| 1 | //! A module for all decoding needs. |
| 2 | #[cfg (feature = "std" )] |
| 3 | use crate::error::StreamResult; |
| 4 | use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult}; |
| 5 | use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE}; |
| 6 | |
| 7 | use crate::alloc::{boxed::Box, vec, vec::Vec}; |
| 8 | #[cfg (feature = "std" )] |
| 9 | use std::io::{self, BufRead, Write}; |
| 10 | |
| 11 | /// The state for decoding data with an LZW algorithm. |
| 12 | /// |
| 13 | /// The same structure can be utilized with streams as well as your own buffers and driver logic. |
| 14 | /// It may even be possible to mix them if you are sufficiently careful not to lose or skip any |
| 15 | /// already decode data in the process. |
| 16 | /// |
| 17 | /// This is a sans-IO implementation, meaning that it only contains the state of the decoder and |
| 18 | /// the caller will provide buffers for input and output data when calling the basic |
| 19 | /// [`decode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*` |
| 20 | /// methods for decoding with a particular style of common IO. |
| 21 | /// |
| 22 | /// * [`decode`] for decoding once without any IO-loop. |
| 23 | /// * [`into_async`] for decoding with the `futures` traits for asynchronous IO. |
| 24 | /// * [`into_stream`] for decoding with the standard `io` traits. |
| 25 | /// * [`into_vec`] for in-memory decoding. |
| 26 | /// |
| 27 | /// [`decode_bytes`]: #method.decode_bytes |
| 28 | /// [`decode`]: #method.decode |
| 29 | /// [`into_async`]: #method.into_async |
| 30 | /// [`into_stream`]: #method.into_stream |
| 31 | /// [`into_vec`]: #method.into_vec |
| 32 | pub struct Decoder { |
| 33 | state: Box<dyn Stateful + Send + 'static>, |
| 34 | } |
| 35 | |
| 36 | /// A decoding stream sink. |
| 37 | /// |
| 38 | /// See [`Decoder::into_stream`] on how to create this type. |
| 39 | /// |
| 40 | /// [`Decoder::into_stream`]: struct.Decoder.html#method.into_stream |
| 41 | #[cfg_attr ( |
| 42 | not(feature = "std" ), |
| 43 | deprecated = "This type is only useful with the `std` feature." |
| 44 | )] |
| 45 | #[cfg_attr (not(feature = "std" ), allow(dead_code))] |
| 46 | pub struct IntoStream<'d, W> { |
| 47 | decoder: &'d mut Decoder, |
| 48 | writer: W, |
| 49 | buffer: Option<StreamBuf<'d>>, |
| 50 | default_size: usize, |
| 51 | } |
| 52 | |
| 53 | /// An async decoding sink. |
| 54 | /// |
| 55 | /// See [`Decoder::into_async`] on how to create this type. |
| 56 | /// |
| 57 | /// [`Decoder::into_async`]: struct.Decoder.html#method.into_async |
| 58 | #[cfg (feature = "async" )] |
| 59 | pub struct IntoAsync<'d, W> { |
| 60 | decoder: &'d mut Decoder, |
| 61 | writer: W, |
| 62 | buffer: Option<StreamBuf<'d>>, |
| 63 | default_size: usize, |
| 64 | } |
| 65 | |
| 66 | /// A decoding sink into a vector. |
| 67 | /// |
| 68 | /// See [`Decoder::into_vec`] on how to create this type. |
| 69 | /// |
| 70 | /// [`Decoder::into_vec`]: struct.Decoder.html#method.into_vec |
| 71 | pub struct IntoVec<'d> { |
| 72 | decoder: &'d mut Decoder, |
| 73 | vector: &'d mut Vec<u8>, |
| 74 | } |
| 75 | |
| 76 | trait Stateful { |
| 77 | fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult; |
| 78 | fn has_ended(&self) -> bool; |
| 79 | /// Ignore an end code and continue decoding (no implied reset). |
| 80 | fn restart(&mut self); |
| 81 | /// Reset the decoder to the beginning, dropping all buffers etc. |
| 82 | fn reset(&mut self); |
| 83 | } |
| 84 | |
| 85 | #[derive (Clone)] |
| 86 | struct Link { |
| 87 | prev: Code, |
| 88 | byte: u8, |
| 89 | } |
| 90 | |
| 91 | #[derive (Default)] |
| 92 | struct MsbBuffer { |
| 93 | /// A buffer of individual bits. The oldest code is kept in the high-order bits. |
| 94 | bit_buffer: u64, |
| 95 | /// A precomputed mask for this code. |
| 96 | code_mask: u16, |
| 97 | /// The current code size. |
| 98 | code_size: u8, |
| 99 | /// The number of bits in the buffer. |
| 100 | bits: u8, |
| 101 | } |
| 102 | |
| 103 | #[derive (Default)] |
| 104 | struct LsbBuffer { |
| 105 | /// A buffer of individual bits. The oldest code is kept in the high-order bits. |
| 106 | bit_buffer: u64, |
| 107 | /// A precomputed mask for this code. |
| 108 | code_mask: u16, |
| 109 | /// The current code size. |
| 110 | code_size: u8, |
| 111 | /// The number of bits in the buffer. |
| 112 | bits: u8, |
| 113 | } |
| 114 | |
| 115 | trait CodeBuffer { |
| 116 | fn new(min_size: u8) -> Self; |
| 117 | fn reset(&mut self, min_size: u8); |
| 118 | fn bump_code_size(&mut self); |
| 119 | /// Retrieve the next symbol, refilling if necessary. |
| 120 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code>; |
| 121 | /// Refill the internal buffer. |
| 122 | fn refill_bits(&mut self, inp: &mut &[u8]); |
| 123 | /// Get the next buffered code word. |
| 124 | fn get_bits(&mut self) -> Option<Code>; |
| 125 | fn max_code(&self) -> Code; |
| 126 | fn code_size(&self) -> u8; |
| 127 | } |
| 128 | |
| 129 | struct DecodeState<CodeBuffer> { |
| 130 | /// The original minimum code size. |
| 131 | min_size: u8, |
| 132 | /// The table of decoded codes. |
| 133 | table: Table, |
| 134 | /// The buffer of decoded data. |
| 135 | buffer: Buffer, |
| 136 | /// The link which we are still decoding and its original code. |
| 137 | last: Option<(Code, Link)>, |
| 138 | /// The next code entry. |
| 139 | next_code: Code, |
| 140 | /// Code to reset all tables. |
| 141 | clear_code: Code, |
| 142 | /// Code to signal the end of the stream. |
| 143 | end_code: Code, |
| 144 | /// A stored flag if the end code has already appeared. |
| 145 | has_ended: bool, |
| 146 | /// If tiff then bumps are a single code sooner. |
| 147 | is_tiff: bool, |
| 148 | /// Do we allow stream to start without an explicit reset code? |
| 149 | implicit_reset: bool, |
| 150 | /// The buffer for decoded words. |
| 151 | code_buffer: CodeBuffer, |
| 152 | } |
| 153 | |
| 154 | struct Buffer { |
| 155 | bytes: Box<[u8]>, |
| 156 | read_mark: usize, |
| 157 | write_mark: usize, |
| 158 | } |
| 159 | |
| 160 | struct Table { |
| 161 | inner: Vec<Link>, |
| 162 | depths: Vec<u16>, |
| 163 | } |
| 164 | |
| 165 | impl Decoder { |
| 166 | /// Create a new decoder with the specified bit order and symbol size. |
| 167 | /// |
| 168 | /// The algorithm for dynamically increasing the code symbol bit width is compatible with the |
| 169 | /// original specification. In particular you will need to specify an `Lsb` bit oder to decode |
| 170 | /// the data portion of a compressed `gif` image. |
| 171 | /// |
| 172 | /// # Panics |
| 173 | /// |
| 174 | /// The `size` needs to be in the interval `0..=12`. |
| 175 | pub fn new(order: BitOrder, size: u8) -> Self { |
| 176 | type Boxed = Box<dyn Stateful + Send + 'static>; |
| 177 | super::assert_decode_size(size); |
| 178 | let state = match order { |
| 179 | BitOrder::Lsb => Box::new(DecodeState::<LsbBuffer>::new(size)) as Boxed, |
| 180 | BitOrder::Msb => Box::new(DecodeState::<MsbBuffer>::new(size)) as Boxed, |
| 181 | }; |
| 182 | |
| 183 | Decoder { state } |
| 184 | } |
| 185 | |
| 186 | /// Create a TIFF compatible decoder with the specified bit order and symbol size. |
| 187 | /// |
| 188 | /// The algorithm for dynamically increasing the code symbol bit width is compatible with the |
| 189 | /// TIFF specification, which is a misinterpretation of the original algorithm for increasing |
| 190 | /// the code size. It switches one symbol sooner. |
| 191 | /// |
| 192 | /// # Panics |
| 193 | /// |
| 194 | /// The `size` needs to be in the interval `0..=12`. |
| 195 | pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self { |
| 196 | type Boxed = Box<dyn Stateful + Send + 'static>; |
| 197 | super::assert_decode_size(size); |
| 198 | let state = match order { |
| 199 | BitOrder::Lsb => { |
| 200 | let mut state = Box::new(DecodeState::<LsbBuffer>::new(size)); |
| 201 | state.is_tiff = true; |
| 202 | state as Boxed |
| 203 | } |
| 204 | BitOrder::Msb => { |
| 205 | let mut state = Box::new(DecodeState::<MsbBuffer>::new(size)); |
| 206 | state.is_tiff = true; |
| 207 | state as Boxed |
| 208 | } |
| 209 | }; |
| 210 | |
| 211 | Decoder { state } |
| 212 | } |
| 213 | |
| 214 | /// Decode some bytes from `inp` and write result to `out`. |
| 215 | /// |
| 216 | /// This will consume a prefix of the input buffer and write decoded output into a prefix of |
| 217 | /// the output buffer. See the respective fields of the return value for the count of consumed |
| 218 | /// and written bytes. For the next call You should have adjusted the inputs accordingly. |
| 219 | /// |
| 220 | /// The call will try to decode and write as many bytes of output as available. It will be |
| 221 | /// much more optimized (and avoid intermediate buffering) if it is allowed to write a large |
| 222 | /// contiguous chunk at once. |
| 223 | /// |
| 224 | /// See [`into_stream`] for high-level functions (that are only available with the `std` |
| 225 | /// feature). |
| 226 | /// |
| 227 | /// [`into_stream`]: #method.into_stream |
| 228 | pub fn decode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult { |
| 229 | self.state.advance(inp, out) |
| 230 | } |
| 231 | |
| 232 | /// Decode a single chunk of lzw encoded data. |
| 233 | /// |
| 234 | /// This method requires the data to contain an end marker, and returns an error otherwise. |
| 235 | /// |
| 236 | /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize |
| 237 | /// buffer size, to supply an existing vector, to control whether an end marker is required, or |
| 238 | /// to preserve partial data in the case of a decoding error. |
| 239 | /// |
| 240 | /// [`into_vec`]: #into_vec |
| 241 | /// |
| 242 | /// # Example |
| 243 | /// |
| 244 | /// ``` |
| 245 | /// use weezl::{BitOrder, decode::Decoder}; |
| 246 | /// |
| 247 | /// // Encoded that was created with an encoder. |
| 248 | /// let data = b" \x80\x04\x81\x94l \x1b\x06\xf0\xb0 \x1d\xc6\xf1\xc8l \x19 \x10" ; |
| 249 | /// let decoded = Decoder::new(BitOrder::Msb, 9) |
| 250 | /// .decode(data) |
| 251 | /// .unwrap(); |
| 252 | /// assert_eq!(decoded, b"Hello, world" ); |
| 253 | /// ``` |
| 254 | pub fn decode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> { |
| 255 | let mut output = vec![]; |
| 256 | self.into_vec(&mut output).decode_all(data).status?; |
| 257 | Ok(output) |
| 258 | } |
| 259 | |
| 260 | /// Construct a decoder into a writer. |
| 261 | #[cfg (feature = "std" )] |
| 262 | pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> { |
| 263 | IntoStream { |
| 264 | decoder: self, |
| 265 | writer, |
| 266 | buffer: None, |
| 267 | default_size: STREAM_BUF_SIZE, |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | /// Construct a decoder into an async writer. |
| 272 | #[cfg (feature = "async" )] |
| 273 | pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> { |
| 274 | IntoAsync { |
| 275 | decoder: self, |
| 276 | writer, |
| 277 | buffer: None, |
| 278 | default_size: STREAM_BUF_SIZE, |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | /// Construct a decoder into a vector. |
| 283 | /// |
| 284 | /// All decoded data is appended and the vector is __not__ cleared. |
| 285 | /// |
| 286 | /// Compared to `into_stream` this interface allows a high-level access to decoding without |
| 287 | /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the |
| 288 | /// special target exposes. |
| 289 | pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> { |
| 290 | IntoVec { |
| 291 | decoder: self, |
| 292 | vector: vec, |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | /// Check if the decoding has finished. |
| 297 | /// |
| 298 | /// No more output is produced beyond the end code that marked the finish of the stream. The |
| 299 | /// decoder may have read additional bytes, including padding bits beyond the last code word |
| 300 | /// but also excess bytes provided. |
| 301 | pub fn has_ended(&self) -> bool { |
| 302 | self.state.has_ended() |
| 303 | } |
| 304 | |
| 305 | /// Ignore an end code and continue. |
| 306 | /// |
| 307 | /// This will _not_ reset any of the inner code tables and not have the effect of a clear code. |
| 308 | /// It will instead continue as if the end code had not been present. If no end code has |
| 309 | /// occurred then this is a no-op. |
| 310 | /// |
| 311 | /// You can test if an end code has occurred with [`has_ended`](#method.has_ended). |
| 312 | /// FIXME: clarify how this interacts with padding introduced after end code. |
| 313 | #[allow (dead_code)] |
| 314 | pub(crate) fn restart(&mut self) { |
| 315 | self.state.restart(); |
| 316 | } |
| 317 | |
| 318 | /// Reset all internal state. |
| 319 | /// |
| 320 | /// This produce a decoder as if just constructed with `new` but taking slightly less work. In |
| 321 | /// particular it will not deallocate any internal allocations. It will also avoid some |
| 322 | /// duplicate setup work. |
| 323 | pub fn reset(&mut self) { |
| 324 | self.state.reset(); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | #[cfg (feature = "std" )] |
| 329 | impl<'d, W: Write> IntoStream<'d, W> { |
| 330 | /// Decode data from a reader. |
| 331 | /// |
| 332 | /// This will read data until the stream is empty or an end marker is reached. |
| 333 | pub fn decode(&mut self, read: impl BufRead) -> StreamResult { |
| 334 | self.decode_part(read, false) |
| 335 | } |
| 336 | |
| 337 | /// Decode data from a reader, requiring an end marker. |
| 338 | pub fn decode_all(mut self, read: impl BufRead) -> StreamResult { |
| 339 | self.decode_part(read, true) |
| 340 | } |
| 341 | |
| 342 | /// Set the size of the intermediate decode buffer. |
| 343 | /// |
| 344 | /// A buffer of this size is allocated to hold one part of the decoded stream when no buffer is |
| 345 | /// available and any decoding method is called. No buffer is allocated if `set_buffer` has |
| 346 | /// been called. The buffer is reused. |
| 347 | /// |
| 348 | /// # Panics |
| 349 | /// This method panics if `size` is `0`. |
| 350 | pub fn set_buffer_size(&mut self, size: usize) { |
| 351 | assert_ne!(size, 0, "Attempted to set empty buffer" ); |
| 352 | self.default_size = size; |
| 353 | } |
| 354 | |
| 355 | /// Use a particular buffer as an intermediate decode buffer. |
| 356 | /// |
| 357 | /// Calling this sets or replaces the buffer. When a buffer has been set then it is used |
| 358 | /// instead of dynamically allocating a buffer. Note that the size of the buffer is critical |
| 359 | /// for efficient decoding. Some optimization techniques require the buffer to hold one or more |
| 360 | /// previous decoded words. There is also additional overhead from `write` calls each time the |
| 361 | /// buffer has been filled. |
| 362 | /// |
| 363 | /// # Panics |
| 364 | /// This method panics if the `buffer` is empty. |
| 365 | pub fn set_buffer(&mut self, buffer: &'d mut [u8]) { |
| 366 | assert_ne!(buffer.len(), 0, "Attempted to set empty buffer" ); |
| 367 | self.buffer = Some(StreamBuf::Borrowed(buffer)); |
| 368 | } |
| 369 | |
| 370 | fn decode_part(&mut self, mut read: impl BufRead, must_finish: bool) -> StreamResult { |
| 371 | let IntoStream { |
| 372 | decoder, |
| 373 | writer, |
| 374 | buffer, |
| 375 | default_size, |
| 376 | } = self; |
| 377 | |
| 378 | enum Progress { |
| 379 | Ok, |
| 380 | Done, |
| 381 | } |
| 382 | |
| 383 | let mut bytes_read = 0; |
| 384 | let mut bytes_written = 0; |
| 385 | |
| 386 | // Converting to mutable refs to move into the `once` closure. |
| 387 | let read_bytes = &mut bytes_read; |
| 388 | let write_bytes = &mut bytes_written; |
| 389 | |
| 390 | let outbuf: &mut [u8] = |
| 391 | match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } { |
| 392 | StreamBuf::Borrowed(slice) => &mut *slice, |
| 393 | StreamBuf::Owned(vec) => &mut *vec, |
| 394 | }; |
| 395 | assert!(!outbuf.is_empty()); |
| 396 | |
| 397 | let once = move || { |
| 398 | // Try to grab one buffer of input data. |
| 399 | let data = read.fill_buf()?; |
| 400 | |
| 401 | // Decode as much of the buffer as fits. |
| 402 | let result = decoder.decode_bytes(data, &mut outbuf[..]); |
| 403 | // Do the bookkeeping and consume the buffer. |
| 404 | *read_bytes += result.consumed_in; |
| 405 | *write_bytes += result.consumed_out; |
| 406 | read.consume(result.consumed_in); |
| 407 | |
| 408 | // Handle the status in the result. |
| 409 | let done = result.status.map_err(|err| { |
| 410 | io::Error::new(io::ErrorKind::InvalidData, &*format!(" {:?}" , err)) |
| 411 | })?; |
| 412 | |
| 413 | // Check if we had any new data at all. |
| 414 | if let LzwStatus::NoProgress = done { |
| 415 | debug_assert_eq!( |
| 416 | result.consumed_out, 0, |
| 417 | "No progress means we have not decoded any data" |
| 418 | ); |
| 419 | // In particular we did not finish decoding. |
| 420 | if must_finish { |
| 421 | return Err(io::Error::new( |
| 422 | io::ErrorKind::UnexpectedEof, |
| 423 | "No more data but no end marker detected" , |
| 424 | )); |
| 425 | } else { |
| 426 | return Ok(Progress::Done); |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | // And finish by writing our result. |
| 431 | // TODO: we may lose data on error (also on status error above) which we might want to |
| 432 | // deterministically handle so that we don't need to restart everything from scratch as |
| 433 | // the only recovery strategy. Any changes welcome. |
| 434 | writer.write_all(&outbuf[..result.consumed_out])?; |
| 435 | |
| 436 | Ok(if let LzwStatus::Done = done { |
| 437 | Progress::Done |
| 438 | } else { |
| 439 | Progress::Ok |
| 440 | }) |
| 441 | }; |
| 442 | |
| 443 | // Decode chunks of input data until we're done. |
| 444 | let status = core::iter::repeat_with(once) |
| 445 | // scan+fuse can be replaced with map_while |
| 446 | .scan((), |(), result| match result { |
| 447 | Ok(Progress::Ok) => Some(Ok(())), |
| 448 | Err(err) => Some(Err(err)), |
| 449 | Ok(Progress::Done) => None, |
| 450 | }) |
| 451 | .fuse() |
| 452 | .collect(); |
| 453 | |
| 454 | StreamResult { |
| 455 | bytes_read, |
| 456 | bytes_written, |
| 457 | status, |
| 458 | } |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | impl IntoVec<'_> { |
| 463 | /// Decode data from a slice. |
| 464 | /// |
| 465 | /// This will read data until the slice is empty or an end marker is reached. |
| 466 | pub fn decode(&mut self, read: &[u8]) -> VectorResult { |
| 467 | self.decode_part(read, false) |
| 468 | } |
| 469 | |
| 470 | /// Decode data from a slice, requiring an end marker. |
| 471 | pub fn decode_all(mut self, read: &[u8]) -> VectorResult { |
| 472 | self.decode_part(read, true) |
| 473 | } |
| 474 | |
| 475 | fn grab_buffer(&mut self) -> (&mut [u8], &mut Decoder) { |
| 476 | const CHUNK_SIZE: usize = 1 << 12; |
| 477 | let decoder = &mut self.decoder; |
| 478 | let length = self.vector.len(); |
| 479 | |
| 480 | // Use the vector to do overflow checks and w/e. |
| 481 | self.vector.reserve(CHUNK_SIZE); |
| 482 | // FIXME: decoding into uninit buffer? |
| 483 | self.vector.resize(length + CHUNK_SIZE, 0u8); |
| 484 | |
| 485 | (&mut self.vector[length..], decoder) |
| 486 | } |
| 487 | |
| 488 | fn decode_part(&mut self, part: &[u8], must_finish: bool) -> VectorResult { |
| 489 | let mut result = VectorResult { |
| 490 | consumed_in: 0, |
| 491 | consumed_out: 0, |
| 492 | status: Ok(LzwStatus::Ok), |
| 493 | }; |
| 494 | |
| 495 | enum Progress { |
| 496 | Ok, |
| 497 | Done, |
| 498 | } |
| 499 | |
| 500 | // Converting to mutable refs to move into the `once` closure. |
| 501 | let read_bytes = &mut result.consumed_in; |
| 502 | let write_bytes = &mut result.consumed_out; |
| 503 | let mut data = part; |
| 504 | |
| 505 | // A 64 MB buffer is quite large but should get alloc_zeroed. |
| 506 | // Note that the decoded size can be up to quadratic in code block. |
| 507 | let once = move || { |
| 508 | // Grab a new output buffer. |
| 509 | let (outbuf, decoder) = self.grab_buffer(); |
| 510 | |
| 511 | // Decode as much of the buffer as fits. |
| 512 | let result = decoder.decode_bytes(data, &mut outbuf[..]); |
| 513 | // Do the bookkeeping and consume the buffer. |
| 514 | *read_bytes += result.consumed_in; |
| 515 | *write_bytes += result.consumed_out; |
| 516 | data = &data[result.consumed_in..]; |
| 517 | |
| 518 | let unfilled = outbuf.len() - result.consumed_out; |
| 519 | let filled = self.vector.len() - unfilled; |
| 520 | self.vector.truncate(filled); |
| 521 | |
| 522 | // Handle the status in the result. |
| 523 | match result.status { |
| 524 | Err(err) => Err(err), |
| 525 | Ok(LzwStatus::NoProgress) if must_finish => Err(LzwError::InvalidCode), |
| 526 | Ok(LzwStatus::NoProgress) | Ok(LzwStatus::Done) => Ok(Progress::Done), |
| 527 | Ok(LzwStatus::Ok) => Ok(Progress::Ok), |
| 528 | } |
| 529 | }; |
| 530 | |
| 531 | // Decode chunks of input data until we're done. |
| 532 | let status: Result<(), _> = core::iter::repeat_with(once) |
| 533 | // scan+fuse can be replaced with map_while |
| 534 | .scan((), |(), result| match result { |
| 535 | Ok(Progress::Ok) => Some(Ok(())), |
| 536 | Err(err) => Some(Err(err)), |
| 537 | Ok(Progress::Done) => None, |
| 538 | }) |
| 539 | .fuse() |
| 540 | .collect(); |
| 541 | |
| 542 | if let Err(err) = status { |
| 543 | result.status = Err(err); |
| 544 | } |
| 545 | |
| 546 | result |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | // This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would |
| 551 | // trip over the usage of await, which is a reserved keyword in that edition/version. It only |
| 552 | // contains an impl block. |
| 553 | #[cfg (feature = "async" )] |
| 554 | #[path = "decode_into_async.rs" ] |
| 555 | mod impl_decode_into_async; |
| 556 | |
| 557 | impl<C: CodeBuffer> DecodeState<C> { |
| 558 | fn new(min_size: u8) -> Self { |
| 559 | DecodeState { |
| 560 | min_size, |
| 561 | table: Table::new(), |
| 562 | buffer: Buffer::new(), |
| 563 | last: None, |
| 564 | clear_code: 1 << min_size, |
| 565 | end_code: (1 << min_size) + 1, |
| 566 | next_code: (1 << min_size) + 2, |
| 567 | has_ended: false, |
| 568 | is_tiff: false, |
| 569 | implicit_reset: true, |
| 570 | code_buffer: CodeBuffer::new(min_size), |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | fn init_tables(&mut self) { |
| 575 | self.code_buffer.reset(self.min_size); |
| 576 | self.next_code = (1 << self.min_size) + 2; |
| 577 | self.table.init(self.min_size); |
| 578 | } |
| 579 | |
| 580 | fn reset_tables(&mut self) { |
| 581 | self.code_buffer.reset(self.min_size); |
| 582 | self.next_code = (1 << self.min_size) + 2; |
| 583 | self.table.clear(self.min_size); |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | impl<C: CodeBuffer> Stateful for DecodeState<C> { |
| 588 | fn has_ended(&self) -> bool { |
| 589 | self.has_ended |
| 590 | } |
| 591 | |
| 592 | fn restart(&mut self) { |
| 593 | self.has_ended = false; |
| 594 | } |
| 595 | |
| 596 | fn reset(&mut self) { |
| 597 | self.table.init(self.min_size); |
| 598 | self.next_code = (1 << self.min_size) + 2; |
| 599 | self.buffer.read_mark = 0; |
| 600 | self.buffer.write_mark = 0; |
| 601 | self.last = None; |
| 602 | self.restart(); |
| 603 | self.code_buffer = CodeBuffer::new(self.min_size); |
| 604 | } |
| 605 | |
| 606 | fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult { |
| 607 | // Skip everything if there is nothing to do. |
| 608 | if self.has_ended { |
| 609 | return BufferResult { |
| 610 | consumed_in: 0, |
| 611 | consumed_out: 0, |
| 612 | status: Ok(LzwStatus::Done), |
| 613 | }; |
| 614 | } |
| 615 | |
| 616 | // Rough description: |
| 617 | // We will fill the output slice as much as possible until either there is no more symbols |
| 618 | // to decode or an end code has been reached. This requires an internal buffer to hold a |
| 619 | // potential tail of the word corresponding to the last symbol. This tail will then be |
| 620 | // decoded first before continuing with the regular decoding. The same buffer is required |
| 621 | // to persist some symbol state across calls. |
| 622 | // |
| 623 | // We store the words corresponding to code symbols in an index chain, bytewise, where we |
| 624 | // push each decoded symbol. (TODO: wuffs shows some success with 8-byte units). This chain |
| 625 | // is traversed for each symbol when it is decoded and bytes are placed directly into the |
| 626 | // output slice. In the special case (new_code == next_code) we use an existing decoded |
| 627 | // version that is present in either the out bytes of this call or in buffer to copy the |
| 628 | // repeated prefix slice. |
| 629 | // TODO: I played with a 'decoding cache' to remember the position of long symbols and |
| 630 | // avoid traversing the chain, doing a copy of memory instead. It did however not lead to |
| 631 | // a serious improvement. It's just unlikely to both have a long symbol and have that |
| 632 | // repeated twice in the same output buffer. |
| 633 | // |
| 634 | // You will also find the (to my knowledge novel) concept of a _decoding burst_ which |
| 635 | // gained some >~10% speedup in tests. This is motivated by wanting to use out-of-order |
| 636 | // execution as much as possible and for this reason have the least possible stress on |
| 637 | // branch prediction. Our decoding table already gives us a lookahead on symbol lengths but |
| 638 | // only for re-used codes, not novel ones. This lookahead also makes the loop termination |
| 639 | // when restoring each byte of the code word perfectly predictable! So a burst is a chunk |
| 640 | // of code words which are all independent of each other, have known lengths _and_ are |
| 641 | // guaranteed to fit into the out slice without requiring a buffer. One burst can be |
| 642 | // decoded in an extremely tight loop. |
| 643 | // |
| 644 | // TODO: since words can be at most (1 << MAX_CODESIZE) = 4096 bytes long we could avoid |
| 645 | // that intermediate buffer at the expense of not always filling the output buffer |
| 646 | // completely. Alternatively we might follow its chain of precursor states twice. This may |
| 647 | // be even cheaper if we store more than one byte per link so it really should be |
| 648 | // evaluated. |
| 649 | // TODO: if the caller was required to provide the previous last word we could also avoid |
| 650 | // the buffer for cases where we need it to restore the next code! This could be built |
| 651 | // backwards compatible by only doing it after an opt-in call that enables the behaviour. |
| 652 | |
| 653 | // Record initial lengths for the result that is returned. |
| 654 | let o_in = inp.len(); |
| 655 | let o_out = out.len(); |
| 656 | |
| 657 | // The code_link is the previously decoded symbol. |
| 658 | // It's used to link the new code back to its predecessor. |
| 659 | let mut code_link = None; |
| 660 | // The status, which is written to on an invalid code. |
| 661 | let mut status = Ok(LzwStatus::Ok); |
| 662 | |
| 663 | match self.last.take() { |
| 664 | // No last state? This is the first code after a reset? |
| 665 | None => { |
| 666 | match self.next_symbol(&mut inp) { |
| 667 | // Plainly invalid code. |
| 668 | Some(code) if code > self.next_code => status = Err(LzwError::InvalidCode), |
| 669 | // next_code would require an actual predecessor. |
| 670 | Some(code) if code == self.next_code => status = Err(LzwError::InvalidCode), |
| 671 | // No more symbols available and nothing decoded yet. |
| 672 | // Assume that we didn't make progress, this may get reset to Done if we read |
| 673 | // some bytes from the input. |
| 674 | None => status = Ok(LzwStatus::NoProgress), |
| 675 | // Handle a valid code. |
| 676 | Some(init_code) => { |
| 677 | if init_code == self.clear_code { |
| 678 | self.init_tables(); |
| 679 | } else if init_code == self.end_code { |
| 680 | self.has_ended = true; |
| 681 | status = Ok(LzwStatus::Done); |
| 682 | } else if self.table.is_empty() { |
| 683 | if self.implicit_reset { |
| 684 | self.init_tables(); |
| 685 | |
| 686 | self.buffer.fill_reconstruct(&self.table, init_code); |
| 687 | let link = self.table.at(init_code).clone(); |
| 688 | code_link = Some((init_code, link)); |
| 689 | } else { |
| 690 | // We require an explicit reset. |
| 691 | status = Err(LzwError::InvalidCode); |
| 692 | } |
| 693 | } else { |
| 694 | // Reconstruct the first code in the buffer. |
| 695 | self.buffer.fill_reconstruct(&self.table, init_code); |
| 696 | let link = self.table.at(init_code).clone(); |
| 697 | code_link = Some((init_code, link)); |
| 698 | } |
| 699 | } |
| 700 | } |
| 701 | } |
| 702 | // Move the tracking state to the stack. |
| 703 | Some(tup) => code_link = Some(tup), |
| 704 | }; |
| 705 | |
| 706 | // Track an empty `burst` (see below) means we made no progress. |
| 707 | let mut burst_required_for_progress = false; |
| 708 | // Restore the previous state, if any. |
| 709 | if let Some((code, link)) = code_link.take() { |
| 710 | code_link = Some((code, link)); |
| 711 | let remain = self.buffer.buffer(); |
| 712 | // Check if we can fully finish the buffer. |
| 713 | if remain.len() > out.len() { |
| 714 | if out.is_empty() { |
| 715 | status = Ok(LzwStatus::NoProgress); |
| 716 | } else { |
| 717 | out.copy_from_slice(&remain[..out.len()]); |
| 718 | self.buffer.consume(out.len()); |
| 719 | out = &mut []; |
| 720 | } |
| 721 | } else if remain.is_empty() { |
| 722 | status = Ok(LzwStatus::NoProgress); |
| 723 | burst_required_for_progress = true; |
| 724 | } else { |
| 725 | let consumed = remain.len(); |
| 726 | out[..consumed].copy_from_slice(remain); |
| 727 | self.buffer.consume(consumed); |
| 728 | out = &mut out[consumed..]; |
| 729 | burst_required_for_progress = false; |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | // The tracking state for a burst. |
| 734 | // These are actually initialized later but compiler wasn't smart enough to fully optimize |
| 735 | // out the init code so that appears outside th loop. |
| 736 | // TODO: maybe we can make it part of the state but it's dubious if that really gives a |
| 737 | // benefit over stack usage? Also the slices stored here would need some treatment as we |
| 738 | // can't infect the main struct with a lifetime. |
| 739 | let mut burst = [0; 6]; |
| 740 | let mut bytes = [0u16; 6]; |
| 741 | let mut target: [&mut [u8]; 6] = Default::default(); |
| 742 | // A special reference to out slice which holds the last decoded symbol. |
| 743 | let mut last_decoded: Option<&[u8]> = None; |
| 744 | |
| 745 | while let Some((mut code, mut link)) = code_link.take() { |
| 746 | if out.is_empty() && !self.buffer.buffer().is_empty() { |
| 747 | code_link = Some((code, link)); |
| 748 | break; |
| 749 | } |
| 750 | |
| 751 | let mut burst_size = 0; |
| 752 | // Ensure the code buffer is full, we're about to request some codes. |
| 753 | // Note that this also ensures at least one code is in the buffer if any input is left. |
| 754 | self.refill_bits(&mut inp); |
| 755 | // A burst is a sequence of decodes that are completely independent of each other. This |
| 756 | // is the case if neither is an end code, a clear code, or a next code, i.e. we have |
| 757 | // all of them in the decoding table and thus known their depths, and additionally if |
| 758 | // we can decode them directly into the output buffer. |
| 759 | for b in &mut burst { |
| 760 | // TODO: does it actually make a perf difference to avoid reading new bits here? |
| 761 | *b = match self.get_bits() { |
| 762 | None => break, |
| 763 | Some(code) => code, |
| 764 | }; |
| 765 | |
| 766 | // We can commit the previous burst code, and will take a slice from the output |
| 767 | // buffer. This also avoids the bounds check in the tight loop later. |
| 768 | if burst_size > 0 { |
| 769 | let len = bytes[burst_size - 1]; |
| 770 | let (into, tail) = out.split_at_mut(usize::from(len)); |
| 771 | target[burst_size - 1] = into; |
| 772 | out = tail; |
| 773 | } |
| 774 | |
| 775 | // Check that we don't overflow the code size with all codes we burst decode. |
| 776 | if let Some(potential_code) = self.next_code.checked_add(burst_size as u16) { |
| 777 | burst_size += 1; |
| 778 | if potential_code == self.code_buffer.max_code() - Code::from(self.is_tiff) { |
| 779 | break; |
| 780 | } |
| 781 | } else { |
| 782 | // next_code overflowed |
| 783 | break; |
| 784 | } |
| 785 | |
| 786 | // A burst code can't be special. |
| 787 | if *b == self.clear_code || *b == self.end_code || *b >= self.next_code { |
| 788 | break; |
| 789 | } |
| 790 | |
| 791 | // Read the code length and check that we can decode directly into the out slice. |
| 792 | let len = self.table.depths[usize::from(*b)]; |
| 793 | if out.len() < usize::from(len) { |
| 794 | break; |
| 795 | } |
| 796 | |
| 797 | bytes[burst_size - 1] = len; |
| 798 | } |
| 799 | |
| 800 | // No code left, and no more bytes to fill the buffer. |
| 801 | if burst_size == 0 { |
| 802 | if burst_required_for_progress { |
| 803 | status = Ok(LzwStatus::NoProgress); |
| 804 | } |
| 805 | code_link = Some((code, link)); |
| 806 | break; |
| 807 | } |
| 808 | |
| 809 | burst_required_for_progress = false; |
| 810 | // Note that the very last code in the burst buffer doesn't actually belong to the |
| 811 | // burst itself. TODO: sometimes it could, we just don't differentiate between the |
| 812 | // breaks and a loop end condition above. That may be a speed advantage? |
| 813 | let (&new_code, burst) = burst[..burst_size].split_last().unwrap(); |
| 814 | |
| 815 | // The very tight loop for restoring the actual burst. |
| 816 | for (&burst, target) in burst.iter().zip(&mut target[..burst_size - 1]) { |
| 817 | let cha = self.table.reconstruct(burst, target); |
| 818 | // TODO: this pushes into a Vec, maybe we can make this cleaner. |
| 819 | // Theoretically this has a branch and llvm tends to be flaky with code layout for |
| 820 | // the case of requiring an allocation (which can't occur in practice). |
| 821 | let new_link = self.table.derive(&link, cha, code); |
| 822 | self.next_code += 1; |
| 823 | code = burst; |
| 824 | link = new_link; |
| 825 | } |
| 826 | |
| 827 | // Update the slice holding the last decoded word. |
| 828 | if let Some(new_last) = target[..burst_size - 1].last_mut() { |
| 829 | let slice = core::mem::replace(new_last, &mut []); |
| 830 | last_decoded = Some(&*slice); |
| 831 | } |
| 832 | |
| 833 | // Now handle the special codes. |
| 834 | if new_code == self.clear_code { |
| 835 | self.reset_tables(); |
| 836 | last_decoded = None; |
| 837 | continue; |
| 838 | } |
| 839 | |
| 840 | if new_code == self.end_code { |
| 841 | self.has_ended = true; |
| 842 | status = Ok(LzwStatus::Done); |
| 843 | last_decoded = None; |
| 844 | break; |
| 845 | } |
| 846 | |
| 847 | if new_code > self.next_code { |
| 848 | status = Err(LzwError::InvalidCode); |
| 849 | last_decoded = None; |
| 850 | break; |
| 851 | } |
| 852 | |
| 853 | let required_len = if new_code == self.next_code { |
| 854 | self.table.depths[usize::from(code)] + 1 |
| 855 | } else { |
| 856 | self.table.depths[usize::from(new_code)] |
| 857 | }; |
| 858 | |
| 859 | let cha; |
| 860 | let is_in_buffer; |
| 861 | // Check if we will need to store our current state into the buffer. |
| 862 | if usize::from(required_len) > out.len() { |
| 863 | is_in_buffer = true; |
| 864 | if new_code == self.next_code { |
| 865 | // last_decoded will be Some if we have restored any code into the out slice. |
| 866 | // Otherwise it will still be present in the buffer. |
| 867 | if let Some(last) = last_decoded.take() { |
| 868 | self.buffer.bytes[..last.len()].copy_from_slice(last); |
| 869 | self.buffer.write_mark = last.len(); |
| 870 | self.buffer.read_mark = last.len(); |
| 871 | } |
| 872 | |
| 873 | cha = self.buffer.fill_cscsc(); |
| 874 | } else { |
| 875 | // Restore the decoded word into the buffer. |
| 876 | last_decoded = None; |
| 877 | cha = self.buffer.fill_reconstruct(&self.table, new_code); |
| 878 | } |
| 879 | } else { |
| 880 | is_in_buffer = false; |
| 881 | let (target, tail) = out.split_at_mut(usize::from(required_len)); |
| 882 | out = tail; |
| 883 | |
| 884 | if new_code == self.next_code { |
| 885 | // Reconstruct high. |
| 886 | let source = match last_decoded.take() { |
| 887 | Some(last) => last, |
| 888 | None => &self.buffer.bytes[..self.buffer.write_mark], |
| 889 | }; |
| 890 | cha = source[0]; |
| 891 | target[..source.len()].copy_from_slice(source); |
| 892 | target[source.len()..][0] = source[0]; |
| 893 | } else { |
| 894 | cha = self.table.reconstruct(new_code, target); |
| 895 | } |
| 896 | |
| 897 | // A new decoded word. |
| 898 | last_decoded = Some(target); |
| 899 | } |
| 900 | |
| 901 | let new_link; |
| 902 | // Each newly read code creates one new code/link based on the preceding code if we |
| 903 | // have enough space to put it there. |
| 904 | if !self.table.is_full() { |
| 905 | let link = self.table.derive(&link, cha, code); |
| 906 | |
| 907 | if self.next_code == self.code_buffer.max_code() - Code::from(self.is_tiff) |
| 908 | && self.code_buffer.code_size() < MAX_CODESIZE |
| 909 | { |
| 910 | self.bump_code_size(); |
| 911 | } |
| 912 | |
| 913 | self.next_code += 1; |
| 914 | new_link = link; |
| 915 | } else { |
| 916 | // It's actually quite likely that the next code will be a reset but just in case. |
| 917 | // FIXME: this path hasn't been tested very well. |
| 918 | new_link = link.clone(); |
| 919 | } |
| 920 | |
| 921 | // store the information on the decoded word. |
| 922 | code_link = Some((new_code, new_link)); |
| 923 | |
| 924 | // Can't make any more progress with decoding. |
| 925 | if is_in_buffer { |
| 926 | break; |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | // We need to store the last word into the buffer in case the first code in the next |
| 931 | // iteration is the next_code. |
| 932 | if let Some(tail) = last_decoded { |
| 933 | self.buffer.bytes[..tail.len()].copy_from_slice(tail); |
| 934 | self.buffer.write_mark = tail.len(); |
| 935 | self.buffer.read_mark = tail.len(); |
| 936 | } |
| 937 | |
| 938 | // Ensure we don't indicate that no progress was made if we read some bytes from the input |
| 939 | // (which is progress). |
| 940 | if o_in > inp.len() { |
| 941 | if let Ok(LzwStatus::NoProgress) = status { |
| 942 | status = Ok(LzwStatus::Ok); |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | // Store the code/link state. |
| 947 | self.last = code_link; |
| 948 | |
| 949 | BufferResult { |
| 950 | consumed_in: o_in.wrapping_sub(inp.len()), |
| 951 | consumed_out: o_out.wrapping_sub(out.len()), |
| 952 | status, |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | impl<C: CodeBuffer> DecodeState<C> { |
| 958 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> { |
| 959 | self.code_buffer.next_symbol(inp) |
| 960 | } |
| 961 | |
| 962 | fn bump_code_size(&mut self) { |
| 963 | self.code_buffer.bump_code_size() |
| 964 | } |
| 965 | |
| 966 | fn refill_bits(&mut self, inp: &mut &[u8]) { |
| 967 | self.code_buffer.refill_bits(inp) |
| 968 | } |
| 969 | |
| 970 | fn get_bits(&mut self) -> Option<Code> { |
| 971 | self.code_buffer.get_bits() |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | impl CodeBuffer for MsbBuffer { |
| 976 | fn new(min_size: u8) -> Self { |
| 977 | MsbBuffer { |
| 978 | code_size: min_size + 1, |
| 979 | code_mask: (1u16 << (min_size + 1)) - 1, |
| 980 | bit_buffer: 0, |
| 981 | bits: 0, |
| 982 | } |
| 983 | } |
| 984 | |
| 985 | fn reset(&mut self, min_size: u8) { |
| 986 | self.code_size = min_size + 1; |
| 987 | self.code_mask = (1 << self.code_size) - 1; |
| 988 | } |
| 989 | |
| 990 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> { |
| 991 | if self.bits < self.code_size { |
| 992 | self.refill_bits(inp); |
| 993 | } |
| 994 | |
| 995 | self.get_bits() |
| 996 | } |
| 997 | |
| 998 | fn bump_code_size(&mut self) { |
| 999 | self.code_size += 1; |
| 1000 | self.code_mask = (self.code_mask << 1) | 1; |
| 1001 | } |
| 1002 | |
| 1003 | fn refill_bits(&mut self, inp: &mut &[u8]) { |
| 1004 | let wish_count = (64 - self.bits) / 8; |
| 1005 | let mut buffer = [0u8; 8]; |
| 1006 | let new_bits = match inp.get(..usize::from(wish_count)) { |
| 1007 | Some(bytes) => { |
| 1008 | buffer[..usize::from(wish_count)].copy_from_slice(bytes); |
| 1009 | *inp = &inp[usize::from(wish_count)..]; |
| 1010 | wish_count * 8 |
| 1011 | } |
| 1012 | None => { |
| 1013 | let new_bits = inp.len() * 8; |
| 1014 | buffer[..inp.len()].copy_from_slice(inp); |
| 1015 | *inp = &[]; |
| 1016 | new_bits as u8 |
| 1017 | } |
| 1018 | }; |
| 1019 | self.bit_buffer |= u64::from_be_bytes(buffer) >> self.bits; |
| 1020 | self.bits += new_bits; |
| 1021 | } |
| 1022 | |
| 1023 | fn get_bits(&mut self) -> Option<Code> { |
| 1024 | if self.bits < self.code_size { |
| 1025 | return None; |
| 1026 | } |
| 1027 | |
| 1028 | let mask = u64::from(self.code_mask); |
| 1029 | let rotbuf = self.bit_buffer.rotate_left(self.code_size.into()); |
| 1030 | self.bit_buffer = rotbuf & !mask; |
| 1031 | self.bits -= self.code_size; |
| 1032 | Some((rotbuf & mask) as u16) |
| 1033 | } |
| 1034 | |
| 1035 | fn max_code(&self) -> Code { |
| 1036 | self.code_mask |
| 1037 | } |
| 1038 | |
| 1039 | fn code_size(&self) -> u8 { |
| 1040 | self.code_size |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | impl CodeBuffer for LsbBuffer { |
| 1045 | fn new(min_size: u8) -> Self { |
| 1046 | LsbBuffer { |
| 1047 | code_size: min_size + 1, |
| 1048 | code_mask: (1u16 << (min_size + 1)) - 1, |
| 1049 | bit_buffer: 0, |
| 1050 | bits: 0, |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | fn reset(&mut self, min_size: u8) { |
| 1055 | self.code_size = min_size + 1; |
| 1056 | self.code_mask = (1 << self.code_size) - 1; |
| 1057 | } |
| 1058 | |
| 1059 | fn next_symbol(&mut self, inp: &mut &[u8]) -> Option<Code> { |
| 1060 | if self.bits < self.code_size { |
| 1061 | self.refill_bits(inp); |
| 1062 | } |
| 1063 | |
| 1064 | self.get_bits() |
| 1065 | } |
| 1066 | |
| 1067 | fn bump_code_size(&mut self) { |
| 1068 | self.code_size += 1; |
| 1069 | self.code_mask = (self.code_mask << 1) | 1; |
| 1070 | } |
| 1071 | |
| 1072 | fn refill_bits(&mut self, inp: &mut &[u8]) { |
| 1073 | let wish_count = (64 - self.bits) / 8; |
| 1074 | let mut buffer = [0u8; 8]; |
| 1075 | let new_bits = match inp.get(..usize::from(wish_count)) { |
| 1076 | Some(bytes) => { |
| 1077 | buffer[..usize::from(wish_count)].copy_from_slice(bytes); |
| 1078 | *inp = &inp[usize::from(wish_count)..]; |
| 1079 | wish_count * 8 |
| 1080 | } |
| 1081 | None => { |
| 1082 | let new_bits = inp.len() * 8; |
| 1083 | buffer[..inp.len()].copy_from_slice(inp); |
| 1084 | *inp = &[]; |
| 1085 | new_bits as u8 |
| 1086 | } |
| 1087 | }; |
| 1088 | self.bit_buffer |= u64::from_be_bytes(buffer).swap_bytes() << self.bits; |
| 1089 | self.bits += new_bits; |
| 1090 | } |
| 1091 | |
| 1092 | fn get_bits(&mut self) -> Option<Code> { |
| 1093 | if self.bits < self.code_size { |
| 1094 | return None; |
| 1095 | } |
| 1096 | |
| 1097 | let mask = u64::from(self.code_mask); |
| 1098 | let code = self.bit_buffer & mask; |
| 1099 | self.bit_buffer >>= self.code_size; |
| 1100 | self.bits -= self.code_size; |
| 1101 | Some(code as u16) |
| 1102 | } |
| 1103 | |
| 1104 | fn max_code(&self) -> Code { |
| 1105 | self.code_mask |
| 1106 | } |
| 1107 | |
| 1108 | fn code_size(&self) -> u8 { |
| 1109 | self.code_size |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | impl Buffer { |
| 1114 | fn new() -> Self { |
| 1115 | Buffer { |
| 1116 | bytes: vec![0; MAX_ENTRIES].into_boxed_slice(), |
| 1117 | read_mark: 0, |
| 1118 | write_mark: 0, |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | /// When encoding a sequence `cScSc` where `c` is any character and `S` is any string |
| 1123 | /// this results in two codes `AB`, `A` encoding `cS` and `B` encoding `cSc`. Supposing |
| 1124 | /// the buffer is already filled with the reconstruction of `A`, we can easily fill it |
| 1125 | /// with the reconstruction of `B`. |
| 1126 | fn fill_cscsc(&mut self) -> u8 { |
| 1127 | self.bytes[self.write_mark] = self.bytes[0]; |
| 1128 | self.write_mark += 1; |
| 1129 | self.read_mark = 0; |
| 1130 | self.bytes[0] |
| 1131 | } |
| 1132 | |
| 1133 | // Fill the buffer by decoding from the table |
| 1134 | fn fill_reconstruct(&mut self, table: &Table, code: Code) -> u8 { |
| 1135 | self.write_mark = 0; |
| 1136 | self.read_mark = 0; |
| 1137 | let depth = table.depths[usize::from(code)]; |
| 1138 | let mut memory = core::mem::replace(&mut self.bytes, Box::default()); |
| 1139 | |
| 1140 | let out = &mut memory[..usize::from(depth)]; |
| 1141 | let last = table.reconstruct(code, out); |
| 1142 | |
| 1143 | self.bytes = memory; |
| 1144 | self.write_mark = usize::from(depth); |
| 1145 | last |
| 1146 | } |
| 1147 | |
| 1148 | fn buffer(&self) -> &[u8] { |
| 1149 | &self.bytes[self.read_mark..self.write_mark] |
| 1150 | } |
| 1151 | |
| 1152 | fn consume(&mut self, amt: usize) { |
| 1153 | self.read_mark += amt; |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | impl Table { |
| 1158 | fn new() -> Self { |
| 1159 | Table { |
| 1160 | inner: Vec::with_capacity(MAX_ENTRIES), |
| 1161 | depths: Vec::with_capacity(MAX_ENTRIES), |
| 1162 | } |
| 1163 | } |
| 1164 | |
| 1165 | fn clear(&mut self, min_size: u8) { |
| 1166 | let static_count = usize::from(1u16 << u16::from(min_size)) + 2; |
| 1167 | self.inner.truncate(static_count); |
| 1168 | self.depths.truncate(static_count); |
| 1169 | } |
| 1170 | |
| 1171 | fn init(&mut self, min_size: u8) { |
| 1172 | self.inner.clear(); |
| 1173 | self.depths.clear(); |
| 1174 | for i in 0..(1u16 << u16::from(min_size)) { |
| 1175 | self.inner.push(Link::base(i as u8)); |
| 1176 | self.depths.push(1); |
| 1177 | } |
| 1178 | // Clear code. |
| 1179 | self.inner.push(Link::base(0)); |
| 1180 | self.depths.push(0); |
| 1181 | // End code. |
| 1182 | self.inner.push(Link::base(0)); |
| 1183 | self.depths.push(0); |
| 1184 | } |
| 1185 | |
| 1186 | fn at(&self, code: Code) -> &Link { |
| 1187 | &self.inner[usize::from(code)] |
| 1188 | } |
| 1189 | |
| 1190 | fn is_empty(&self) -> bool { |
| 1191 | self.inner.is_empty() |
| 1192 | } |
| 1193 | |
| 1194 | fn is_full(&self) -> bool { |
| 1195 | self.inner.len() >= MAX_ENTRIES |
| 1196 | } |
| 1197 | |
| 1198 | fn derive(&mut self, from: &Link, byte: u8, prev: Code) -> Link { |
| 1199 | let link = from.derive(byte, prev); |
| 1200 | let depth = self.depths[usize::from(prev)] + 1; |
| 1201 | self.inner.push(link.clone()); |
| 1202 | self.depths.push(depth); |
| 1203 | link |
| 1204 | } |
| 1205 | |
| 1206 | fn reconstruct(&self, code: Code, out: &mut [u8]) -> u8 { |
| 1207 | let mut code_iter = code; |
| 1208 | let table = &self.inner[..=usize::from(code)]; |
| 1209 | let len = code_iter; |
| 1210 | for ch in out.iter_mut().rev() { |
| 1211 | //(code, cha) = self.table[k as usize]; |
| 1212 | // Note: This could possibly be replaced with an unchecked array access if |
| 1213 | // - value is asserted to be < self.next_code() in push |
| 1214 | // - min_size is asserted to be < MAX_CODESIZE |
| 1215 | let entry = &table[usize::from(code_iter)]; |
| 1216 | code_iter = core::cmp::min(len, entry.prev); |
| 1217 | *ch = entry.byte; |
| 1218 | } |
| 1219 | out[0] |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | impl Link { |
| 1224 | fn base(byte: u8) -> Self { |
| 1225 | Link { prev: 0, byte } |
| 1226 | } |
| 1227 | |
| 1228 | // TODO: this has self type to make it clear we might depend on the old in a future |
| 1229 | // optimization. However, that has no practical purpose right now. |
| 1230 | fn derive(&self, byte: u8, prev: Code) -> Self { |
| 1231 | Link { prev, byte } |
| 1232 | } |
| 1233 | } |
| 1234 | |
| 1235 | #[cfg (test)] |
| 1236 | mod tests { |
| 1237 | use crate::alloc::vec::Vec; |
| 1238 | #[cfg (feature = "std" )] |
| 1239 | use crate::StreamBuf; |
| 1240 | use crate::{decode::Decoder, BitOrder}; |
| 1241 | |
| 1242 | #[test ] |
| 1243 | fn invalid_code_size_low() { |
| 1244 | let _ = Decoder::new(BitOrder::Msb, 0); |
| 1245 | let _ = Decoder::new(BitOrder::Msb, 1); |
| 1246 | } |
| 1247 | |
| 1248 | #[test ] |
| 1249 | #[should_panic ] |
| 1250 | fn invalid_code_size_high() { |
| 1251 | let _ = Decoder::new(BitOrder::Msb, 14); |
| 1252 | } |
| 1253 | |
| 1254 | fn make_encoded() -> Vec<u8> { |
| 1255 | const FILE: &'static [u8] = include_bytes!(concat!( |
| 1256 | env!("CARGO_MANIFEST_DIR" ), |
| 1257 | "/benches/binary-8-msb.lzw" |
| 1258 | )); |
| 1259 | return Vec::from(FILE); |
| 1260 | } |
| 1261 | |
| 1262 | #[test ] |
| 1263 | #[cfg (feature = "std" )] |
| 1264 | fn into_stream_buffer_no_alloc() { |
| 1265 | let encoded = make_encoded(); |
| 1266 | let mut decoder = Decoder::new(BitOrder::Msb, 8); |
| 1267 | |
| 1268 | let mut output = vec![]; |
| 1269 | let mut buffer = [0; 512]; |
| 1270 | let mut istream = decoder.into_stream(&mut output); |
| 1271 | istream.set_buffer(&mut buffer[..]); |
| 1272 | istream.decode(&encoded[..]).status.unwrap(); |
| 1273 | |
| 1274 | match istream.buffer { |
| 1275 | Some(StreamBuf::Borrowed(_)) => {} |
| 1276 | None => panic!("Decoded without buffer??" ), |
| 1277 | Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation" ), |
| 1278 | } |
| 1279 | } |
| 1280 | |
| 1281 | #[test ] |
| 1282 | #[cfg (feature = "std" )] |
| 1283 | fn into_stream_buffer_small_alloc() { |
| 1284 | struct WriteTap<W: std::io::Write>(W); |
| 1285 | const BUF_SIZE: usize = 512; |
| 1286 | |
| 1287 | impl<W: std::io::Write> std::io::Write for WriteTap<W> { |
| 1288 | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> { |
| 1289 | assert!(buf.len() <= BUF_SIZE); |
| 1290 | self.0.write(buf) |
| 1291 | } |
| 1292 | fn flush(&mut self) -> std::io::Result<()> { |
| 1293 | self.0.flush() |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | let encoded = make_encoded(); |
| 1298 | let mut decoder = Decoder::new(BitOrder::Msb, 8); |
| 1299 | |
| 1300 | let mut output = vec![]; |
| 1301 | let mut istream = decoder.into_stream(WriteTap(&mut output)); |
| 1302 | istream.set_buffer_size(512); |
| 1303 | istream.decode(&encoded[..]).status.unwrap(); |
| 1304 | |
| 1305 | match istream.buffer { |
| 1306 | Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE), |
| 1307 | Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?" ), |
| 1308 | None => panic!("Decoded without buffer??" ), |
| 1309 | } |
| 1310 | } |
| 1311 | |
| 1312 | #[test ] |
| 1313 | #[cfg (feature = "std" )] |
| 1314 | fn reset() { |
| 1315 | let encoded = make_encoded(); |
| 1316 | let mut decoder = Decoder::new(BitOrder::Msb, 8); |
| 1317 | let mut reference = None; |
| 1318 | |
| 1319 | for _ in 0..2 { |
| 1320 | let mut output = vec![]; |
| 1321 | let mut buffer = [0; 512]; |
| 1322 | let mut istream = decoder.into_stream(&mut output); |
| 1323 | istream.set_buffer(&mut buffer[..]); |
| 1324 | istream.decode_all(&encoded[..]).status.unwrap(); |
| 1325 | |
| 1326 | decoder.reset(); |
| 1327 | if let Some(reference) = &reference { |
| 1328 | assert_eq!(output, *reference); |
| 1329 | } else { |
| 1330 | reference = Some(output); |
| 1331 | } |
| 1332 | } |
| 1333 | } |
| 1334 | } |
| 1335 | |