1 | // Copyright 2011 Google Inc. |
2 | // Copyright 2020 Yevhenii Reizner |
3 | // |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the LICENSE file. |
6 | |
7 | use crate::{Point, Rect}; |
8 | |
9 | use tiny_skia_path::Scalar; |
10 | |
11 | pub const MAX_POINTS: usize = 4; |
12 | |
13 | /// Clip the line pts[0]...pts[1] against clip, ignoring segments that |
14 | /// lie completely above or below the clip. For portions to the left or |
15 | /// right, turn those into vertical line segments that are aligned to the |
16 | /// edge of the clip. |
17 | /// |
18 | /// Return the number of line segments that result, and store the end-points |
19 | /// of those segments sequentially in lines as follows: |
20 | /// |
21 | /// 1st segment: lines[0]..lines[1] |
22 | /// 2nd segment: lines[1]..lines[2] |
23 | /// 3rd segment: lines[2]..lines[3] |
24 | pub fn clip<'a>( |
25 | src: &[Point; 2], |
26 | clip: &Rect, |
27 | can_cull_to_the_right: bool, |
28 | points: &'a mut [Point; MAX_POINTS], |
29 | ) -> &'a [Point] { |
30 | let (mut index0, mut index1) = if src[0].y < src[1].y { (0, 1) } else { (1, 0) }; |
31 | |
32 | // Check if we're completely clipped out in Y (above or below) |
33 | |
34 | if src[index1].y <= clip.top() { |
35 | // we're above the clip |
36 | return &[]; |
37 | } |
38 | |
39 | if src[index0].y >= clip.bottom() { |
40 | // we're below the clip |
41 | return &[]; |
42 | } |
43 | |
44 | // Chop in Y to produce a single segment, stored in tmp[0..1] |
45 | |
46 | let mut tmp = *src; |
47 | |
48 | // now compute intersections |
49 | if src[index0].y < clip.top() { |
50 | tmp[index0] = Point::from_xy(sect_with_horizontal(src, clip.top()), clip.top()); |
51 | debug_assert!(is_between_unsorted(tmp[index0].x, src[0].x, src[1].x)); |
52 | } |
53 | |
54 | if tmp[index1].y > clip.bottom() { |
55 | tmp[index1] = Point::from_xy(sect_with_horizontal(src, clip.bottom()), clip.bottom()); |
56 | debug_assert!(is_between_unsorted(tmp[index1].x, src[0].x, src[1].x)); |
57 | } |
58 | |
59 | // Chop it into 1..3 segments that are wholly within the clip in X. |
60 | |
61 | // temp storage for up to 3 segments |
62 | let mut result_storage = [Point::zero(); MAX_POINTS]; |
63 | let mut line_count = 1; |
64 | let mut reverse; |
65 | |
66 | if src[0].x < src[1].x { |
67 | index0 = 0; |
68 | index1 = 1; |
69 | reverse = false; |
70 | } else { |
71 | index0 = 1; |
72 | index1 = 0; |
73 | reverse = true; |
74 | } |
75 | |
76 | let result: &[Point] = if tmp[index1].x <= clip.left() { |
77 | // wholly to the left |
78 | tmp[0].x = clip.left(); |
79 | tmp[1].x = clip.left(); |
80 | reverse = false; |
81 | &tmp |
82 | } else if tmp[index0].x >= clip.right() { |
83 | // wholly to the right |
84 | if can_cull_to_the_right { |
85 | return &[]; |
86 | } |
87 | |
88 | tmp[0].x = clip.right(); |
89 | tmp[1].x = clip.right(); |
90 | reverse = false; |
91 | &tmp |
92 | } else { |
93 | let mut offset = 0; |
94 | |
95 | if tmp[index0].x < clip.left() { |
96 | result_storage[offset] = Point::from_xy(clip.left(), tmp[index0].y); |
97 | offset += 1; |
98 | result_storage[offset] = |
99 | Point::from_xy(clip.left(), sect_clamp_with_vertical(&tmp, clip.left())); |
100 | debug_assert!(is_between_unsorted( |
101 | result_storage[offset].y, |
102 | tmp[0].y, |
103 | tmp[1].y |
104 | )); |
105 | } else { |
106 | result_storage[offset] = tmp[index0]; |
107 | } |
108 | offset += 1; |
109 | |
110 | if tmp[index1].x > clip.right() { |
111 | result_storage[offset] = |
112 | Point::from_xy(clip.right(), sect_clamp_with_vertical(&tmp, clip.right())); |
113 | debug_assert!(is_between_unsorted( |
114 | result_storage[offset].y, |
115 | tmp[0].y, |
116 | tmp[1].y |
117 | )); |
118 | offset += 1; |
119 | result_storage[offset] = Point::from_xy(clip.right(), tmp[index1].y); |
120 | } else { |
121 | result_storage[offset] = tmp[index1]; |
122 | } |
123 | |
124 | line_count = offset; |
125 | &result_storage |
126 | }; |
127 | |
128 | // Now copy the results into the caller's lines[] parameter |
129 | if reverse { |
130 | // copy the pts in reverse order to maintain winding order |
131 | for i in 0..=line_count { |
132 | points[line_count - i] = result[i]; |
133 | } |
134 | } else { |
135 | let len = line_count + 1; |
136 | points[0..len].copy_from_slice(&result[0..len]); |
137 | } |
138 | |
139 | &points[0..line_count + 1] |
140 | } |
141 | |
142 | /// Returns X coordinate of intersection with horizontal line at Y. |
143 | fn sect_with_horizontal(src: &[Point; 2], y: f32) -> f32 { |
144 | let dy: f32 = src[1].y - src[0].y; |
145 | if dy.is_nearly_zero() { |
146 | src[0].x.ave(src[1].x) |
147 | } else { |
148 | // need the extra precision so we don't compute a value that exceeds |
149 | // our original limits |
150 | let x0: f64 = f64::from(src[0].x); |
151 | let y0: f64 = f64::from(src[0].y); |
152 | let x1: f64 = f64::from(src[1].x); |
153 | let y1: f64 = f64::from(src[1].y); |
154 | let result: f64 = x0 + (f64::from(y) - y0) * (x1 - x0) / (y1 - y0); |
155 | |
156 | // The computed X value might still exceed [X0..X1] due to quantum flux |
157 | // when the doubles were added and subtracted, so we have to pin the |
158 | // answer :( |
159 | pin_unsorted_f64(value:result, limit0:x0, limit1:x1) as f32 |
160 | } |
161 | } |
162 | |
163 | /// Returns value between the two limits, where the limits are either ascending or descending. |
164 | fn is_between_unsorted(value: f32, limit0: f32, limit1: f32) -> bool { |
165 | if limit0 < limit1 { |
166 | limit0 <= value && value <= limit1 |
167 | } else { |
168 | limit1 <= value && value <= limit0 |
169 | } |
170 | } |
171 | |
172 | fn sect_clamp_with_vertical(src: &[Point; 2], x: f32) -> f32 { |
173 | let y: f32 = sect_with_vertical(src, x); |
174 | // Our caller expects y to be between src[0].y and src[1].y (unsorted), but due to the |
175 | // numerics of floats/doubles, we might have computed a value slightly outside of that, |
176 | // so we have to manually clamp afterwards. |
177 | // See skbug.com/7491 |
178 | pin_unsorted_f32(value:y, limit0:src[0].y, limit1:src[1].y) |
179 | } |
180 | |
181 | /// Returns Y coordinate of intersection with vertical line at X. |
182 | fn sect_with_vertical(src: &[Point; 2], x: f32) -> f32 { |
183 | let dx: f32 = src[1].x - src[0].x; |
184 | if dx.is_nearly_zero() { |
185 | src[0].y.ave(src[1].y) |
186 | } else { |
187 | // need the extra precision so we don't compute a value that exceeds |
188 | // our original limits |
189 | let x0: f64 = f64::from(src[0].x); |
190 | let y0: f64 = f64::from(src[0].y); |
191 | let x1: f64 = f64::from(src[1].x); |
192 | let y1: f64 = f64::from(src[1].y); |
193 | let result: f64 = y0 + (f64::from(x) - x0) * (y1 - y0) / (x1 - x0); |
194 | result as f32 |
195 | } |
196 | } |
197 | |
198 | fn pin_unsorted_f32(value: f32, mut limit0: f32, mut limit1: f32) -> f32 { |
199 | if limit1 < limit0 { |
200 | core::mem::swap(&mut limit0, &mut limit1); |
201 | } |
202 | // now the limits are sorted |
203 | debug_assert!(limit0 <= limit1); |
204 | |
205 | if value < limit0 { |
206 | limit0 |
207 | } else if value > limit1 { |
208 | limit1 |
209 | } else { |
210 | value |
211 | } |
212 | } |
213 | |
214 | fn pin_unsorted_f64(value: f64, mut limit0: f64, mut limit1: f64) -> f64 { |
215 | if limit1 < limit0 { |
216 | core::mem::swap(&mut limit0, &mut limit1); |
217 | } |
218 | // now the limits are sorted |
219 | debug_assert!(limit0 <= limit1); |
220 | |
221 | if value < limit0 { |
222 | limit0 |
223 | } else if value > limit1 { |
224 | limit1 |
225 | } else { |
226 | value |
227 | } |
228 | } |
229 | |
230 | /// Intersect the line segment against the rect. If there is a non-empty |
231 | /// resulting segment, return true and set dst[] to that segment. If not, |
232 | /// return false and ignore dst[]. |
233 | /// |
234 | /// `clip` is specialized for scan-conversion, as it adds vertical |
235 | /// segments on the sides to show where the line extended beyond the |
236 | /// left or right sides. `intersect` does not. |
237 | pub fn intersect(src: &[Point; 2], clip: &Rect, dst: &mut [Point; 2]) -> bool { |
238 | let bounds = Rect::from_ltrb( |
239 | src[0].x.min(src[1].x), |
240 | src[0].y.min(src[1].y), |
241 | src[0].x.max(src[1].x), |
242 | src[0].y.max(src[1].y), |
243 | ); |
244 | |
245 | if let Some(bounds) = bounds { |
246 | if contains_no_empty_check(clip, &bounds) { |
247 | dst.copy_from_slice(src); |
248 | return true; |
249 | } |
250 | |
251 | // check for no overlap, and only permit coincident edges if the line |
252 | // and the edge are colinear |
253 | if nested_lt(bounds.right(), clip.left(), bounds.width()) |
254 | || nested_lt(clip.right(), bounds.left(), bounds.width()) |
255 | || nested_lt(bounds.bottom(), clip.top(), bounds.height()) |
256 | || nested_lt(clip.bottom(), bounds.top(), bounds.height()) |
257 | { |
258 | return false; |
259 | } |
260 | } |
261 | |
262 | let (index0, index1) = if src[0].y < src[1].y { (0, 1) } else { (1, 0) }; |
263 | |
264 | let mut tmp = src.clone(); |
265 | |
266 | // now compute Y intersections |
267 | if tmp[index0].y < clip.top() { |
268 | tmp[index0] = Point::from_xy(sect_with_horizontal(src, clip.top()), clip.top()); |
269 | } |
270 | |
271 | if tmp[index1].y > clip.bottom() { |
272 | tmp[index1] = Point::from_xy(sect_with_horizontal(src, clip.bottom()), clip.bottom()); |
273 | } |
274 | |
275 | let (index0, index1) = if tmp[0].x < tmp[1].x { (0, 1) } else { (1, 0) }; |
276 | |
277 | // check for quick-reject in X again, now that we may have been chopped |
278 | if tmp[index1].x <= clip.left() || tmp[index0].x >= clip.right() { |
279 | // usually we will return false, but we don't if the line is vertical and coincident |
280 | // with the clip. |
281 | if tmp[0].x != tmp[1].x || tmp[0].x < clip.left() || tmp[0].x > clip.right() { |
282 | return false; |
283 | } |
284 | } |
285 | |
286 | if tmp[index0].x < clip.left() { |
287 | tmp[index0] = Point::from_xy(clip.left(), sect_with_vertical(src, clip.left())); |
288 | } |
289 | |
290 | if tmp[index1].x > clip.right() { |
291 | tmp[index1] = Point::from_xy(clip.right(), sect_with_vertical(src, clip.right())); |
292 | } |
293 | |
294 | dst.copy_from_slice(&tmp); |
295 | true |
296 | } |
297 | |
298 | fn nested_lt(a: f32, b: f32, dim: f32) -> bool { |
299 | a <= b && (a < b || dim > 0.0) |
300 | } |
301 | |
302 | // returns true if outer contains inner, even if inner is empty. |
303 | fn contains_no_empty_check(outer: &Rect, inner: &Rect) -> bool { |
304 | outer.left() <= inner.left() |
305 | && outer.top() <= inner.top() |
306 | && outer.right() >= inner.right() |
307 | && outer.bottom() >= inner.bottom() |
308 | } |
309 | |