1 | // Copyright 2006 The Android Open Source Project |
2 | // Copyright 2020 Yevhenii Reizner |
3 | // |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the LICENSE file. |
6 | |
7 | use alloc::vec::Vec; |
8 | |
9 | use tiny_skia_path::Scalar; |
10 | |
11 | use crate::{GradientStop, Point, Shader, SpreadMode, Transform}; |
12 | |
13 | use super::gradient::{Gradient, DEGENERATE_THRESHOLD}; |
14 | use crate::pipeline; |
15 | use crate::pipeline::RasterPipelineBuilder; |
16 | use crate::wide::u32x8; |
17 | |
18 | #[cfg (all(not(feature = "std" ), feature = "no-std-float" ))] |
19 | use tiny_skia_path::NoStdFloat; |
20 | |
21 | #[derive (Copy, Clone, PartialEq, Debug)] |
22 | struct FocalData { |
23 | r1: f32, // r1 after mapping focal point to (0, 0) |
24 | } |
25 | |
26 | impl FocalData { |
27 | // Whether the focal point (0, 0) is on the end circle with center (1, 0) and radius r1. If |
28 | // this is true, it's as if an aircraft is flying at Mach 1 and all circles (soundwaves) |
29 | // will go through the focal point (aircraft). In our previous implementations, this was |
30 | // known as the edge case where the inside circle touches the outside circle (on the focal |
31 | // point). If we were to solve for t bruteforcely using a quadratic equation, this case |
32 | // implies that the quadratic equation degenerates to a linear equation. |
33 | fn is_focal_on_circle(&self) -> bool { |
34 | (1.0 - self.r1).is_nearly_zero() |
35 | } |
36 | |
37 | fn is_well_behaved(&self) -> bool { |
38 | !self.is_focal_on_circle() && self.r1 > 1.0 |
39 | } |
40 | } |
41 | |
42 | /// A radial gradient shader. |
43 | /// |
44 | /// This is not `SkRadialGradient` like in Skia, but rather `SkTwoPointConicalGradient` |
45 | /// without the start radius. |
46 | #[derive (Clone, PartialEq, Debug)] |
47 | pub struct RadialGradient { |
48 | pub(crate) base: Gradient, |
49 | focal_data: Option<FocalData>, |
50 | } |
51 | |
52 | impl RadialGradient { |
53 | /// Creates a new radial gradient shader. |
54 | /// |
55 | /// Returns `Shader::SolidColor` when: |
56 | /// - `stops.len()` == 1 |
57 | /// |
58 | /// Returns `None` when: |
59 | /// |
60 | /// - `stops` is empty |
61 | /// - `radius` <= 0 |
62 | /// - `transform` is not invertible |
63 | #[allow (clippy::new_ret_no_self)] |
64 | pub fn new( |
65 | start: Point, |
66 | end: Point, |
67 | radius: f32, |
68 | stops: Vec<GradientStop>, |
69 | mode: SpreadMode, |
70 | transform: Transform, |
71 | ) -> Option<Shader<'static>> { |
72 | // From SkGradientShader::MakeTwoPointConical |
73 | |
74 | if radius < 0.0 || radius.is_nearly_zero() { |
75 | return None; |
76 | } |
77 | |
78 | if stops.is_empty() { |
79 | return None; |
80 | } |
81 | |
82 | if stops.len() == 1 { |
83 | return Some(Shader::SolidColor(stops[0].color)); |
84 | } |
85 | |
86 | transform.invert()?; |
87 | |
88 | let length = (end - start).length(); |
89 | if !length.is_finite() { |
90 | return None; |
91 | } |
92 | |
93 | if length.is_nearly_zero_within_tolerance(DEGENERATE_THRESHOLD) { |
94 | // If the center positions are the same, then the gradient |
95 | // is the radial variant of a 2 pt conical gradient, |
96 | // an actual radial gradient (startRadius == 0), |
97 | // or it is fully degenerate (startRadius == endRadius). |
98 | |
99 | let inv = radius.invert(); |
100 | let mut ts = Transform::from_translate(-start.x, -start.y); |
101 | ts = ts.post_scale(inv, inv); |
102 | |
103 | // We can treat this gradient as radial, which is faster. If we got here, we know |
104 | // that endRadius is not equal to 0, so this produces a meaningful gradient |
105 | Some(Shader::RadialGradient(RadialGradient { |
106 | base: Gradient::new(stops, mode, transform, ts), |
107 | focal_data: None, |
108 | })) |
109 | } else { |
110 | // From SkTwoPointConicalGradient::Create |
111 | let mut ts = ts_from_poly_to_poly( |
112 | start, |
113 | end, |
114 | Point::from_xy(0.0, 0.0), |
115 | Point::from_xy(1.0, 0.0), |
116 | )?; |
117 | |
118 | let d_center = (start - end).length(); |
119 | let r1 = radius / d_center; |
120 | let focal_data = FocalData { r1 }; |
121 | |
122 | // The following transformations are just to accelerate the shader computation by saving |
123 | // some arithmetic operations. |
124 | if focal_data.is_focal_on_circle() { |
125 | ts = ts.post_scale(0.5, 0.5); |
126 | } else { |
127 | ts = ts.post_scale(r1 / (r1 * r1 - 1.0), 1.0 / ((r1 * r1 - 1.0).abs()).sqrt()); |
128 | } |
129 | |
130 | Some(Shader::RadialGradient(RadialGradient { |
131 | base: Gradient::new(stops, mode, transform, ts), |
132 | focal_data: Some(focal_data), |
133 | })) |
134 | } |
135 | } |
136 | |
137 | pub(crate) fn push_stages(&self, p: &mut RasterPipelineBuilder) -> bool { |
138 | let p0 = if let Some(focal_data) = self.focal_data { |
139 | 1.0 / focal_data.r1 |
140 | } else { |
141 | 1.0 |
142 | }; |
143 | |
144 | p.ctx.two_point_conical_gradient = pipeline::TwoPointConicalGradientCtx { |
145 | mask: u32x8::default(), |
146 | p0, |
147 | }; |
148 | |
149 | self.base.push_stages( |
150 | p, |
151 | &|p| { |
152 | if let Some(focal_data) = self.focal_data { |
153 | // Unlike Skia, we have only the Focal radial gradient type. |
154 | |
155 | if focal_data.is_focal_on_circle() { |
156 | p.push(pipeline::Stage::XYTo2PtConicalFocalOnCircle); |
157 | } else if focal_data.is_well_behaved() { |
158 | p.push(pipeline::Stage::XYTo2PtConicalWellBehaved); |
159 | } else { |
160 | p.push(pipeline::Stage::XYTo2PtConicalGreater); |
161 | } |
162 | |
163 | if !focal_data.is_well_behaved() { |
164 | p.push(pipeline::Stage::Mask2PtConicalDegenerates); |
165 | } |
166 | } else { |
167 | p.push(pipeline::Stage::XYToRadius); |
168 | } |
169 | }, |
170 | &|p| { |
171 | if let Some(focal_data) = self.focal_data { |
172 | if !focal_data.is_well_behaved() { |
173 | p.push(pipeline::Stage::ApplyVectorMask); |
174 | } |
175 | } |
176 | }, |
177 | ) |
178 | } |
179 | } |
180 | |
181 | fn ts_from_poly_to_poly(src1: Point, src2: Point, dst1: Point, dst2: Point) -> Option<Transform> { |
182 | let tmp: Transform = from_poly2(p0:src1, p1:src2); |
183 | let res: Transform = tmp.invert()?; |
184 | let tmp: Transform = from_poly2(p0:dst1, p1:dst2); |
185 | Some(tmp.pre_concat(res)) |
186 | } |
187 | |
188 | fn from_poly2(p0: Point, p1: Point) -> Transform { |
189 | Transform::from_row( |
190 | sx:p1.y - p0.y, |
191 | ky:p0.x - p1.x, |
192 | kx:p1.x - p0.x, |
193 | sy:p1.y - p0.y, |
194 | tx:p0.x, |
195 | ty:p0.y, |
196 | ) |
197 | } |
198 | |