1 | //! A module for all decoding needs. |
2 | #[cfg (feature = "std" )] |
3 | use crate::error::StreamResult; |
4 | use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult}; |
5 | use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE}; |
6 | |
7 | use crate::alloc::{boxed::Box, vec, vec::Vec}; |
8 | #[cfg (feature = "std" )] |
9 | use std::io::{self, BufRead, Write}; |
10 | |
11 | /// The state for decoding data with an LZW algorithm. |
12 | /// |
13 | /// The same structure can be utilized with streams as well as your own buffers and driver logic. |
14 | /// It may even be possible to mix them if you are sufficiently careful not to lose or skip any |
15 | /// already decode data in the process. |
16 | /// |
17 | /// This is a sans-IO implementation, meaning that it only contains the state of the decoder and |
18 | /// the caller will provide buffers for input and output data when calling the basic |
19 | /// [`decode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*` |
20 | /// methods for decoding with a particular style of common IO. |
21 | /// |
22 | /// * [`decode`] for decoding once without any IO-loop. |
23 | /// * [`into_async`] for decoding with the `futures` traits for asynchronous IO. |
24 | /// * [`into_stream`] for decoding with the standard `io` traits. |
25 | /// * [`into_vec`] for in-memory decoding. |
26 | /// |
27 | /// [`decode_bytes`]: #method.decode_bytes |
28 | /// [`decode`]: #method.decode |
29 | /// [`into_async`]: #method.into_async |
30 | /// [`into_stream`]: #method.into_stream |
31 | /// [`into_vec`]: #method.into_vec |
32 | pub struct Decoder { |
33 | state: Box<dyn Stateful + Send + 'static>, |
34 | } |
35 | |
36 | /// A decoding stream sink. |
37 | /// |
38 | /// See [`Decoder::into_stream`] on how to create this type. |
39 | /// |
40 | /// [`Decoder::into_stream`]: struct.Decoder.html#method.into_stream |
41 | #[cfg_attr ( |
42 | not(feature = "std" ), |
43 | deprecated = "This type is only useful with the `std` feature." |
44 | )] |
45 | #[cfg_attr (not(feature = "std" ), allow(dead_code))] |
46 | pub struct IntoStream<'d, W> { |
47 | decoder: &'d mut Decoder, |
48 | writer: W, |
49 | buffer: Option<StreamBuf<'d>>, |
50 | default_size: usize, |
51 | } |
52 | |
53 | /// An async decoding sink. |
54 | /// |
55 | /// See [`Decoder::into_async`] on how to create this type. |
56 | /// |
57 | /// [`Decoder::into_async`]: struct.Decoder.html#method.into_async |
58 | #[cfg (feature = "async" )] |
59 | pub struct IntoAsync<'d, W> { |
60 | decoder: &'d mut Decoder, |
61 | writer: W, |
62 | buffer: Option<StreamBuf<'d>>, |
63 | default_size: usize, |
64 | } |
65 | |
66 | /// A decoding sink into a vector. |
67 | /// |
68 | /// See [`Decoder::into_vec`] on how to create this type. |
69 | /// |
70 | /// [`Decoder::into_vec`]: struct.Decoder.html#method.into_vec |
71 | pub struct IntoVec<'d> { |
72 | decoder: &'d mut Decoder, |
73 | vector: &'d mut Vec<u8>, |
74 | } |
75 | |
76 | trait Stateful { |
77 | fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult; |
78 | fn has_ended(&self) -> bool; |
79 | /// Ignore an end code and continue decoding (no implied reset). |
80 | fn restart(&mut self); |
81 | /// Reset the decoder to the beginning, dropping all buffers etc. |
82 | fn reset(&mut self); |
83 | } |
84 | |
85 | #[derive (Clone)] |
86 | struct Link { |
87 | prev: Code, |
88 | byte: u8, |
89 | } |
90 | |
91 | #[derive (Default)] |
92 | struct MsbBuffer { |
93 | /// A buffer of individual bits. The oldest code is kept in the high-order bits. |
94 | bit_buffer: u64, |
95 | /// A precomputed mask for this code. |
96 | code_mask: u16, |
97 | /// The current code size. |
98 | code_size: u8, |
99 | /// The number of bits in the buffer. |
100 | bits: u8, |
101 | } |
102 | |
103 | #[derive (Default)] |
104 | struct LsbBuffer { |
105 | /// A buffer of individual bits. The oldest code is kept in the high-order bits. |
106 | bit_buffer: u64, |
107 | /// A precomputed mask for this code. |
108 | code_mask: u16, |
109 | /// The current code size. |
110 | code_size: u8, |
111 | /// The number of bits in the buffer. |
112 | bits: u8, |
113 | } |
114 | |
115 | trait CodeBuffer { |
116 | fn new(min_size: u8) -> Self; |
117 | fn reset(&mut self, min_size: u8); |
118 | fn bump_code_size(&mut self); |
119 | /// Retrieve the next symbol, refilling if necessary. |
120 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code>; |
121 | /// Refill the internal buffer. |
122 | fn refill_bits(&mut self, inp: &mut &[u8]); |
123 | /// Get the next buffered code word. |
124 | fn get_bits(&mut self) -> Option<Code>; |
125 | fn max_code(&self) -> Code; |
126 | fn code_size(&self) -> u8; |
127 | } |
128 | |
129 | struct DecodeState<CodeBuffer> { |
130 | /// The original minimum code size. |
131 | min_size: u8, |
132 | /// The table of decoded codes. |
133 | table: Table, |
134 | /// The buffer of decoded data. |
135 | buffer: Buffer, |
136 | /// The link which we are still decoding and its original code. |
137 | last: Option<(Code, Link)>, |
138 | /// The next code entry. |
139 | next_code: Code, |
140 | /// Code to reset all tables. |
141 | clear_code: Code, |
142 | /// Code to signal the end of the stream. |
143 | end_code: Code, |
144 | /// A stored flag if the end code has already appeared. |
145 | has_ended: bool, |
146 | /// If tiff then bumps are a single code sooner. |
147 | is_tiff: bool, |
148 | /// Do we allow stream to start without an explicit reset code? |
149 | implicit_reset: bool, |
150 | /// The buffer for decoded words. |
151 | code_buffer: CodeBuffer, |
152 | } |
153 | |
154 | struct Buffer { |
155 | bytes: Box<[u8]>, |
156 | read_mark: usize, |
157 | write_mark: usize, |
158 | } |
159 | |
160 | struct Table { |
161 | inner: Vec<Link>, |
162 | depths: Vec<u16>, |
163 | } |
164 | |
165 | impl Decoder { |
166 | /// Create a new decoder with the specified bit order and symbol size. |
167 | /// |
168 | /// The algorithm for dynamically increasing the code symbol bit width is compatible with the |
169 | /// original specification. In particular you will need to specify an `Lsb` bit oder to decode |
170 | /// the data portion of a compressed `gif` image. |
171 | /// |
172 | /// # Panics |
173 | /// |
174 | /// The `size` needs to be in the interval `0..=12`. |
175 | pub fn new(order: BitOrder, size: u8) -> Self { |
176 | type Boxed = Box<dyn Stateful + Send + 'static>; |
177 | super::assert_decode_size(size); |
178 | let state = match order { |
179 | BitOrder::Lsb => Box::new(DecodeState::<LsbBuffer>::new(size)) as Boxed, |
180 | BitOrder::Msb => Box::new(DecodeState::<MsbBuffer>::new(size)) as Boxed, |
181 | }; |
182 | |
183 | Decoder { state } |
184 | } |
185 | |
186 | /// Create a TIFF compatible decoder with the specified bit order and symbol size. |
187 | /// |
188 | /// The algorithm for dynamically increasing the code symbol bit width is compatible with the |
189 | /// TIFF specification, which is a misinterpretation of the original algorithm for increasing |
190 | /// the code size. It switches one symbol sooner. |
191 | /// |
192 | /// # Panics |
193 | /// |
194 | /// The `size` needs to be in the interval `0..=12`. |
195 | pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self { |
196 | type Boxed = Box<dyn Stateful + Send + 'static>; |
197 | super::assert_decode_size(size); |
198 | let state = match order { |
199 | BitOrder::Lsb => { |
200 | let mut state = Box::new(DecodeState::<LsbBuffer>::new(size)); |
201 | state.is_tiff = true; |
202 | state as Boxed |
203 | } |
204 | BitOrder::Msb => { |
205 | let mut state = Box::new(DecodeState::<MsbBuffer>::new(size)); |
206 | state.is_tiff = true; |
207 | state as Boxed |
208 | } |
209 | }; |
210 | |
211 | Decoder { state } |
212 | } |
213 | |
214 | /// Decode some bytes from `inp` and write result to `out`. |
215 | /// |
216 | /// This will consume a prefix of the input buffer and write decoded output into a prefix of |
217 | /// the output buffer. See the respective fields of the return value for the count of consumed |
218 | /// and written bytes. For the next call You should have adjusted the inputs accordingly. |
219 | /// |
220 | /// The call will try to decode and write as many bytes of output as available. It will be |
221 | /// much more optimized (and avoid intermediate buffering) if it is allowed to write a large |
222 | /// contiguous chunk at once. |
223 | /// |
224 | /// See [`into_stream`] for high-level functions (that are only available with the `std` |
225 | /// feature). |
226 | /// |
227 | /// [`into_stream`]: #method.into_stream |
228 | pub fn decode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult { |
229 | self.state.advance(inp, out) |
230 | } |
231 | |
232 | /// Decode a single chunk of lzw encoded data. |
233 | /// |
234 | /// This method requires the data to contain an end marker, and returns an error otherwise. |
235 | /// |
236 | /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize |
237 | /// buffer size, to supply an existing vector, to control whether an end marker is required, or |
238 | /// to preserve partial data in the case of a decoding error. |
239 | /// |
240 | /// [`into_vec`]: #into_vec |
241 | /// |
242 | /// # Example |
243 | /// |
244 | /// ``` |
245 | /// use weezl::{BitOrder, decode::Decoder}; |
246 | /// |
247 | /// // Encoded that was created with an encoder. |
248 | /// let data = b" \x80\x04\x81\x94l \x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l \x19 \x10" ; |
249 | /// let decoded = Decoder::new(BitOrder::Msb, 9) |
250 | /// .decode(data) |
251 | /// .unwrap(); |
252 | /// assert_eq!(decoded, b"Hello, world" ); |
253 | /// ``` |
254 | pub fn decode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> { |
255 | let mut output = vec![]; |
256 | self.into_vec(&mut output).decode_all(data).status?; |
257 | Ok(output) |
258 | } |
259 | |
260 | /// Construct a decoder into a writer. |
261 | #[cfg (feature = "std" )] |
262 | pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> { |
263 | IntoStream { |
264 | decoder: self, |
265 | writer, |
266 | buffer: None, |
267 | default_size: STREAM_BUF_SIZE, |
268 | } |
269 | } |
270 | |
271 | /// Construct a decoder into an async writer. |
272 | #[cfg (feature = "async" )] |
273 | pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> { |
274 | IntoAsync { |
275 | decoder: self, |
276 | writer, |
277 | buffer: None, |
278 | default_size: STREAM_BUF_SIZE, |
279 | } |
280 | } |
281 | |
282 | /// Construct a decoder into a vector. |
283 | /// |
284 | /// All decoded data is appended and the vector is __not__ cleared. |
285 | /// |
286 | /// Compared to `into_stream` this interface allows a high-level access to decoding without |
287 | /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the |
288 | /// special target exposes. |
289 | pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> { |
290 | IntoVec { |
291 | decoder: self, |
292 | vector: vec, |
293 | } |
294 | } |
295 | |
296 | /// Check if the decoding has finished. |
297 | /// |
298 | /// No more output is produced beyond the end code that marked the finish of the stream. The |
299 | /// decoder may have read additional bytes, including padding bits beyond the last code word |
300 | /// but also excess bytes provided. |
301 | pub fn has_ended(&self) -> bool { |
302 | self.state.has_ended() |
303 | } |
304 | |
305 | /// Ignore an end code and continue. |
306 | /// |
307 | /// This will _not_ reset any of the inner code tables and not have the effect of a clear code. |
308 | /// It will instead continue as if the end code had not been present. If no end code has |
309 | /// occurred then this is a no-op. |
310 | /// |
311 | /// You can test if an end code has occurred with [`has_ended`](#method.has_ended). |
312 | /// FIXME: clarify how this interacts with padding introduced after end code. |
313 | #[allow (dead_code)] |
314 | pub(crate) fn restart(&mut self) { |
315 | self.state.restart(); |
316 | } |
317 | |
318 | /// Reset all internal state. |
319 | /// |
320 | /// This produce a decoder as if just constructed with `new` but taking slightly less work. In |
321 | /// particular it will not deallocate any internal allocations. It will also avoid some |
322 | /// duplicate setup work. |
323 | pub fn reset(&mut self) { |
324 | self.state.reset(); |
325 | } |
326 | } |
327 | |
328 | #[cfg (feature = "std" )] |
329 | impl<'d, W: Write> IntoStream<'d, W> { |
330 | /// Decode data from a reader. |
331 | /// |
332 | /// This will read data until the stream is empty or an end marker is reached. |
333 | pub fn decode(&mut self, read: impl BufRead) -> StreamResult { |
334 | self.decode_part(read, false) |
335 | } |
336 | |
337 | /// Decode data from a reader, requiring an end marker. |
338 | pub fn decode_all(mut self, read: impl BufRead) -> StreamResult { |
339 | self.decode_part(read, true) |
340 | } |
341 | |
342 | /// Set the size of the intermediate decode buffer. |
343 | /// |
344 | /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is |
345 | /// available and any decoding method is called. No buffer is allocated if `set_buffer` has |
346 | /// been called. The buffer is reused. |
347 | /// |
348 | /// # Panics |
349 | /// This method panics if `size` is `0`. |
350 | pub fn set_buffer_size(&mut self, size: usize) { |
351 | assert_ne!(size, 0, "Attempted to set empty buffer" ); |
352 | self.default_size = size; |
353 | } |
354 | |
355 | /// Use a particular buffer as an intermediate decode buffer. |
356 | /// |
357 | /// Calling this sets or replaces the buffer. When a buffer has been set then it is used |
358 | /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical |
359 | /// for efficient decoding. Some optimization techniques require the buffer to hold one or more |
360 | /// previous decoded words. There is also additional overhead from `write` calls each time the |
361 | /// buffer has been filled. |
362 | /// |
363 | /// # Panics |
364 | /// This method panics if the `buffer` is empty. |
365 | pub fn set_buffer(&mut self, buffer: &'d mut [u8]) { |
366 | assert_ne!(buffer.len(), 0, "Attempted to set empty buffer" ); |
367 | self.buffer = Some(StreamBuf::Borrowed(buffer)); |
368 | } |
369 | |
370 | fn decode_part(&mut self, mut read: impl BufRead, must_finish: bool) -> StreamResult { |
371 | let IntoStream { |
372 | decoder, |
373 | writer, |
374 | buffer, |
375 | default_size, |
376 | } = self; |
377 | |
378 | enum Progress { |
379 | Ok, |
380 | Done, |
381 | } |
382 | |
383 | let mut bytes_read = 0; |
384 | let mut bytes_written = 0; |
385 | |
386 | // Converting to mutable refs to move into the `once` closure. |
387 | let read_bytes = &mut bytes_read; |
388 | let write_bytes = &mut bytes_written; |
389 | |
390 | let outbuf: &mut [u8] = |
391 | match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } { |
392 | StreamBuf::Borrowed(slice) => &mut *slice, |
393 | StreamBuf::Owned(vec) => &mut *vec, |
394 | }; |
395 | assert!(!outbuf.is_empty()); |
396 | |
397 | let once = move || { |
398 | // Try to grab one buffer of input data. |
399 | let data = read.fill_buf()?; |
400 | |
401 | // Decode as much of the buffer as fits. |
402 | let result = decoder.decode_bytes(data, &mut outbuf[..]); |
403 | // Do the bookkeeping and consume the buffer. |
404 | *read_bytes += result.consumed_in; |
405 | *write_bytes += result.consumed_out; |
406 | read.consume(result.consumed_in); |
407 | |
408 | // Handle the status in the result. |
409 | let done = result.status.map_err(|err| { |
410 | io::Error::new(io::ErrorKind::InvalidData, &*format!(" {:?}" , err)) |
411 | })?; |
412 | |
413 | // Check if we had any new data at all. |
414 | if let LzwStatus::NoProgress = done { |
415 | debug_assert_eq!( |
416 | result.consumed_out, 0, |
417 | "No progress means we have not decoded any data" |
418 | ); |
419 | // In particular we did not finish decoding. |
420 | if must_finish { |
421 | return Err(io::Error::new( |
422 | io::ErrorKind::UnexpectedEof, |
423 | "No more data but no end marker detected" , |
424 | )); |
425 | } else { |
426 | return Ok(Progress::Done); |
427 | } |
428 | } |
429 | |
430 | // And finish by writing our result. |
431 | // TODO: we may lose data on error (also on status error above) which we might want to |
432 | // deterministically handle so that we don't need to restart everything from scratch as |
433 | // the only recovery strategy. Any changes welcome. |
434 | writer.write_all(&outbuf[..result.consumed_out])?; |
435 | |
436 | Ok(if let LzwStatus::Done = done { |
437 | Progress::Done |
438 | } else { |
439 | Progress::Ok |
440 | }) |
441 | }; |
442 | |
443 | // Decode chunks of input data until we're done. |
444 | let status = core::iter::repeat_with(once) |
445 | // scan+fuse can be replaced with map_while |
446 | .scan((), |(), result| match result { |
447 | Ok(Progress::Ok) => Some(Ok(())), |
448 | Err(err) => Some(Err(err)), |
449 | Ok(Progress::Done) => None, |
450 | }) |
451 | .fuse() |
452 | .collect(); |
453 | |
454 | StreamResult { |
455 | bytes_read, |
456 | bytes_written, |
457 | status, |
458 | } |
459 | } |
460 | } |
461 | |
462 | impl IntoVec<'_> { |
463 | /// Decode data from a slice. |
464 | /// |
465 | /// This will read data until the slice is empty or an end marker is reached. |
466 | pub fn decode(&mut self, read: &[u8]) -> VectorResult { |
467 | self.decode_part(read, false) |
468 | } |
469 | |
470 | /// Decode data from a slice, requiring an end marker. |
471 | pub fn decode_all(mut self, read: &[u8]) -> VectorResult { |
472 | self.decode_part(read, true) |
473 | } |
474 | |
475 | fn grab_buffer(&mut self) -> (&mut [u8], &mut Decoder) { |
476 | const CHUNK_SIZE: usize = 1 << 12; |
477 | let decoder = &mut self.decoder; |
478 | let length = self.vector.len(); |
479 | |
480 | // Use the vector to do overflow checks and w/e. |
481 | self.vector.reserve(CHUNK_SIZE); |
482 | // FIXME: decoding into uninit buffer? |
483 | self.vector.resize(length + CHUNK_SIZE, 0u8); |
484 | |
485 | (&mut self.vector[length..], decoder) |
486 | } |
487 | |
488 | fn decode_part(&mut self, part: &[u8], must_finish: bool) -> VectorResult { |
489 | let mut result = VectorResult { |
490 | consumed_in: 0, |
491 | consumed_out: 0, |
492 | status: Ok(LzwStatus::Ok), |
493 | }; |
494 | |
495 | enum Progress { |
496 | Ok, |
497 | Done, |
498 | } |
499 | |
500 | // Converting to mutable refs to move into the `once` closure. |
501 | let read_bytes = &mut result.consumed_in; |
502 | let write_bytes = &mut result.consumed_out; |
503 | let mut data = part; |
504 | |
505 | // A 64 MB buffer is quite large but should get alloc_zeroed. |
506 | // Note that the decoded size can be up to quadratic in code block. |
507 | let once = move || { |
508 | // Grab a new output buffer. |
509 | let (outbuf, decoder) = self.grab_buffer(); |
510 | |
511 | // Decode as much of the buffer as fits. |
512 | let result = decoder.decode_bytes(data, &mut outbuf[..]); |
513 | // Do the bookkeeping and consume the buffer. |
514 | *read_bytes += result.consumed_in; |
515 | *write_bytes += result.consumed_out; |
516 | data = &data[result.consumed_in..]; |
517 | |
518 | let unfilled = outbuf.len() - result.consumed_out; |
519 | let filled = self.vector.len() - unfilled; |
520 | self.vector.truncate(filled); |
521 | |
522 | // Handle the status in the result. |
523 | match result.status { |
524 | Err(err) => Err(err), |
525 | Ok(LzwStatus::NoProgress) if must_finish => Err(LzwError::InvalidCode), |
526 | Ok(LzwStatus::NoProgress) | Ok(LzwStatus::Done) => Ok(Progress::Done), |
527 | Ok(LzwStatus::Ok) => Ok(Progress::Ok), |
528 | } |
529 | }; |
530 | |
531 | // Decode chunks of input data until we're done. |
532 | let status: Result<(), _> = core::iter::repeat_with(once) |
533 | // scan+fuse can be replaced with map_while |
534 | .scan((), |(), result| match result { |
535 | Ok(Progress::Ok) => Some(Ok(())), |
536 | Err(err) => Some(Err(err)), |
537 | Ok(Progress::Done) => None, |
538 | }) |
539 | .fuse() |
540 | .collect(); |
541 | |
542 | if let Err(err) = status { |
543 | result.status = Err(err); |
544 | } |
545 | |
546 | result |
547 | } |
548 | } |
549 | |
550 | // This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would |
551 | // trip over the usage of await, which is a reserved keyword in that edition/version. It only |
552 | // contains an impl block. |
553 | #[cfg (feature = "async" )] |
554 | #[path = "decode_into_async.rs" ] |
555 | mod impl_decode_into_async; |
556 | |
557 | impl<C: CodeBuffer> DecodeState<C> { |
558 | fn new(min_size: u8) -> Self { |
559 | DecodeState { |
560 | min_size, |
561 | table: Table::new(), |
562 | buffer: Buffer::new(), |
563 | last: None, |
564 | clear_code: 1 << min_size, |
565 | end_code: (1 << min_size) + 1, |
566 | next_code: (1 << min_size) + 2, |
567 | has_ended: false, |
568 | is_tiff: false, |
569 | implicit_reset: true, |
570 | code_buffer: CodeBuffer::new(min_size), |
571 | } |
572 | } |
573 | |
574 | fn init_tables(&mut self) { |
575 | self.code_buffer.reset(self.min_size); |
576 | self.next_code = (1 << self.min_size) + 2; |
577 | self.table.init(self.min_size); |
578 | } |
579 | |
580 | fn reset_tables(&mut self) { |
581 | self.code_buffer.reset(self.min_size); |
582 | self.next_code = (1 << self.min_size) + 2; |
583 | self.table.clear(self.min_size); |
584 | } |
585 | } |
586 | |
587 | impl<C: CodeBuffer> Stateful for DecodeState<C> { |
588 | fn has_ended(&self) -> bool { |
589 | self.has_ended |
590 | } |
591 | |
592 | fn restart(&mut self) { |
593 | self.has_ended = false; |
594 | } |
595 | |
596 | fn reset(&mut self) { |
597 | self.table.init(self.min_size); |
598 | self.next_code = (1 << self.min_size) + 2; |
599 | self.buffer.read_mark = 0; |
600 | self.buffer.write_mark = 0; |
601 | self.last = None; |
602 | self.restart(); |
603 | self.code_buffer = CodeBuffer::new(self.min_size); |
604 | } |
605 | |
606 | fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult { |
607 | // Skip everything if there is nothing to do. |
608 | if self.has_ended { |
609 | return BufferResult { |
610 | consumed_in: 0, |
611 | consumed_out: 0, |
612 | status: Ok(LzwStatus::Done), |
613 | }; |
614 | } |
615 | |
616 | // Rough description: |
617 | // We will fill the output slice as much as possible until either there is no more symbols |
618 | // to decode or an end code has been reached. This requires an internal buffer to hold a |
619 | // potential tail of the word corresponding to the last symbol. This tail will then be |
620 | // decoded first before continuing with the regular decoding. The same buffer is required |
621 | // to persist some symbol state across calls. |
622 | // |
623 | // We store the words corresponding to code symbols in an index chain, bytewise, where we |
624 | // push each decoded symbol. (TODO: wuffs shows some success with 8-byte units). This chain |
625 | // is traversed for each symbol when it is decoded and bytes are placed directly into the |
626 | // output slice. In the special case (new_code == next_code) we use an existing decoded |
627 | // version that is present in either the out bytes of this call or in buffer to copy the |
628 | // repeated prefix slice. |
629 | // TODO: I played with a 'decoding cache' to remember the position of long symbols and |
630 | // avoid traversing the chain, doing a copy of memory instead. It did however not lead to |
631 | // a serious improvement. It's just unlikely to both have a long symbol and have that |
632 | // repeated twice in the same output buffer. |
633 | // |
634 | // You will also find the (to my knowledge novel) concept of a _decoding burst_ which |
635 | // gained some >~10% speedup in tests. This is motivated by wanting to use out-of-order |
636 | // execution as much as possible and for this reason have the least possible stress on |
637 | // branch prediction. Our decoding table already gives us a lookahead on symbol lengths but |
638 | // only for re-used codes, not novel ones. This lookahead also makes the loop termination |
639 | // when restoring each byte of the code word perfectly predictable! So a burst is a chunk |
640 | // of code words which are all independent of each other, have known lengths _and_ are |
641 | // guaranteed to fit into the out slice without requiring a buffer. One burst can be |
642 | // decoded in an extremely tight loop. |
643 | // |
644 | // TODO: since words can be at most (1 << MAX_CODESIZE) = 4096 bytes long we could avoid |
645 | // that intermediate buffer at the expense of not always filling the output buffer |
646 | // completely. Alternatively we might follow its chain of precursor states twice. This may |
647 | // be even cheaper if we store more than one byte per link so it really should be |
648 | // evaluated. |
649 | // TODO: if the caller was required to provide the previous last word we could also avoid |
650 | // the buffer for cases where we need it to restore the next code! This could be built |
651 | // backwards compatible by only doing it after an opt-in call that enables the behaviour. |
652 | |
653 | // Record initial lengths for the result that is returned. |
654 | let o_in = inp.len(); |
655 | let o_out = out.len(); |
656 | |
657 | // The code_link is the previously decoded symbol. |
658 | // It's used to link the new code back to its predecessor. |
659 | let mut code_link = None; |
660 | // The status, which is written to on an invalid code. |
661 | let mut status = Ok(LzwStatus::Ok); |
662 | |
663 | match self.last.take() { |
664 | // No last state? This is the first code after a reset? |
665 | None => { |
666 | match self.next_symbol(&mut inp) { |
667 | // Plainly invalid code. |
668 | Some(code) if code > self.next_code => status = Err(LzwError::InvalidCode), |
669 | // next_code would require an actual predecessor. |
670 | Some(code) if code == self.next_code => status = Err(LzwError::InvalidCode), |
671 | // No more symbols available and nothing decoded yet. |
672 | // Assume that we didn't make progress, this may get reset to Done if we read |
673 | // some bytes from the input. |
674 | None => status = Ok(LzwStatus::NoProgress), |
675 | // Handle a valid code. |
676 | Some(init_code) => { |
677 | if init_code == self.clear_code { |
678 | self.init_tables(); |
679 | } else if init_code == self.end_code { |
680 | self.has_ended = true; |
681 | status = Ok(LzwStatus::Done); |
682 | } else if self.table.is_empty() { |
683 | if self.implicit_reset { |
684 | self.init_tables(); |
685 | |
686 | self.buffer.fill_reconstruct(&self.table, init_code); |
687 | let link = self.table.at(init_code).clone(); |
688 | code_link = Some((init_code, link)); |
689 | } else { |
690 | // We require an explicit reset. |
691 | status = Err(LzwError::InvalidCode); |
692 | } |
693 | } else { |
694 | // Reconstruct the first code in the buffer. |
695 | self.buffer.fill_reconstruct(&self.table, init_code); |
696 | let link = self.table.at(init_code).clone(); |
697 | code_link = Some((init_code, link)); |
698 | } |
699 | } |
700 | } |
701 | } |
702 | // Move the tracking state to the stack. |
703 | Some(tup) => code_link = Some(tup), |
704 | }; |
705 | |
706 | // Track an empty `burst` (see below) means we made no progress. |
707 | let mut burst_required_for_progress = false; |
708 | // Restore the previous state, if any. |
709 | if let Some((code, link)) = code_link.take() { |
710 | code_link = Some((code, link)); |
711 | let remain = self.buffer.buffer(); |
712 | // Check if we can fully finish the buffer. |
713 | if remain.len() > out.len() { |
714 | if out.is_empty() { |
715 | status = Ok(LzwStatus::NoProgress); |
716 | } else { |
717 | out.copy_from_slice(&remain[..out.len()]); |
718 | self.buffer.consume(out.len()); |
719 | out = &mut []; |
720 | } |
721 | } else if remain.is_empty() { |
722 | status = Ok(LzwStatus::NoProgress); |
723 | burst_required_for_progress = true; |
724 | } else { |
725 | let consumed = remain.len(); |
726 | out[..consumed].copy_from_slice(remain); |
727 | self.buffer.consume(consumed); |
728 | out = &mut out[consumed..]; |
729 | burst_required_for_progress = false; |
730 | } |
731 | } |
732 | |
733 | // The tracking state for a burst. |
734 | // These are actually initialized later but compiler wasn't smart enough to fully optimize |
735 | // out the init code so that appears outside th loop. |
736 | // TODO: maybe we can make it part of the state but it's dubious if that really gives a |
737 | // benefit over stack usage? Also the slices stored here would need some treatment as we |
738 | // can't infect the main struct with a lifetime. |
739 | let mut burst = [0; 6]; |
740 | let mut bytes = [0u16; 6]; |
741 | let mut target: [&mut [u8]; 6] = Default::default(); |
742 | // A special reference to out slice which holds the last decoded symbol. |
743 | let mut last_decoded: Option<&[u8]> = None; |
744 | |
745 | while let Some((mut code, mut link)) = code_link.take() { |
746 | if out.is_empty() && !self.buffer.buffer().is_empty() { |
747 | code_link = Some((code, link)); |
748 | break; |
749 | } |
750 | |
751 | let mut burst_size = 0; |
752 | // Ensure the code buffer is full, we're about to request some codes. |
753 | // Note that this also ensures at least one code is in the buffer if any input is left. |
754 | self.refill_bits(&mut inp); |
755 | // A burst is a sequence of decodes that are completely independent of each other. This |
756 | // is the case if neither is an end code, a clear code, or a next code, i.e. we have |
757 | // all of them in the decoding table and thus known their depths, and additionally if |
758 | // we can decode them directly into the output buffer. |
759 | for b in &mut burst { |
760 | // TODO: does it actually make a perf difference to avoid reading new bits here? |
761 | *b = match self.get_bits() { |
762 | None => break, |
763 | Some(code) => code, |
764 | }; |
765 | |
766 | // We can commit the previous burst code, and will take a slice from the output |
767 | // buffer. This also avoids the bounds check in the tight loop later. |
768 | if burst_size > 0 { |
769 | let len = bytes[burst_size - 1]; |
770 | let (into, tail) = out.split_at_mut(usize::from(len)); |
771 | target[burst_size - 1] = into; |
772 | out = tail; |
773 | } |
774 | |
775 | // Check that we don't overflow the code size with all codes we burst decode. |
776 | if let Some(potential_code) = self.next_code.checked_add(burst_size as u16) { |
777 | burst_size += 1; |
778 | if potential_code == self.code_buffer.max_code() - Code::from(self.is_tiff) { |
779 | break; |
780 | } |
781 | } else { |
782 | // next_code overflowed |
783 | break; |
784 | } |
785 | |
786 | // A burst code can't be special. |
787 | if *b == self.clear_code || *b == self.end_code || *b >= self.next_code { |
788 | break; |
789 | } |
790 | |
791 | // Read the code length and check that we can decode directly into the out slice. |
792 | let len = self.table.depths[usize::from(*b)]; |
793 | if out.len() < usize::from(len) { |
794 | break; |
795 | } |
796 | |
797 | bytes[burst_size - 1] = len; |
798 | } |
799 | |
800 | // No code left, and no more bytes to fill the buffer. |
801 | if burst_size == 0 { |
802 | if burst_required_for_progress { |
803 | status = Ok(LzwStatus::NoProgress); |
804 | } |
805 | code_link = Some((code, link)); |
806 | break; |
807 | } |
808 | |
809 | burst_required_for_progress = false; |
810 | // Note that the very last code in the burst buffer doesn't actually belong to the |
811 | // burst itself. TODO: sometimes it could, we just don't differentiate between the |
812 | // breaks and a loop end condition above. That may be a speed advantage? |
813 | let (&new_code, burst) = burst[..burst_size].split_last().unwrap(); |
814 | |
815 | // The very tight loop for restoring the actual burst. |
816 | for (&burst, target) in burst.iter().zip(&mut target[..burst_size - 1]) { |
817 | let cha = self.table.reconstruct(burst, target); |
818 | // TODO: this pushes into a Vec, maybe we can make this cleaner. |
819 | // Theoretically this has a branch and llvm tends to be flaky with code layout for |
820 | // the case of requiring an allocation (which can't occur in practice). |
821 | let new_link = self.table.derive(&link, cha, code); |
822 | self.next_code += 1; |
823 | code = burst; |
824 | link = new_link; |
825 | } |
826 | |
827 | // Update the slice holding the last decoded word. |
828 | if let Some(new_last) = target[..burst_size - 1].last_mut() { |
829 | let slice = core::mem::replace(new_last, &mut []); |
830 | last_decoded = Some(&*slice); |
831 | } |
832 | |
833 | // Now handle the special codes. |
834 | if new_code == self.clear_code { |
835 | self.reset_tables(); |
836 | last_decoded = None; |
837 | continue; |
838 | } |
839 | |
840 | if new_code == self.end_code { |
841 | self.has_ended = true; |
842 | status = Ok(LzwStatus::Done); |
843 | last_decoded = None; |
844 | break; |
845 | } |
846 | |
847 | if new_code > self.next_code { |
848 | status = Err(LzwError::InvalidCode); |
849 | last_decoded = None; |
850 | break; |
851 | } |
852 | |
853 | let required_len = if new_code == self.next_code { |
854 | self.table.depths[usize::from(code)] + 1 |
855 | } else { |
856 | self.table.depths[usize::from(new_code)] |
857 | }; |
858 | |
859 | let cha; |
860 | let is_in_buffer; |
861 | // Check if we will need to store our current state into the buffer. |
862 | if usize::from(required_len) > out.len() { |
863 | is_in_buffer = true; |
864 | if new_code == self.next_code { |
865 | // last_decoded will be Some if we have restored any code into the out slice. |
866 | // Otherwise it will still be present in the buffer. |
867 | if let Some(last) = last_decoded.take() { |
868 | self.buffer.bytes[..last.len()].copy_from_slice(last); |
869 | self.buffer.write_mark = last.len(); |
870 | self.buffer.read_mark = last.len(); |
871 | } |
872 | |
873 | cha = self.buffer.fill_cscsc(); |
874 | } else { |
875 | // Restore the decoded word into the buffer. |
876 | last_decoded = None; |
877 | cha = self.buffer.fill_reconstruct(&self.table, new_code); |
878 | } |
879 | } else { |
880 | is_in_buffer = false; |
881 | let (target, tail) = out.split_at_mut(usize::from(required_len)); |
882 | out = tail; |
883 | |
884 | if new_code == self.next_code { |
885 | // Reconstruct high. |
886 | let source = match last_decoded.take() { |
887 | Some(last) => last, |
888 | None => &self.buffer.bytes[..self.buffer.write_mark], |
889 | }; |
890 | cha = source[0]; |
891 | target[..source.len()].copy_from_slice(source); |
892 | target[source.len()..][0] = source[0]; |
893 | } else { |
894 | cha = self.table.reconstruct(new_code, target); |
895 | } |
896 | |
897 | // A new decoded word. |
898 | last_decoded = Some(target); |
899 | } |
900 | |
901 | let new_link; |
902 | // Each newly read code creates one new code/link based on the preceding code if we |
903 | // have enough space to put it there. |
904 | if !self.table.is_full() { |
905 | let link = self.table.derive(&link, cha, code); |
906 | |
907 | if self.next_code == self.code_buffer.max_code() - Code::from(self.is_tiff) |
908 | && self.code_buffer.code_size() < MAX_CODESIZE |
909 | { |
910 | self.bump_code_size(); |
911 | } |
912 | |
913 | self.next_code += 1; |
914 | new_link = link; |
915 | } else { |
916 | // It's actually quite likely that the next code will be a reset but just in case. |
917 | // FIXME: this path hasn't been tested very well. |
918 | new_link = link.clone(); |
919 | } |
920 | |
921 | // store the information on the decoded word. |
922 | code_link = Some((new_code, new_link)); |
923 | |
924 | // Can't make any more progress with decoding. |
925 | if is_in_buffer { |
926 | break; |
927 | } |
928 | } |
929 | |
930 | // We need to store the last word into the buffer in case the first code in the next |
931 | // iteration is the next_code. |
932 | if let Some(tail) = last_decoded { |
933 | self.buffer.bytes[..tail.len()].copy_from_slice(tail); |
934 | self.buffer.write_mark = tail.len(); |
935 | self.buffer.read_mark = tail.len(); |
936 | } |
937 | |
938 | // Ensure we don't indicate that no progress was made if we read some bytes from the input |
939 | // (which is progress). |
940 | if o_in > inp.len() { |
941 | if let Ok(LzwStatus::NoProgress) = status { |
942 | status = Ok(LzwStatus::Ok); |
943 | } |
944 | } |
945 | |
946 | // Store the code/link state. |
947 | self.last = code_link; |
948 | |
949 | BufferResult { |
950 | consumed_in: o_in.wrapping_sub(inp.len()), |
951 | consumed_out: o_out.wrapping_sub(out.len()), |
952 | status, |
953 | } |
954 | } |
955 | } |
956 | |
957 | impl<C: CodeBuffer> DecodeState<C> { |
958 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> { |
959 | self.code_buffer.next_symbol(inp) |
960 | } |
961 | |
962 | fn bump_code_size(&mut self) { |
963 | self.code_buffer.bump_code_size() |
964 | } |
965 | |
966 | fn refill_bits(&mut self, inp: &mut &[u8]) { |
967 | self.code_buffer.refill_bits(inp) |
968 | } |
969 | |
970 | fn get_bits(&mut self) -> Option<Code> { |
971 | self.code_buffer.get_bits() |
972 | } |
973 | } |
974 | |
975 | impl CodeBuffer for MsbBuffer { |
976 | fn new(min_size: u8) -> Self { |
977 | MsbBuffer { |
978 | code_size: min_size + 1, |
979 | code_mask: (1u16 << (min_size + 1)) - 1, |
980 | bit_buffer: 0, |
981 | bits: 0, |
982 | } |
983 | } |
984 | |
985 | fn reset(&mut self, min_size: u8) { |
986 | self.code_size = min_size + 1; |
987 | self.code_mask = (1 << self.code_size) - 1; |
988 | } |
989 | |
990 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> { |
991 | if self.bits < self.code_size { |
992 | self.refill_bits(inp); |
993 | } |
994 | |
995 | self.get_bits() |
996 | } |
997 | |
998 | fn bump_code_size(&mut self) { |
999 | self.code_size += 1; |
1000 | self.code_mask = (self.code_mask << 1) | 1; |
1001 | } |
1002 | |
1003 | fn refill_bits(&mut self, inp: &mut &[u8]) { |
1004 | let wish_count = (64 - self.bits) / 8; |
1005 | let mut buffer = [0u8; 8]; |
1006 | let new_bits = match inp.get(..usize::from(wish_count)) { |
1007 | Some(bytes) => { |
1008 | buffer[..usize::from(wish_count)].copy_from_slice(bytes); |
1009 | *inp = &inp[usize::from(wish_count)..]; |
1010 | wish_count * 8 |
1011 | } |
1012 | None => { |
1013 | let new_bits = inp.len() * 8; |
1014 | buffer[..inp.len()].copy_from_slice(inp); |
1015 | *inp = &[]; |
1016 | new_bits as u8 |
1017 | } |
1018 | }; |
1019 | self.bit_buffer |= u64::from_be_bytes(buffer) >> self.bits; |
1020 | self.bits += new_bits; |
1021 | } |
1022 | |
1023 | fn get_bits(&mut self) -> Option<Code> { |
1024 | if self.bits < self.code_size { |
1025 | return None; |
1026 | } |
1027 | |
1028 | let mask = u64::from(self.code_mask); |
1029 | let rotbuf = self.bit_buffer.rotate_left(self.code_size.into()); |
1030 | self.bit_buffer = rotbuf & !mask; |
1031 | self.bits -= self.code_size; |
1032 | Some((rotbuf & mask) as u16) |
1033 | } |
1034 | |
1035 | fn max_code(&self) -> Code { |
1036 | self.code_mask |
1037 | } |
1038 | |
1039 | fn code_size(&self) -> u8 { |
1040 | self.code_size |
1041 | } |
1042 | } |
1043 | |
1044 | impl CodeBuffer for LsbBuffer { |
1045 | fn new(min_size: u8) -> Self { |
1046 | LsbBuffer { |
1047 | code_size: min_size + 1, |
1048 | code_mask: (1u16 << (min_size + 1)) - 1, |
1049 | bit_buffer: 0, |
1050 | bits: 0, |
1051 | } |
1052 | } |
1053 | |
1054 | fn reset(&mut self, min_size: u8) { |
1055 | self.code_size = min_size + 1; |
1056 | self.code_mask = (1 << self.code_size) - 1; |
1057 | } |
1058 | |
1059 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> { |
1060 | if self.bits < self.code_size { |
1061 | self.refill_bits(inp); |
1062 | } |
1063 | |
1064 | self.get_bits() |
1065 | } |
1066 | |
1067 | fn bump_code_size(&mut self) { |
1068 | self.code_size += 1; |
1069 | self.code_mask = (self.code_mask << 1) | 1; |
1070 | } |
1071 | |
1072 | fn refill_bits(&mut self, inp: &mut &[u8]) { |
1073 | let wish_count = (64 - self.bits) / 8; |
1074 | let mut buffer = [0u8; 8]; |
1075 | let new_bits = match inp.get(..usize::from(wish_count)) { |
1076 | Some(bytes) => { |
1077 | buffer[..usize::from(wish_count)].copy_from_slice(bytes); |
1078 | *inp = &inp[usize::from(wish_count)..]; |
1079 | wish_count * 8 |
1080 | } |
1081 | None => { |
1082 | let new_bits = inp.len() * 8; |
1083 | buffer[..inp.len()].copy_from_slice(inp); |
1084 | *inp = &[]; |
1085 | new_bits as u8 |
1086 | } |
1087 | }; |
1088 | self.bit_buffer |= u64::from_be_bytes(buffer).swap_bytes() << self.bits; |
1089 | self.bits += new_bits; |
1090 | } |
1091 | |
1092 | fn get_bits(&mut self) -> Option<Code> { |
1093 | if self.bits < self.code_size { |
1094 | return None; |
1095 | } |
1096 | |
1097 | let mask = u64::from(self.code_mask); |
1098 | let code = self.bit_buffer & mask; |
1099 | self.bit_buffer >>= self.code_size; |
1100 | self.bits -= self.code_size; |
1101 | Some(code as u16) |
1102 | } |
1103 | |
1104 | fn max_code(&self) -> Code { |
1105 | self.code_mask |
1106 | } |
1107 | |
1108 | fn code_size(&self) -> u8 { |
1109 | self.code_size |
1110 | } |
1111 | } |
1112 | |
1113 | impl Buffer { |
1114 | fn new() -> Self { |
1115 | Buffer { |
1116 | bytes: vec![0; MAX_ENTRIES].into_boxed_slice(), |
1117 | read_mark: 0, |
1118 | write_mark: 0, |
1119 | } |
1120 | } |
1121 | |
1122 | /// When encoding a sequence `cScSc` where `c` is any character and `S` is any string |
1123 | /// this results in two codes `AB`, `A` encoding `cS` and `B` encoding `cSc`. Supposing |
1124 | /// the buffer is already filled with the reconstruction of `A`, we can easily fill it |
1125 | /// with the reconstruction of `B`. |
1126 | fn fill_cscsc(&mut self) -> u8 { |
1127 | self.bytes[self.write_mark] = self.bytes[0]; |
1128 | self.write_mark += 1; |
1129 | self.read_mark = 0; |
1130 | self.bytes[0] |
1131 | } |
1132 | |
1133 | // Fill the buffer by decoding from the table |
1134 | fn fill_reconstruct(&mut self, table: &Table, code: Code) -> u8 { |
1135 | self.write_mark = 0; |
1136 | self.read_mark = 0; |
1137 | let depth = table.depths[usize::from(code)]; |
1138 | let mut memory = core::mem::replace(&mut self.bytes, Box::default()); |
1139 | |
1140 | let out = &mut memory[..usize::from(depth)]; |
1141 | let last = table.reconstruct(code, out); |
1142 | |
1143 | self.bytes = memory; |
1144 | self.write_mark = usize::from(depth); |
1145 | last |
1146 | } |
1147 | |
1148 | fn buffer(&self) -> &[u8] { |
1149 | &self.bytes[self.read_mark..self.write_mark] |
1150 | } |
1151 | |
1152 | fn consume(&mut self, amt: usize) { |
1153 | self.read_mark += amt; |
1154 | } |
1155 | } |
1156 | |
1157 | impl Table { |
1158 | fn new() -> Self { |
1159 | Table { |
1160 | inner: Vec::with_capacity(MAX_ENTRIES), |
1161 | depths: Vec::with_capacity(MAX_ENTRIES), |
1162 | } |
1163 | } |
1164 | |
1165 | fn clear(&mut self, min_size: u8) { |
1166 | let static_count = usize::from(1u16 << u16::from(min_size)) + 2; |
1167 | self.inner.truncate(static_count); |
1168 | self.depths.truncate(static_count); |
1169 | } |
1170 | |
1171 | fn init(&mut self, min_size: u8) { |
1172 | self.inner.clear(); |
1173 | self.depths.clear(); |
1174 | for i in 0..(1u16 << u16::from(min_size)) { |
1175 | self.inner.push(Link::base(i as u8)); |
1176 | self.depths.push(1); |
1177 | } |
1178 | // Clear code. |
1179 | self.inner.push(Link::base(0)); |
1180 | self.depths.push(0); |
1181 | // End code. |
1182 | self.inner.push(Link::base(0)); |
1183 | self.depths.push(0); |
1184 | } |
1185 | |
1186 | fn at(&self, code: Code) -> &Link { |
1187 | &self.inner[usize::from(code)] |
1188 | } |
1189 | |
1190 | fn is_empty(&self) -> bool { |
1191 | self.inner.is_empty() |
1192 | } |
1193 | |
1194 | fn is_full(&self) -> bool { |
1195 | self.inner.len() >= MAX_ENTRIES |
1196 | } |
1197 | |
1198 | fn derive(&mut self, from: &Link, byte: u8, prev: Code) -> Link { |
1199 | let link = from.derive(byte, prev); |
1200 | let depth = self.depths[usize::from(prev)] + 1; |
1201 | self.inner.push(link.clone()); |
1202 | self.depths.push(depth); |
1203 | link |
1204 | } |
1205 | |
1206 | fn reconstruct(&self, code: Code, out: &mut [u8]) -> u8 { |
1207 | let mut code_iter = code; |
1208 | let table = &self.inner[..=usize::from(code)]; |
1209 | let len = code_iter; |
1210 | for ch in out.iter_mut().rev() { |
1211 | //(code, cha) = self.table[k as usize]; |
1212 | // Note: This could possibly be replaced with an unchecked array access if |
1213 | // - value is asserted to be < self.next_code() in push |
1214 | // - min_size is asserted to be < MAX_CODESIZE |
1215 | let entry = &table[usize::from(code_iter)]; |
1216 | code_iter = core::cmp::min(len, entry.prev); |
1217 | *ch = entry.byte; |
1218 | } |
1219 | out[0] |
1220 | } |
1221 | } |
1222 | |
1223 | impl Link { |
1224 | fn base(byte: u8) -> Self { |
1225 | Link { prev: 0, byte } |
1226 | } |
1227 | |
1228 | // TODO: this has self type to make it clear we might depend on the old in a future |
1229 | // optimization. However, that has no practical purpose right now. |
1230 | fn derive(&self, byte: u8, prev: Code) -> Self { |
1231 | Link { prev, byte } |
1232 | } |
1233 | } |
1234 | |
1235 | #[cfg (test)] |
1236 | mod tests { |
1237 | use crate::alloc::vec::Vec; |
1238 | #[cfg (feature = "std" )] |
1239 | use crate::StreamBuf; |
1240 | use crate::{decode::Decoder, BitOrder}; |
1241 | |
1242 | #[test ] |
1243 | fn invalid_code_size_low() { |
1244 | let _ = Decoder::new(BitOrder::Msb, 0); |
1245 | let _ = Decoder::new(BitOrder::Msb, 1); |
1246 | } |
1247 | |
1248 | #[test ] |
1249 | #[should_panic ] |
1250 | fn invalid_code_size_high() { |
1251 | let _ = Decoder::new(BitOrder::Msb, 14); |
1252 | } |
1253 | |
1254 | fn make_encoded() -> Vec<u8> { |
1255 | const FILE: &'static [u8] = include_bytes!(concat!( |
1256 | env!("CARGO_MANIFEST_DIR" ), |
1257 | "/benches/binary-8-msb.lzw" |
1258 | )); |
1259 | return Vec::from(FILE); |
1260 | } |
1261 | |
1262 | #[test ] |
1263 | #[cfg (feature = "std" )] |
1264 | fn into_stream_buffer_no_alloc() { |
1265 | let encoded = make_encoded(); |
1266 | let mut decoder = Decoder::new(BitOrder::Msb, 8); |
1267 | |
1268 | let mut output = vec![]; |
1269 | let mut buffer = [0; 512]; |
1270 | let mut istream = decoder.into_stream(&mut output); |
1271 | istream.set_buffer(&mut buffer[..]); |
1272 | istream.decode(&encoded[..]).status.unwrap(); |
1273 | |
1274 | match istream.buffer { |
1275 | Some(StreamBuf::Borrowed(_)) => {} |
1276 | None => panic!("Decoded without buffer??" ), |
1277 | Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation" ), |
1278 | } |
1279 | } |
1280 | |
1281 | #[test ] |
1282 | #[cfg (feature = "std" )] |
1283 | fn into_stream_buffer_small_alloc() { |
1284 | struct WriteTap<W: std::io::Write>(W); |
1285 | const BUF_SIZE: usize = 512; |
1286 | |
1287 | impl<W: std::io::Write> std::io::Write for WriteTap<W> { |
1288 | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> { |
1289 | assert!(buf.len() <= BUF_SIZE); |
1290 | self.0.write(buf) |
1291 | } |
1292 | fn flush(&mut self) -> std::io::Result<()> { |
1293 | self.0.flush() |
1294 | } |
1295 | } |
1296 | |
1297 | let encoded = make_encoded(); |
1298 | let mut decoder = Decoder::new(BitOrder::Msb, 8); |
1299 | |
1300 | let mut output = vec![]; |
1301 | let mut istream = decoder.into_stream(WriteTap(&mut output)); |
1302 | istream.set_buffer_size(512); |
1303 | istream.decode(&encoded[..]).status.unwrap(); |
1304 | |
1305 | match istream.buffer { |
1306 | Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE), |
1307 | Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?" ), |
1308 | None => panic!("Decoded without buffer??" ), |
1309 | } |
1310 | } |
1311 | |
1312 | #[test ] |
1313 | #[cfg (feature = "std" )] |
1314 | fn reset() { |
1315 | let encoded = make_encoded(); |
1316 | let mut decoder = Decoder::new(BitOrder::Msb, 8); |
1317 | let mut reference = None; |
1318 | |
1319 | for _ in 0..2 { |
1320 | let mut output = vec![]; |
1321 | let mut buffer = [0; 512]; |
1322 | let mut istream = decoder.into_stream(&mut output); |
1323 | istream.set_buffer(&mut buffer[..]); |
1324 | istream.decode_all(&encoded[..]).status.unwrap(); |
1325 | |
1326 | decoder.reset(); |
1327 | if let Some(reference) = &reference { |
1328 | assert_eq!(output, *reference); |
1329 | } else { |
1330 | reference = Some(output); |
1331 | } |
1332 | } |
1333 | } |
1334 | } |
1335 | |