1 | #![cfg_attr (not(feature = "std" ), no_std)] |
2 | #![warn ( |
3 | missing_debug_implementations, |
4 | missing_docs, |
5 | rust_2018_idioms, |
6 | unreachable_pub |
7 | )] |
8 | #![doc (test( |
9 | no_crate_inject, |
10 | attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables)) |
11 | ))] |
12 | |
13 | //! Pre-allocated storage for a uniform data type. |
14 | //! |
15 | //! `Slab` provides pre-allocated storage for a single data type. If many values |
16 | //! of a single type are being allocated, it can be more efficient to |
17 | //! pre-allocate the necessary storage. Since the size of the type is uniform, |
18 | //! memory fragmentation can be avoided. Storing, clearing, and lookup |
19 | //! operations become very cheap. |
20 | //! |
21 | //! While `Slab` may look like other Rust collections, it is not intended to be |
22 | //! used as a general purpose collection. The primary difference between `Slab` |
23 | //! and `Vec` is that `Slab` returns the key when storing the value. |
24 | //! |
25 | //! It is important to note that keys may be reused. In other words, once a |
26 | //! value associated with a given key is removed from a slab, that key may be |
27 | //! returned from future calls to `insert`. |
28 | //! |
29 | //! # Examples |
30 | //! |
31 | //! Basic storing and retrieval. |
32 | //! |
33 | //! ``` |
34 | //! # use slab::*; |
35 | //! let mut slab = Slab::new(); |
36 | //! |
37 | //! let hello = slab.insert("hello" ); |
38 | //! let world = slab.insert("world" ); |
39 | //! |
40 | //! assert_eq!(slab[hello], "hello" ); |
41 | //! assert_eq!(slab[world], "world" ); |
42 | //! |
43 | //! slab[world] = "earth" ; |
44 | //! assert_eq!(slab[world], "earth" ); |
45 | //! ``` |
46 | //! |
47 | //! Sometimes it is useful to be able to associate the key with the value being |
48 | //! inserted in the slab. This can be done with the `vacant_entry` API as such: |
49 | //! |
50 | //! ``` |
51 | //! # use slab::*; |
52 | //! let mut slab = Slab::new(); |
53 | //! |
54 | //! let hello = { |
55 | //! let entry = slab.vacant_entry(); |
56 | //! let key = entry.key(); |
57 | //! |
58 | //! entry.insert((key, "hello" )); |
59 | //! key |
60 | //! }; |
61 | //! |
62 | //! assert_eq!(hello, slab[hello].0); |
63 | //! assert_eq!("hello" , slab[hello].1); |
64 | //! ``` |
65 | //! |
66 | //! It is generally a good idea to specify the desired capacity of a slab at |
67 | //! creation time. Note that `Slab` will grow the internal capacity when |
68 | //! attempting to insert a new value once the existing capacity has been reached. |
69 | //! To avoid this, add a check. |
70 | //! |
71 | //! ``` |
72 | //! # use slab::*; |
73 | //! let mut slab = Slab::with_capacity(1024); |
74 | //! |
75 | //! // ... use the slab |
76 | //! |
77 | //! if slab.len() == slab.capacity() { |
78 | //! panic!("slab full" ); |
79 | //! } |
80 | //! |
81 | //! slab.insert("the slab is not at capacity yet" ); |
82 | //! ``` |
83 | //! |
84 | //! # Capacity and reallocation |
85 | //! |
86 | //! The capacity of a slab is the amount of space allocated for any future |
87 | //! values that will be inserted in the slab. This is not to be confused with |
88 | //! the *length* of the slab, which specifies the number of actual values |
89 | //! currently being inserted. If a slab's length is equal to its capacity, the |
90 | //! next value inserted into the slab will require growing the slab by |
91 | //! reallocating. |
92 | //! |
93 | //! For example, a slab with capacity 10 and length 0 would be an empty slab |
94 | //! with space for 10 more stored values. Storing 10 or fewer elements into the |
95 | //! slab will not change its capacity or cause reallocation to occur. However, |
96 | //! if the slab length is increased to 11 (due to another `insert`), it will |
97 | //! have to reallocate, which can be slow. For this reason, it is recommended to |
98 | //! use [`Slab::with_capacity`] whenever possible to specify how many values the |
99 | //! slab is expected to store. |
100 | //! |
101 | //! # Implementation |
102 | //! |
103 | //! `Slab` is backed by a `Vec` of slots. Each slot is either occupied or |
104 | //! vacant. `Slab` maintains a stack of vacant slots using a linked list. To |
105 | //! find a vacant slot, the stack is popped. When a slot is released, it is |
106 | //! pushed onto the stack. |
107 | //! |
108 | //! If there are no more available slots in the stack, then `Vec::reserve(1)` is |
109 | //! called and a new slot is created. |
110 | //! |
111 | //! [`Slab::with_capacity`]: struct.Slab.html#with_capacity |
112 | |
113 | #[cfg (not(feature = "std" ))] |
114 | extern crate alloc; |
115 | #[cfg (feature = "std" )] |
116 | extern crate std as alloc; |
117 | |
118 | #[cfg (feature = "serde" )] |
119 | mod serde; |
120 | |
121 | mod builder; |
122 | |
123 | use alloc::vec::{self, Vec}; |
124 | use core::iter::{self, FromIterator, FusedIterator}; |
125 | use core::{fmt, mem, ops, slice}; |
126 | |
127 | /// Pre-allocated storage for a uniform data type |
128 | /// |
129 | /// See the [module documentation] for more details. |
130 | /// |
131 | /// [module documentation]: index.html |
132 | pub struct Slab<T> { |
133 | // Chunk of memory |
134 | entries: Vec<Entry<T>>, |
135 | |
136 | // Number of Filled elements currently in the slab |
137 | len: usize, |
138 | |
139 | // Offset of the next available slot in the slab. Set to the slab's |
140 | // capacity when the slab is full. |
141 | next: usize, |
142 | } |
143 | |
144 | impl<T> Clone for Slab<T> |
145 | where |
146 | T: Clone, |
147 | { |
148 | fn clone(&self) -> Self { |
149 | Self { |
150 | entries: self.entries.clone(), |
151 | len: self.len, |
152 | next: self.next, |
153 | } |
154 | } |
155 | |
156 | fn clone_from(&mut self, source: &Self) { |
157 | self.entries.clone_from(&source.entries); |
158 | self.len = source.len; |
159 | self.next = source.next; |
160 | } |
161 | } |
162 | |
163 | impl<T> Default for Slab<T> { |
164 | fn default() -> Self { |
165 | Slab::new() |
166 | } |
167 | } |
168 | |
169 | /// A handle to a vacant entry in a `Slab`. |
170 | /// |
171 | /// `VacantEntry` allows constructing values with the key that they will be |
172 | /// assigned to. |
173 | /// |
174 | /// # Examples |
175 | /// |
176 | /// ``` |
177 | /// # use slab::*; |
178 | /// let mut slab = Slab::new(); |
179 | /// |
180 | /// let hello = { |
181 | /// let entry = slab.vacant_entry(); |
182 | /// let key = entry.key(); |
183 | /// |
184 | /// entry.insert((key, "hello" )); |
185 | /// key |
186 | /// }; |
187 | /// |
188 | /// assert_eq!(hello, slab[hello].0); |
189 | /// assert_eq!("hello" , slab[hello].1); |
190 | /// ``` |
191 | #[derive (Debug)] |
192 | pub struct VacantEntry<'a, T> { |
193 | slab: &'a mut Slab<T>, |
194 | key: usize, |
195 | } |
196 | |
197 | /// A consuming iterator over the values stored in a `Slab` |
198 | pub struct IntoIter<T> { |
199 | entries: iter::Enumerate<vec::IntoIter<Entry<T>>>, |
200 | len: usize, |
201 | } |
202 | |
203 | /// An iterator over the values stored in the `Slab` |
204 | pub struct Iter<'a, T> { |
205 | entries: iter::Enumerate<slice::Iter<'a, Entry<T>>>, |
206 | len: usize, |
207 | } |
208 | |
209 | impl<'a, T> Clone for Iter<'a, T> { |
210 | fn clone(&self) -> Self { |
211 | Self { |
212 | entries: self.entries.clone(), |
213 | len: self.len, |
214 | } |
215 | } |
216 | } |
217 | |
218 | /// A mutable iterator over the values stored in the `Slab` |
219 | pub struct IterMut<'a, T> { |
220 | entries: iter::Enumerate<slice::IterMut<'a, Entry<T>>>, |
221 | len: usize, |
222 | } |
223 | |
224 | /// A draining iterator for `Slab` |
225 | pub struct Drain<'a, T> { |
226 | inner: vec::Drain<'a, Entry<T>>, |
227 | len: usize, |
228 | } |
229 | |
230 | #[derive (Clone)] |
231 | enum Entry<T> { |
232 | Vacant(usize), |
233 | Occupied(T), |
234 | } |
235 | |
236 | impl<T> Slab<T> { |
237 | /// Construct a new, empty `Slab`. |
238 | /// |
239 | /// The function does not allocate and the returned slab will have no |
240 | /// capacity until `insert` is called or capacity is explicitly reserved. |
241 | /// |
242 | /// This is `const fn` on Rust 1.39+. |
243 | /// |
244 | /// # Examples |
245 | /// |
246 | /// ``` |
247 | /// # use slab::*; |
248 | /// let slab: Slab<i32> = Slab::new(); |
249 | /// ``` |
250 | #[cfg (not(slab_no_const_vec_new))] |
251 | pub const fn new() -> Self { |
252 | Self { |
253 | entries: Vec::new(), |
254 | next: 0, |
255 | len: 0, |
256 | } |
257 | } |
258 | /// Construct a new, empty `Slab`. |
259 | /// |
260 | /// The function does not allocate and the returned slab will have no |
261 | /// capacity until `insert` is called or capacity is explicitly reserved. |
262 | /// |
263 | /// This is `const fn` on Rust 1.39+. |
264 | #[cfg (slab_no_const_vec_new)] |
265 | pub fn new() -> Self { |
266 | Self { |
267 | entries: Vec::new(), |
268 | next: 0, |
269 | len: 0, |
270 | } |
271 | } |
272 | |
273 | /// Construct a new, empty `Slab` with the specified capacity. |
274 | /// |
275 | /// The returned slab will be able to store exactly `capacity` without |
276 | /// reallocating. If `capacity` is 0, the slab will not allocate. |
277 | /// |
278 | /// It is important to note that this function does not specify the *length* |
279 | /// of the returned slab, but only the capacity. For an explanation of the |
280 | /// difference between length and capacity, see [Capacity and |
281 | /// reallocation](index.html#capacity-and-reallocation). |
282 | /// |
283 | /// # Examples |
284 | /// |
285 | /// ``` |
286 | /// # use slab::*; |
287 | /// let mut slab = Slab::with_capacity(10); |
288 | /// |
289 | /// // The slab contains no values, even though it has capacity for more |
290 | /// assert_eq!(slab.len(), 0); |
291 | /// |
292 | /// // These are all done without reallocating... |
293 | /// for i in 0..10 { |
294 | /// slab.insert(i); |
295 | /// } |
296 | /// |
297 | /// // ...but this may make the slab reallocate |
298 | /// slab.insert(11); |
299 | /// ``` |
300 | pub fn with_capacity(capacity: usize) -> Slab<T> { |
301 | Slab { |
302 | entries: Vec::with_capacity(capacity), |
303 | next: 0, |
304 | len: 0, |
305 | } |
306 | } |
307 | |
308 | /// Return the number of values the slab can store without reallocating. |
309 | /// |
310 | /// # Examples |
311 | /// |
312 | /// ``` |
313 | /// # use slab::*; |
314 | /// let slab: Slab<i32> = Slab::with_capacity(10); |
315 | /// assert_eq!(slab.capacity(), 10); |
316 | /// ``` |
317 | pub fn capacity(&self) -> usize { |
318 | self.entries.capacity() |
319 | } |
320 | |
321 | /// Reserve capacity for at least `additional` more values to be stored |
322 | /// without allocating. |
323 | /// |
324 | /// `reserve` does nothing if the slab already has sufficient capacity for |
325 | /// `additional` more values. If more capacity is required, a new segment of |
326 | /// memory will be allocated and all existing values will be copied into it. |
327 | /// As such, if the slab is already very large, a call to `reserve` can end |
328 | /// up being expensive. |
329 | /// |
330 | /// The slab may reserve more than `additional` extra space in order to |
331 | /// avoid frequent reallocations. Use `reserve_exact` instead to guarantee |
332 | /// that only the requested space is allocated. |
333 | /// |
334 | /// # Panics |
335 | /// |
336 | /// Panics if the new capacity exceeds `isize::MAX` bytes. |
337 | /// |
338 | /// # Examples |
339 | /// |
340 | /// ``` |
341 | /// # use slab::*; |
342 | /// let mut slab = Slab::new(); |
343 | /// slab.insert("hello" ); |
344 | /// slab.reserve(10); |
345 | /// assert!(slab.capacity() >= 11); |
346 | /// ``` |
347 | pub fn reserve(&mut self, additional: usize) { |
348 | if self.capacity() - self.len >= additional { |
349 | return; |
350 | } |
351 | let need_add = additional - (self.entries.len() - self.len); |
352 | self.entries.reserve(need_add); |
353 | } |
354 | |
355 | /// Reserve the minimum capacity required to store exactly `additional` |
356 | /// more values. |
357 | /// |
358 | /// `reserve_exact` does nothing if the slab already has sufficient capacity |
359 | /// for `additional` more values. If more capacity is required, a new segment |
360 | /// of memory will be allocated and all existing values will be copied into |
361 | /// it. As such, if the slab is already very large, a call to `reserve` can |
362 | /// end up being expensive. |
363 | /// |
364 | /// Note that the allocator may give the slab more space than it requests. |
365 | /// Therefore capacity can not be relied upon to be precisely minimal. |
366 | /// Prefer `reserve` if future insertions are expected. |
367 | /// |
368 | /// # Panics |
369 | /// |
370 | /// Panics if the new capacity exceeds `isize::MAX` bytes. |
371 | /// |
372 | /// # Examples |
373 | /// |
374 | /// ``` |
375 | /// # use slab::*; |
376 | /// let mut slab = Slab::new(); |
377 | /// slab.insert("hello" ); |
378 | /// slab.reserve_exact(10); |
379 | /// assert!(slab.capacity() >= 11); |
380 | /// ``` |
381 | pub fn reserve_exact(&mut self, additional: usize) { |
382 | if self.capacity() - self.len >= additional { |
383 | return; |
384 | } |
385 | let need_add = additional - (self.entries.len() - self.len); |
386 | self.entries.reserve_exact(need_add); |
387 | } |
388 | |
389 | /// Shrink the capacity of the slab as much as possible without invalidating keys. |
390 | /// |
391 | /// Because values cannot be moved to a different index, the slab cannot |
392 | /// shrink past any stored values. |
393 | /// It will drop down as close as possible to the length but the allocator may |
394 | /// still inform the underlying vector that there is space for a few more elements. |
395 | /// |
396 | /// This function can take O(n) time even when the capacity cannot be reduced |
397 | /// or the allocation is shrunk in place. Repeated calls run in O(1) though. |
398 | /// |
399 | /// # Examples |
400 | /// |
401 | /// ``` |
402 | /// # use slab::*; |
403 | /// let mut slab = Slab::with_capacity(10); |
404 | /// |
405 | /// for i in 0..3 { |
406 | /// slab.insert(i); |
407 | /// } |
408 | /// |
409 | /// slab.shrink_to_fit(); |
410 | /// assert!(slab.capacity() >= 3 && slab.capacity() < 10); |
411 | /// ``` |
412 | /// |
413 | /// The slab cannot shrink past the last present value even if previous |
414 | /// values are removed: |
415 | /// |
416 | /// ``` |
417 | /// # use slab::*; |
418 | /// let mut slab = Slab::with_capacity(10); |
419 | /// |
420 | /// for i in 0..4 { |
421 | /// slab.insert(i); |
422 | /// } |
423 | /// |
424 | /// slab.remove(0); |
425 | /// slab.remove(3); |
426 | /// |
427 | /// slab.shrink_to_fit(); |
428 | /// assert!(slab.capacity() >= 3 && slab.capacity() < 10); |
429 | /// ``` |
430 | pub fn shrink_to_fit(&mut self) { |
431 | // Remove all vacant entries after the last occupied one, so that |
432 | // the capacity can be reduced to what is actually needed. |
433 | // If the slab is empty the vector can simply be cleared, but that |
434 | // optimization would not affect time complexity when T: Drop. |
435 | let len_before = self.entries.len(); |
436 | while let Some(&Entry::Vacant(_)) = self.entries.last() { |
437 | self.entries.pop(); |
438 | } |
439 | |
440 | // Removing entries breaks the list of vacant entries, |
441 | // so it must be repaired |
442 | if self.entries.len() != len_before { |
443 | // Some vacant entries were removed, so the list now likely¹ |
444 | // either contains references to the removed entries, or has an |
445 | // invalid end marker. Fix this by recreating the list. |
446 | self.recreate_vacant_list(); |
447 | // ¹: If the removed entries formed the tail of the list, with the |
448 | // most recently popped entry being the head of them, (so that its |
449 | // index is now the end marker) the list is still valid. |
450 | // Checking for that unlikely scenario of this infrequently called |
451 | // is not worth the code complexity. |
452 | } |
453 | |
454 | self.entries.shrink_to_fit(); |
455 | } |
456 | |
457 | /// Iterate through all entries to recreate and repair the vacant list. |
458 | /// self.len must be correct and is not modified. |
459 | fn recreate_vacant_list(&mut self) { |
460 | self.next = self.entries.len(); |
461 | // We can stop once we've found all vacant entries |
462 | let mut remaining_vacant = self.entries.len() - self.len; |
463 | if remaining_vacant == 0 { |
464 | return; |
465 | } |
466 | |
467 | // Iterate in reverse order so that lower keys are at the start of |
468 | // the vacant list. This way future shrinks are more likely to be |
469 | // able to remove vacant entries. |
470 | for (i, entry) in self.entries.iter_mut().enumerate().rev() { |
471 | if let Entry::Vacant(ref mut next) = *entry { |
472 | *next = self.next; |
473 | self.next = i; |
474 | remaining_vacant -= 1; |
475 | if remaining_vacant == 0 { |
476 | break; |
477 | } |
478 | } |
479 | } |
480 | } |
481 | |
482 | /// Reduce the capacity as much as possible, changing the key for elements when necessary. |
483 | /// |
484 | /// To allow updating references to the elements which must be moved to a new key, |
485 | /// this function takes a closure which is called before moving each element. |
486 | /// The second and third parameters to the closure are the current key and |
487 | /// new key respectively. |
488 | /// In case changing the key for one element turns out not to be possible, |
489 | /// the move can be cancelled by returning `false` from the closure. |
490 | /// In that case no further attempts at relocating elements is made. |
491 | /// If the closure unwinds, the slab will be left in a consistent state, |
492 | /// but the value that the closure panicked on might be removed. |
493 | /// |
494 | /// # Examples |
495 | /// |
496 | /// ``` |
497 | /// # use slab::*; |
498 | /// |
499 | /// let mut slab = Slab::with_capacity(10); |
500 | /// let a = slab.insert('a' ); |
501 | /// slab.insert('b' ); |
502 | /// slab.insert('c' ); |
503 | /// slab.remove(a); |
504 | /// slab.compact(|&mut value, from, to| { |
505 | /// assert_eq!((value, from, to), ('c' , 2, 0)); |
506 | /// true |
507 | /// }); |
508 | /// assert!(slab.capacity() >= 2 && slab.capacity() < 10); |
509 | /// ``` |
510 | /// |
511 | /// The value is not moved when the closure returns `Err`: |
512 | /// |
513 | /// ``` |
514 | /// # use slab::*; |
515 | /// |
516 | /// let mut slab = Slab::with_capacity(100); |
517 | /// let a = slab.insert('a' ); |
518 | /// let b = slab.insert('b' ); |
519 | /// slab.remove(a); |
520 | /// slab.compact(|&mut value, from, to| false); |
521 | /// assert_eq!(slab.iter().next(), Some((b, &'b' ))); |
522 | /// ``` |
523 | pub fn compact<F>(&mut self, mut rekey: F) |
524 | where |
525 | F: FnMut(&mut T, usize, usize) -> bool, |
526 | { |
527 | // If the closure unwinds, we need to restore a valid list of vacant entries |
528 | struct CleanupGuard<'a, T> { |
529 | slab: &'a mut Slab<T>, |
530 | decrement: bool, |
531 | } |
532 | impl<T> Drop for CleanupGuard<'_, T> { |
533 | fn drop(&mut self) { |
534 | if self.decrement { |
535 | // Value was popped and not pushed back on |
536 | self.slab.len -= 1; |
537 | } |
538 | self.slab.recreate_vacant_list(); |
539 | } |
540 | } |
541 | let mut guard = CleanupGuard { |
542 | slab: self, |
543 | decrement: true, |
544 | }; |
545 | |
546 | let mut occupied_until = 0; |
547 | // While there are vacant entries |
548 | while guard.slab.entries.len() > guard.slab.len { |
549 | // Find a value that needs to be moved, |
550 | // by popping entries until we find an occupied one. |
551 | // (entries cannot be empty because 0 is not greater than anything) |
552 | if let Some(Entry::Occupied(mut value)) = guard.slab.entries.pop() { |
553 | // Found one, now find a vacant entry to move it to |
554 | while let Some(&Entry::Occupied(_)) = guard.slab.entries.get(occupied_until) { |
555 | occupied_until += 1; |
556 | } |
557 | // Let the caller try to update references to the key |
558 | if !rekey(&mut value, guard.slab.entries.len(), occupied_until) { |
559 | // Changing the key failed, so push the entry back on at its old index. |
560 | guard.slab.entries.push(Entry::Occupied(value)); |
561 | guard.decrement = false; |
562 | guard.slab.entries.shrink_to_fit(); |
563 | return; |
564 | // Guard drop handles cleanup |
565 | } |
566 | // Put the value in its new spot |
567 | guard.slab.entries[occupied_until] = Entry::Occupied(value); |
568 | // ... and mark it as occupied (this is optional) |
569 | occupied_until += 1; |
570 | } |
571 | } |
572 | guard.slab.next = guard.slab.len; |
573 | guard.slab.entries.shrink_to_fit(); |
574 | // Normal cleanup is not necessary |
575 | mem::forget(guard); |
576 | } |
577 | |
578 | /// Clear the slab of all values. |
579 | /// |
580 | /// # Examples |
581 | /// |
582 | /// ``` |
583 | /// # use slab::*; |
584 | /// let mut slab = Slab::new(); |
585 | /// |
586 | /// for i in 0..3 { |
587 | /// slab.insert(i); |
588 | /// } |
589 | /// |
590 | /// slab.clear(); |
591 | /// assert!(slab.is_empty()); |
592 | /// ``` |
593 | pub fn clear(&mut self) { |
594 | self.entries.clear(); |
595 | self.len = 0; |
596 | self.next = 0; |
597 | } |
598 | |
599 | /// Return the number of stored values. |
600 | /// |
601 | /// # Examples |
602 | /// |
603 | /// ``` |
604 | /// # use slab::*; |
605 | /// let mut slab = Slab::new(); |
606 | /// |
607 | /// for i in 0..3 { |
608 | /// slab.insert(i); |
609 | /// } |
610 | /// |
611 | /// assert_eq!(3, slab.len()); |
612 | /// ``` |
613 | pub fn len(&self) -> usize { |
614 | self.len |
615 | } |
616 | |
617 | /// Return `true` if there are no values stored in the slab. |
618 | /// |
619 | /// # Examples |
620 | /// |
621 | /// ``` |
622 | /// # use slab::*; |
623 | /// let mut slab = Slab::new(); |
624 | /// assert!(slab.is_empty()); |
625 | /// |
626 | /// slab.insert(1); |
627 | /// assert!(!slab.is_empty()); |
628 | /// ``` |
629 | pub fn is_empty(&self) -> bool { |
630 | self.len == 0 |
631 | } |
632 | |
633 | /// Return an iterator over the slab. |
634 | /// |
635 | /// This function should generally be **avoided** as it is not efficient. |
636 | /// Iterators must iterate over every slot in the slab even if it is |
637 | /// vacant. As such, a slab with a capacity of 1 million but only one |
638 | /// stored value must still iterate the million slots. |
639 | /// |
640 | /// # Examples |
641 | /// |
642 | /// ``` |
643 | /// # use slab::*; |
644 | /// let mut slab = Slab::new(); |
645 | /// |
646 | /// for i in 0..3 { |
647 | /// slab.insert(i); |
648 | /// } |
649 | /// |
650 | /// let mut iterator = slab.iter(); |
651 | /// |
652 | /// assert_eq!(iterator.next(), Some((0, &0))); |
653 | /// assert_eq!(iterator.next(), Some((1, &1))); |
654 | /// assert_eq!(iterator.next(), Some((2, &2))); |
655 | /// assert_eq!(iterator.next(), None); |
656 | /// ``` |
657 | pub fn iter(&self) -> Iter<'_, T> { |
658 | Iter { |
659 | entries: self.entries.iter().enumerate(), |
660 | len: self.len, |
661 | } |
662 | } |
663 | |
664 | /// Return an iterator that allows modifying each value. |
665 | /// |
666 | /// This function should generally be **avoided** as it is not efficient. |
667 | /// Iterators must iterate over every slot in the slab even if it is |
668 | /// vacant. As such, a slab with a capacity of 1 million but only one |
669 | /// stored value must still iterate the million slots. |
670 | /// |
671 | /// # Examples |
672 | /// |
673 | /// ``` |
674 | /// # use slab::*; |
675 | /// let mut slab = Slab::new(); |
676 | /// |
677 | /// let key1 = slab.insert(0); |
678 | /// let key2 = slab.insert(1); |
679 | /// |
680 | /// for (key, val) in slab.iter_mut() { |
681 | /// if key == key1 { |
682 | /// *val += 2; |
683 | /// } |
684 | /// } |
685 | /// |
686 | /// assert_eq!(slab[key1], 2); |
687 | /// assert_eq!(slab[key2], 1); |
688 | /// ``` |
689 | pub fn iter_mut(&mut self) -> IterMut<'_, T> { |
690 | IterMut { |
691 | entries: self.entries.iter_mut().enumerate(), |
692 | len: self.len, |
693 | } |
694 | } |
695 | |
696 | /// Return a reference to the value associated with the given key. |
697 | /// |
698 | /// If the given key is not associated with a value, then `None` is |
699 | /// returned. |
700 | /// |
701 | /// # Examples |
702 | /// |
703 | /// ``` |
704 | /// # use slab::*; |
705 | /// let mut slab = Slab::new(); |
706 | /// let key = slab.insert("hello" ); |
707 | /// |
708 | /// assert_eq!(slab.get(key), Some(&"hello" )); |
709 | /// assert_eq!(slab.get(123), None); |
710 | /// ``` |
711 | pub fn get(&self, key: usize) -> Option<&T> { |
712 | match self.entries.get(key) { |
713 | Some(Entry::Occupied(val)) => Some(val), |
714 | _ => None, |
715 | } |
716 | } |
717 | |
718 | /// Return a mutable reference to the value associated with the given key. |
719 | /// |
720 | /// If the given key is not associated with a value, then `None` is |
721 | /// returned. |
722 | /// |
723 | /// # Examples |
724 | /// |
725 | /// ``` |
726 | /// # use slab::*; |
727 | /// let mut slab = Slab::new(); |
728 | /// let key = slab.insert("hello" ); |
729 | /// |
730 | /// *slab.get_mut(key).unwrap() = "world" ; |
731 | /// |
732 | /// assert_eq!(slab[key], "world" ); |
733 | /// assert_eq!(slab.get_mut(123), None); |
734 | /// ``` |
735 | pub fn get_mut(&mut self, key: usize) -> Option<&mut T> { |
736 | match self.entries.get_mut(key) { |
737 | Some(&mut Entry::Occupied(ref mut val)) => Some(val), |
738 | _ => None, |
739 | } |
740 | } |
741 | |
742 | /// Return two mutable references to the values associated with the two |
743 | /// given keys simultaneously. |
744 | /// |
745 | /// If any one of the given keys is not associated with a value, then `None` |
746 | /// is returned. |
747 | /// |
748 | /// This function can be used to get two mutable references out of one slab, |
749 | /// so that you can manipulate both of them at the same time, eg. swap them. |
750 | /// |
751 | /// # Panics |
752 | /// |
753 | /// This function will panic if `key1` and `key2` are the same. |
754 | /// |
755 | /// # Examples |
756 | /// |
757 | /// ``` |
758 | /// # use slab::*; |
759 | /// use std::mem; |
760 | /// |
761 | /// let mut slab = Slab::new(); |
762 | /// let key1 = slab.insert(1); |
763 | /// let key2 = slab.insert(2); |
764 | /// let (value1, value2) = slab.get2_mut(key1, key2).unwrap(); |
765 | /// mem::swap(value1, value2); |
766 | /// assert_eq!(slab[key1], 2); |
767 | /// assert_eq!(slab[key2], 1); |
768 | /// ``` |
769 | pub fn get2_mut(&mut self, key1: usize, key2: usize) -> Option<(&mut T, &mut T)> { |
770 | assert!(key1 != key2); |
771 | |
772 | let (entry1, entry2); |
773 | |
774 | if key1 > key2 { |
775 | let (slice1, slice2) = self.entries.split_at_mut(key1); |
776 | entry1 = slice2.get_mut(0); |
777 | entry2 = slice1.get_mut(key2); |
778 | } else { |
779 | let (slice1, slice2) = self.entries.split_at_mut(key2); |
780 | entry1 = slice1.get_mut(key1); |
781 | entry2 = slice2.get_mut(0); |
782 | } |
783 | |
784 | match (entry1, entry2) { |
785 | ( |
786 | Some(&mut Entry::Occupied(ref mut val1)), |
787 | Some(&mut Entry::Occupied(ref mut val2)), |
788 | ) => Some((val1, val2)), |
789 | _ => None, |
790 | } |
791 | } |
792 | |
793 | /// Return a reference to the value associated with the given key without |
794 | /// performing bounds checking. |
795 | /// |
796 | /// For a safe alternative see [`get`](Slab::get). |
797 | /// |
798 | /// This function should be used with care. |
799 | /// |
800 | /// # Safety |
801 | /// |
802 | /// The key must be within bounds. |
803 | /// |
804 | /// # Examples |
805 | /// |
806 | /// ``` |
807 | /// # use slab::*; |
808 | /// let mut slab = Slab::new(); |
809 | /// let key = slab.insert(2); |
810 | /// |
811 | /// unsafe { |
812 | /// assert_eq!(slab.get_unchecked(key), &2); |
813 | /// } |
814 | /// ``` |
815 | pub unsafe fn get_unchecked(&self, key: usize) -> &T { |
816 | match *self.entries.get_unchecked(key) { |
817 | Entry::Occupied(ref val) => val, |
818 | _ => unreachable!(), |
819 | } |
820 | } |
821 | |
822 | /// Return a mutable reference to the value associated with the given key |
823 | /// without performing bounds checking. |
824 | /// |
825 | /// For a safe alternative see [`get_mut`](Slab::get_mut). |
826 | /// |
827 | /// This function should be used with care. |
828 | /// |
829 | /// # Safety |
830 | /// |
831 | /// The key must be within bounds. |
832 | /// |
833 | /// # Examples |
834 | /// |
835 | /// ``` |
836 | /// # use slab::*; |
837 | /// let mut slab = Slab::new(); |
838 | /// let key = slab.insert(2); |
839 | /// |
840 | /// unsafe { |
841 | /// let val = slab.get_unchecked_mut(key); |
842 | /// *val = 13; |
843 | /// } |
844 | /// |
845 | /// assert_eq!(slab[key], 13); |
846 | /// ``` |
847 | pub unsafe fn get_unchecked_mut(&mut self, key: usize) -> &mut T { |
848 | match *self.entries.get_unchecked_mut(key) { |
849 | Entry::Occupied(ref mut val) => val, |
850 | _ => unreachable!(), |
851 | } |
852 | } |
853 | |
854 | /// Return two mutable references to the values associated with the two |
855 | /// given keys simultaneously without performing bounds checking and safety |
856 | /// condition checking. |
857 | /// |
858 | /// For a safe alternative see [`get2_mut`](Slab::get2_mut). |
859 | /// |
860 | /// This function should be used with care. |
861 | /// |
862 | /// # Safety |
863 | /// |
864 | /// - Both keys must be within bounds. |
865 | /// - The condition `key1 != key2` must hold. |
866 | /// |
867 | /// # Examples |
868 | /// |
869 | /// ``` |
870 | /// # use slab::*; |
871 | /// use std::mem; |
872 | /// |
873 | /// let mut slab = Slab::new(); |
874 | /// let key1 = slab.insert(1); |
875 | /// let key2 = slab.insert(2); |
876 | /// let (value1, value2) = unsafe { slab.get2_unchecked_mut(key1, key2) }; |
877 | /// mem::swap(value1, value2); |
878 | /// assert_eq!(slab[key1], 2); |
879 | /// assert_eq!(slab[key2], 1); |
880 | /// ``` |
881 | pub unsafe fn get2_unchecked_mut(&mut self, key1: usize, key2: usize) -> (&mut T, &mut T) { |
882 | debug_assert_ne!(key1, key2); |
883 | let ptr = self.entries.as_mut_ptr(); |
884 | let ptr1 = ptr.add(key1); |
885 | let ptr2 = ptr.add(key2); |
886 | match (&mut *ptr1, &mut *ptr2) { |
887 | (&mut Entry::Occupied(ref mut val1), &mut Entry::Occupied(ref mut val2)) => { |
888 | (val1, val2) |
889 | } |
890 | _ => unreachable!(), |
891 | } |
892 | } |
893 | |
894 | /// Get the key for an element in the slab. |
895 | /// |
896 | /// The reference must point to an element owned by the slab. |
897 | /// Otherwise this function will panic. |
898 | /// This is a constant-time operation because the key can be calculated |
899 | /// from the reference with pointer arithmetic. |
900 | /// |
901 | /// # Panics |
902 | /// |
903 | /// This function will panic if the reference does not point to an element |
904 | /// of the slab. |
905 | /// |
906 | /// # Examples |
907 | /// |
908 | /// ``` |
909 | /// # use slab::*; |
910 | /// |
911 | /// let mut slab = Slab::new(); |
912 | /// let key = slab.insert(String::from("foo" )); |
913 | /// let value = &slab[key]; |
914 | /// assert_eq!(slab.key_of(value), key); |
915 | /// ``` |
916 | /// |
917 | /// Values are not compared, so passing a reference to a different location |
918 | /// will result in a panic: |
919 | /// |
920 | /// ```should_panic |
921 | /// # use slab::*; |
922 | /// |
923 | /// let mut slab = Slab::new(); |
924 | /// let key = slab.insert(0); |
925 | /// let bad = &0; |
926 | /// slab.key_of(bad); // this will panic |
927 | /// unreachable!(); |
928 | /// ``` |
929 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
930 | pub fn key_of(&self, present_element: &T) -> usize { |
931 | let element_ptr = present_element as *const T as usize; |
932 | let base_ptr = self.entries.as_ptr() as usize; |
933 | // Use wrapping subtraction in case the reference is bad |
934 | let byte_offset = element_ptr.wrapping_sub(base_ptr); |
935 | // The division rounds away any offset of T inside Entry |
936 | // The size of Entry<T> is never zero even if T is due to Vacant(usize) |
937 | let key = byte_offset / mem::size_of::<Entry<T>>(); |
938 | // Prevent returning unspecified (but out of bounds) values |
939 | if key >= self.entries.len() { |
940 | panic!("The reference points to a value outside this slab" ); |
941 | } |
942 | // The reference cannot point to a vacant entry, because then it would not be valid |
943 | key |
944 | } |
945 | |
946 | /// Insert a value in the slab, returning key assigned to the value. |
947 | /// |
948 | /// The returned key can later be used to retrieve or remove the value using indexed |
949 | /// lookup and `remove`. Additional capacity is allocated if needed. See |
950 | /// [Capacity and reallocation](index.html#capacity-and-reallocation). |
951 | /// |
952 | /// # Panics |
953 | /// |
954 | /// Panics if the new storage in the vector exceeds `isize::MAX` bytes. |
955 | /// |
956 | /// # Examples |
957 | /// |
958 | /// ``` |
959 | /// # use slab::*; |
960 | /// let mut slab = Slab::new(); |
961 | /// let key = slab.insert("hello" ); |
962 | /// assert_eq!(slab[key], "hello" ); |
963 | /// ``` |
964 | pub fn insert(&mut self, val: T) -> usize { |
965 | let key = self.next; |
966 | |
967 | self.insert_at(key, val); |
968 | |
969 | key |
970 | } |
971 | |
972 | /// Returns the key of the next vacant entry. |
973 | /// |
974 | /// This function returns the key of the vacant entry which will be used |
975 | /// for the next insertion. This is equivalent to |
976 | /// `slab.vacant_entry().key()`, but it doesn't require mutable access. |
977 | /// |
978 | /// # Examples |
979 | /// |
980 | /// ``` |
981 | /// # use slab::*; |
982 | /// let mut slab = Slab::new(); |
983 | /// assert_eq!(slab.vacant_key(), 0); |
984 | /// |
985 | /// slab.insert(0); |
986 | /// assert_eq!(slab.vacant_key(), 1); |
987 | /// |
988 | /// slab.insert(1); |
989 | /// slab.remove(0); |
990 | /// assert_eq!(slab.vacant_key(), 0); |
991 | /// ``` |
992 | pub fn vacant_key(&self) -> usize { |
993 | self.next |
994 | } |
995 | |
996 | /// Return a handle to a vacant entry allowing for further manipulation. |
997 | /// |
998 | /// This function is useful when creating values that must contain their |
999 | /// slab key. The returned `VacantEntry` reserves a slot in the slab and is |
1000 | /// able to query the associated key. |
1001 | /// |
1002 | /// # Examples |
1003 | /// |
1004 | /// ``` |
1005 | /// # use slab::*; |
1006 | /// let mut slab = Slab::new(); |
1007 | /// |
1008 | /// let hello = { |
1009 | /// let entry = slab.vacant_entry(); |
1010 | /// let key = entry.key(); |
1011 | /// |
1012 | /// entry.insert((key, "hello" )); |
1013 | /// key |
1014 | /// }; |
1015 | /// |
1016 | /// assert_eq!(hello, slab[hello].0); |
1017 | /// assert_eq!("hello" , slab[hello].1); |
1018 | /// ``` |
1019 | pub fn vacant_entry(&mut self) -> VacantEntry<'_, T> { |
1020 | VacantEntry { |
1021 | key: self.next, |
1022 | slab: self, |
1023 | } |
1024 | } |
1025 | |
1026 | fn insert_at(&mut self, key: usize, val: T) { |
1027 | self.len += 1; |
1028 | |
1029 | if key == self.entries.len() { |
1030 | self.entries.push(Entry::Occupied(val)); |
1031 | self.next = key + 1; |
1032 | } else { |
1033 | self.next = match self.entries.get(key) { |
1034 | Some(&Entry::Vacant(next)) => next, |
1035 | _ => unreachable!(), |
1036 | }; |
1037 | self.entries[key] = Entry::Occupied(val); |
1038 | } |
1039 | } |
1040 | |
1041 | /// Tries to remove the value associated with the given key, |
1042 | /// returning the value if the key existed. |
1043 | /// |
1044 | /// The key is then released and may be associated with future stored |
1045 | /// values. |
1046 | /// |
1047 | /// # Examples |
1048 | /// |
1049 | /// ``` |
1050 | /// # use slab::*; |
1051 | /// let mut slab = Slab::new(); |
1052 | /// |
1053 | /// let hello = slab.insert("hello" ); |
1054 | /// |
1055 | /// assert_eq!(slab.try_remove(hello), Some("hello" )); |
1056 | /// assert!(!slab.contains(hello)); |
1057 | /// ``` |
1058 | pub fn try_remove(&mut self, key: usize) -> Option<T> { |
1059 | if let Some(entry) = self.entries.get_mut(key) { |
1060 | // Swap the entry at the provided value |
1061 | let prev = mem::replace(entry, Entry::Vacant(self.next)); |
1062 | |
1063 | match prev { |
1064 | Entry::Occupied(val) => { |
1065 | self.len -= 1; |
1066 | self.next = key; |
1067 | return val.into(); |
1068 | } |
1069 | _ => { |
1070 | // Woops, the entry is actually vacant, restore the state |
1071 | *entry = prev; |
1072 | } |
1073 | } |
1074 | } |
1075 | None |
1076 | } |
1077 | |
1078 | /// Remove and return the value associated with the given key. |
1079 | /// |
1080 | /// The key is then released and may be associated with future stored |
1081 | /// values. |
1082 | /// |
1083 | /// # Panics |
1084 | /// |
1085 | /// Panics if `key` is not associated with a value. |
1086 | /// |
1087 | /// # Examples |
1088 | /// |
1089 | /// ``` |
1090 | /// # use slab::*; |
1091 | /// let mut slab = Slab::new(); |
1092 | /// |
1093 | /// let hello = slab.insert("hello" ); |
1094 | /// |
1095 | /// assert_eq!(slab.remove(hello), "hello" ); |
1096 | /// assert!(!slab.contains(hello)); |
1097 | /// ``` |
1098 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
1099 | pub fn remove(&mut self, key: usize) -> T { |
1100 | self.try_remove(key).expect("invalid key" ) |
1101 | } |
1102 | |
1103 | /// Return `true` if a value is associated with the given key. |
1104 | /// |
1105 | /// # Examples |
1106 | /// |
1107 | /// ``` |
1108 | /// # use slab::*; |
1109 | /// let mut slab = Slab::new(); |
1110 | /// |
1111 | /// let hello = slab.insert("hello" ); |
1112 | /// assert!(slab.contains(hello)); |
1113 | /// |
1114 | /// slab.remove(hello); |
1115 | /// |
1116 | /// assert!(!slab.contains(hello)); |
1117 | /// ``` |
1118 | pub fn contains(&self, key: usize) -> bool { |
1119 | match self.entries.get(key) { |
1120 | Some(&Entry::Occupied(_)) => true, |
1121 | _ => false, |
1122 | } |
1123 | } |
1124 | |
1125 | /// Retain only the elements specified by the predicate. |
1126 | /// |
1127 | /// In other words, remove all elements `e` such that `f(usize, &mut e)` |
1128 | /// returns false. This method operates in place and preserves the key |
1129 | /// associated with the retained values. |
1130 | /// |
1131 | /// # Examples |
1132 | /// |
1133 | /// ``` |
1134 | /// # use slab::*; |
1135 | /// let mut slab = Slab::new(); |
1136 | /// |
1137 | /// let k1 = slab.insert(0); |
1138 | /// let k2 = slab.insert(1); |
1139 | /// let k3 = slab.insert(2); |
1140 | /// |
1141 | /// slab.retain(|key, val| key == k1 || *val == 1); |
1142 | /// |
1143 | /// assert!(slab.contains(k1)); |
1144 | /// assert!(slab.contains(k2)); |
1145 | /// assert!(!slab.contains(k3)); |
1146 | /// |
1147 | /// assert_eq!(2, slab.len()); |
1148 | /// ``` |
1149 | pub fn retain<F>(&mut self, mut f: F) |
1150 | where |
1151 | F: FnMut(usize, &mut T) -> bool, |
1152 | { |
1153 | for i in 0..self.entries.len() { |
1154 | let keep = match self.entries[i] { |
1155 | Entry::Occupied(ref mut v) => f(i, v), |
1156 | _ => true, |
1157 | }; |
1158 | |
1159 | if !keep { |
1160 | self.remove(i); |
1161 | } |
1162 | } |
1163 | } |
1164 | |
1165 | /// Return a draining iterator that removes all elements from the slab and |
1166 | /// yields the removed items. |
1167 | /// |
1168 | /// Note: Elements are removed even if the iterator is only partially |
1169 | /// consumed or not consumed at all. |
1170 | /// |
1171 | /// # Examples |
1172 | /// |
1173 | /// ``` |
1174 | /// # use slab::*; |
1175 | /// let mut slab = Slab::new(); |
1176 | /// |
1177 | /// let _ = slab.insert(0); |
1178 | /// let _ = slab.insert(1); |
1179 | /// let _ = slab.insert(2); |
1180 | /// |
1181 | /// { |
1182 | /// let mut drain = slab.drain(); |
1183 | /// |
1184 | /// assert_eq!(Some(0), drain.next()); |
1185 | /// assert_eq!(Some(1), drain.next()); |
1186 | /// assert_eq!(Some(2), drain.next()); |
1187 | /// assert_eq!(None, drain.next()); |
1188 | /// } |
1189 | /// |
1190 | /// assert!(slab.is_empty()); |
1191 | /// ``` |
1192 | pub fn drain(&mut self) -> Drain<'_, T> { |
1193 | let old_len = self.len; |
1194 | self.len = 0; |
1195 | self.next = 0; |
1196 | Drain { |
1197 | inner: self.entries.drain(..), |
1198 | len: old_len, |
1199 | } |
1200 | } |
1201 | } |
1202 | |
1203 | impl<T> ops::Index<usize> for Slab<T> { |
1204 | type Output = T; |
1205 | |
1206 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
1207 | fn index(&self, key: usize) -> &T { |
1208 | match self.entries.get(index:key) { |
1209 | Some(Entry::Occupied(v: &T)) => v, |
1210 | _ => panic!("invalid key" ), |
1211 | } |
1212 | } |
1213 | } |
1214 | |
1215 | impl<T> ops::IndexMut<usize> for Slab<T> { |
1216 | #[cfg_attr (not(slab_no_track_caller), track_caller)] |
1217 | fn index_mut(&mut self, key: usize) -> &mut T { |
1218 | match self.entries.get_mut(index:key) { |
1219 | Some(&mut Entry::Occupied(ref mut v: &mut T)) => v, |
1220 | _ => panic!("invalid key" ), |
1221 | } |
1222 | } |
1223 | } |
1224 | |
1225 | impl<T> IntoIterator for Slab<T> { |
1226 | type Item = (usize, T); |
1227 | type IntoIter = IntoIter<T>; |
1228 | |
1229 | fn into_iter(self) -> IntoIter<T> { |
1230 | IntoIter { |
1231 | entries: self.entries.into_iter().enumerate(), |
1232 | len: self.len, |
1233 | } |
1234 | } |
1235 | } |
1236 | |
1237 | impl<'a, T> IntoIterator for &'a Slab<T> { |
1238 | type Item = (usize, &'a T); |
1239 | type IntoIter = Iter<'a, T>; |
1240 | |
1241 | fn into_iter(self) -> Iter<'a, T> { |
1242 | self.iter() |
1243 | } |
1244 | } |
1245 | |
1246 | impl<'a, T> IntoIterator for &'a mut Slab<T> { |
1247 | type Item = (usize, &'a mut T); |
1248 | type IntoIter = IterMut<'a, T>; |
1249 | |
1250 | fn into_iter(self) -> IterMut<'a, T> { |
1251 | self.iter_mut() |
1252 | } |
1253 | } |
1254 | |
1255 | /// Create a slab from an iterator of key-value pairs. |
1256 | /// |
1257 | /// If the iterator produces duplicate keys, the previous value is replaced with the later one. |
1258 | /// The keys does not need to be sorted beforehand, and this function always |
1259 | /// takes O(n) time. |
1260 | /// Note that the returned slab will use space proportional to the largest key, |
1261 | /// so don't use `Slab` with untrusted keys. |
1262 | /// |
1263 | /// # Examples |
1264 | /// |
1265 | /// ``` |
1266 | /// # use slab::*; |
1267 | /// |
1268 | /// let vec = vec![(2,'a' ), (6,'b' ), (7,'c' )]; |
1269 | /// let slab = vec.into_iter().collect::<Slab<char>>(); |
1270 | /// assert_eq!(slab.len(), 3); |
1271 | /// assert!(slab.capacity() >= 8); |
1272 | /// assert_eq!(slab[2], 'a' ); |
1273 | /// ``` |
1274 | /// |
1275 | /// With duplicate and unsorted keys: |
1276 | /// |
1277 | /// ``` |
1278 | /// # use slab::*; |
1279 | /// |
1280 | /// let vec = vec![(20,'a' ), (10,'b' ), (11,'c' ), (10,'d' )]; |
1281 | /// let slab = vec.into_iter().collect::<Slab<char>>(); |
1282 | /// assert_eq!(slab.len(), 3); |
1283 | /// assert_eq!(slab[10], 'd' ); |
1284 | /// ``` |
1285 | impl<T> FromIterator<(usize, T)> for Slab<T> { |
1286 | fn from_iter<I>(iterable: I) -> Self |
1287 | where |
1288 | I: IntoIterator<Item = (usize, T)>, |
1289 | { |
1290 | let iterator: ::IntoIter = iterable.into_iter(); |
1291 | let mut builder: Builder = builder::Builder::with_capacity(iterator.size_hint().0); |
1292 | |
1293 | for (key: usize, value: T) in iterator { |
1294 | builder.pair(key, value) |
1295 | } |
1296 | builder.build() |
1297 | } |
1298 | } |
1299 | |
1300 | impl<T> fmt::Debug for Slab<T> |
1301 | where |
1302 | T: fmt::Debug, |
1303 | { |
1304 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1305 | if fmt.alternate() { |
1306 | fmt.debug_map().entries(self.iter()).finish() |
1307 | } else { |
1308 | fmt&mut DebugStruct<'_, '_>.debug_struct("Slab" ) |
1309 | .field("len" , &self.len) |
1310 | .field(name:"cap" , &self.capacity()) |
1311 | .finish() |
1312 | } |
1313 | } |
1314 | } |
1315 | |
1316 | impl<T> fmt::Debug for IntoIter<T> |
1317 | where |
1318 | T: fmt::Debug, |
1319 | { |
1320 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1321 | fmt&mut DebugStruct<'_, '_>.debug_struct("IntoIter" ) |
1322 | .field(name:"remaining" , &self.len) |
1323 | .finish() |
1324 | } |
1325 | } |
1326 | |
1327 | impl<T> fmt::Debug for Iter<'_, T> |
1328 | where |
1329 | T: fmt::Debug, |
1330 | { |
1331 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1332 | fmt&mut DebugStruct<'_, '_>.debug_struct("Iter" ) |
1333 | .field(name:"remaining" , &self.len) |
1334 | .finish() |
1335 | } |
1336 | } |
1337 | |
1338 | impl<T> fmt::Debug for IterMut<'_, T> |
1339 | where |
1340 | T: fmt::Debug, |
1341 | { |
1342 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1343 | fmt&mut DebugStruct<'_, '_>.debug_struct("IterMut" ) |
1344 | .field(name:"remaining" , &self.len) |
1345 | .finish() |
1346 | } |
1347 | } |
1348 | |
1349 | impl<T> fmt::Debug for Drain<'_, T> { |
1350 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
1351 | fmt.debug_struct(name:"Drain" ).finish() |
1352 | } |
1353 | } |
1354 | |
1355 | // ===== VacantEntry ===== |
1356 | |
1357 | impl<'a, T> VacantEntry<'a, T> { |
1358 | /// Insert a value in the entry, returning a mutable reference to the value. |
1359 | /// |
1360 | /// To get the key associated with the value, use `key` prior to calling |
1361 | /// `insert`. |
1362 | /// |
1363 | /// # Examples |
1364 | /// |
1365 | /// ``` |
1366 | /// # use slab::*; |
1367 | /// let mut slab = Slab::new(); |
1368 | /// |
1369 | /// let hello = { |
1370 | /// let entry = slab.vacant_entry(); |
1371 | /// let key = entry.key(); |
1372 | /// |
1373 | /// entry.insert((key, "hello" )); |
1374 | /// key |
1375 | /// }; |
1376 | /// |
1377 | /// assert_eq!(hello, slab[hello].0); |
1378 | /// assert_eq!("hello" , slab[hello].1); |
1379 | /// ``` |
1380 | pub fn insert(self, val: T) -> &'a mut T { |
1381 | self.slab.insert_at(self.key, val); |
1382 | |
1383 | match self.slab.entries.get_mut(self.key) { |
1384 | Some(&mut Entry::Occupied(ref mut v)) => v, |
1385 | _ => unreachable!(), |
1386 | } |
1387 | } |
1388 | |
1389 | /// Return the key associated with this entry. |
1390 | /// |
1391 | /// A value stored in this entry will be associated with this key. |
1392 | /// |
1393 | /// # Examples |
1394 | /// |
1395 | /// ``` |
1396 | /// # use slab::*; |
1397 | /// let mut slab = Slab::new(); |
1398 | /// |
1399 | /// let hello = { |
1400 | /// let entry = slab.vacant_entry(); |
1401 | /// let key = entry.key(); |
1402 | /// |
1403 | /// entry.insert((key, "hello" )); |
1404 | /// key |
1405 | /// }; |
1406 | /// |
1407 | /// assert_eq!(hello, slab[hello].0); |
1408 | /// assert_eq!("hello" , slab[hello].1); |
1409 | /// ``` |
1410 | pub fn key(&self) -> usize { |
1411 | self.key |
1412 | } |
1413 | } |
1414 | |
1415 | // ===== IntoIter ===== |
1416 | |
1417 | impl<T> Iterator for IntoIter<T> { |
1418 | type Item = (usize, T); |
1419 | |
1420 | fn next(&mut self) -> Option<Self::Item> { |
1421 | for (key: usize, entry: Entry) in &mut self.entries { |
1422 | if let Entry::Occupied(v: T) = entry { |
1423 | self.len -= 1; |
1424 | return Some((key, v)); |
1425 | } |
1426 | } |
1427 | |
1428 | debug_assert_eq!(self.len, 0); |
1429 | None |
1430 | } |
1431 | |
1432 | fn size_hint(&self) -> (usize, Option<usize>) { |
1433 | (self.len, Some(self.len)) |
1434 | } |
1435 | } |
1436 | |
1437 | impl<T> DoubleEndedIterator for IntoIter<T> { |
1438 | fn next_back(&mut self) -> Option<Self::Item> { |
1439 | while let Some((key: usize, entry: Entry)) = self.entries.next_back() { |
1440 | if let Entry::Occupied(v: T) = entry { |
1441 | self.len -= 1; |
1442 | return Some((key, v)); |
1443 | } |
1444 | } |
1445 | |
1446 | debug_assert_eq!(self.len, 0); |
1447 | None |
1448 | } |
1449 | } |
1450 | |
1451 | impl<T> ExactSizeIterator for IntoIter<T> { |
1452 | fn len(&self) -> usize { |
1453 | self.len |
1454 | } |
1455 | } |
1456 | |
1457 | impl<T> FusedIterator for IntoIter<T> {} |
1458 | |
1459 | // ===== Iter ===== |
1460 | |
1461 | impl<'a, T> Iterator for Iter<'a, T> { |
1462 | type Item = (usize, &'a T); |
1463 | |
1464 | fn next(&mut self) -> Option<Self::Item> { |
1465 | for (key: usize, entry: &Entry) in &mut self.entries { |
1466 | if let Entry::Occupied(ref v: &T) = *entry { |
1467 | self.len -= 1; |
1468 | return Some((key, v)); |
1469 | } |
1470 | } |
1471 | |
1472 | debug_assert_eq!(self.len, 0); |
1473 | None |
1474 | } |
1475 | |
1476 | fn size_hint(&self) -> (usize, Option<usize>) { |
1477 | (self.len, Some(self.len)) |
1478 | } |
1479 | } |
1480 | |
1481 | impl<T> DoubleEndedIterator for Iter<'_, T> { |
1482 | fn next_back(&mut self) -> Option<Self::Item> { |
1483 | while let Some((key: usize, entry: &Entry)) = self.entries.next_back() { |
1484 | if let Entry::Occupied(ref v: &T) = *entry { |
1485 | self.len -= 1; |
1486 | return Some((key, v)); |
1487 | } |
1488 | } |
1489 | |
1490 | debug_assert_eq!(self.len, 0); |
1491 | None |
1492 | } |
1493 | } |
1494 | |
1495 | impl<T> ExactSizeIterator for Iter<'_, T> { |
1496 | fn len(&self) -> usize { |
1497 | self.len |
1498 | } |
1499 | } |
1500 | |
1501 | impl<T> FusedIterator for Iter<'_, T> {} |
1502 | |
1503 | // ===== IterMut ===== |
1504 | |
1505 | impl<'a, T> Iterator for IterMut<'a, T> { |
1506 | type Item = (usize, &'a mut T); |
1507 | |
1508 | fn next(&mut self) -> Option<Self::Item> { |
1509 | for (key: usize, entry: &mut Entry) in &mut self.entries { |
1510 | if let Entry::Occupied(ref mut v: &mut T) = *entry { |
1511 | self.len -= 1; |
1512 | return Some((key, v)); |
1513 | } |
1514 | } |
1515 | |
1516 | debug_assert_eq!(self.len, 0); |
1517 | None |
1518 | } |
1519 | |
1520 | fn size_hint(&self) -> (usize, Option<usize>) { |
1521 | (self.len, Some(self.len)) |
1522 | } |
1523 | } |
1524 | |
1525 | impl<T> DoubleEndedIterator for IterMut<'_, T> { |
1526 | fn next_back(&mut self) -> Option<Self::Item> { |
1527 | while let Some((key: usize, entry: &mut Entry)) = self.entries.next_back() { |
1528 | if let Entry::Occupied(ref mut v: &mut T) = *entry { |
1529 | self.len -= 1; |
1530 | return Some((key, v)); |
1531 | } |
1532 | } |
1533 | |
1534 | debug_assert_eq!(self.len, 0); |
1535 | None |
1536 | } |
1537 | } |
1538 | |
1539 | impl<T> ExactSizeIterator for IterMut<'_, T> { |
1540 | fn len(&self) -> usize { |
1541 | self.len |
1542 | } |
1543 | } |
1544 | |
1545 | impl<T> FusedIterator for IterMut<'_, T> {} |
1546 | |
1547 | // ===== Drain ===== |
1548 | |
1549 | impl<T> Iterator for Drain<'_, T> { |
1550 | type Item = T; |
1551 | |
1552 | fn next(&mut self) -> Option<Self::Item> { |
1553 | for entry: Entry in &mut self.inner { |
1554 | if let Entry::Occupied(v: T) = entry { |
1555 | self.len -= 1; |
1556 | return Some(v); |
1557 | } |
1558 | } |
1559 | |
1560 | debug_assert_eq!(self.len, 0); |
1561 | None |
1562 | } |
1563 | |
1564 | fn size_hint(&self) -> (usize, Option<usize>) { |
1565 | (self.len, Some(self.len)) |
1566 | } |
1567 | } |
1568 | |
1569 | impl<T> DoubleEndedIterator for Drain<'_, T> { |
1570 | fn next_back(&mut self) -> Option<Self::Item> { |
1571 | while let Some(entry: Entry) = self.inner.next_back() { |
1572 | if let Entry::Occupied(v: T) = entry { |
1573 | self.len -= 1; |
1574 | return Some(v); |
1575 | } |
1576 | } |
1577 | |
1578 | debug_assert_eq!(self.len, 0); |
1579 | None |
1580 | } |
1581 | } |
1582 | |
1583 | impl<T> ExactSizeIterator for Drain<'_, T> { |
1584 | fn len(&self) -> usize { |
1585 | self.len |
1586 | } |
1587 | } |
1588 | |
1589 | impl<T> FusedIterator for Drain<'_, T> {} |
1590 | |