| 1 | //! A module for all encoding needs. |
| 2 | use crate::error::{BufferResult, LzwError, LzwStatus, VectorResult}; |
| 3 | use crate::{BitOrder, Code, StreamBuf, MAX_CODESIZE, MAX_ENTRIES, STREAM_BUF_SIZE}; |
| 4 | |
| 5 | use crate::alloc::{boxed::Box, vec::Vec}; |
| 6 | #[cfg (feature = "std" )] |
| 7 | use crate::error::StreamResult; |
| 8 | #[cfg (feature = "std" )] |
| 9 | use std::io::{self, BufRead, Write}; |
| 10 | |
| 11 | /// The state for encoding data with an LZW algorithm. |
| 12 | /// |
| 13 | /// The same structure can be utilized with streams as well as your own buffers and driver logic. |
| 14 | /// It may even be possible to mix them if you are sufficiently careful not to lose any written |
| 15 | /// data in the process. |
| 16 | /// |
| 17 | /// This is a sans-IO implementation, meaning that it only contains the state of the encoder and |
| 18 | /// the caller will provide buffers for input and output data when calling the basic |
| 19 | /// [`encode_bytes`] method. Nevertheless, a number of _adapters_ are provided in the `into_*` |
| 20 | /// methods for enoding with a particular style of common IO. |
| 21 | /// |
| 22 | /// * [`encode`] for encoding once without any IO-loop. |
| 23 | /// * [`into_async`] for encoding with the `futures` traits for asynchronous IO. |
| 24 | /// * [`into_stream`] for encoding with the standard `io` traits. |
| 25 | /// * [`into_vec`] for in-memory encoding. |
| 26 | /// |
| 27 | /// [`encode_bytes`]: #method.encode_bytes |
| 28 | /// [`encode`]: #method.encode |
| 29 | /// [`into_async`]: #method.into_async |
| 30 | /// [`into_stream`]: #method.into_stream |
| 31 | /// [`into_vec`]: #method.into_vec |
| 32 | pub struct Encoder { |
| 33 | /// Internally dispatch via a dynamic trait object. This did not have any significant |
| 34 | /// performance impact as we batch data internally and this pointer does not change after |
| 35 | /// creation! |
| 36 | state: Box<dyn Stateful + Send + 'static>, |
| 37 | } |
| 38 | |
| 39 | /// A encoding stream sink. |
| 40 | /// |
| 41 | /// See [`Encoder::into_stream`] on how to create this type. |
| 42 | /// |
| 43 | /// [`Encoder::into_stream`]: struct.Encoder.html#method.into_stream |
| 44 | #[cfg_attr ( |
| 45 | not(feature = "std" ), |
| 46 | deprecated = "This type is only useful with the `std` feature." |
| 47 | )] |
| 48 | #[cfg_attr (not(feature = "std" ), allow(dead_code))] |
| 49 | pub struct IntoStream<'d, W> { |
| 50 | encoder: &'d mut Encoder, |
| 51 | writer: W, |
| 52 | buffer: Option<StreamBuf<'d>>, |
| 53 | default_size: usize, |
| 54 | } |
| 55 | |
| 56 | /// An async decoding sink. |
| 57 | /// |
| 58 | /// See [`Encoder::into_async`] on how to create this type. |
| 59 | /// |
| 60 | /// [`Encoder::into_async`]: struct.Encoder.html#method.into_async |
| 61 | #[cfg (feature = "async" )] |
| 62 | pub struct IntoAsync<'d, W> { |
| 63 | encoder: &'d mut Encoder, |
| 64 | writer: W, |
| 65 | buffer: Option<StreamBuf<'d>>, |
| 66 | default_size: usize, |
| 67 | } |
| 68 | |
| 69 | /// A encoding sink into a vector. |
| 70 | /// |
| 71 | /// See [`Encoder::into_vec`] on how to create this type. |
| 72 | /// |
| 73 | /// [`Encoder::into_vec`]: struct.Encoder.html#method.into_vec |
| 74 | pub struct IntoVec<'d> { |
| 75 | encoder: &'d mut Encoder, |
| 76 | vector: &'d mut Vec<u8>, |
| 77 | } |
| 78 | |
| 79 | trait Stateful { |
| 80 | fn advance(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult; |
| 81 | fn mark_ended(&mut self) -> bool; |
| 82 | /// Reset the state tracking if end code has been written. |
| 83 | fn restart(&mut self); |
| 84 | /// Reset the encoder to the beginning, dropping all buffers etc. |
| 85 | fn reset(&mut self); |
| 86 | } |
| 87 | |
| 88 | struct EncodeState<B: Buffer> { |
| 89 | /// The configured minimal code size. |
| 90 | min_size: u8, |
| 91 | /// The current encoding symbol tree. |
| 92 | tree: Tree, |
| 93 | /// If we have pushed the end code. |
| 94 | has_ended: bool, |
| 95 | /// If tiff then bumps are a single code sooner. |
| 96 | is_tiff: bool, |
| 97 | /// The code corresponding to the currently read characters. |
| 98 | current_code: Code, |
| 99 | /// The clear code for resetting the dictionary. |
| 100 | clear_code: Code, |
| 101 | /// The bit buffer for encoding. |
| 102 | buffer: B, |
| 103 | } |
| 104 | |
| 105 | struct MsbBuffer { |
| 106 | /// The current code length. |
| 107 | code_size: u8, |
| 108 | /// The buffer bits. |
| 109 | buffer: u64, |
| 110 | /// The number of valid buffer bits. |
| 111 | bits_in_buffer: u8, |
| 112 | } |
| 113 | |
| 114 | struct LsbBuffer { |
| 115 | /// The current code length. |
| 116 | code_size: u8, |
| 117 | /// The buffer bits. |
| 118 | buffer: u64, |
| 119 | /// The number of valid buffer bits. |
| 120 | bits_in_buffer: u8, |
| 121 | } |
| 122 | |
| 123 | trait Buffer { |
| 124 | fn new(size: u8) -> Self; |
| 125 | /// Reset the code size in the buffer. |
| 126 | fn reset(&mut self, min_size: u8); |
| 127 | /// Apply effects of a Clear Code. |
| 128 | fn clear(&mut self, min_size: u8); |
| 129 | /// Insert a code into the buffer. |
| 130 | fn buffer_code(&mut self, code: Code); |
| 131 | /// Push bytes if the buffer space is getting small. |
| 132 | fn push_out(&mut self, out: &mut &mut [u8]) -> bool; |
| 133 | /// Flush all full bytes, returning if at least one more byte remains. |
| 134 | fn flush_out(&mut self, out: &mut &mut [u8]) -> bool; |
| 135 | /// Pad the buffer to a full byte. |
| 136 | fn buffer_pad(&mut self); |
| 137 | /// Increase the maximum code size. |
| 138 | fn bump_code_size(&mut self); |
| 139 | /// Return the maximum code with the current code size. |
| 140 | fn max_code(&self) -> Code; |
| 141 | /// Return the current code size in bits. |
| 142 | fn code_size(&self) -> u8; |
| 143 | } |
| 144 | |
| 145 | /// One tree node for at most each code. |
| 146 | /// To avoid using too much memory we keep nodes with few successors in optimized form. This form |
| 147 | /// doesn't offer lookup by indexing but instead does a linear search. |
| 148 | #[derive (Default)] |
| 149 | struct Tree { |
| 150 | simples: Vec<Simple>, |
| 151 | complex: Vec<Full>, |
| 152 | keys: Vec<CompressedKey>, |
| 153 | } |
| 154 | |
| 155 | #[derive (Clone, Copy)] |
| 156 | enum FullKey { |
| 157 | NoSuccessor, |
| 158 | Simple(u16), |
| 159 | Full(u16), |
| 160 | } |
| 161 | |
| 162 | #[derive (Clone, Copy)] |
| 163 | struct CompressedKey(u16); |
| 164 | |
| 165 | const SHORT: usize = 16; |
| 166 | |
| 167 | #[derive (Clone, Copy)] |
| 168 | struct Simple { |
| 169 | codes: [Code; SHORT], |
| 170 | chars: [u8; SHORT], |
| 171 | count: u8, |
| 172 | } |
| 173 | |
| 174 | #[derive (Clone, Copy)] |
| 175 | struct Full { |
| 176 | char_continuation: [Code; 256], |
| 177 | } |
| 178 | |
| 179 | impl Encoder { |
| 180 | /// Create a new encoder with the specified bit order and symbol size. |
| 181 | /// |
| 182 | /// The algorithm for dynamically increasing the code symbol bit width is compatible with the |
| 183 | /// original specification. In particular you will need to specify an `Lsb` bit oder to encode |
| 184 | /// the data portion of a compressed `gif` image. |
| 185 | /// |
| 186 | /// # Panics |
| 187 | /// |
| 188 | /// The `size` needs to be in the interval `2..=12`. |
| 189 | pub fn new(order: BitOrder, size: u8) -> Self { |
| 190 | type Boxed = Box<dyn Stateful + Send + 'static>; |
| 191 | super::assert_encode_size(size); |
| 192 | let state = match order { |
| 193 | BitOrder::Lsb => Box::new(EncodeState::<LsbBuffer>::new(size)) as Boxed, |
| 194 | BitOrder::Msb => Box::new(EncodeState::<MsbBuffer>::new(size)) as Boxed, |
| 195 | }; |
| 196 | |
| 197 | Encoder { state } |
| 198 | } |
| 199 | |
| 200 | /// Create a TIFF compatible encoder with the specified bit order and symbol size. |
| 201 | /// |
| 202 | /// The algorithm for dynamically increasing the code symbol bit width is compatible with the |
| 203 | /// TIFF specification, which is a misinterpretation of the original algorithm for increasing |
| 204 | /// the code size. It switches one symbol sooner. |
| 205 | /// |
| 206 | /// # Panics |
| 207 | /// |
| 208 | /// The `size` needs to be in the interval `2..=12`. |
| 209 | pub fn with_tiff_size_switch(order: BitOrder, size: u8) -> Self { |
| 210 | type Boxed = Box<dyn Stateful + Send + 'static>; |
| 211 | super::assert_encode_size(size); |
| 212 | let state = match order { |
| 213 | BitOrder::Lsb => { |
| 214 | let mut state = Box::new(EncodeState::<LsbBuffer>::new(size)); |
| 215 | state.is_tiff = true; |
| 216 | state as Boxed |
| 217 | } |
| 218 | BitOrder::Msb => { |
| 219 | let mut state = Box::new(EncodeState::<MsbBuffer>::new(size)); |
| 220 | state.is_tiff = true; |
| 221 | state as Boxed |
| 222 | } |
| 223 | }; |
| 224 | |
| 225 | Encoder { state } |
| 226 | } |
| 227 | |
| 228 | /// Encode some bytes from `inp` into `out`. |
| 229 | /// |
| 230 | /// See [`into_stream`] for high-level functions (this interface is only available with the |
| 231 | /// `std` feature) and [`finish`] for marking the input data as complete. |
| 232 | /// |
| 233 | /// When some input byte is invalid, i.e. is not smaller than `1 << size`, then that byte and |
| 234 | /// all following ones will _not_ be consumed and the `status` of the result will signal an |
| 235 | /// error. The result will also indicate that all bytes up to but not including the offending |
| 236 | /// byte have been consumed. You may try again with a fixed byte. |
| 237 | /// |
| 238 | /// [`into_stream`]: #method.into_stream |
| 239 | /// [`finish`]: #method.finish |
| 240 | pub fn encode_bytes(&mut self, inp: &[u8], out: &mut [u8]) -> BufferResult { |
| 241 | self.state.advance(inp, out) |
| 242 | } |
| 243 | |
| 244 | /// Encode a single chunk of data. |
| 245 | /// |
| 246 | /// This method will add an end marker to the encoded chunk. |
| 247 | /// |
| 248 | /// This is a convenience wrapper around [`into_vec`]. Use the `into_vec` adapter to customize |
| 249 | /// buffer size, to supply an existing vector, to control whether an end marker is required, or |
| 250 | /// to preserve partial data in the case of a decoding error. |
| 251 | /// |
| 252 | /// [`into_vec`]: #into_vec |
| 253 | /// |
| 254 | /// # Example |
| 255 | /// |
| 256 | /// ``` |
| 257 | /// use weezl::{BitOrder, encode::Encoder}; |
| 258 | /// |
| 259 | /// let data = b"Hello, world" ; |
| 260 | /// let encoded = Encoder::new(BitOrder::Msb, 9) |
| 261 | /// .encode(data) |
| 262 | /// .expect("All bytes valid for code size" ); |
| 263 | /// ``` |
| 264 | pub fn encode(&mut self, data: &[u8]) -> Result<Vec<u8>, LzwError> { |
| 265 | let mut output = Vec::new(); |
| 266 | self.into_vec(&mut output).encode_all(data).status?; |
| 267 | Ok(output) |
| 268 | } |
| 269 | |
| 270 | /// Construct a encoder into a writer. |
| 271 | #[cfg (feature = "std" )] |
| 272 | pub fn into_stream<W: Write>(&mut self, writer: W) -> IntoStream<'_, W> { |
| 273 | IntoStream { |
| 274 | encoder: self, |
| 275 | writer, |
| 276 | buffer: None, |
| 277 | default_size: STREAM_BUF_SIZE, |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | /// Construct a encoder into an async writer. |
| 282 | #[cfg (feature = "async" )] |
| 283 | pub fn into_async<W: futures::io::AsyncWrite>(&mut self, writer: W) -> IntoAsync<'_, W> { |
| 284 | IntoAsync { |
| 285 | encoder: self, |
| 286 | writer, |
| 287 | buffer: None, |
| 288 | default_size: STREAM_BUF_SIZE, |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | /// Construct an encoder into a vector. |
| 293 | /// |
| 294 | /// All encoded data is appended and the vector is __not__ cleared. |
| 295 | /// |
| 296 | /// Compared to `into_stream` this interface allows a high-level access to encoding without |
| 297 | /// requires the `std`-feature. Also, it can make full use of the extra buffer control that the |
| 298 | /// special target exposes. |
| 299 | pub fn into_vec<'lt>(&'lt mut self, vec: &'lt mut Vec<u8>) -> IntoVec<'lt> { |
| 300 | IntoVec { |
| 301 | encoder: self, |
| 302 | vector: vec, |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /// Mark the encoding as in the process of finishing. |
| 307 | /// |
| 308 | /// The next following call to `encode_bytes` which is able to consume the complete input will |
| 309 | /// also try to emit an end code. It's not recommended, but also not unsound, to use different |
| 310 | /// byte slices in different calls from this point forward and thus to 'delay' the actual end |
| 311 | /// of the data stream. The behaviour after the end marker has been written is unspecified but |
| 312 | /// sound. |
| 313 | pub fn finish(&mut self) { |
| 314 | self.state.mark_ended(); |
| 315 | } |
| 316 | |
| 317 | /// Undo marking this data stream as ending. |
| 318 | /// FIXME: clarify how this interacts with padding introduced after end code. |
| 319 | #[allow (dead_code)] |
| 320 | pub(crate) fn restart(&mut self) { |
| 321 | self.state.restart() |
| 322 | } |
| 323 | |
| 324 | /// Reset all internal state. |
| 325 | /// |
| 326 | /// This produce an encoder as if just constructed with `new` but taking slightly less work. In |
| 327 | /// particular it will not deallocate any internal allocations. It will also avoid some |
| 328 | /// duplicate setup work. |
| 329 | pub fn reset(&mut self) { |
| 330 | self.state.reset() |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | #[cfg (feature = "std" )] |
| 335 | impl<'d, W: Write> IntoStream<'d, W> { |
| 336 | /// Encode data from a reader. |
| 337 | /// |
| 338 | /// This will drain the supplied reader. It will not encode an end marker after all data has |
| 339 | /// been processed. |
| 340 | pub fn encode(&mut self, read: impl BufRead) -> StreamResult { |
| 341 | self.encode_part(read, false) |
| 342 | } |
| 343 | |
| 344 | /// Encode data from a reader and an end marker. |
| 345 | pub fn encode_all(mut self, read: impl BufRead) -> StreamResult { |
| 346 | self.encode_part(read, true) |
| 347 | } |
| 348 | |
| 349 | /// Set the size of the intermediate encode buffer. |
| 350 | /// |
| 351 | /// A buffer of this size is allocated to hold one part of the encoded stream when no buffer is |
| 352 | /// available and any encoding method is called. No buffer is allocated if `set_buffer` has |
| 353 | /// been called. The buffer is reused. |
| 354 | /// |
| 355 | /// # Panics |
| 356 | /// This method panics if `size` is `0`. |
| 357 | pub fn set_buffer_size(&mut self, size: usize) { |
| 358 | assert_ne!(size, 0, "Attempted to set empty buffer" ); |
| 359 | self.default_size = size; |
| 360 | } |
| 361 | |
| 362 | /// Use a particular buffer as an intermediate encode buffer. |
| 363 | /// |
| 364 | /// Calling this sets or replaces the buffer. When a buffer has been set then it is used |
| 365 | /// instead of a dynamically allocating a buffer. Note that the size of the buffer is relevant |
| 366 | /// for efficient encoding as there is additional overhead from `write` calls each time the |
| 367 | /// buffer has been filled. |
| 368 | /// |
| 369 | /// # Panics |
| 370 | /// This method panics if the `buffer` is empty. |
| 371 | pub fn set_buffer(&mut self, buffer: &'d mut [u8]) { |
| 372 | assert_ne!(buffer.len(), 0, "Attempted to set empty buffer" ); |
| 373 | self.buffer = Some(StreamBuf::Borrowed(buffer)); |
| 374 | } |
| 375 | |
| 376 | fn encode_part(&mut self, mut read: impl BufRead, finish: bool) -> StreamResult { |
| 377 | let IntoStream { |
| 378 | encoder, |
| 379 | writer, |
| 380 | buffer, |
| 381 | default_size, |
| 382 | } = self; |
| 383 | enum Progress { |
| 384 | Ok, |
| 385 | Done, |
| 386 | } |
| 387 | |
| 388 | let mut bytes_read = 0; |
| 389 | let mut bytes_written = 0; |
| 390 | |
| 391 | let read_bytes = &mut bytes_read; |
| 392 | let write_bytes = &mut bytes_written; |
| 393 | |
| 394 | let outbuf: &mut [u8] = |
| 395 | match { buffer.get_or_insert_with(|| StreamBuf::Owned(vec![0u8; *default_size])) } { |
| 396 | StreamBuf::Borrowed(slice) => &mut *slice, |
| 397 | StreamBuf::Owned(vec) => &mut *vec, |
| 398 | }; |
| 399 | assert!(!outbuf.is_empty()); |
| 400 | |
| 401 | let once = move || { |
| 402 | let data = read.fill_buf()?; |
| 403 | |
| 404 | if data.is_empty() { |
| 405 | if finish { |
| 406 | encoder.finish(); |
| 407 | } else { |
| 408 | return Ok(Progress::Done); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | let result = encoder.encode_bytes(data, &mut outbuf[..]); |
| 413 | *read_bytes += result.consumed_in; |
| 414 | *write_bytes += result.consumed_out; |
| 415 | read.consume(result.consumed_in); |
| 416 | |
| 417 | let done = result.status.map_err(|err| { |
| 418 | io::Error::new(io::ErrorKind::InvalidData, &*format!(" {:?}" , err)) |
| 419 | })?; |
| 420 | |
| 421 | if let LzwStatus::Done = done { |
| 422 | writer.write_all(&outbuf[..result.consumed_out])?; |
| 423 | return Ok(Progress::Done); |
| 424 | } |
| 425 | |
| 426 | if let LzwStatus::NoProgress = done { |
| 427 | return Err(io::Error::new( |
| 428 | io::ErrorKind::UnexpectedEof, |
| 429 | "No more data but no end marker detected" , |
| 430 | )); |
| 431 | } |
| 432 | |
| 433 | writer.write_all(&outbuf[..result.consumed_out])?; |
| 434 | Ok(Progress::Ok) |
| 435 | }; |
| 436 | |
| 437 | let status = core::iter::repeat_with(once) |
| 438 | // scan+fuse can be replaced with map_while |
| 439 | .scan((), |(), result| match result { |
| 440 | Ok(Progress::Ok) => Some(Ok(())), |
| 441 | Err(err) => Some(Err(err)), |
| 442 | Ok(Progress::Done) => None, |
| 443 | }) |
| 444 | .fuse() |
| 445 | .collect(); |
| 446 | |
| 447 | StreamResult { |
| 448 | bytes_read, |
| 449 | bytes_written, |
| 450 | status, |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | impl IntoVec<'_> { |
| 456 | /// Encode data from a slice. |
| 457 | pub fn encode(&mut self, read: &[u8]) -> VectorResult { |
| 458 | self.encode_part(read, false) |
| 459 | } |
| 460 | |
| 461 | /// Decode data from a reader, adding an end marker. |
| 462 | pub fn encode_all(mut self, read: &[u8]) -> VectorResult { |
| 463 | self.encode_part(read, true) |
| 464 | } |
| 465 | |
| 466 | fn grab_buffer(&mut self) -> (&mut [u8], &mut Encoder) { |
| 467 | const CHUNK_SIZE: usize = 1 << 12; |
| 468 | let decoder = &mut self.encoder; |
| 469 | let length = self.vector.len(); |
| 470 | |
| 471 | // Use the vector to do overflow checks and w/e. |
| 472 | self.vector.reserve(CHUNK_SIZE); |
| 473 | // FIXME: encoding into uninit buffer? |
| 474 | self.vector.resize(length + CHUNK_SIZE, 0u8); |
| 475 | |
| 476 | (&mut self.vector[length..], decoder) |
| 477 | } |
| 478 | |
| 479 | fn encode_part(&mut self, part: &[u8], finish: bool) -> VectorResult { |
| 480 | let mut result = VectorResult { |
| 481 | consumed_in: 0, |
| 482 | consumed_out: 0, |
| 483 | status: Ok(LzwStatus::Ok), |
| 484 | }; |
| 485 | |
| 486 | enum Progress { |
| 487 | Ok, |
| 488 | Done, |
| 489 | } |
| 490 | |
| 491 | // Converting to mutable refs to move into the `once` closure. |
| 492 | let read_bytes = &mut result.consumed_in; |
| 493 | let write_bytes = &mut result.consumed_out; |
| 494 | let mut data = part; |
| 495 | |
| 496 | // A 64 MB buffer is quite large but should get alloc_zeroed. |
| 497 | // Note that the decoded size can be up to quadratic in code block. |
| 498 | let once = move || { |
| 499 | // Grab a new output buffer. |
| 500 | let (outbuf, encoder) = self.grab_buffer(); |
| 501 | |
| 502 | if finish { |
| 503 | encoder.finish(); |
| 504 | } |
| 505 | |
| 506 | // Decode as much of the buffer as fits. |
| 507 | let result = encoder.encode_bytes(data, &mut outbuf[..]); |
| 508 | // Do the bookkeeping and consume the buffer. |
| 509 | *read_bytes += result.consumed_in; |
| 510 | *write_bytes += result.consumed_out; |
| 511 | data = &data[result.consumed_in..]; |
| 512 | |
| 513 | let unfilled = outbuf.len() - result.consumed_out; |
| 514 | let filled = self.vector.len() - unfilled; |
| 515 | self.vector.truncate(filled); |
| 516 | |
| 517 | // Handle the status in the result. |
| 518 | let done = result.status?; |
| 519 | if let LzwStatus::Done = done { |
| 520 | Ok(Progress::Done) |
| 521 | } else { |
| 522 | Ok(Progress::Ok) |
| 523 | } |
| 524 | }; |
| 525 | |
| 526 | // Decode chunks of input data until we're done. |
| 527 | let status: Result<(), _> = core::iter::repeat_with(once) |
| 528 | // scan+fuse can be replaced with map_while |
| 529 | .scan((), |(), result| match result { |
| 530 | Ok(Progress::Ok) => Some(Ok(())), |
| 531 | Err(err) => Some(Err(err)), |
| 532 | Ok(Progress::Done) => None, |
| 533 | }) |
| 534 | .fuse() |
| 535 | .collect(); |
| 536 | |
| 537 | if let Err(err) = status { |
| 538 | result.status = Err(err); |
| 539 | } |
| 540 | |
| 541 | result |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | // This is implemented in a separate file, so that 1.34.2 does not parse it. Otherwise, it would |
| 546 | // trip over the usage of await, which is a reserved keyword in that edition/version. It only |
| 547 | // contains an impl block. |
| 548 | #[cfg (feature = "async" )] |
| 549 | #[path = "encode_into_async.rs" ] |
| 550 | mod impl_encode_into_async; |
| 551 | |
| 552 | impl<B: Buffer> EncodeState<B> { |
| 553 | fn new(min_size: u8) -> Self { |
| 554 | let clear_code: u16 = 1 << min_size; |
| 555 | let mut tree: Tree = Tree::default(); |
| 556 | tree.init(min_size); |
| 557 | let mut state: EncodeState = EncodeState { |
| 558 | min_size, |
| 559 | tree, |
| 560 | has_ended: false, |
| 561 | is_tiff: false, |
| 562 | current_code: clear_code, |
| 563 | clear_code, |
| 564 | buffer: B::new(min_size), |
| 565 | }; |
| 566 | state.buffer_code(clear_code); |
| 567 | state |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | impl<B: Buffer> Stateful for EncodeState<B> { |
| 572 | fn advance(&mut self, mut inp: &[u8], mut out: &mut [u8]) -> BufferResult { |
| 573 | let c_in = inp.len(); |
| 574 | let c_out = out.len(); |
| 575 | let mut status = Ok(LzwStatus::Ok); |
| 576 | |
| 577 | 'encoding: loop { |
| 578 | if self.push_out(&mut out) { |
| 579 | break; |
| 580 | } |
| 581 | |
| 582 | if inp.is_empty() && self.has_ended { |
| 583 | let end = self.end_code(); |
| 584 | if self.current_code != end { |
| 585 | if self.current_code != self.clear_code { |
| 586 | self.buffer_code(self.current_code); |
| 587 | |
| 588 | // When reading this code, the decoder will add an extra entry to its table |
| 589 | // before reading th end code. Thusly, it may increase its code size based |
| 590 | // on this additional entry. |
| 591 | if self.tree.keys.len() + usize::from(self.is_tiff) |
| 592 | > usize::from(self.buffer.max_code()) |
| 593 | && self.buffer.code_size() < MAX_CODESIZE |
| 594 | { |
| 595 | self.buffer.bump_code_size(); |
| 596 | } |
| 597 | } |
| 598 | self.buffer_code(end); |
| 599 | self.current_code = end; |
| 600 | self.buffer_pad(); |
| 601 | } |
| 602 | |
| 603 | break; |
| 604 | } |
| 605 | |
| 606 | let mut next_code = None; |
| 607 | let mut bytes = inp.iter(); |
| 608 | while let Some(&byte) = bytes.next() { |
| 609 | if self.min_size < 8 && byte >= 1 << self.min_size { |
| 610 | status = Err(LzwError::InvalidCode); |
| 611 | break 'encoding; |
| 612 | } |
| 613 | |
| 614 | inp = bytes.as_slice(); |
| 615 | match self.tree.iterate(self.current_code, byte) { |
| 616 | Ok(code) => self.current_code = code, |
| 617 | Err(_) => { |
| 618 | next_code = Some(self.current_code); |
| 619 | |
| 620 | self.current_code = u16::from(byte); |
| 621 | break; |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | match next_code { |
| 627 | // No more bytes, no code produced. |
| 628 | None => break, |
| 629 | Some(code) => { |
| 630 | self.buffer_code(code); |
| 631 | |
| 632 | if self.tree.keys.len() + usize::from(self.is_tiff) |
| 633 | > usize::from(self.buffer.max_code()) + 1 |
| 634 | && self.buffer.code_size() < MAX_CODESIZE |
| 635 | { |
| 636 | self.buffer.bump_code_size(); |
| 637 | } |
| 638 | |
| 639 | if self.tree.keys.len() > MAX_ENTRIES { |
| 640 | self.buffer_code(self.clear_code); |
| 641 | self.tree.reset(self.min_size); |
| 642 | self.buffer.clear(self.min_size); |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | } |
| 647 | |
| 648 | if inp.is_empty() && self.current_code == self.end_code() { |
| 649 | if !self.flush_out(&mut out) { |
| 650 | status = Ok(LzwStatus::Done); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | BufferResult { |
| 655 | consumed_in: c_in - inp.len(), |
| 656 | consumed_out: c_out - out.len(), |
| 657 | status, |
| 658 | } |
| 659 | } |
| 660 | |
| 661 | fn mark_ended(&mut self) -> bool { |
| 662 | core::mem::replace(&mut self.has_ended, true) |
| 663 | } |
| 664 | |
| 665 | fn restart(&mut self) { |
| 666 | self.has_ended = false; |
| 667 | } |
| 668 | |
| 669 | fn reset(&mut self) { |
| 670 | self.restart(); |
| 671 | self.current_code = self.clear_code; |
| 672 | self.tree.reset(self.min_size); |
| 673 | self.buffer.reset(self.min_size); |
| 674 | self.buffer_code(self.clear_code); |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | impl<B: Buffer> EncodeState<B> { |
| 679 | fn push_out(&mut self, out: &mut &mut [u8]) -> bool { |
| 680 | self.buffer.push_out(out) |
| 681 | } |
| 682 | |
| 683 | fn flush_out(&mut self, out: &mut &mut [u8]) -> bool { |
| 684 | self.buffer.flush_out(out) |
| 685 | } |
| 686 | |
| 687 | fn end_code(&self) -> Code { |
| 688 | self.clear_code + 1 |
| 689 | } |
| 690 | |
| 691 | fn buffer_pad(&mut self) { |
| 692 | self.buffer.buffer_pad(); |
| 693 | } |
| 694 | |
| 695 | fn buffer_code(&mut self, code: Code) { |
| 696 | self.buffer.buffer_code(code); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | impl Buffer for MsbBuffer { |
| 701 | fn new(min_size: u8) -> Self { |
| 702 | MsbBuffer { |
| 703 | code_size: min_size + 1, |
| 704 | buffer: 0, |
| 705 | bits_in_buffer: 0, |
| 706 | } |
| 707 | } |
| 708 | |
| 709 | fn reset(&mut self, min_size: u8) { |
| 710 | self.code_size = min_size + 1; |
| 711 | self.buffer = 0; |
| 712 | self.bits_in_buffer = 0; |
| 713 | } |
| 714 | |
| 715 | fn clear(&mut self, min_size: u8) { |
| 716 | self.code_size = min_size + 1; |
| 717 | } |
| 718 | |
| 719 | fn buffer_code(&mut self, code: Code) { |
| 720 | let shift = 64 - self.bits_in_buffer - self.code_size; |
| 721 | self.buffer |= u64::from(code) << shift; |
| 722 | self.bits_in_buffer += self.code_size; |
| 723 | } |
| 724 | |
| 725 | fn push_out(&mut self, out: &mut &mut [u8]) -> bool { |
| 726 | if self.bits_in_buffer + 2 * self.code_size < 64 { |
| 727 | return false; |
| 728 | } |
| 729 | |
| 730 | self.flush_out(out) |
| 731 | } |
| 732 | |
| 733 | fn flush_out(&mut self, out: &mut &mut [u8]) -> bool { |
| 734 | let want = usize::from(self.bits_in_buffer / 8); |
| 735 | let count = want.min((*out).len()); |
| 736 | let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count); |
| 737 | *out = tail; |
| 738 | |
| 739 | for b in bytes { |
| 740 | *b = ((self.buffer & 0xff00_0000_0000_0000) >> 56) as u8; |
| 741 | self.buffer <<= 8; |
| 742 | self.bits_in_buffer -= 8; |
| 743 | } |
| 744 | |
| 745 | count < want |
| 746 | } |
| 747 | |
| 748 | fn buffer_pad(&mut self) { |
| 749 | let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7; |
| 750 | self.bits_in_buffer += to_byte; |
| 751 | } |
| 752 | |
| 753 | fn bump_code_size(&mut self) { |
| 754 | self.code_size += 1; |
| 755 | } |
| 756 | |
| 757 | fn max_code(&self) -> Code { |
| 758 | (1 << self.code_size) - 1 |
| 759 | } |
| 760 | |
| 761 | fn code_size(&self) -> u8 { |
| 762 | self.code_size |
| 763 | } |
| 764 | } |
| 765 | |
| 766 | impl Buffer for LsbBuffer { |
| 767 | fn new(min_size: u8) -> Self { |
| 768 | LsbBuffer { |
| 769 | code_size: min_size + 1, |
| 770 | buffer: 0, |
| 771 | bits_in_buffer: 0, |
| 772 | } |
| 773 | } |
| 774 | |
| 775 | fn reset(&mut self, min_size: u8) { |
| 776 | self.code_size = min_size + 1; |
| 777 | self.buffer = 0; |
| 778 | self.bits_in_buffer = 0; |
| 779 | } |
| 780 | |
| 781 | fn clear(&mut self, min_size: u8) { |
| 782 | self.code_size = min_size + 1; |
| 783 | } |
| 784 | |
| 785 | fn buffer_code(&mut self, code: Code) { |
| 786 | self.buffer |= u64::from(code) << self.bits_in_buffer; |
| 787 | self.bits_in_buffer += self.code_size; |
| 788 | } |
| 789 | |
| 790 | fn push_out(&mut self, out: &mut &mut [u8]) -> bool { |
| 791 | if self.bits_in_buffer + 2 * self.code_size < 64 { |
| 792 | return false; |
| 793 | } |
| 794 | |
| 795 | self.flush_out(out) |
| 796 | } |
| 797 | |
| 798 | fn flush_out(&mut self, out: &mut &mut [u8]) -> bool { |
| 799 | let want = usize::from(self.bits_in_buffer / 8); |
| 800 | let count = want.min((*out).len()); |
| 801 | let (bytes, tail) = core::mem::replace(out, &mut []).split_at_mut(count); |
| 802 | *out = tail; |
| 803 | |
| 804 | for b in bytes { |
| 805 | *b = (self.buffer & 0x0000_0000_0000_00ff) as u8; |
| 806 | self.buffer >>= 8; |
| 807 | self.bits_in_buffer -= 8; |
| 808 | } |
| 809 | |
| 810 | count < want |
| 811 | } |
| 812 | |
| 813 | fn buffer_pad(&mut self) { |
| 814 | let to_byte = self.bits_in_buffer.wrapping_neg() & 0x7; |
| 815 | self.bits_in_buffer += to_byte; |
| 816 | } |
| 817 | |
| 818 | fn bump_code_size(&mut self) { |
| 819 | self.code_size += 1; |
| 820 | } |
| 821 | |
| 822 | fn max_code(&self) -> Code { |
| 823 | (1 << self.code_size) - 1 |
| 824 | } |
| 825 | |
| 826 | fn code_size(&self) -> u8 { |
| 827 | self.code_size |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | impl Tree { |
| 832 | fn init(&mut self, min_size: u8) { |
| 833 | // We need a way to represent the state of a currently empty buffer. We use the clear code |
| 834 | // for this, thus create one complex mapping that leads to the one-char base codes. |
| 835 | self.keys |
| 836 | .resize((1 << min_size) + 2, FullKey::NoSuccessor.into()); |
| 837 | self.complex.push(Full { |
| 838 | char_continuation: [0; 256], |
| 839 | }); |
| 840 | let map_of_begin = self.complex.last_mut().unwrap(); |
| 841 | for ch in 0u16..256 { |
| 842 | map_of_begin.char_continuation[usize::from(ch)] = ch; |
| 843 | } |
| 844 | self.keys[1 << min_size] = FullKey::Full(0).into(); |
| 845 | } |
| 846 | |
| 847 | fn reset(&mut self, min_size: u8) { |
| 848 | self.simples.clear(); |
| 849 | self.keys.truncate((1 << min_size) + 2); |
| 850 | // Keep entry for clear code. |
| 851 | self.complex.truncate(1); |
| 852 | // The first complex is not changed.. |
| 853 | for k in self.keys[..(1 << min_size) + 2].iter_mut() { |
| 854 | *k = FullKey::NoSuccessor.into(); |
| 855 | } |
| 856 | self.keys[1 << min_size] = FullKey::Full(0).into(); |
| 857 | } |
| 858 | |
| 859 | fn at_key(&self, code: Code, ch: u8) -> Option<Code> { |
| 860 | let key = self.keys[usize::from(code)]; |
| 861 | match FullKey::from(key) { |
| 862 | FullKey::NoSuccessor => None, |
| 863 | FullKey::Simple(idx) => { |
| 864 | let nexts = &self.simples[usize::from(idx)]; |
| 865 | let successors = nexts |
| 866 | .codes |
| 867 | .iter() |
| 868 | .zip(nexts.chars.iter()) |
| 869 | .take(usize::from(nexts.count)); |
| 870 | for (&scode, &sch) in successors { |
| 871 | if sch == ch { |
| 872 | return Some(scode); |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | None |
| 877 | } |
| 878 | FullKey::Full(idx) => { |
| 879 | let full = &self.complex[usize::from(idx)]; |
| 880 | let precode = full.char_continuation[usize::from(ch)]; |
| 881 | if usize::from(precode) < MAX_ENTRIES { |
| 882 | Some(precode) |
| 883 | } else { |
| 884 | None |
| 885 | } |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | |
| 890 | /// Iterate to the next char. |
| 891 | /// Return Ok when it was already in the tree or creates a new entry for it and returns Err. |
| 892 | fn iterate(&mut self, code: Code, ch: u8) -> Result<Code, Code> { |
| 893 | if let Some(next) = self.at_key(code, ch) { |
| 894 | Ok(next) |
| 895 | } else { |
| 896 | Err(self.append(code, ch)) |
| 897 | } |
| 898 | } |
| 899 | |
| 900 | fn append(&mut self, code: Code, ch: u8) -> Code { |
| 901 | let next: Code = self.keys.len() as u16; |
| 902 | let key = self.keys[usize::from(code)]; |
| 903 | // TODO: with debug assertions, check for non-existence |
| 904 | match FullKey::from(key) { |
| 905 | FullKey::NoSuccessor => { |
| 906 | let new_key = FullKey::Simple(self.simples.len() as u16); |
| 907 | self.simples.push(Simple::default()); |
| 908 | let simples = self.simples.last_mut().unwrap(); |
| 909 | simples.codes[0] = next; |
| 910 | simples.chars[0] = ch; |
| 911 | simples.count = 1; |
| 912 | self.keys[usize::from(code)] = new_key.into(); |
| 913 | } |
| 914 | FullKey::Simple(idx) if usize::from(self.simples[usize::from(idx)].count) < SHORT => { |
| 915 | let nexts = &mut self.simples[usize::from(idx)]; |
| 916 | let nidx = usize::from(nexts.count); |
| 917 | nexts.chars[nidx] = ch; |
| 918 | nexts.codes[nidx] = next; |
| 919 | nexts.count += 1; |
| 920 | } |
| 921 | FullKey::Simple(idx) => { |
| 922 | let new_key = FullKey::Full(self.complex.len() as u16); |
| 923 | let simples = &self.simples[usize::from(idx)]; |
| 924 | self.complex.push(Full { |
| 925 | char_continuation: [Code::max_value(); 256], |
| 926 | }); |
| 927 | let full = self.complex.last_mut().unwrap(); |
| 928 | for (&pch, &pcont) in simples.chars.iter().zip(simples.codes.iter()) { |
| 929 | full.char_continuation[usize::from(pch)] = pcont; |
| 930 | } |
| 931 | self.keys[usize::from(code)] = new_key.into(); |
| 932 | } |
| 933 | FullKey::Full(idx) => { |
| 934 | let full = &mut self.complex[usize::from(idx)]; |
| 935 | full.char_continuation[usize::from(ch)] = next; |
| 936 | } |
| 937 | } |
| 938 | self.keys.push(FullKey::NoSuccessor.into()); |
| 939 | next |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | impl Default for FullKey { |
| 944 | fn default() -> Self { |
| 945 | FullKey::NoSuccessor |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | impl Default for Simple { |
| 950 | fn default() -> Self { |
| 951 | Simple { |
| 952 | codes: [0; SHORT], |
| 953 | chars: [0; SHORT], |
| 954 | count: 0, |
| 955 | } |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | impl From<CompressedKey> for FullKey { |
| 960 | fn from(CompressedKey(key: u16): CompressedKey) -> Self { |
| 961 | match (key >> MAX_CODESIZE) & 0xf { |
| 962 | 0 => FullKey::Full(key & 0xfff), |
| 963 | 1 => FullKey::Simple(key & 0xfff), |
| 964 | _ => FullKey::NoSuccessor, |
| 965 | } |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | impl From<FullKey> for CompressedKey { |
| 970 | fn from(full: FullKey) -> Self { |
| 971 | CompressedKey(match full { |
| 972 | FullKey::NoSuccessor => 0x2000, |
| 973 | FullKey::Simple(code: u16) => 0x1000 | code, |
| 974 | FullKey::Full(code: u16) => code, |
| 975 | }) |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | #[cfg (test)] |
| 980 | mod tests { |
| 981 | use super::{BitOrder, Encoder, LzwError, LzwStatus}; |
| 982 | use crate::alloc::vec::Vec; |
| 983 | use crate::decode::Decoder; |
| 984 | #[cfg (feature = "std" )] |
| 985 | use crate::StreamBuf; |
| 986 | |
| 987 | #[test ] |
| 988 | fn invalid_input_rejected() { |
| 989 | const BIT_LEN: u8 = 2; |
| 990 | let ref input = [0, 1 << BIT_LEN /* invalid */, 0]; |
| 991 | let ref mut target = [0u8; 128]; |
| 992 | let mut encoder = Encoder::new(BitOrder::Msb, BIT_LEN); |
| 993 | |
| 994 | encoder.finish(); |
| 995 | // We require simulation of normality, that is byte-for-byte compression. |
| 996 | let result = encoder.encode_bytes(input, target); |
| 997 | assert!(if let Err(LzwError::InvalidCode) = result.status { |
| 998 | true |
| 999 | } else { |
| 1000 | false |
| 1001 | }); |
| 1002 | assert_eq!(result.consumed_in, 1); |
| 1003 | |
| 1004 | let fixed = encoder.encode_bytes(&[1, 0], &mut target[result.consumed_out..]); |
| 1005 | assert!(if let Ok(LzwStatus::Done) = fixed.status { |
| 1006 | true |
| 1007 | } else { |
| 1008 | false |
| 1009 | }); |
| 1010 | assert_eq!(fixed.consumed_in, 2); |
| 1011 | |
| 1012 | // Okay, now test we actually fixed it. |
| 1013 | let ref mut compare = [0u8; 4]; |
| 1014 | let mut todo = &target[..result.consumed_out + fixed.consumed_out]; |
| 1015 | let mut free = &mut compare[..]; |
| 1016 | let mut decoder = Decoder::new(BitOrder::Msb, BIT_LEN); |
| 1017 | |
| 1018 | // Decode with up to 16 rounds, far too much but inconsequential. |
| 1019 | for _ in 0..16 { |
| 1020 | if decoder.has_ended() { |
| 1021 | break; |
| 1022 | } |
| 1023 | |
| 1024 | let result = decoder.decode_bytes(todo, free); |
| 1025 | assert!(result.status.is_ok()); |
| 1026 | todo = &todo[result.consumed_in..]; |
| 1027 | free = &mut free[result.consumed_out..]; |
| 1028 | } |
| 1029 | |
| 1030 | let remaining = { free }.len(); |
| 1031 | let len = compare.len() - remaining; |
| 1032 | assert_eq!(todo, &[]); |
| 1033 | assert_eq!(compare[..len], [0, 1, 0]); |
| 1034 | } |
| 1035 | |
| 1036 | #[test ] |
| 1037 | #[should_panic ] |
| 1038 | fn invalid_code_size_low() { |
| 1039 | let _ = Encoder::new(BitOrder::Msb, 1); |
| 1040 | } |
| 1041 | |
| 1042 | #[test ] |
| 1043 | #[should_panic ] |
| 1044 | fn invalid_code_size_high() { |
| 1045 | let _ = Encoder::new(BitOrder::Msb, 14); |
| 1046 | } |
| 1047 | |
| 1048 | fn make_decoded() -> Vec<u8> { |
| 1049 | const FILE: &'static [u8] = |
| 1050 | include_bytes!(concat!(env!("CARGO_MANIFEST_DIR" ), "/Cargo.lock" )); |
| 1051 | return Vec::from(FILE); |
| 1052 | } |
| 1053 | |
| 1054 | #[test ] |
| 1055 | #[cfg (feature = "std" )] |
| 1056 | fn into_stream_buffer_no_alloc() { |
| 1057 | let encoded = make_decoded(); |
| 1058 | let mut encoder = Encoder::new(BitOrder::Msb, 8); |
| 1059 | |
| 1060 | let mut output = vec![]; |
| 1061 | let mut buffer = [0; 512]; |
| 1062 | let mut istream = encoder.into_stream(&mut output); |
| 1063 | istream.set_buffer(&mut buffer[..]); |
| 1064 | istream.encode(&encoded[..]).status.unwrap(); |
| 1065 | |
| 1066 | match istream.buffer { |
| 1067 | Some(StreamBuf::Borrowed(_)) => {} |
| 1068 | None => panic!("Decoded without buffer??" ), |
| 1069 | Some(StreamBuf::Owned(_)) => panic!("Unexpected buffer allocation" ), |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | #[test ] |
| 1074 | #[cfg (feature = "std" )] |
| 1075 | fn into_stream_buffer_small_alloc() { |
| 1076 | struct WriteTap<W: std::io::Write>(W); |
| 1077 | const BUF_SIZE: usize = 512; |
| 1078 | |
| 1079 | impl<W: std::io::Write> std::io::Write for WriteTap<W> { |
| 1080 | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> { |
| 1081 | assert!(buf.len() <= BUF_SIZE); |
| 1082 | self.0.write(buf) |
| 1083 | } |
| 1084 | fn flush(&mut self) -> std::io::Result<()> { |
| 1085 | self.0.flush() |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | let encoded = make_decoded(); |
| 1090 | let mut encoder = Encoder::new(BitOrder::Msb, 8); |
| 1091 | |
| 1092 | let mut output = vec![]; |
| 1093 | let mut istream = encoder.into_stream(WriteTap(&mut output)); |
| 1094 | istream.set_buffer_size(512); |
| 1095 | istream.encode(&encoded[..]).status.unwrap(); |
| 1096 | |
| 1097 | match istream.buffer { |
| 1098 | Some(StreamBuf::Owned(vec)) => assert!(vec.len() <= BUF_SIZE), |
| 1099 | Some(StreamBuf::Borrowed(_)) => panic!("Unexpected borrowed buffer, where from?" ), |
| 1100 | None => panic!("Decoded without buffer??" ), |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | #[test ] |
| 1105 | #[cfg (feature = "std" )] |
| 1106 | fn reset() { |
| 1107 | let encoded = make_decoded(); |
| 1108 | let mut encoder = Encoder::new(BitOrder::Msb, 8); |
| 1109 | let mut reference = None; |
| 1110 | |
| 1111 | for _ in 0..2 { |
| 1112 | let mut output = vec![]; |
| 1113 | let mut buffer = [0; 512]; |
| 1114 | let mut istream = encoder.into_stream(&mut output); |
| 1115 | istream.set_buffer(&mut buffer[..]); |
| 1116 | istream.encode_all(&encoded[..]).status.unwrap(); |
| 1117 | |
| 1118 | encoder.reset(); |
| 1119 | if let Some(reference) = &reference { |
| 1120 | assert_eq!(output, *reference); |
| 1121 | } else { |
| 1122 | reference = Some(output); |
| 1123 | } |
| 1124 | } |
| 1125 | } |
| 1126 | } |
| 1127 | |