| 1 | // Copyright 2011 Google Inc. |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | use crate::{Point, Rect}; |
| 8 | |
| 9 | use tiny_skia_path::Scalar; |
| 10 | |
| 11 | pub const MAX_POINTS: usize = 4; |
| 12 | |
| 13 | /// Clip the line pts[0]...pts[1] against clip, ignoring segments that |
| 14 | /// lie completely above or below the clip. For portions to the left or |
| 15 | /// right, turn those into vertical line segments that are aligned to the |
| 16 | /// edge of the clip. |
| 17 | /// |
| 18 | /// Return the number of line segments that result, and store the end-points |
| 19 | /// of those segments sequentially in lines as follows: |
| 20 | /// |
| 21 | /// 1st segment: lines[0]..lines[1] |
| 22 | /// 2nd segment: lines[1]..lines[2] |
| 23 | /// 3rd segment: lines[2]..lines[3] |
| 24 | pub fn clip<'a>( |
| 25 | src: &[Point; 2], |
| 26 | clip: &Rect, |
| 27 | can_cull_to_the_right: bool, |
| 28 | points: &'a mut [Point; MAX_POINTS], |
| 29 | ) -> &'a [Point] { |
| 30 | let (mut index0, mut index1) = if src[0].y < src[1].y { (0, 1) } else { (1, 0) }; |
| 31 | |
| 32 | // Check if we're completely clipped out in Y (above or below) |
| 33 | |
| 34 | if src[index1].y <= clip.top() { |
| 35 | // we're above the clip |
| 36 | return &[]; |
| 37 | } |
| 38 | |
| 39 | if src[index0].y >= clip.bottom() { |
| 40 | // we're below the clip |
| 41 | return &[]; |
| 42 | } |
| 43 | |
| 44 | // Chop in Y to produce a single segment, stored in tmp[0..1] |
| 45 | |
| 46 | let mut tmp = *src; |
| 47 | |
| 48 | // now compute intersections |
| 49 | if src[index0].y < clip.top() { |
| 50 | tmp[index0] = Point::from_xy(sect_with_horizontal(src, clip.top()), clip.top()); |
| 51 | debug_assert!(is_between_unsorted(tmp[index0].x, src[0].x, src[1].x)); |
| 52 | } |
| 53 | |
| 54 | if tmp[index1].y > clip.bottom() { |
| 55 | tmp[index1] = Point::from_xy(sect_with_horizontal(src, clip.bottom()), clip.bottom()); |
| 56 | debug_assert!(is_between_unsorted(tmp[index1].x, src[0].x, src[1].x)); |
| 57 | } |
| 58 | |
| 59 | // Chop it into 1..3 segments that are wholly within the clip in X. |
| 60 | |
| 61 | // temp storage for up to 3 segments |
| 62 | let mut result_storage = [Point::zero(); MAX_POINTS]; |
| 63 | let mut line_count = 1; |
| 64 | let mut reverse; |
| 65 | |
| 66 | if src[0].x < src[1].x { |
| 67 | index0 = 0; |
| 68 | index1 = 1; |
| 69 | reverse = false; |
| 70 | } else { |
| 71 | index0 = 1; |
| 72 | index1 = 0; |
| 73 | reverse = true; |
| 74 | } |
| 75 | |
| 76 | let result: &[Point] = if tmp[index1].x <= clip.left() { |
| 77 | // wholly to the left |
| 78 | tmp[0].x = clip.left(); |
| 79 | tmp[1].x = clip.left(); |
| 80 | reverse = false; |
| 81 | &tmp |
| 82 | } else if tmp[index0].x >= clip.right() { |
| 83 | // wholly to the right |
| 84 | if can_cull_to_the_right { |
| 85 | return &[]; |
| 86 | } |
| 87 | |
| 88 | tmp[0].x = clip.right(); |
| 89 | tmp[1].x = clip.right(); |
| 90 | reverse = false; |
| 91 | &tmp |
| 92 | } else { |
| 93 | let mut offset = 0; |
| 94 | |
| 95 | if tmp[index0].x < clip.left() { |
| 96 | result_storage[offset] = Point::from_xy(clip.left(), tmp[index0].y); |
| 97 | offset += 1; |
| 98 | result_storage[offset] = |
| 99 | Point::from_xy(clip.left(), sect_clamp_with_vertical(&tmp, clip.left())); |
| 100 | debug_assert!(is_between_unsorted( |
| 101 | result_storage[offset].y, |
| 102 | tmp[0].y, |
| 103 | tmp[1].y |
| 104 | )); |
| 105 | } else { |
| 106 | result_storage[offset] = tmp[index0]; |
| 107 | } |
| 108 | offset += 1; |
| 109 | |
| 110 | if tmp[index1].x > clip.right() { |
| 111 | result_storage[offset] = |
| 112 | Point::from_xy(clip.right(), sect_clamp_with_vertical(&tmp, clip.right())); |
| 113 | debug_assert!(is_between_unsorted( |
| 114 | result_storage[offset].y, |
| 115 | tmp[0].y, |
| 116 | tmp[1].y |
| 117 | )); |
| 118 | offset += 1; |
| 119 | result_storage[offset] = Point::from_xy(clip.right(), tmp[index1].y); |
| 120 | } else { |
| 121 | result_storage[offset] = tmp[index1]; |
| 122 | } |
| 123 | |
| 124 | line_count = offset; |
| 125 | &result_storage |
| 126 | }; |
| 127 | |
| 128 | // Now copy the results into the caller's lines[] parameter |
| 129 | if reverse { |
| 130 | // copy the pts in reverse order to maintain winding order |
| 131 | for i in 0..=line_count { |
| 132 | points[line_count - i] = result[i]; |
| 133 | } |
| 134 | } else { |
| 135 | let len = line_count + 1; |
| 136 | points[0..len].copy_from_slice(&result[0..len]); |
| 137 | } |
| 138 | |
| 139 | &points[0..line_count + 1] |
| 140 | } |
| 141 | |
| 142 | /// Returns X coordinate of intersection with horizontal line at Y. |
| 143 | fn sect_with_horizontal(src: &[Point; 2], y: f32) -> f32 { |
| 144 | let dy: f32 = src[1].y - src[0].y; |
| 145 | if dy.is_nearly_zero() { |
| 146 | src[0].x.ave(src[1].x) |
| 147 | } else { |
| 148 | // need the extra precision so we don't compute a value that exceeds |
| 149 | // our original limits |
| 150 | let x0: f64 = f64::from(src[0].x); |
| 151 | let y0: f64 = f64::from(src[0].y); |
| 152 | let x1: f64 = f64::from(src[1].x); |
| 153 | let y1: f64 = f64::from(src[1].y); |
| 154 | let result: f64 = x0 + (f64::from(y) - y0) * (x1 - x0) / (y1 - y0); |
| 155 | |
| 156 | // The computed X value might still exceed [X0..X1] due to quantum flux |
| 157 | // when the doubles were added and subtracted, so we have to pin the |
| 158 | // answer :( |
| 159 | pin_unsorted_f64(value:result, limit0:x0, limit1:x1) as f32 |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | /// Returns value between the two limits, where the limits are either ascending or descending. |
| 164 | fn is_between_unsorted(value: f32, limit0: f32, limit1: f32) -> bool { |
| 165 | if limit0 < limit1 { |
| 166 | limit0 <= value && value <= limit1 |
| 167 | } else { |
| 168 | limit1 <= value && value <= limit0 |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | fn sect_clamp_with_vertical(src: &[Point; 2], x: f32) -> f32 { |
| 173 | let y: f32 = sect_with_vertical(src, x); |
| 174 | // Our caller expects y to be between src[0].y and src[1].y (unsorted), but due to the |
| 175 | // numerics of floats/doubles, we might have computed a value slightly outside of that, |
| 176 | // so we have to manually clamp afterwards. |
| 177 | // See skbug.com/7491 |
| 178 | pin_unsorted_f32(value:y, limit0:src[0].y, limit1:src[1].y) |
| 179 | } |
| 180 | |
| 181 | /// Returns Y coordinate of intersection with vertical line at X. |
| 182 | fn sect_with_vertical(src: &[Point; 2], x: f32) -> f32 { |
| 183 | let dx: f32 = src[1].x - src[0].x; |
| 184 | if dx.is_nearly_zero() { |
| 185 | src[0].y.ave(src[1].y) |
| 186 | } else { |
| 187 | // need the extra precision so we don't compute a value that exceeds |
| 188 | // our original limits |
| 189 | let x0: f64 = f64::from(src[0].x); |
| 190 | let y0: f64 = f64::from(src[0].y); |
| 191 | let x1: f64 = f64::from(src[1].x); |
| 192 | let y1: f64 = f64::from(src[1].y); |
| 193 | let result: f64 = y0 + (f64::from(x) - x0) * (y1 - y0) / (x1 - x0); |
| 194 | result as f32 |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | fn pin_unsorted_f32(value: f32, mut limit0: f32, mut limit1: f32) -> f32 { |
| 199 | if limit1 < limit0 { |
| 200 | core::mem::swap(&mut limit0, &mut limit1); |
| 201 | } |
| 202 | // now the limits are sorted |
| 203 | debug_assert!(limit0 <= limit1); |
| 204 | |
| 205 | if value < limit0 { |
| 206 | limit0 |
| 207 | } else if value > limit1 { |
| 208 | limit1 |
| 209 | } else { |
| 210 | value |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | fn pin_unsorted_f64(value: f64, mut limit0: f64, mut limit1: f64) -> f64 { |
| 215 | if limit1 < limit0 { |
| 216 | core::mem::swap(&mut limit0, &mut limit1); |
| 217 | } |
| 218 | // now the limits are sorted |
| 219 | debug_assert!(limit0 <= limit1); |
| 220 | |
| 221 | if value < limit0 { |
| 222 | limit0 |
| 223 | } else if value > limit1 { |
| 224 | limit1 |
| 225 | } else { |
| 226 | value |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | /// Intersect the line segment against the rect. If there is a non-empty |
| 231 | /// resulting segment, return true and set dst[] to that segment. If not, |
| 232 | /// return false and ignore dst[]. |
| 233 | /// |
| 234 | /// `clip` is specialized for scan-conversion, as it adds vertical |
| 235 | /// segments on the sides to show where the line extended beyond the |
| 236 | /// left or right sides. `intersect` does not. |
| 237 | pub fn intersect(src: &[Point; 2], clip: &Rect, dst: &mut [Point; 2]) -> bool { |
| 238 | let bounds = Rect::from_ltrb( |
| 239 | src[0].x.min(src[1].x), |
| 240 | src[0].y.min(src[1].y), |
| 241 | src[0].x.max(src[1].x), |
| 242 | src[0].y.max(src[1].y), |
| 243 | ); |
| 244 | |
| 245 | if let Some(bounds) = bounds { |
| 246 | if contains_no_empty_check(clip, &bounds) { |
| 247 | dst.copy_from_slice(src); |
| 248 | return true; |
| 249 | } |
| 250 | |
| 251 | // check for no overlap, and only permit coincident edges if the line |
| 252 | // and the edge are colinear |
| 253 | if nested_lt(bounds.right(), clip.left(), bounds.width()) |
| 254 | || nested_lt(clip.right(), bounds.left(), bounds.width()) |
| 255 | || nested_lt(bounds.bottom(), clip.top(), bounds.height()) |
| 256 | || nested_lt(clip.bottom(), bounds.top(), bounds.height()) |
| 257 | { |
| 258 | return false; |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | let (index0, index1) = if src[0].y < src[1].y { (0, 1) } else { (1, 0) }; |
| 263 | |
| 264 | let mut tmp = src.clone(); |
| 265 | |
| 266 | // now compute Y intersections |
| 267 | if tmp[index0].y < clip.top() { |
| 268 | tmp[index0] = Point::from_xy(sect_with_horizontal(src, clip.top()), clip.top()); |
| 269 | } |
| 270 | |
| 271 | if tmp[index1].y > clip.bottom() { |
| 272 | tmp[index1] = Point::from_xy(sect_with_horizontal(src, clip.bottom()), clip.bottom()); |
| 273 | } |
| 274 | |
| 275 | let (index0, index1) = if tmp[0].x < tmp[1].x { (0, 1) } else { (1, 0) }; |
| 276 | |
| 277 | // check for quick-reject in X again, now that we may have been chopped |
| 278 | if tmp[index1].x <= clip.left() || tmp[index0].x >= clip.right() { |
| 279 | // usually we will return false, but we don't if the line is vertical and coincident |
| 280 | // with the clip. |
| 281 | if tmp[0].x != tmp[1].x || tmp[0].x < clip.left() || tmp[0].x > clip.right() { |
| 282 | return false; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | if tmp[index0].x < clip.left() { |
| 287 | tmp[index0] = Point::from_xy(clip.left(), sect_with_vertical(src, clip.left())); |
| 288 | } |
| 289 | |
| 290 | if tmp[index1].x > clip.right() { |
| 291 | tmp[index1] = Point::from_xy(clip.right(), sect_with_vertical(src, clip.right())); |
| 292 | } |
| 293 | |
| 294 | dst.copy_from_slice(&tmp); |
| 295 | true |
| 296 | } |
| 297 | |
| 298 | fn nested_lt(a: f32, b: f32, dim: f32) -> bool { |
| 299 | a <= b && (a < b || dim > 0.0) |
| 300 | } |
| 301 | |
| 302 | // returns true if outer contains inner, even if inner is empty. |
| 303 | fn contains_no_empty_check(outer: &Rect, inner: &Rect) -> bool { |
| 304 | outer.left() <= inner.left() |
| 305 | && outer.top() <= inner.top() |
| 306 | && outer.right() >= inner.right() |
| 307 | && outer.bottom() >= inner.bottom() |
| 308 | } |
| 309 | |