut [u8], |
921 | buffer_progress: &mut BufferProgress, |
922 | ) -> Result<Option<InboundPlainMessage<'b>>, Error> { |
923 | // before processing any more of `buffer`, return any extant messages from `hs_deframer` |
924 | if self.hs_deframer.has_message_ready() { |
925 | Ok(self.take_handshake_message(buffer, buffer_progress)) |
926 | } else { |
927 | self.process_more_input(state, buffer, buffer_progress) |
928 | } |
929 | } |
930 | |
931 | fn take_handshake_message<'b>( |
932 | &mut self, |
933 | buffer: &'b mut [u8], |
934 | buffer_progress: &mut BufferProgress, |
935 | ) -> Option<InboundPlainMessage<'b>> { |
936 | self.hs_deframer |
937 | .iter(buffer) |
938 | .next() |
939 | .map(|(message, discard)| { |
940 | buffer_progress.add_discard(discard); |
941 | message |
942 | }) |
943 | } |
944 | |
945 | fn process_more_input<'b>( |
946 | &mut self, |
947 | state: Option<&dyn State<Data>>, |
948 | buffer: &'b mut [u8], |
949 | buffer_progress: &mut BufferProgress, |
950 | ) -> Result<Option<InboundPlainMessage<'b>>, Error> { |
951 | let version_is_tls13 = matches!( |
952 | self.common_state.negotiated_version, |
953 | Some(ProtocolVersion::TLSv1_3) |
954 | ); |
955 | |
956 | let locator = Locator::new(buffer); |
957 | |
958 | loop { |
959 | let mut iter = DeframerIter::new(&mut buffer[buffer_progress.processed()..]); |
960 | |
961 | let (message, processed) = loop { |
962 | let message = match iter.next().transpose() { |
963 | Ok(Some(message)) => message, |
964 | Ok(None) => return Ok(None), |
965 | Err(err) => return Err(self.handle_deframe_error(err, state)), |
966 | }; |
967 | |
968 | let allowed_plaintext = match message.typ { |
969 | // CCS messages are always plaintext. |
970 | ContentType::ChangeCipherSpec => true, |
971 | // Alerts are allowed to be plaintext if-and-only-if: |
972 | // * The negotiated protocol version is TLS 1.3. - In TLS 1.2 it is unambiguous when |
973 | // keying changes based on the CCS message. Only TLS 1.3 requires these heuristics. |
974 | // * We have not yet decrypted any messages from the peer - if we have we don't |
975 | // expect any plaintext. |
976 | // * The payload size is indicative of a plaintext alert message. |
977 | ContentType::Alert |
978 | if version_is_tls13 |
979 | && !self |
980 | .common_state |
981 | .record_layer |
982 | .has_decrypted() |
983 | && message.payload.len() <= 2 => |
984 | { |
985 | true |
986 | } |
987 | // In other circumstances, we expect all messages to be encrypted. |
988 | _ => false, |
989 | }; |
990 | |
991 | if allowed_plaintext && !self.hs_deframer.is_active() { |
992 | break (message.into_plain_message(), iter.bytes_consumed()); |
993 | } |
994 | |
995 | let message = match self |
996 | .common_state |
997 | .record_layer |
998 | .decrypt_incoming(message) |
999 | { |
1000 | // failed decryption during trial decryption is not allowed to be |
1001 | // interleaved with partial handshake data. |
1002 | Ok(None) if !self.hs_deframer.is_aligned() => { |
1003 | return Err( |
1004 | PeerMisbehaved::RejectedEarlyDataInterleavedWithHandshakeMessage.into(), |
1005 | ); |
1006 | } |
1007 | |
1008 | // failed decryption during trial decryption. |
1009 | Ok(None) => continue, |
1010 | |
1011 | Ok(Some(message)) => message, |
1012 | |
1013 | Err(err) => return Err(self.handle_deframe_error(err, state)), |
1014 | }; |
1015 | |
1016 | let Decrypted { |
1017 | want_close_before_decrypt, |
1018 | plaintext, |
1019 | } = message; |
1020 | |
1021 | if want_close_before_decrypt { |
1022 | self.common_state.send_close_notify(); |
1023 | } |
1024 | |
1025 | break (plaintext, iter.bytes_consumed()); |
1026 | }; |
1027 | |
1028 | if !self.hs_deframer.is_aligned() && message.typ != ContentType::Handshake { |
1029 | // "Handshake messages MUST NOT be interleaved with other record |
1030 | // types. That is, if a handshake message is split over two or more |
1031 | // records, there MUST NOT be any other records between them." |
1032 | // https://www.rfc-editor.org/rfc/rfc8446#section-5.1 |
1033 | return Err(PeerMisbehaved::MessageInterleavedWithHandshakeMessage.into()); |
1034 | } |
1035 | |
1036 | match message.payload.len() { |
1037 | 0 => { |
1038 | if self.seen_consecutive_empty_fragments |
1039 | == ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX |
1040 | { |
1041 | return Err(PeerMisbehaved::TooManyEmptyFragments.into()); |
1042 | } |
1043 | self.seen_consecutive_empty_fragments += 1; |
1044 | } |
1045 | _ => { |
1046 | self.seen_consecutive_empty_fragments = 0; |
1047 | } |
1048 | }; |
1049 | |
1050 | buffer_progress.add_processed(processed); |
1051 | |
1052 | // do an end-run around the borrow checker, converting `message` (containing |
1053 | // a borrowed slice) to an unborrowed one (containing a `Range` into the |
1054 | // same buffer). the reborrow happens inside the branch that returns the |
1055 | // message. |
1056 | // |
1057 | // is fixed by -Zpolonius |
1058 | // https://github.com/rust-lang/rfcs/blob/master/text/2094-nll.md#problem-case-3-conditional-control-flow-across-functions |
1059 | let unborrowed = InboundUnborrowedMessage::unborrow(&locator, message); |
1060 | |
1061 | if unborrowed.typ != ContentType::Handshake { |
1062 | let message = unborrowed.reborrow(&Delocator::new(buffer)); |
1063 | buffer_progress.add_discard(processed); |
1064 | return Ok(Some(message)); |
1065 | } |
1066 | |
1067 | let message = unborrowed.reborrow(&Delocator::new(buffer)); |
1068 | self.hs_deframer |
1069 | .input_message(message, &locator, buffer_progress.processed()); |
1070 | self.hs_deframer.coalesce(buffer)?; |
1071 | |
1072 | self.common_state.aligned_handshake = self.hs_deframer.is_aligned(); |
1073 | |
1074 | if self.hs_deframer.has_message_ready() { |
1075 | // trial decryption finishes with the first handshake message after it started. |
1076 | self.common_state |
1077 | .record_layer |
1078 | .finish_trial_decryption(); |
1079 | |
1080 | return Ok(self.take_handshake_message(buffer, buffer_progress)); |
1081 | } |
1082 | } |
1083 | } |
1084 | |
1085 | fn handle_deframe_error(&mut self, error: Error, state: Option<&dyn State<Data>>) -> Error { |
1086 | match error { |
1087 | error @ Error::InvalidMessage(_) => { |
1088 | if self.common_state.is_quic() { |
1089 | self.common_state.quic.alert = Some(AlertDescription::DecodeError); |
1090 | error |
1091 | } else { |
1092 | self.common_state |
1093 | .send_fatal_alert(AlertDescription::DecodeError, error) |
1094 | } |
1095 | } |
1096 | Error::PeerSentOversizedRecord => self |
1097 | .common_state |
1098 | .send_fatal_alert(AlertDescription::RecordOverflow, error), |
1099 | Error::DecryptError => { |
1100 | if let Some(state) = state { |
1101 | state.handle_decrypt_error(); |
1102 | } |
1103 | self.common_state |
1104 | .send_fatal_alert(AlertDescription::BadRecordMac, error) |
1105 | } |
1106 | |
1107 | error => error, |
1108 | } |
1109 | } |
1110 | |
1111 | fn process_msg( |
1112 | &mut self, |
1113 | msg: InboundPlainMessage<'_>, |
1114 | state: Box<dyn State<Data>>, |
1115 | sendable_plaintext: Option<&mut ChunkVecBuffer>, |
1116 | ) -> Result<Box<dyn State<Data>>, Error> { |
1117 | // Drop CCS messages during handshake in TLS1.3 |
1118 | if msg.typ == ContentType::ChangeCipherSpec |
1119 | && !self |
1120 | .common_state |
1121 | .may_receive_application_data |
1122 | && self.common_state.is_tls13() |
1123 | { |
1124 | if !msg.is_valid_ccs() { |
1125 | // "An implementation which receives any other change_cipher_spec value or |
1126 | // which receives a protected change_cipher_spec record MUST abort the |
1127 | // handshake with an "unexpected_message" alert." |
1128 | return Err(self.common_state.send_fatal_alert( |
1129 | AlertDescription::UnexpectedMessage, |
1130 | PeerMisbehaved::IllegalMiddleboxChangeCipherSpec, |
1131 | )); |
1132 | } |
1133 | |
1134 | self.common_state |
1135 | .received_tls13_change_cipher_spec()?; |
1136 | trace!("Dropping CCS" ); |
1137 | return Ok(state); |
1138 | } |
1139 | |
1140 | // Now we can fully parse the message payload. |
1141 | let msg = match Message::try_from(msg) { |
1142 | Ok(msg) => msg, |
1143 | Err(err) => { |
1144 | return Err(self |
1145 | .common_state |
1146 | .send_fatal_alert(AlertDescription::DecodeError, err)); |
1147 | } |
1148 | }; |
1149 | |
1150 | // For alerts, we have separate logic. |
1151 | if let MessagePayload::Alert(alert) = &msg.payload { |
1152 | self.common_state.process_alert(alert)?; |
1153 | return Ok(state); |
1154 | } |
1155 | |
1156 | self.common_state |
1157 | .process_main_protocol(msg, state, &mut self.data, sendable_plaintext) |
1158 | } |
1159 | |
1160 | pub(crate) fn dangerous_extract_secrets(self) -> Result<ExtractedSecrets, Error> { |
1161 | if !self |
1162 | .common_state |
1163 | .enable_secret_extraction |
1164 | { |
1165 | return Err(Error::General("Secret extraction is disabled" .into())); |
1166 | } |
1167 | |
1168 | let st = self.state?; |
1169 | |
1170 | let record_layer = self.common_state.record_layer; |
1171 | let PartiallyExtractedSecrets { tx, rx } = st.extract_secrets()?; |
1172 | Ok(ExtractedSecrets { |
1173 | tx: (record_layer.write_seq(), tx), |
1174 | rx: (record_layer.read_seq(), rx), |
1175 | }) |
1176 | } |
1177 | |
1178 | pub(crate) fn export_keying_material<T: AsMut<[u8]>>( |
1179 | &self, |
1180 | mut output: T, |
1181 | label: &[u8], |
1182 | context: Option<&[u8]>, |
1183 | ) -> Result<T, Error> { |
1184 | if output.as_mut().is_empty() { |
1185 | return Err(Error::General( |
1186 | "export_keying_material with zero-length output" .into(), |
1187 | )); |
1188 | } |
1189 | |
1190 | match self.state.as_ref() { |
1191 | Ok(st) => st |
1192 | .export_keying_material(output.as_mut(), label, context) |
1193 | .map(|_| output), |
1194 | Err(e) => Err(e.clone()), |
1195 | } |
1196 | } |
1197 | |
1198 | /// Trigger a `refresh_traffic_keys` if required by `CommonState`. |
1199 | fn maybe_refresh_traffic_keys(&mut self) { |
1200 | if mem::take( |
1201 | &mut self |
1202 | .common_state |
1203 | .refresh_traffic_keys_pending, |
1204 | ) { |
1205 | let _ = self.refresh_traffic_keys(); |
1206 | } |
1207 | } |
1208 | |
1209 | fn refresh_traffic_keys(&mut self) -> Result<(), Error> { |
1210 | match &mut self.state { |
1211 | Ok(st) => st.send_key_update_request(&mut self.common_state), |
1212 | Err(e) => Err(e.clone()), |
1213 | } |
1214 | } |
1215 | } |
1216 | |
1217 | /// Data specific to the peer's side (client or server). |
1218 | pub trait SideData: Debug {} |
1219 | |
1220 | /// An InboundPlainMessage which does not borrow its payload, but |
1221 | /// references a range that can later be borrowed. |
1222 | struct InboundUnborrowedMessage { |
1223 | typ: ContentType, |
1224 | version: ProtocolVersion, |
1225 | bounds: Range<usize>, |
1226 | } |
1227 | |
1228 | impl InboundUnborrowedMessage { |
1229 | fn unborrow(locator: &Locator, msg: InboundPlainMessage<'_>) -> Self { |
1230 | Self { |
1231 | typ: msg.typ, |
1232 | version: msg.version, |
1233 | bounds: locator.locate(slice:msg.payload), |
1234 | } |
1235 | } |
1236 | |
1237 | fn reborrow<'b>(self, delocator: &Delocator<'b>) -> InboundPlainMessage<'b> { |
1238 | InboundPlainMessage { |
1239 | typ: self.typ, |
1240 | version: self.version, |
1241 | payload: delocator.slice_from_range(&self.bounds), |
1242 | } |
1243 | } |
1244 | } |
1245 | |
1246 | /// cf. BoringSSL's `kMaxEmptyRecords` |
1247 | /// <https://github.com/google/boringssl/blob/dec5989b793c56ad4dd32173bd2d8595ca78b398/ssl/tls_record.cc#L124-L128> |
1248 | const ALLOWED_CONSECUTIVE_EMPTY_FRAGMENTS_MAX: u8 = 32; |
1249 | |