1 | // Copyright 2018 The Fuchsia Authors |
2 | // |
3 | // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
4 | // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
5 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
6 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
7 | // This file may not be copied, modified, or distributed except according to |
8 | // those terms. |
9 | |
10 | // After updating the following doc comment, make sure to run the following |
11 | // command to update `README.md` based on its contents: |
12 | // |
13 | // cargo -q run --manifest-path tools/Cargo.toml -p generate-readme > README.md |
14 | |
15 | //! *<span style="font-size: 100%; color:grey;">Need more out of zerocopy? |
16 | //! Submit a [customer request issue][customer-request-issue]!</span>* |
17 | //! |
18 | //! ***<span style="font-size: 140%">Fast, safe, <span |
19 | //! style="color:red;">compile error</span>. Pick two.</span>*** |
20 | //! |
21 | //! Zerocopy makes zero-cost memory manipulation effortless. We write `unsafe` |
22 | //! so you don't have to. |
23 | //! |
24 | //! *Thanks for using zerocopy 0.8! For an overview of what changes from 0.7, |
25 | //! check out our [release notes][release-notes], which include a step-by-step |
26 | //! guide for upgrading from 0.7.* |
27 | //! |
28 | //! *Have questions? Need help? Ask the maintainers on [GitHub][github-q-a] or |
29 | //! on [Discord][discord]!* |
30 | //! |
31 | //! [customer-request-issue]: https://github.com/google/zerocopy/issues/new/choose |
32 | //! [release-notes]: https://github.com/google/zerocopy/discussions/1680 |
33 | //! [github-q-a]: https://github.com/google/zerocopy/discussions/categories/q-a |
34 | //! [discord]: https://discord.gg/MAvWH2R6zk |
35 | //! |
36 | //! # Overview |
37 | //! |
38 | //! ##### Conversion Traits |
39 | //! |
40 | //! Zerocopy provides four derivable traits for zero-cost conversions: |
41 | //! - [`TryFromBytes`] indicates that a type may safely be converted from |
42 | //! certain byte sequences (conditional on runtime checks) |
43 | //! - [`FromZeros`] indicates that a sequence of zero bytes represents a valid |
44 | //! instance of a type |
45 | //! - [`FromBytes`] indicates that a type may safely be converted from an |
46 | //! arbitrary byte sequence |
47 | //! - [`IntoBytes`] indicates that a type may safely be converted *to* a byte |
48 | //! sequence |
49 | //! |
50 | //! These traits support sized types, slices, and [slice DSTs][slice-dsts]. |
51 | //! |
52 | //! [slice-dsts]: KnownLayout#dynamically-sized-types |
53 | //! |
54 | //! ##### Marker Traits |
55 | //! |
56 | //! Zerocopy provides three derivable marker traits that do not provide any |
57 | //! functionality themselves, but are required to call certain methods provided |
58 | //! by the conversion traits: |
59 | //! - [`KnownLayout`] indicates that zerocopy can reason about certain layout |
60 | //! qualities of a type |
61 | //! - [`Immutable`] indicates that a type is free from interior mutability, |
62 | //! except by ownership or an exclusive (`&mut`) borrow |
63 | //! - [`Unaligned`] indicates that a type's alignment requirement is 1 |
64 | //! |
65 | //! You should generally derive these marker traits whenever possible. |
66 | //! |
67 | //! ##### Conversion Macros |
68 | //! |
69 | //! Zerocopy provides six macros for safe casting between types: |
70 | //! |
71 | //! - ([`try_`][try_transmute])[`transmute`] (conditionally) converts a value of |
72 | //! one type to a value of another type of the same size |
73 | //! - ([`try_`][try_transmute_mut])[`transmute_mut`] (conditionally) converts a |
74 | //! mutable reference of one type to a mutable reference of another type of |
75 | //! the same size |
76 | //! - ([`try_`][try_transmute_ref])[`transmute_ref`] (conditionally) converts a |
77 | //! mutable or immutable reference of one type to an immutable reference of |
78 | //! another type of the same size |
79 | //! |
80 | //! These macros perform *compile-time* size and alignment checks, meaning that |
81 | //! unconditional casts have zero cost at runtime. Conditional casts do not need |
82 | //! to validate size or alignment runtime, but do need to validate contents. |
83 | //! |
84 | //! These macros cannot be used in generic contexts. For generic conversions, |
85 | //! use the methods defined by the [conversion traits](#conversion-traits). |
86 | //! |
87 | //! ##### Byteorder-Aware Numerics |
88 | //! |
89 | //! Zerocopy provides byte-order aware integer types that support these |
90 | //! conversions; see the [`byteorder`] module. These types are especially useful |
91 | //! for network parsing. |
92 | //! |
93 | //! # Cargo Features |
94 | //! |
95 | //! - **`alloc`** |
96 | //! By default, `zerocopy` is `no_std`. When the `alloc` feature is enabled, |
97 | //! the `alloc` crate is added as a dependency, and some allocation-related |
98 | //! functionality is added. |
99 | //! |
100 | //! - **`std`** |
101 | //! By default, `zerocopy` is `no_std`. When the `std` feature is enabled, the |
102 | //! `std` crate is added as a dependency (ie, `no_std` is disabled), and |
103 | //! support for some `std` types is added. `std` implies `alloc`. |
104 | //! |
105 | //! - **`derive`** |
106 | //! Provides derives for the core marker traits via the `zerocopy-derive` |
107 | //! crate. These derives are re-exported from `zerocopy`, so it is not |
108 | //! necessary to depend on `zerocopy-derive` directly. |
109 | //! |
110 | //! However, you may experience better compile times if you instead directly |
111 | //! depend on both `zerocopy` and `zerocopy-derive` in your `Cargo.toml`, |
112 | //! since doing so will allow Rust to compile these crates in parallel. To do |
113 | //! so, do *not* enable the `derive` feature, and list both dependencies in |
114 | //! your `Cargo.toml` with the same leading non-zero version number; e.g: |
115 | //! |
116 | //! ```toml |
117 | //! [dependencies] |
118 | //! zerocopy = "0.X" |
119 | //! zerocopy-derive = "0.X" |
120 | //! ``` |
121 | //! |
122 | //! To avoid the risk of [duplicate import errors][duplicate-import-errors] if |
123 | //! one of your dependencies enables zerocopy's `derive` feature, import |
124 | //! derives as `use zerocopy_derive::*` rather than by name (e.g., `use |
125 | //! zerocopy_derive::FromBytes`). |
126 | //! |
127 | //! - **`simd`** |
128 | //! When the `simd` feature is enabled, `FromZeros`, `FromBytes`, and |
129 | //! `IntoBytes` impls are emitted for all stable SIMD types which exist on the |
130 | //! target platform. Note that the layout of SIMD types is not yet stabilized, |
131 | //! so these impls may be removed in the future if layout changes make them |
132 | //! invalid. For more information, see the Unsafe Code Guidelines Reference |
133 | //! page on the [layout of packed SIMD vectors][simd-layout]. |
134 | //! |
135 | //! - **`simd-nightly`** |
136 | //! Enables the `simd` feature and adds support for SIMD types which are only |
137 | //! available on nightly. Since these types are unstable, support for any type |
138 | //! may be removed at any point in the future. |
139 | //! |
140 | //! - **`float-nightly`** |
141 | //! Adds support for the unstable `f16` and `f128` types. These types are |
142 | //! not yet fully implemented and may not be supported on all platforms. |
143 | //! |
144 | //! [duplicate-import-errors]: https://github.com/google/zerocopy/issues/1587 |
145 | //! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html |
146 | //! |
147 | //! # Security Ethos |
148 | //! |
149 | //! Zerocopy is expressly designed for use in security-critical contexts. We |
150 | //! strive to ensure that that zerocopy code is sound under Rust's current |
151 | //! memory model, and *any future memory model*. We ensure this by: |
152 | //! - **...not 'guessing' about Rust's semantics.** |
153 | //! We annotate `unsafe` code with a precise rationale for its soundness that |
154 | //! cites a relevant section of Rust's official documentation. When Rust's |
155 | //! documented semantics are unclear, we work with the Rust Operational |
156 | //! Semantics Team to clarify Rust's documentation. |
157 | //! - **...rigorously testing our implementation.** |
158 | //! We run tests using [Miri], ensuring that zerocopy is sound across a wide |
159 | //! array of supported target platforms of varying endianness and pointer |
160 | //! width, and across both current and experimental memory models of Rust. |
161 | //! - **...formally proving the correctness of our implementation.** |
162 | //! We apply formal verification tools like [Kani][kani] to prove zerocopy's |
163 | //! correctness. |
164 | //! |
165 | //! For more information, see our full [soundness policy]. |
166 | //! |
167 | //! [Miri]: https://github.com/rust-lang/miri |
168 | //! [Kani]: https://github.com/model-checking/kani |
169 | //! [soundness policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#soundness |
170 | //! |
171 | //! # Relationship to Project Safe Transmute |
172 | //! |
173 | //! [Project Safe Transmute] is an official initiative of the Rust Project to |
174 | //! develop language-level support for safer transmutation. The Project consults |
175 | //! with crates like zerocopy to identify aspects of safer transmutation that |
176 | //! would benefit from compiler support, and has developed an [experimental, |
177 | //! compiler-supported analysis][mcp-transmutability] which determines whether, |
178 | //! for a given type, any value of that type may be soundly transmuted into |
179 | //! another type. Once this functionality is sufficiently mature, zerocopy |
180 | //! intends to replace its internal transmutability analysis (implemented by our |
181 | //! custom derives) with the compiler-supported one. This change will likely be |
182 | //! an implementation detail that is invisible to zerocopy's users. |
183 | //! |
184 | //! Project Safe Transmute will not replace the need for most of zerocopy's |
185 | //! higher-level abstractions. The experimental compiler analysis is a tool for |
186 | //! checking the soundness of `unsafe` code, not a tool to avoid writing |
187 | //! `unsafe` code altogether. For the foreseeable future, crates like zerocopy |
188 | //! will still be required in order to provide higher-level abstractions on top |
189 | //! of the building block provided by Project Safe Transmute. |
190 | //! |
191 | //! [Project Safe Transmute]: https://rust-lang.github.io/rfcs/2835-project-safe-transmute.html |
192 | //! [mcp-transmutability]: https://github.com/rust-lang/compiler-team/issues/411 |
193 | //! |
194 | //! # MSRV |
195 | //! |
196 | //! See our [MSRV policy]. |
197 | //! |
198 | //! [MSRV policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#msrv |
199 | //! |
200 | //! # Changelog |
201 | //! |
202 | //! Zerocopy uses [GitHub Releases]. |
203 | //! |
204 | //! [GitHub Releases]: https://github.com/google/zerocopy/releases |
205 | //! |
206 | //! # Thanks |
207 | //! |
208 | //! Zerocopy is maintained by engineers at Google and Amazon with help from |
209 | //! [many wonderful contributors][contributors]. Thank you to everyone who has |
210 | //! lent a hand in making Rust a little more secure! |
211 | //! |
212 | //! [contributors]: https://github.com/google/zerocopy/graphs/contributors |
213 | |
214 | // Sometimes we want to use lints which were added after our MSRV. |
215 | // `unknown_lints` is `warn` by default and we deny warnings in CI, so without |
216 | // this attribute, any unknown lint would cause a CI failure when testing with |
217 | // our MSRV. |
218 | #![allow (unknown_lints, non_local_definitions, unreachable_patterns)] |
219 | #![deny (renamed_and_removed_lints)] |
220 | #![deny ( |
221 | anonymous_parameters, |
222 | deprecated_in_future, |
223 | late_bound_lifetime_arguments, |
224 | missing_copy_implementations, |
225 | missing_debug_implementations, |
226 | missing_docs, |
227 | path_statements, |
228 | patterns_in_fns_without_body, |
229 | rust_2018_idioms, |
230 | trivial_numeric_casts, |
231 | unreachable_pub, |
232 | unsafe_op_in_unsafe_fn, |
233 | unused_extern_crates, |
234 | // We intentionally choose not to deny `unused_qualifications`. When items |
235 | // are added to the prelude (e.g., `core::mem::size_of`), this has the |
236 | // consequence of making some uses trigger this lint on the latest toolchain |
237 | // (e.g., `mem::size_of`), but fixing it (e.g. by replacing with `size_of`) |
238 | // does not work on older toolchains. |
239 | // |
240 | // We tested a more complicated fix in #1413, but ultimately decided that, |
241 | // since this lint is just a minor style lint, the complexity isn't worth it |
242 | // - it's fine to occasionally have unused qualifications slip through, |
243 | // especially since these do not affect our user-facing API in any way. |
244 | variant_size_differences |
245 | )] |
246 | #![cfg_attr ( |
247 | __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, |
248 | deny(fuzzy_provenance_casts, lossy_provenance_casts) |
249 | )] |
250 | #![deny ( |
251 | clippy::all, |
252 | clippy::alloc_instead_of_core, |
253 | clippy::arithmetic_side_effects, |
254 | clippy::as_underscore, |
255 | clippy::assertions_on_result_states, |
256 | clippy::as_conversions, |
257 | clippy::correctness, |
258 | clippy::dbg_macro, |
259 | clippy::decimal_literal_representation, |
260 | clippy::double_must_use, |
261 | clippy::get_unwrap, |
262 | clippy::indexing_slicing, |
263 | clippy::missing_inline_in_public_items, |
264 | clippy::missing_safety_doc, |
265 | clippy::must_use_candidate, |
266 | clippy::must_use_unit, |
267 | clippy::obfuscated_if_else, |
268 | clippy::perf, |
269 | clippy::print_stdout, |
270 | clippy::return_self_not_must_use, |
271 | clippy::std_instead_of_core, |
272 | clippy::style, |
273 | clippy::suspicious, |
274 | clippy::todo, |
275 | clippy::undocumented_unsafe_blocks, |
276 | clippy::unimplemented, |
277 | clippy::unnested_or_patterns, |
278 | clippy::unwrap_used, |
279 | clippy::use_debug |
280 | )] |
281 | #![allow (clippy::type_complexity)] |
282 | #![deny ( |
283 | rustdoc::bare_urls, |
284 | rustdoc::broken_intra_doc_links, |
285 | rustdoc::invalid_codeblock_attributes, |
286 | rustdoc::invalid_html_tags, |
287 | rustdoc::invalid_rust_codeblocks, |
288 | rustdoc::missing_crate_level_docs, |
289 | rustdoc::private_intra_doc_links |
290 | )] |
291 | // In test code, it makes sense to weight more heavily towards concise, readable |
292 | // code over correct or debuggable code. |
293 | #![cfg_attr (any(test, kani), allow( |
294 | // In tests, you get line numbers and have access to source code, so panic |
295 | // messages are less important. You also often unwrap a lot, which would |
296 | // make expect'ing instead very verbose. |
297 | clippy::unwrap_used, |
298 | // In tests, there's no harm to "panic risks" - the worst that can happen is |
299 | // that your test will fail, and you'll fix it. By contrast, panic risks in |
300 | // production code introduce the possibly of code panicking unexpectedly "in |
301 | // the field". |
302 | clippy::arithmetic_side_effects, |
303 | clippy::indexing_slicing, |
304 | ))] |
305 | #![cfg_attr (not(any(test, kani, feature = "std" )), no_std)] |
306 | #![cfg_attr ( |
307 | all(feature = "simd-nightly" , any(target_arch = "x86" , target_arch = "x86_64" )), |
308 | feature(stdarch_x86_avx512) |
309 | )] |
310 | #![cfg_attr ( |
311 | all(feature = "simd-nightly" , target_arch = "arm" ), |
312 | feature(stdarch_arm_dsp, stdarch_arm_neon_intrinsics) |
313 | )] |
314 | #![cfg_attr ( |
315 | all(feature = "simd-nightly" , any(target_arch = "powerpc" , target_arch = "powerpc64" )), |
316 | feature(stdarch_powerpc) |
317 | )] |
318 | #![cfg_attr (feature = "float-nightly" , feature(f16, f128))] |
319 | #![cfg_attr (doc_cfg, feature(doc_cfg))] |
320 | #![cfg_attr ( |
321 | __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, |
322 | feature(layout_for_ptr, coverage_attribute) |
323 | )] |
324 | |
325 | // This is a hack to allow zerocopy-derive derives to work in this crate. They |
326 | // assume that zerocopy is linked as an extern crate, so they access items from |
327 | // it as `zerocopy::Xxx`. This makes that still work. |
328 | #[cfg (any(feature = "derive" , test))] |
329 | extern crate self as zerocopy; |
330 | |
331 | #[doc (hidden)] |
332 | #[macro_use ] |
333 | pub mod util; |
334 | |
335 | pub mod byte_slice; |
336 | pub mod byteorder; |
337 | mod deprecated; |
338 | // This module is `pub` so that zerocopy's error types and error handling |
339 | // documentation is grouped together in a cohesive module. In practice, we |
340 | // expect most users to use the re-export of `error`'s items to avoid identifier |
341 | // stuttering. |
342 | pub mod error; |
343 | mod impls; |
344 | #[doc (hidden)] |
345 | pub mod layout; |
346 | mod macros; |
347 | #[doc (hidden)] |
348 | pub mod pointer; |
349 | mod r#ref; |
350 | // TODO(#252): If we make this pub, come up with a better name. |
351 | mod wrappers; |
352 | |
353 | pub use crate::byte_slice::*; |
354 | pub use crate::byteorder::*; |
355 | pub use crate::error::*; |
356 | pub use crate::r#ref::*; |
357 | pub use crate::wrappers::*; |
358 | |
359 | use core::{ |
360 | cell::{Cell, UnsafeCell}, |
361 | cmp::Ordering, |
362 | fmt::{self, Debug, Display, Formatter}, |
363 | hash::Hasher, |
364 | marker::PhantomData, |
365 | mem::{self, ManuallyDrop, MaybeUninit as CoreMaybeUninit}, |
366 | num::{ |
367 | NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128, |
368 | NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping, |
369 | }, |
370 | ops::{Deref, DerefMut}, |
371 | ptr::{self, NonNull}, |
372 | slice, |
373 | }; |
374 | |
375 | #[cfg (feature = "std" )] |
376 | use std::io; |
377 | |
378 | use crate::pointer::invariant::{self, BecauseExclusive}; |
379 | |
380 | #[cfg (any(feature = "alloc" , test, kani))] |
381 | extern crate alloc; |
382 | #[cfg (any(feature = "alloc" , test))] |
383 | use alloc::{boxed::Box, vec::Vec}; |
384 | |
385 | #[cfg (any(feature = "alloc" , test))] |
386 | use core::alloc::Layout; |
387 | |
388 | // Used by `TryFromBytes::is_bit_valid`. |
389 | #[doc (hidden)] |
390 | pub use crate::pointer::{invariant::BecauseImmutable, Maybe, Ptr}; |
391 | // Used by `KnownLayout`. |
392 | #[doc (hidden)] |
393 | pub use crate::layout::*; |
394 | |
395 | // For each trait polyfill, as soon as the corresponding feature is stable, the |
396 | // polyfill import will be unused because method/function resolution will prefer |
397 | // the inherent method/function over a trait method/function. Thus, we suppress |
398 | // the `unused_imports` warning. |
399 | // |
400 | // See the documentation on `util::polyfills` for more information. |
401 | #[allow (unused_imports)] |
402 | use crate::util::polyfills::{self, NonNullExt as _, NumExt as _}; |
403 | |
404 | #[rustversion::nightly] |
405 | #[cfg (all(test, not(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)))] |
406 | const _: () = { |
407 | #[deprecated = "some tests may be skipped due to missing RUSTFLAGS= \"--cfg __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS \"" ] |
408 | const _WARNING: () = (); |
409 | #[warn (deprecated)] |
410 | _WARNING |
411 | }; |
412 | |
413 | // These exist so that code which was written against the old names will get |
414 | // less confusing error messages when they upgrade to a more recent version of |
415 | // zerocopy. On our MSRV toolchain, the error messages read, for example: |
416 | // |
417 | // error[E0603]: trait `FromZeroes` is private |
418 | // --> examples/deprecated.rs:1:15 |
419 | // | |
420 | // 1 | use zerocopy::FromZeroes; |
421 | // | ^^^^^^^^^^ private trait |
422 | // | |
423 | // note: the trait `FromZeroes` is defined here |
424 | // --> /Users/josh/workspace/zerocopy/src/lib.rs:1845:5 |
425 | // | |
426 | // 1845 | use FromZeros as FromZeroes; |
427 | // | ^^^^^^^^^^^^^^^^^^^^^^^ |
428 | // |
429 | // The "note" provides enough context to make it easy to figure out how to fix |
430 | // the error. |
431 | #[allow (unused)] |
432 | use {FromZeros as FromZeroes, IntoBytes as AsBytes, Ref as LayoutVerified}; |
433 | |
434 | /// Implements [`KnownLayout`]. |
435 | /// |
436 | /// This derive analyzes various aspects of a type's layout that are needed for |
437 | /// some of zerocopy's APIs. It can be applied to structs, enums, and unions; |
438 | /// e.g.: |
439 | /// |
440 | /// ``` |
441 | /// # use zerocopy_derive::KnownLayout; |
442 | /// #[derive(KnownLayout)] |
443 | /// struct MyStruct { |
444 | /// # /* |
445 | /// ... |
446 | /// # */ |
447 | /// } |
448 | /// |
449 | /// #[derive(KnownLayout)] |
450 | /// enum MyEnum { |
451 | /// # V00, |
452 | /// # /* |
453 | /// ... |
454 | /// # */ |
455 | /// } |
456 | /// |
457 | /// #[derive(KnownLayout)] |
458 | /// union MyUnion { |
459 | /// # variant: u8, |
460 | /// # /* |
461 | /// ... |
462 | /// # */ |
463 | /// } |
464 | /// ``` |
465 | /// |
466 | /// # Limitations |
467 | /// |
468 | /// This derive cannot currently be applied to unsized structs without an |
469 | /// explicit `repr` attribute. |
470 | /// |
471 | /// Some invocations of this derive run afoul of a [known bug] in Rust's type |
472 | /// privacy checker. For example, this code: |
473 | /// |
474 | /// ```compile_fail,E0446 |
475 | /// use zerocopy::*; |
476 | /// # use zerocopy_derive::*; |
477 | /// |
478 | /// #[derive(KnownLayout)] |
479 | /// #[repr(C)] |
480 | /// pub struct PublicType { |
481 | /// leading: Foo, |
482 | /// trailing: Bar, |
483 | /// } |
484 | /// |
485 | /// #[derive(KnownLayout)] |
486 | /// struct Foo; |
487 | /// |
488 | /// #[derive(KnownLayout)] |
489 | /// struct Bar; |
490 | /// ``` |
491 | /// |
492 | /// ...results in a compilation error: |
493 | /// |
494 | /// ```text |
495 | /// error[E0446]: private type `Bar` in public interface |
496 | /// --> examples/bug.rs:3:10 |
497 | /// | |
498 | /// 3 | #[derive(KnownLayout)] |
499 | /// | ^^^^^^^^^^^ can't leak private type |
500 | /// ... |
501 | /// 14 | struct Bar; |
502 | /// | ---------- `Bar` declared as private |
503 | /// | |
504 | /// = note: this error originates in the derive macro `KnownLayout` (in Nightly builds, run with -Z macro-backtrace for more info) |
505 | /// ``` |
506 | /// |
507 | /// This issue arises when `#[derive(KnownLayout)]` is applied to `repr(C)` |
508 | /// structs whose trailing field type is less public than the enclosing struct. |
509 | /// |
510 | /// To work around this, mark the trailing field type `pub` and annotate it with |
511 | /// `#[doc(hidden)]`; e.g.: |
512 | /// |
513 | /// ```no_run |
514 | /// use zerocopy::*; |
515 | /// # use zerocopy_derive::*; |
516 | /// |
517 | /// #[derive(KnownLayout)] |
518 | /// #[repr(C)] |
519 | /// pub struct PublicType { |
520 | /// leading: Foo, |
521 | /// trailing: Bar, |
522 | /// } |
523 | /// |
524 | /// #[derive(KnownLayout)] |
525 | /// struct Foo; |
526 | /// |
527 | /// #[doc(hidden)] |
528 | /// #[derive(KnownLayout)] |
529 | /// pub struct Bar; // <- `Bar` is now also `pub` |
530 | /// ``` |
531 | /// |
532 | /// [known bug]: https://github.com/rust-lang/rust/issues/45713 |
533 | #[cfg (any(feature = "derive" , test))] |
534 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
535 | pub use zerocopy_derive::KnownLayout; |
536 | |
537 | /// Indicates that zerocopy can reason about certain aspects of a type's layout. |
538 | /// |
539 | /// This trait is required by many of zerocopy's APIs. It supports sized types, |
540 | /// slices, and [slice DSTs](#dynamically-sized-types). |
541 | /// |
542 | /// # Implementation |
543 | /// |
544 | /// **Do not implement this trait yourself!** Instead, use |
545 | /// [`#[derive(KnownLayout)]`][derive]; e.g.: |
546 | /// |
547 | /// ``` |
548 | /// # use zerocopy_derive::KnownLayout; |
549 | /// #[derive(KnownLayout)] |
550 | /// struct MyStruct { |
551 | /// # /* |
552 | /// ... |
553 | /// # */ |
554 | /// } |
555 | /// |
556 | /// #[derive(KnownLayout)] |
557 | /// enum MyEnum { |
558 | /// # /* |
559 | /// ... |
560 | /// # */ |
561 | /// } |
562 | /// |
563 | /// #[derive(KnownLayout)] |
564 | /// union MyUnion { |
565 | /// # variant: u8, |
566 | /// # /* |
567 | /// ... |
568 | /// # */ |
569 | /// } |
570 | /// ``` |
571 | /// |
572 | /// This derive performs a sophisticated analysis to deduce the layout |
573 | /// characteristics of types. You **must** implement this trait via the derive. |
574 | /// |
575 | /// # Dynamically-sized types |
576 | /// |
577 | /// `KnownLayout` supports slice-based dynamically sized types ("slice DSTs"). |
578 | /// |
579 | /// A slice DST is a type whose trailing field is either a slice or another |
580 | /// slice DST, rather than a type with fixed size. For example: |
581 | /// |
582 | /// ``` |
583 | /// #[repr(C)] |
584 | /// struct PacketHeader { |
585 | /// # /* |
586 | /// ... |
587 | /// # */ |
588 | /// } |
589 | /// |
590 | /// #[repr(C)] |
591 | /// struct Packet { |
592 | /// header: PacketHeader, |
593 | /// body: [u8], |
594 | /// } |
595 | /// ``` |
596 | /// |
597 | /// It can be useful to think of slice DSTs as a generalization of slices - in |
598 | /// other words, a normal slice is just the special case of a slice DST with |
599 | /// zero leading fields. In particular: |
600 | /// - Like slices, slice DSTs can have different lengths at runtime |
601 | /// - Like slices, slice DSTs cannot be passed by-value, but only by reference |
602 | /// or via other indirection such as `Box` |
603 | /// - Like slices, a reference (or `Box`, or other pointer type) to a slice DST |
604 | /// encodes the number of elements in the trailing slice field |
605 | /// |
606 | /// ## Slice DST layout |
607 | /// |
608 | /// Just like other composite Rust types, the layout of a slice DST is not |
609 | /// well-defined unless it is specified using an explicit `#[repr(...)]` |
610 | /// attribute such as `#[repr(C)]`. [Other representations are |
611 | /// supported][reprs], but in this section, we'll use `#[repr(C)]` as our |
612 | /// example. |
613 | /// |
614 | /// A `#[repr(C)]` slice DST is laid out [just like sized `#[repr(C)]` |
615 | /// types][repr-c-structs], but the presenence of a variable-length field |
616 | /// introduces the possibility of *dynamic padding*. In particular, it may be |
617 | /// necessary to add trailing padding *after* the trailing slice field in order |
618 | /// to satisfy the outer type's alignment, and the amount of padding required |
619 | /// may be a function of the length of the trailing slice field. This is just a |
620 | /// natural consequence of the normal `#[repr(C)]` rules applied to slice DSTs, |
621 | /// but it can result in surprising behavior. For example, consider the |
622 | /// following type: |
623 | /// |
624 | /// ``` |
625 | /// #[repr(C)] |
626 | /// struct Foo { |
627 | /// a: u32, |
628 | /// b: u8, |
629 | /// z: [u16], |
630 | /// } |
631 | /// ``` |
632 | /// |
633 | /// Assuming that `u32` has alignment 4 (this is not true on all platforms), |
634 | /// then `Foo` has alignment 4 as well. Here is the smallest possible value for |
635 | /// `Foo`: |
636 | /// |
637 | /// ```text |
638 | /// byte offset | 01234567 |
639 | /// field | aaaab--- |
640 | /// >< |
641 | /// ``` |
642 | /// |
643 | /// In this value, `z` has length 0. Abiding by `#[repr(C)]`, the lowest offset |
644 | /// that we can place `z` at is 5, but since `z` has alignment 2, we need to |
645 | /// round up to offset 6. This means that there is one byte of padding between |
646 | /// `b` and `z`, then 0 bytes of `z` itself (denoted `><` in this diagram), and |
647 | /// then two bytes of padding after `z` in order to satisfy the overall |
648 | /// alignment of `Foo`. The size of this instance is 8 bytes. |
649 | /// |
650 | /// What about if `z` has length 1? |
651 | /// |
652 | /// ```text |
653 | /// byte offset | 01234567 |
654 | /// field | aaaab-zz |
655 | /// ``` |
656 | /// |
657 | /// In this instance, `z` has length 1, and thus takes up 2 bytes. That means |
658 | /// that we no longer need padding after `z` in order to satisfy `Foo`'s |
659 | /// alignment. We've now seen two different values of `Foo` with two different |
660 | /// lengths of `z`, but they both have the same size - 8 bytes. |
661 | /// |
662 | /// What about if `z` has length 2? |
663 | /// |
664 | /// ```text |
665 | /// byte offset | 012345678901 |
666 | /// field | aaaab-zzzz-- |
667 | /// ``` |
668 | /// |
669 | /// Now `z` has length 2, and thus takes up 4 bytes. This brings our un-padded |
670 | /// size to 10, and so we now need another 2 bytes of padding after `z` to |
671 | /// satisfy `Foo`'s alignment. |
672 | /// |
673 | /// Again, all of this is just a logical consequence of the `#[repr(C)]` rules |
674 | /// applied to slice DSTs, but it can be surprising that the amount of trailing |
675 | /// padding becomes a function of the trailing slice field's length, and thus |
676 | /// can only be computed at runtime. |
677 | /// |
678 | /// [reprs]: https://doc.rust-lang.org/reference/type-layout.html#representations |
679 | /// [repr-c-structs]: https://doc.rust-lang.org/reference/type-layout.html#reprc-structs |
680 | /// |
681 | /// ## What is a valid size? |
682 | /// |
683 | /// There are two places in zerocopy's API that we refer to "a valid size" of a |
684 | /// type. In normal casts or conversions, where the source is a byte slice, we |
685 | /// need to know whether the source byte slice is a valid size of the |
686 | /// destination type. In prefix or suffix casts, we need to know whether *there |
687 | /// exists* a valid size of the destination type which fits in the source byte |
688 | /// slice and, if so, what the largest such size is. |
689 | /// |
690 | /// As outlined above, a slice DST's size is defined by the number of elements |
691 | /// in its trailing slice field. However, there is not necessarily a 1-to-1 |
692 | /// mapping between trailing slice field length and overall size. As we saw in |
693 | /// the previous section with the type `Foo`, instances with both 0 and 1 |
694 | /// elements in the trailing `z` field result in a `Foo` whose size is 8 bytes. |
695 | /// |
696 | /// When we say "x is a valid size of `T`", we mean one of two things: |
697 | /// - If `T: Sized`, then we mean that `x == size_of::<T>()` |
698 | /// - If `T` is a slice DST, then we mean that there exists a `len` such that the instance of |
699 | /// `T` with `len` trailing slice elements has size `x` |
700 | /// |
701 | /// When we say "largest possible size of `T` that fits in a byte slice", we |
702 | /// mean one of two things: |
703 | /// - If `T: Sized`, then we mean `size_of::<T>()` if the byte slice is at least |
704 | /// `size_of::<T>()` bytes long |
705 | /// - If `T` is a slice DST, then we mean to consider all values, `len`, such |
706 | /// that the instance of `T` with `len` trailing slice elements fits in the |
707 | /// byte slice, and to choose the largest such `len`, if any |
708 | /// |
709 | /// |
710 | /// # Safety |
711 | /// |
712 | /// This trait does not convey any safety guarantees to code outside this crate. |
713 | /// |
714 | /// You must not rely on the `#[doc(hidden)]` internals of `KnownLayout`. Future |
715 | /// releases of zerocopy may make backwards-breaking changes to these items, |
716 | /// including changes that only affect soundness, which may cause code which |
717 | /// uses those items to silently become unsound. |
718 | /// |
719 | #[cfg_attr (feature = "derive" , doc = "[derive]: zerocopy_derive::KnownLayout" )] |
720 | #[cfg_attr ( |
721 | not(feature = "derive" ), |
722 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.KnownLayout.html" ), |
723 | )] |
724 | #[cfg_attr ( |
725 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
726 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(KnownLayout)]` to `{Self}`" ) |
727 | )] |
728 | pub unsafe trait KnownLayout { |
729 | // The `Self: Sized` bound makes it so that `KnownLayout` can still be |
730 | // object safe. It's not currently object safe thanks to `const LAYOUT`, and |
731 | // it likely won't be in the future, but there's no reason not to be |
732 | // forwards-compatible with object safety. |
733 | #[doc (hidden)] |
734 | fn only_derive_is_allowed_to_implement_this_trait() |
735 | where |
736 | Self: Sized; |
737 | |
738 | /// The type of metadata stored in a pointer to `Self`. |
739 | /// |
740 | /// This is `()` for sized types and `usize` for slice DSTs. |
741 | type PointerMetadata: PointerMetadata; |
742 | |
743 | /// A maybe-uninitialized analog of `Self` |
744 | /// |
745 | /// # Safety |
746 | /// |
747 | /// `Self::LAYOUT` and `Self::MaybeUninit::LAYOUT` are identical. |
748 | /// `Self::MaybeUninit` admits uninitialized bytes in all positions. |
749 | #[doc (hidden)] |
750 | type MaybeUninit: ?Sized + KnownLayout<PointerMetadata = Self::PointerMetadata>; |
751 | |
752 | /// The layout of `Self`. |
753 | /// |
754 | /// # Safety |
755 | /// |
756 | /// Callers may assume that `LAYOUT` accurately reflects the layout of |
757 | /// `Self`. In particular: |
758 | /// - `LAYOUT.align` is equal to `Self`'s alignment |
759 | /// - If `Self: Sized`, then `LAYOUT.size_info == SizeInfo::Sized { size }` |
760 | /// where `size == size_of::<Self>()` |
761 | /// - If `Self` is a slice DST, then `LAYOUT.size_info == |
762 | /// SizeInfo::SliceDst(slice_layout)` where: |
763 | /// - The size, `size`, of an instance of `Self` with `elems` trailing |
764 | /// slice elements is equal to `slice_layout.offset + |
765 | /// slice_layout.elem_size * elems` rounded up to the nearest multiple |
766 | /// of `LAYOUT.align` |
767 | /// - For such an instance, any bytes in the range `[slice_layout.offset + |
768 | /// slice_layout.elem_size * elems, size)` are padding and must not be |
769 | /// assumed to be initialized |
770 | #[doc (hidden)] |
771 | const LAYOUT: DstLayout; |
772 | |
773 | /// SAFETY: The returned pointer has the same address and provenance as |
774 | /// `bytes`. If `Self` is a DST, the returned pointer's referent has `elems` |
775 | /// elements in its trailing slice. |
776 | #[doc (hidden)] |
777 | fn raw_from_ptr_len(bytes: NonNull<u8>, meta: Self::PointerMetadata) -> NonNull<Self>; |
778 | |
779 | /// Extracts the metadata from a pointer to `Self`. |
780 | /// |
781 | /// # Safety |
782 | /// |
783 | /// `pointer_to_metadata` always returns the correct metadata stored in |
784 | /// `ptr`. |
785 | #[doc (hidden)] |
786 | fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata; |
787 | |
788 | /// Computes the length of the byte range addressed by `ptr`. |
789 | /// |
790 | /// Returns `None` if the resulting length would not fit in an `usize`. |
791 | /// |
792 | /// # Safety |
793 | /// |
794 | /// Callers may assume that `size_of_val_raw` always returns the correct |
795 | /// size. |
796 | /// |
797 | /// Callers may assume that, if `ptr` addresses a byte range whose length |
798 | /// fits in an `usize`, this will return `Some`. |
799 | #[doc (hidden)] |
800 | #[must_use ] |
801 | #[inline (always)] |
802 | fn size_of_val_raw(ptr: NonNull<Self>) -> Option<usize> { |
803 | let meta = Self::pointer_to_metadata(ptr.as_ptr()); |
804 | // SAFETY: `size_for_metadata` promises to only return `None` if the |
805 | // resulting size would not fit in a `usize`. |
806 | meta.size_for_metadata(Self::LAYOUT) |
807 | } |
808 | } |
809 | |
810 | /// The metadata associated with a [`KnownLayout`] type. |
811 | #[doc (hidden)] |
812 | pub trait PointerMetadata: Copy + Eq + Debug { |
813 | /// Constructs a `Self` from an element count. |
814 | /// |
815 | /// If `Self = ()`, this returns `()`. If `Self = usize`, this returns |
816 | /// `elems`. No other types are currently supported. |
817 | fn from_elem_count(elems: usize) -> Self; |
818 | |
819 | /// Computes the size of the object with the given layout and pointer |
820 | /// metadata. |
821 | /// |
822 | /// # Panics |
823 | /// |
824 | /// If `Self = ()`, `layout` must describe a sized type. If `Self = usize`, |
825 | /// `layout` must describe a slice DST. Otherwise, `size_for_metadata` may |
826 | /// panic. |
827 | /// |
828 | /// # Safety |
829 | /// |
830 | /// `size_for_metadata` promises to only return `None` if the resulting size |
831 | /// would not fit in a `usize`. |
832 | fn size_for_metadata(&self, layout: DstLayout) -> Option<usize>; |
833 | } |
834 | |
835 | impl PointerMetadata for () { |
836 | #[inline ] |
837 | #[allow (clippy::unused_unit)] |
838 | fn from_elem_count(_elems: usize) -> () {} |
839 | |
840 | #[inline ] |
841 | fn size_for_metadata(&self, layout: DstLayout) -> Option<usize> { |
842 | match layout.size_info { |
843 | SizeInfo::Sized { size: usize } => Some(size), |
844 | // NOTE: This branch is unreachable, but we return `None` rather |
845 | // than `unreachable!()` to avoid generating panic paths. |
846 | SizeInfo::SliceDst(_) => None, |
847 | } |
848 | } |
849 | } |
850 | |
851 | impl PointerMetadata for usize { |
852 | #[inline ] |
853 | fn from_elem_count(elems: usize) -> usize { |
854 | elems |
855 | } |
856 | |
857 | #[inline ] |
858 | fn size_for_metadata(&self, layout: DstLayout) -> Option<usize> { |
859 | match layout.size_info { |
860 | SizeInfo::SliceDst(TrailingSliceLayout { offset: usize, elem_size: usize }) => { |
861 | let slice_len: usize = elem_size.checked_mul(*self)?; |
862 | let without_padding: usize = offset.checked_add(slice_len)?; |
863 | without_padding.checked_add(util::padding_needed_for(len:without_padding, layout.align)) |
864 | } |
865 | // NOTE: This branch is unreachable, but we return `None` rather |
866 | // than `unreachable!()` to avoid generating panic paths. |
867 | SizeInfo::Sized { .. } => None, |
868 | } |
869 | } |
870 | } |
871 | |
872 | // SAFETY: Delegates safety to `DstLayout::for_slice`. |
873 | unsafe impl<T> KnownLayout for [T] { |
874 | #[allow (clippy::missing_inline_in_public_items, dead_code)] |
875 | #[cfg_attr ( |
876 | all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), |
877 | coverage(off) |
878 | )] |
879 | fn only_derive_is_allowed_to_implement_this_trait() |
880 | where |
881 | Self: Sized, |
882 | { |
883 | } |
884 | |
885 | type PointerMetadata = usize; |
886 | |
887 | // SAFETY: `CoreMaybeUninit<T>::LAYOUT` and `T::LAYOUT` are identical |
888 | // because `CoreMaybeUninit<T>` has the same size and alignment as `T` [1]. |
889 | // Consequently, `[CoreMaybeUninit<T>]::LAYOUT` and `[T]::LAYOUT` are |
890 | // identical, because they both lack a fixed-sized prefix and because they |
891 | // inherit the alignments of their inner element type (which are identical) |
892 | // [2][3]. |
893 | // |
894 | // `[CoreMaybeUninit<T>]` admits uninitialized bytes at all positions |
895 | // because `CoreMaybeUninit<T>` admits uninitialized bytes at all positions |
896 | // and because the inner elements of `[CoreMaybeUninit<T>]` are laid out |
897 | // back-to-back [2][3]. |
898 | // |
899 | // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1: |
900 | // |
901 | // `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as |
902 | // `T` |
903 | // |
904 | // [2] Per https://doc.rust-lang.org/1.82.0/reference/type-layout.html#slice-layout: |
905 | // |
906 | // Slices have the same layout as the section of the array they slice. |
907 | // |
908 | // [3] Per https://doc.rust-lang.org/1.82.0/reference/type-layout.html#array-layout: |
909 | // |
910 | // An array of `[T; N]` has a size of `size_of::<T>() * N` and the same |
911 | // alignment of `T`. Arrays are laid out so that the zero-based `nth` |
912 | // element of the array is offset from the start of the array by `n * |
913 | // size_of::<T>()` bytes. |
914 | type MaybeUninit = [CoreMaybeUninit<T>]; |
915 | |
916 | const LAYOUT: DstLayout = DstLayout::for_slice::<T>(); |
917 | |
918 | // SAFETY: `.cast` preserves address and provenance. The returned pointer |
919 | // refers to an object with `elems` elements by construction. |
920 | #[inline (always)] |
921 | fn raw_from_ptr_len(data: NonNull<u8>, elems: usize) -> NonNull<Self> { |
922 | // TODO(#67): Remove this allow. See NonNullExt for more details. |
923 | #[allow (unstable_name_collisions)] |
924 | NonNull::slice_from_raw_parts(data.cast::<T>(), elems) |
925 | } |
926 | |
927 | #[inline (always)] |
928 | fn pointer_to_metadata(ptr: *mut [T]) -> usize { |
929 | #[allow (clippy::as_conversions)] |
930 | let slc = ptr as *const [()]; |
931 | |
932 | // SAFETY: |
933 | // - `()` has alignment 1, so `slc` is trivially aligned. |
934 | // - `slc` was derived from a non-null pointer. |
935 | // - The size is 0 regardless of the length, so it is sound to |
936 | // materialize a reference regardless of location. |
937 | // - By invariant, `self.ptr` has valid provenance. |
938 | let slc = unsafe { &*slc }; |
939 | |
940 | // This is correct because the preceding `as` cast preserves the number |
941 | // of slice elements. [1] |
942 | // |
943 | // [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast: |
944 | // |
945 | // For slice types like `[T]` and `[U]`, the raw pointer types `*const |
946 | // [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode the number of |
947 | // elements in this slice. Casts between these raw pointer types |
948 | // preserve the number of elements. ... The same holds for `str` and |
949 | // any compound type whose unsized tail is a slice type, such as |
950 | // struct `Foo(i32, [u8])` or `(u64, Foo)`. |
951 | slc.len() |
952 | } |
953 | } |
954 | |
955 | #[rustfmt::skip] |
956 | impl_known_layout!( |
957 | (), |
958 | u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64, |
959 | bool, char, |
960 | NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, NonZeroI32, |
961 | NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, NonZeroUsize, NonZeroIsize |
962 | ); |
963 | #[rustfmt::skip] |
964 | #[cfg (feature = "float-nightly" )] |
965 | impl_known_layout!( |
966 | #[cfg_attr(doc_cfg, doc(cfg(feature = "float-nightly" )))] |
967 | f16, |
968 | #[cfg_attr(doc_cfg, doc(cfg(feature = "float-nightly" )))] |
969 | f128 |
970 | ); |
971 | #[rustfmt::skip] |
972 | impl_known_layout!( |
973 | T => Option<T>, |
974 | T: ?Sized => PhantomData<T>, |
975 | T => Wrapping<T>, |
976 | T => CoreMaybeUninit<T>, |
977 | T: ?Sized => *const T, |
978 | T: ?Sized => *mut T, |
979 | T: ?Sized => &'_ T, |
980 | T: ?Sized => &'_ mut T, |
981 | ); |
982 | impl_known_layout!(const N: usize, T => [T; N]); |
983 | |
984 | safety_comment! { |
985 | /// SAFETY: |
986 | /// `str` has the same representation as `[u8]`. `ManuallyDrop<T>` [1], |
987 | /// `UnsafeCell<T>` [2], and `Cell<T>` [3] have the same representation as |
988 | /// `T`. |
989 | /// |
990 | /// [1] Per https://doc.rust-lang.org/1.85.0/std/mem/struct.ManuallyDrop.html: |
991 | /// |
992 | /// `ManuallyDrop<T>` is guaranteed to have the same layout and bit |
993 | /// validity as `T` |
994 | /// |
995 | /// [2] Per https://doc.rust-lang.org/1.85.0/core/cell/struct.UnsafeCell.html#memory-layout: |
996 | /// |
997 | /// `UnsafeCell<T>` has the same in-memory representation as its inner |
998 | /// type `T`. |
999 | /// |
1000 | /// [3] Per https://doc.rust-lang.org/1.85.0/core/cell/struct.Cell.html#memory-layout: |
1001 | /// |
1002 | /// `Cell<T>` has the same in-memory representation as `T`. |
1003 | unsafe_impl_known_layout!(#[repr([u8])] str); |
1004 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ManuallyDrop<T>); |
1005 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] UnsafeCell<T>); |
1006 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] Cell<T>); |
1007 | } |
1008 | |
1009 | safety_comment! { |
1010 | /// SAFETY: |
1011 | /// - By consequence of the invariant on `T::MaybeUninit` that `T::LAYOUT` |
1012 | /// and `T::MaybeUninit::LAYOUT` are equal, `T` and `T::MaybeUninit` |
1013 | /// have the same: |
1014 | /// - Fixed prefix size |
1015 | /// - Alignment |
1016 | /// - (For DSTs) trailing slice element size |
1017 | /// - By consequence of the above, referents `T::MaybeUninit` and `T` have |
1018 | /// the require the same kind of pointer metadata, and thus it is valid to |
1019 | /// perform an `as` cast from `*mut T` and `*mut T::MaybeUninit`, and this |
1020 | /// operation preserves referent size (ie, `size_of_val_raw`). |
1021 | unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T::MaybeUninit)] MaybeUninit<T>); |
1022 | } |
1023 | |
1024 | /// Analyzes whether a type is [`FromZeros`]. |
1025 | /// |
1026 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
1027 | /// the [safety conditions] of `FromZeros` and implements `FromZeros` and its |
1028 | /// supertraits if it is sound to do so. This derive can be applied to structs, |
1029 | /// enums, and unions; e.g.: |
1030 | /// |
1031 | /// ``` |
1032 | /// # use zerocopy_derive::{FromZeros, Immutable}; |
1033 | /// #[derive(FromZeros)] |
1034 | /// struct MyStruct { |
1035 | /// # /* |
1036 | /// ... |
1037 | /// # */ |
1038 | /// } |
1039 | /// |
1040 | /// #[derive(FromZeros)] |
1041 | /// #[repr(u8)] |
1042 | /// enum MyEnum { |
1043 | /// # Variant0, |
1044 | /// # /* |
1045 | /// ... |
1046 | /// # */ |
1047 | /// } |
1048 | /// |
1049 | /// #[derive(FromZeros, Immutable)] |
1050 | /// union MyUnion { |
1051 | /// # variant: u8, |
1052 | /// # /* |
1053 | /// ... |
1054 | /// # */ |
1055 | /// } |
1056 | /// ``` |
1057 | /// |
1058 | /// [safety conditions]: trait@FromZeros#safety |
1059 | /// |
1060 | /// # Analysis |
1061 | /// |
1062 | /// *This section describes, roughly, the analysis performed by this derive to |
1063 | /// determine whether it is sound to implement `FromZeros` for a given type. |
1064 | /// Unless you are modifying the implementation of this derive, or attempting to |
1065 | /// manually implement `FromZeros` for a type yourself, you don't need to read |
1066 | /// this section.* |
1067 | /// |
1068 | /// If a type has the following properties, then this derive can implement |
1069 | /// `FromZeros` for that type: |
1070 | /// |
1071 | /// - If the type is a struct, all of its fields must be `FromZeros`. |
1072 | /// - If the type is an enum: |
1073 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
1074 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
1075 | /// - It must have a variant with a discriminant/tag of `0`, and its fields |
1076 | /// must be `FromZeros`. See [the reference] for a description of |
1077 | /// discriminant values are specified. |
1078 | /// - The fields of that variant must be `FromZeros`. |
1079 | /// |
1080 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
1081 | /// documented [safety conditions] of `FromZeros`, and must *not* rely on the |
1082 | /// implementation details of this derive. |
1083 | /// |
1084 | /// [the reference]: https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations |
1085 | /// |
1086 | /// ## Why isn't an explicit representation required for structs? |
1087 | /// |
1088 | /// Neither this derive, nor the [safety conditions] of `FromZeros`, requires |
1089 | /// that structs are marked with `#[repr(C)]`. |
1090 | /// |
1091 | /// Per the [Rust reference](reference), |
1092 | /// |
1093 | /// > The representation of a type can change the padding between fields, but |
1094 | /// > does not change the layout of the fields themselves. |
1095 | /// |
1096 | /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
1097 | /// |
1098 | /// Since the layout of structs only consists of padding bytes and field bytes, |
1099 | /// a struct is soundly `FromZeros` if: |
1100 | /// 1. its padding is soundly `FromZeros`, and |
1101 | /// 2. its fields are soundly `FromZeros`. |
1102 | /// |
1103 | /// The answer to the first question is always yes: padding bytes do not have |
1104 | /// any validity constraints. A [discussion] of this question in the Unsafe Code |
1105 | /// Guidelines Working Group concluded that it would be virtually unimaginable |
1106 | /// for future versions of rustc to add validity constraints to padding bytes. |
1107 | /// |
1108 | /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
1109 | /// |
1110 | /// Whether a struct is soundly `FromZeros` therefore solely depends on whether |
1111 | /// its fields are `FromZeros`. |
1112 | // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
1113 | // attribute. |
1114 | #[cfg (any(feature = "derive" , test))] |
1115 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
1116 | pub use zerocopy_derive::FromZeros; |
1117 | |
1118 | /// Analyzes whether a type is [`Immutable`]. |
1119 | /// |
1120 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
1121 | /// the [safety conditions] of `Immutable` and implements `Immutable` if it is |
1122 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
1123 | /// e.g.: |
1124 | /// |
1125 | /// ``` |
1126 | /// # use zerocopy_derive::Immutable; |
1127 | /// #[derive(Immutable)] |
1128 | /// struct MyStruct { |
1129 | /// # /* |
1130 | /// ... |
1131 | /// # */ |
1132 | /// } |
1133 | /// |
1134 | /// #[derive(Immutable)] |
1135 | /// enum MyEnum { |
1136 | /// # Variant0, |
1137 | /// # /* |
1138 | /// ... |
1139 | /// # */ |
1140 | /// } |
1141 | /// |
1142 | /// #[derive(Immutable)] |
1143 | /// union MyUnion { |
1144 | /// # variant: u8, |
1145 | /// # /* |
1146 | /// ... |
1147 | /// # */ |
1148 | /// } |
1149 | /// ``` |
1150 | /// |
1151 | /// # Analysis |
1152 | /// |
1153 | /// *This section describes, roughly, the analysis performed by this derive to |
1154 | /// determine whether it is sound to implement `Immutable` for a given type. |
1155 | /// Unless you are modifying the implementation of this derive, you don't need |
1156 | /// to read this section.* |
1157 | /// |
1158 | /// If a type has the following properties, then this derive can implement |
1159 | /// `Immutable` for that type: |
1160 | /// |
1161 | /// - All fields must be `Immutable`. |
1162 | /// |
1163 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
1164 | /// documented [safety conditions] of `Immutable`, and must *not* rely on the |
1165 | /// implementation details of this derive. |
1166 | /// |
1167 | /// [safety conditions]: trait@Immutable#safety |
1168 | #[cfg (any(feature = "derive" , test))] |
1169 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
1170 | pub use zerocopy_derive::Immutable; |
1171 | |
1172 | /// Types which are free from interior mutability. |
1173 | /// |
1174 | /// `T: Immutable` indicates that `T` does not permit interior mutation, except |
1175 | /// by ownership or an exclusive (`&mut`) borrow. |
1176 | /// |
1177 | /// # Implementation |
1178 | /// |
1179 | /// **Do not implement this trait yourself!** Instead, use |
1180 | /// [`#[derive(Immutable)]`][derive] (requires the `derive` Cargo feature); |
1181 | /// e.g.: |
1182 | /// |
1183 | /// ``` |
1184 | /// # use zerocopy_derive::Immutable; |
1185 | /// #[derive(Immutable)] |
1186 | /// struct MyStruct { |
1187 | /// # /* |
1188 | /// ... |
1189 | /// # */ |
1190 | /// } |
1191 | /// |
1192 | /// #[derive(Immutable)] |
1193 | /// enum MyEnum { |
1194 | /// # /* |
1195 | /// ... |
1196 | /// # */ |
1197 | /// } |
1198 | /// |
1199 | /// #[derive(Immutable)] |
1200 | /// union MyUnion { |
1201 | /// # variant: u8, |
1202 | /// # /* |
1203 | /// ... |
1204 | /// # */ |
1205 | /// } |
1206 | /// ``` |
1207 | /// |
1208 | /// This derive performs a sophisticated, compile-time safety analysis to |
1209 | /// determine whether a type is `Immutable`. |
1210 | /// |
1211 | /// # Safety |
1212 | /// |
1213 | /// Unsafe code outside of this crate must not make any assumptions about `T` |
1214 | /// based on `T: Immutable`. We reserve the right to relax the requirements for |
1215 | /// `Immutable` in the future, and if unsafe code outside of this crate makes |
1216 | /// assumptions based on `T: Immutable`, future relaxations may cause that code |
1217 | /// to become unsound. |
1218 | /// |
1219 | // # Safety (Internal) |
1220 | // |
1221 | // If `T: Immutable`, unsafe code *inside of this crate* may assume that, given |
1222 | // `t: &T`, `t` does not contain any [`UnsafeCell`]s at any byte location |
1223 | // within the byte range addressed by `t`. This includes ranges of length 0 |
1224 | // (e.g., `UnsafeCell<()>` and `[UnsafeCell<u8>; 0]`). If a type implements |
1225 | // `Immutable` which violates this assumptions, it may cause this crate to |
1226 | // exhibit [undefined behavior]. |
1227 | // |
1228 | // [`UnsafeCell`]: core::cell::UnsafeCell |
1229 | // [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html |
1230 | #[cfg_attr ( |
1231 | feature = "derive" , |
1232 | doc = "[derive]: zerocopy_derive::Immutable" , |
1233 | doc = "[derive-analysis]: zerocopy_derive::Immutable#analysis" |
1234 | )] |
1235 | #[cfg_attr ( |
1236 | not(feature = "derive" ), |
1237 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Immutable.html" ), |
1238 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Immutable.html#analysis" ), |
1239 | )] |
1240 | #[cfg_attr ( |
1241 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
1242 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(Immutable)]` to `{Self}`" ) |
1243 | )] |
1244 | pub unsafe trait Immutable { |
1245 | // The `Self: Sized` bound makes it so that `Immutable` is still object |
1246 | // safe. |
1247 | #[doc (hidden)] |
1248 | fn only_derive_is_allowed_to_implement_this_trait() |
1249 | where |
1250 | Self: Sized; |
1251 | } |
1252 | |
1253 | /// Implements [`TryFromBytes`]. |
1254 | /// |
1255 | /// This derive synthesizes the runtime checks required to check whether a |
1256 | /// sequence of initialized bytes corresponds to a valid instance of a type. |
1257 | /// This derive can be applied to structs, enums, and unions; e.g.: |
1258 | /// |
1259 | /// ``` |
1260 | /// # use zerocopy_derive::{TryFromBytes, Immutable}; |
1261 | /// #[derive(TryFromBytes)] |
1262 | /// struct MyStruct { |
1263 | /// # /* |
1264 | /// ... |
1265 | /// # */ |
1266 | /// } |
1267 | /// |
1268 | /// #[derive(TryFromBytes)] |
1269 | /// #[repr(u8)] |
1270 | /// enum MyEnum { |
1271 | /// # V00, |
1272 | /// # /* |
1273 | /// ... |
1274 | /// # */ |
1275 | /// } |
1276 | /// |
1277 | /// #[derive(TryFromBytes, Immutable)] |
1278 | /// union MyUnion { |
1279 | /// # variant: u8, |
1280 | /// # /* |
1281 | /// ... |
1282 | /// # */ |
1283 | /// } |
1284 | /// ``` |
1285 | /// |
1286 | /// # Portability |
1287 | /// |
1288 | /// To ensure consistent endianness for enums with multi-byte representations, |
1289 | /// explicitly specify and convert each discriminant using `.to_le()` or |
1290 | /// `.to_be()`; e.g.: |
1291 | /// |
1292 | /// ``` |
1293 | /// # use zerocopy_derive::TryFromBytes; |
1294 | /// // `DataStoreVersion` is encoded in little-endian. |
1295 | /// #[derive(TryFromBytes)] |
1296 | /// #[repr(u32)] |
1297 | /// pub enum DataStoreVersion { |
1298 | /// /// Version 1 of the data store. |
1299 | /// V1 = 9u32.to_le(), |
1300 | /// |
1301 | /// /// Version 2 of the data store. |
1302 | /// V2 = 10u32.to_le(), |
1303 | /// } |
1304 | /// ``` |
1305 | /// |
1306 | /// [safety conditions]: trait@TryFromBytes#safety |
1307 | #[cfg (any(feature = "derive" , test))] |
1308 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
1309 | pub use zerocopy_derive::TryFromBytes; |
1310 | |
1311 | /// Types for which some bit patterns are valid. |
1312 | /// |
1313 | /// A memory region of the appropriate length which contains initialized bytes |
1314 | /// can be viewed as a `TryFromBytes` type so long as the runtime value of those |
1315 | /// bytes corresponds to a [*valid instance*] of that type. For example, |
1316 | /// [`bool`] is `TryFromBytes`, so zerocopy can transmute a [`u8`] into a |
1317 | /// [`bool`] so long as it first checks that the value of the [`u8`] is `0` or |
1318 | /// `1`. |
1319 | /// |
1320 | /// # Implementation |
1321 | /// |
1322 | /// **Do not implement this trait yourself!** Instead, use |
1323 | /// [`#[derive(TryFromBytes)]`][derive]; e.g.: |
1324 | /// |
1325 | /// ``` |
1326 | /// # use zerocopy_derive::{TryFromBytes, Immutable}; |
1327 | /// #[derive(TryFromBytes)] |
1328 | /// struct MyStruct { |
1329 | /// # /* |
1330 | /// ... |
1331 | /// # */ |
1332 | /// } |
1333 | /// |
1334 | /// #[derive(TryFromBytes)] |
1335 | /// #[repr(u8)] |
1336 | /// enum MyEnum { |
1337 | /// # V00, |
1338 | /// # /* |
1339 | /// ... |
1340 | /// # */ |
1341 | /// } |
1342 | /// |
1343 | /// #[derive(TryFromBytes, Immutable)] |
1344 | /// union MyUnion { |
1345 | /// # variant: u8, |
1346 | /// # /* |
1347 | /// ... |
1348 | /// # */ |
1349 | /// } |
1350 | /// ``` |
1351 | /// |
1352 | /// This derive ensures that the runtime check of whether bytes correspond to a |
1353 | /// valid instance is sound. You **must** implement this trait via the derive. |
1354 | /// |
1355 | /// # What is a "valid instance"? |
1356 | /// |
1357 | /// In Rust, each type has *bit validity*, which refers to the set of bit |
1358 | /// patterns which may appear in an instance of that type. It is impossible for |
1359 | /// safe Rust code to produce values which violate bit validity (ie, values |
1360 | /// outside of the "valid" set of bit patterns). If `unsafe` code produces an |
1361 | /// invalid value, this is considered [undefined behavior]. |
1362 | /// |
1363 | /// Rust's bit validity rules are currently being decided, which means that some |
1364 | /// types have three classes of bit patterns: those which are definitely valid, |
1365 | /// and whose validity is documented in the language; those which may or may not |
1366 | /// be considered valid at some point in the future; and those which are |
1367 | /// definitely invalid. |
1368 | /// |
1369 | /// Zerocopy takes a conservative approach, and only considers a bit pattern to |
1370 | /// be valid if its validity is a documenteed guarantee provided by the |
1371 | /// language. |
1372 | /// |
1373 | /// For most use cases, Rust's current guarantees align with programmers' |
1374 | /// intuitions about what ought to be valid. As a result, zerocopy's |
1375 | /// conservatism should not affect most users. |
1376 | /// |
1377 | /// If you are negatively affected by lack of support for a particular type, |
1378 | /// we encourage you to let us know by [filing an issue][github-repo]. |
1379 | /// |
1380 | /// # `TryFromBytes` is not symmetrical with [`IntoBytes`] |
1381 | /// |
1382 | /// There are some types which implement both `TryFromBytes` and [`IntoBytes`], |
1383 | /// but for which `TryFromBytes` is not guaranteed to accept all byte sequences |
1384 | /// produced by `IntoBytes`. In other words, for some `T: TryFromBytes + |
1385 | /// IntoBytes`, there exist values of `t: T` such that |
1386 | /// `TryFromBytes::try_ref_from_bytes(t.as_bytes()) == None`. Code should not |
1387 | /// generally assume that values produced by `IntoBytes` will necessarily be |
1388 | /// accepted as valid by `TryFromBytes`. |
1389 | /// |
1390 | /// # Safety |
1391 | /// |
1392 | /// On its own, `T: TryFromBytes` does not make any guarantees about the layout |
1393 | /// or representation of `T`. It merely provides the ability to perform a |
1394 | /// validity check at runtime via methods like [`try_ref_from_bytes`]. |
1395 | /// |
1396 | /// You must not rely on the `#[doc(hidden)]` internals of `TryFromBytes`. |
1397 | /// Future releases of zerocopy may make backwards-breaking changes to these |
1398 | /// items, including changes that only affect soundness, which may cause code |
1399 | /// which uses those items to silently become unsound. |
1400 | /// |
1401 | /// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html |
1402 | /// [github-repo]: https://github.com/google/zerocopy |
1403 | /// [`try_ref_from_bytes`]: TryFromBytes::try_ref_from_bytes |
1404 | /// [*valid instance*]: #what-is-a-valid-instance |
1405 | #[cfg_attr (feature = "derive" , doc = "[derive]: zerocopy_derive::TryFromBytes" )] |
1406 | #[cfg_attr ( |
1407 | not(feature = "derive" ), |
1408 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.TryFromBytes.html" ), |
1409 | )] |
1410 | #[cfg_attr ( |
1411 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
1412 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(TryFromBytes)]` to `{Self}`" ) |
1413 | )] |
1414 | pub unsafe trait TryFromBytes { |
1415 | // The `Self: Sized` bound makes it so that `TryFromBytes` is still object |
1416 | // safe. |
1417 | #[doc (hidden)] |
1418 | fn only_derive_is_allowed_to_implement_this_trait() |
1419 | where |
1420 | Self: Sized; |
1421 | |
1422 | /// Does a given memory range contain a valid instance of `Self`? |
1423 | /// |
1424 | /// # Safety |
1425 | /// |
1426 | /// Unsafe code may assume that, if `is_bit_valid(candidate)` returns true, |
1427 | /// `*candidate` contains a valid `Self`. |
1428 | /// |
1429 | /// # Panics |
1430 | /// |
1431 | /// `is_bit_valid` may panic. Callers are responsible for ensuring that any |
1432 | /// `unsafe` code remains sound even in the face of `is_bit_valid` |
1433 | /// panicking. (We support user-defined validation routines; so long as |
1434 | /// these routines are not required to be `unsafe`, there is no way to |
1435 | /// ensure that these do not generate panics.) |
1436 | /// |
1437 | /// Besides user-defined validation routines panicking, `is_bit_valid` will |
1438 | /// either panic or fail to compile if called on a pointer with [`Shared`] |
1439 | /// aliasing when `Self: !Immutable`. |
1440 | /// |
1441 | /// [`UnsafeCell`]: core::cell::UnsafeCell |
1442 | /// [`Shared`]: invariant::Shared |
1443 | #[doc (hidden)] |
1444 | fn is_bit_valid<A: invariant::Reference>(candidate: Maybe<'_, Self, A>) -> bool; |
1445 | |
1446 | /// Attempts to interpret the given `source` as a `&Self`. |
1447 | /// |
1448 | /// If the bytes of `source` are a valid instance of `Self`, this method |
1449 | /// returns a reference to those bytes interpreted as a `Self`. If the |
1450 | /// length of `source` is not a [valid size of `Self`][valid-size], or if |
1451 | /// `source` is not appropriately aligned, or if `source` is not a valid |
1452 | /// instance of `Self`, this returns `Err`. If [`Self: |
1453 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
1454 | /// error][ConvertError::from]. |
1455 | /// |
1456 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1457 | /// |
1458 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1459 | /// [self-unaligned]: Unaligned |
1460 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1461 | /// |
1462 | /// # Compile-Time Assertions |
1463 | /// |
1464 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1465 | /// component is zero-sized. Attempting to use this method on such types |
1466 | /// results in a compile-time assertion error; e.g.: |
1467 | /// |
1468 | /// ```compile_fail,E0080 |
1469 | /// use zerocopy::*; |
1470 | /// # use zerocopy_derive::*; |
1471 | /// |
1472 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
1473 | /// #[repr(C)] |
1474 | /// struct ZSTy { |
1475 | /// leading_sized: u16, |
1476 | /// trailing_dst: [()], |
1477 | /// } |
1478 | /// |
1479 | /// let _ = ZSTy::try_ref_from_bytes(0u16.as_bytes()); // âš Compile Error! |
1480 | /// ``` |
1481 | /// |
1482 | /// # Examples |
1483 | /// |
1484 | /// ``` |
1485 | /// use zerocopy::TryFromBytes; |
1486 | /// # use zerocopy_derive::*; |
1487 | /// |
1488 | /// // The only valid value of this type is the byte `0xC0` |
1489 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1490 | /// #[repr(u8)] |
1491 | /// enum C0 { xC0 = 0xC0 } |
1492 | /// |
1493 | /// // The only valid value of this type is the byte sequence `0xC0C0`. |
1494 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1495 | /// #[repr(C)] |
1496 | /// struct C0C0(C0, C0); |
1497 | /// |
1498 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1499 | /// #[repr(C)] |
1500 | /// struct Packet { |
1501 | /// magic_number: C0C0, |
1502 | /// mug_size: u8, |
1503 | /// temperature: u8, |
1504 | /// marshmallows: [[u8; 2]], |
1505 | /// } |
1506 | /// |
1507 | /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..]; |
1508 | /// |
1509 | /// let packet = Packet::try_ref_from_bytes(bytes).unwrap(); |
1510 | /// |
1511 | /// assert_eq!(packet.mug_size, 240); |
1512 | /// assert_eq!(packet.temperature, 77); |
1513 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1514 | /// |
1515 | /// // These bytes are not valid instance of `Packet`. |
1516 | /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..]; |
1517 | /// assert!(Packet::try_ref_from_bytes(bytes).is_err()); |
1518 | /// ``` |
1519 | #[must_use = "has no side effects" ] |
1520 | #[inline ] |
1521 | fn try_ref_from_bytes(source: &[u8]) -> Result<&Self, TryCastError<&[u8], Self>> |
1522 | where |
1523 | Self: KnownLayout + Immutable, |
1524 | { |
1525 | static_assert_dst_is_not_zst!(Self); |
1526 | match Ptr::from_ref(source).try_cast_into_no_leftover::<Self, BecauseImmutable>(None) { |
1527 | Ok(source) => { |
1528 | // This call may panic. If that happens, it doesn't cause any soundness |
1529 | // issues, as we have not generated any invalid state which we need to |
1530 | // fix before returning. |
1531 | // |
1532 | // Note that one panic or post-monomorphization error condition is |
1533 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
1534 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
1535 | // condition will not happen. |
1536 | match source.try_into_valid() { |
1537 | Ok(valid) => Ok(valid.as_ref()), |
1538 | Err(e) => { |
1539 | Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into()) |
1540 | } |
1541 | } |
1542 | } |
1543 | Err(e) => Err(e.map_src(Ptr::as_ref).into()), |
1544 | } |
1545 | } |
1546 | |
1547 | /// Attempts to interpret the prefix of the given `source` as a `&Self`. |
1548 | /// |
1549 | /// This method computes the [largest possible size of `Self`][valid-size] |
1550 | /// that can fit in the leading bytes of `source`. If that prefix is a valid |
1551 | /// instance of `Self`, this method returns a reference to those bytes |
1552 | /// interpreted as `Self`, and a reference to the remaining bytes. If there |
1553 | /// are insufficient bytes, or if `source` is not appropriately aligned, or |
1554 | /// if those bytes are not a valid instance of `Self`, this returns `Err`. |
1555 | /// If [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
1556 | /// alignment error][ConvertError::from]. |
1557 | /// |
1558 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1559 | /// |
1560 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1561 | /// [self-unaligned]: Unaligned |
1562 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1563 | /// |
1564 | /// # Compile-Time Assertions |
1565 | /// |
1566 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1567 | /// component is zero-sized. Attempting to use this method on such types |
1568 | /// results in a compile-time assertion error; e.g.: |
1569 | /// |
1570 | /// ```compile_fail,E0080 |
1571 | /// use zerocopy::*; |
1572 | /// # use zerocopy_derive::*; |
1573 | /// |
1574 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
1575 | /// #[repr(C)] |
1576 | /// struct ZSTy { |
1577 | /// leading_sized: u16, |
1578 | /// trailing_dst: [()], |
1579 | /// } |
1580 | /// |
1581 | /// let _ = ZSTy::try_ref_from_prefix(0u16.as_bytes()); // âš Compile Error! |
1582 | /// ``` |
1583 | /// |
1584 | /// # Examples |
1585 | /// |
1586 | /// ``` |
1587 | /// use zerocopy::TryFromBytes; |
1588 | /// # use zerocopy_derive::*; |
1589 | /// |
1590 | /// // The only valid value of this type is the byte `0xC0` |
1591 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1592 | /// #[repr(u8)] |
1593 | /// enum C0 { xC0 = 0xC0 } |
1594 | /// |
1595 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1596 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1597 | /// #[repr(C)] |
1598 | /// struct C0C0(C0, C0); |
1599 | /// |
1600 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1601 | /// #[repr(C)] |
1602 | /// struct Packet { |
1603 | /// magic_number: C0C0, |
1604 | /// mug_size: u8, |
1605 | /// temperature: u8, |
1606 | /// marshmallows: [[u8; 2]], |
1607 | /// } |
1608 | /// |
1609 | /// // These are more bytes than are needed to encode a `Packet`. |
1610 | /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1611 | /// |
1612 | /// let (packet, suffix) = Packet::try_ref_from_prefix(bytes).unwrap(); |
1613 | /// |
1614 | /// assert_eq!(packet.mug_size, 240); |
1615 | /// assert_eq!(packet.temperature, 77); |
1616 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1617 | /// assert_eq!(suffix, &[6u8][..]); |
1618 | /// |
1619 | /// // These bytes are not valid instance of `Packet`. |
1620 | /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1621 | /// assert!(Packet::try_ref_from_prefix(bytes).is_err()); |
1622 | /// ``` |
1623 | #[must_use = "has no side effects" ] |
1624 | #[inline ] |
1625 | fn try_ref_from_prefix(source: &[u8]) -> Result<(&Self, &[u8]), TryCastError<&[u8], Self>> |
1626 | where |
1627 | Self: KnownLayout + Immutable, |
1628 | { |
1629 | static_assert_dst_is_not_zst!(Self); |
1630 | try_ref_from_prefix_suffix(source, CastType::Prefix, None) |
1631 | } |
1632 | |
1633 | /// Attempts to interpret the suffix of the given `source` as a `&Self`. |
1634 | /// |
1635 | /// This method computes the [largest possible size of `Self`][valid-size] |
1636 | /// that can fit in the trailing bytes of `source`. If that suffix is a |
1637 | /// valid instance of `Self`, this method returns a reference to those bytes |
1638 | /// interpreted as `Self`, and a reference to the preceding bytes. If there |
1639 | /// are insufficient bytes, or if the suffix of `source` would not be |
1640 | /// appropriately aligned, or if the suffix is not a valid instance of |
1641 | /// `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], you |
1642 | /// can [infallibly discard the alignment error][ConvertError::from]. |
1643 | /// |
1644 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1645 | /// |
1646 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1647 | /// [self-unaligned]: Unaligned |
1648 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1649 | /// |
1650 | /// # Compile-Time Assertions |
1651 | /// |
1652 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1653 | /// component is zero-sized. Attempting to use this method on such types |
1654 | /// results in a compile-time assertion error; e.g.: |
1655 | /// |
1656 | /// ```compile_fail,E0080 |
1657 | /// use zerocopy::*; |
1658 | /// # use zerocopy_derive::*; |
1659 | /// |
1660 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
1661 | /// #[repr(C)] |
1662 | /// struct ZSTy { |
1663 | /// leading_sized: u16, |
1664 | /// trailing_dst: [()], |
1665 | /// } |
1666 | /// |
1667 | /// let _ = ZSTy::try_ref_from_suffix(0u16.as_bytes()); // âš Compile Error! |
1668 | /// ``` |
1669 | /// |
1670 | /// # Examples |
1671 | /// |
1672 | /// ``` |
1673 | /// use zerocopy::TryFromBytes; |
1674 | /// # use zerocopy_derive::*; |
1675 | /// |
1676 | /// // The only valid value of this type is the byte `0xC0` |
1677 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1678 | /// #[repr(u8)] |
1679 | /// enum C0 { xC0 = 0xC0 } |
1680 | /// |
1681 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1682 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1683 | /// #[repr(C)] |
1684 | /// struct C0C0(C0, C0); |
1685 | /// |
1686 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
1687 | /// #[repr(C)] |
1688 | /// struct Packet { |
1689 | /// magic_number: C0C0, |
1690 | /// mug_size: u8, |
1691 | /// temperature: u8, |
1692 | /// marshmallows: [[u8; 2]], |
1693 | /// } |
1694 | /// |
1695 | /// // These are more bytes than are needed to encode a `Packet`. |
1696 | /// let bytes = &[0, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
1697 | /// |
1698 | /// let (prefix, packet) = Packet::try_ref_from_suffix(bytes).unwrap(); |
1699 | /// |
1700 | /// assert_eq!(packet.mug_size, 240); |
1701 | /// assert_eq!(packet.temperature, 77); |
1702 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
1703 | /// assert_eq!(prefix, &[0u8][..]); |
1704 | /// |
1705 | /// // These bytes are not valid instance of `Packet`. |
1706 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0x10][..]; |
1707 | /// assert!(Packet::try_ref_from_suffix(bytes).is_err()); |
1708 | /// ``` |
1709 | #[must_use = "has no side effects" ] |
1710 | #[inline ] |
1711 | fn try_ref_from_suffix(source: &[u8]) -> Result<(&[u8], &Self), TryCastError<&[u8], Self>> |
1712 | where |
1713 | Self: KnownLayout + Immutable, |
1714 | { |
1715 | static_assert_dst_is_not_zst!(Self); |
1716 | try_ref_from_prefix_suffix(source, CastType::Suffix, None).map(swap) |
1717 | } |
1718 | |
1719 | /// Attempts to interpret the given `source` as a `&mut Self` without |
1720 | /// copying. |
1721 | /// |
1722 | /// If the bytes of `source` are a valid instance of `Self`, this method |
1723 | /// returns a reference to those bytes interpreted as a `Self`. If the |
1724 | /// length of `source` is not a [valid size of `Self`][valid-size], or if |
1725 | /// `source` is not appropriately aligned, or if `source` is not a valid |
1726 | /// instance of `Self`, this returns `Err`. If [`Self: |
1727 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
1728 | /// error][ConvertError::from]. |
1729 | /// |
1730 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1731 | /// |
1732 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1733 | /// [self-unaligned]: Unaligned |
1734 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1735 | /// |
1736 | /// # Compile-Time Assertions |
1737 | /// |
1738 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1739 | /// component is zero-sized. Attempting to use this method on such types |
1740 | /// results in a compile-time assertion error; e.g.: |
1741 | /// |
1742 | /// ```compile_fail,E0080 |
1743 | /// use zerocopy::*; |
1744 | /// # use zerocopy_derive::*; |
1745 | /// |
1746 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1747 | /// #[repr(C, packed)] |
1748 | /// struct ZSTy { |
1749 | /// leading_sized: [u8; 2], |
1750 | /// trailing_dst: [()], |
1751 | /// } |
1752 | /// |
1753 | /// let mut source = [85, 85]; |
1754 | /// let _ = ZSTy::try_mut_from_bytes(&mut source[..]); // âš Compile Error! |
1755 | /// ``` |
1756 | /// |
1757 | /// # Examples |
1758 | /// |
1759 | /// ``` |
1760 | /// use zerocopy::TryFromBytes; |
1761 | /// # use zerocopy_derive::*; |
1762 | /// |
1763 | /// // The only valid value of this type is the byte `0xC0` |
1764 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1765 | /// #[repr(u8)] |
1766 | /// enum C0 { xC0 = 0xC0 } |
1767 | /// |
1768 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1769 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1770 | /// #[repr(C)] |
1771 | /// struct C0C0(C0, C0); |
1772 | /// |
1773 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1774 | /// #[repr(C, packed)] |
1775 | /// struct Packet { |
1776 | /// magic_number: C0C0, |
1777 | /// mug_size: u8, |
1778 | /// temperature: u8, |
1779 | /// marshmallows: [[u8; 2]], |
1780 | /// } |
1781 | /// |
1782 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..]; |
1783 | /// |
1784 | /// let packet = Packet::try_mut_from_bytes(bytes).unwrap(); |
1785 | /// |
1786 | /// assert_eq!(packet.mug_size, 240); |
1787 | /// assert_eq!(packet.temperature, 77); |
1788 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1789 | /// |
1790 | /// packet.temperature = 111; |
1791 | /// |
1792 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 0, 1, 2, 3, 4, 5]); |
1793 | /// |
1794 | /// // These bytes are not valid instance of `Packet`. |
1795 | /// let bytes = &mut [0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1796 | /// assert!(Packet::try_mut_from_bytes(bytes).is_err()); |
1797 | /// ``` |
1798 | #[must_use = "has no side effects" ] |
1799 | #[inline ] |
1800 | fn try_mut_from_bytes(bytes: &mut [u8]) -> Result<&mut Self, TryCastError<&mut [u8], Self>> |
1801 | where |
1802 | Self: KnownLayout + IntoBytes, |
1803 | { |
1804 | static_assert_dst_is_not_zst!(Self); |
1805 | match Ptr::from_mut(bytes).try_cast_into_no_leftover::<Self, BecauseExclusive>(None) { |
1806 | Ok(source) => { |
1807 | // This call may panic. If that happens, it doesn't cause any soundness |
1808 | // issues, as we have not generated any invalid state which we need to |
1809 | // fix before returning. |
1810 | // |
1811 | // Note that one panic or post-monomorphization error condition is |
1812 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
1813 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
1814 | // condition will not happen. |
1815 | match source.try_into_valid() { |
1816 | Ok(source) => Ok(source.as_mut()), |
1817 | Err(e) => { |
1818 | Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into()) |
1819 | } |
1820 | } |
1821 | } |
1822 | Err(e) => Err(e.map_src(Ptr::as_mut).into()), |
1823 | } |
1824 | } |
1825 | |
1826 | /// Attempts to interpret the prefix of the given `source` as a `&mut |
1827 | /// Self`. |
1828 | /// |
1829 | /// This method computes the [largest possible size of `Self`][valid-size] |
1830 | /// that can fit in the leading bytes of `source`. If that prefix is a valid |
1831 | /// instance of `Self`, this method returns a reference to those bytes |
1832 | /// interpreted as `Self`, and a reference to the remaining bytes. If there |
1833 | /// are insufficient bytes, or if `source` is not appropriately aligned, or |
1834 | /// if the bytes are not a valid instance of `Self`, this returns `Err`. If |
1835 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
1836 | /// alignment error][ConvertError::from]. |
1837 | /// |
1838 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1839 | /// |
1840 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1841 | /// [self-unaligned]: Unaligned |
1842 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1843 | /// |
1844 | /// # Compile-Time Assertions |
1845 | /// |
1846 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1847 | /// component is zero-sized. Attempting to use this method on such types |
1848 | /// results in a compile-time assertion error; e.g.: |
1849 | /// |
1850 | /// ```compile_fail,E0080 |
1851 | /// use zerocopy::*; |
1852 | /// # use zerocopy_derive::*; |
1853 | /// |
1854 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1855 | /// #[repr(C, packed)] |
1856 | /// struct ZSTy { |
1857 | /// leading_sized: [u8; 2], |
1858 | /// trailing_dst: [()], |
1859 | /// } |
1860 | /// |
1861 | /// let mut source = [85, 85]; |
1862 | /// let _ = ZSTy::try_mut_from_prefix(&mut source[..]); // âš Compile Error! |
1863 | /// ``` |
1864 | /// |
1865 | /// # Examples |
1866 | /// |
1867 | /// ``` |
1868 | /// use zerocopy::TryFromBytes; |
1869 | /// # use zerocopy_derive::*; |
1870 | /// |
1871 | /// // The only valid value of this type is the byte `0xC0` |
1872 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1873 | /// #[repr(u8)] |
1874 | /// enum C0 { xC0 = 0xC0 } |
1875 | /// |
1876 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1877 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1878 | /// #[repr(C)] |
1879 | /// struct C0C0(C0, C0); |
1880 | /// |
1881 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1882 | /// #[repr(C, packed)] |
1883 | /// struct Packet { |
1884 | /// magic_number: C0C0, |
1885 | /// mug_size: u8, |
1886 | /// temperature: u8, |
1887 | /// marshmallows: [[u8; 2]], |
1888 | /// } |
1889 | /// |
1890 | /// // These are more bytes than are needed to encode a `Packet`. |
1891 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1892 | /// |
1893 | /// let (packet, suffix) = Packet::try_mut_from_prefix(bytes).unwrap(); |
1894 | /// |
1895 | /// assert_eq!(packet.mug_size, 240); |
1896 | /// assert_eq!(packet.temperature, 77); |
1897 | /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]); |
1898 | /// assert_eq!(suffix, &[6u8][..]); |
1899 | /// |
1900 | /// packet.temperature = 111; |
1901 | /// suffix[0] = 222; |
1902 | /// |
1903 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 0, 1, 2, 3, 4, 5, 222]); |
1904 | /// |
1905 | /// // These bytes are not valid instance of `Packet`. |
1906 | /// let bytes = &mut [0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
1907 | /// assert!(Packet::try_mut_from_prefix(bytes).is_err()); |
1908 | /// ``` |
1909 | #[must_use = "has no side effects" ] |
1910 | #[inline ] |
1911 | fn try_mut_from_prefix( |
1912 | source: &mut [u8], |
1913 | ) -> Result<(&mut Self, &mut [u8]), TryCastError<&mut [u8], Self>> |
1914 | where |
1915 | Self: KnownLayout + IntoBytes, |
1916 | { |
1917 | static_assert_dst_is_not_zst!(Self); |
1918 | try_mut_from_prefix_suffix(source, CastType::Prefix, None) |
1919 | } |
1920 | |
1921 | /// Attempts to interpret the suffix of the given `source` as a `&mut |
1922 | /// Self`. |
1923 | /// |
1924 | /// This method computes the [largest possible size of `Self`][valid-size] |
1925 | /// that can fit in the trailing bytes of `source`. If that suffix is a |
1926 | /// valid instance of `Self`, this method returns a reference to those bytes |
1927 | /// interpreted as `Self`, and a reference to the preceding bytes. If there |
1928 | /// are insufficient bytes, or if the suffix of `source` would not be |
1929 | /// appropriately aligned, or if the suffix is not a valid instance of |
1930 | /// `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], you |
1931 | /// can [infallibly discard the alignment error][ConvertError::from]. |
1932 | /// |
1933 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
1934 | /// |
1935 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
1936 | /// [self-unaligned]: Unaligned |
1937 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
1938 | /// |
1939 | /// # Compile-Time Assertions |
1940 | /// |
1941 | /// This method cannot yet be used on unsized types whose dynamically-sized |
1942 | /// component is zero-sized. Attempting to use this method on such types |
1943 | /// results in a compile-time assertion error; e.g.: |
1944 | /// |
1945 | /// ```compile_fail,E0080 |
1946 | /// use zerocopy::*; |
1947 | /// # use zerocopy_derive::*; |
1948 | /// |
1949 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1950 | /// #[repr(C, packed)] |
1951 | /// struct ZSTy { |
1952 | /// leading_sized: u16, |
1953 | /// trailing_dst: [()], |
1954 | /// } |
1955 | /// |
1956 | /// let mut source = [85, 85]; |
1957 | /// let _ = ZSTy::try_mut_from_suffix(&mut source[..]); // âš Compile Error! |
1958 | /// ``` |
1959 | /// |
1960 | /// # Examples |
1961 | /// |
1962 | /// ``` |
1963 | /// use zerocopy::TryFromBytes; |
1964 | /// # use zerocopy_derive::*; |
1965 | /// |
1966 | /// // The only valid value of this type is the byte `0xC0` |
1967 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1968 | /// #[repr(u8)] |
1969 | /// enum C0 { xC0 = 0xC0 } |
1970 | /// |
1971 | /// // The only valid value of this type is the bytes `0xC0C0`. |
1972 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1973 | /// #[repr(C)] |
1974 | /// struct C0C0(C0, C0); |
1975 | /// |
1976 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
1977 | /// #[repr(C, packed)] |
1978 | /// struct Packet { |
1979 | /// magic_number: C0C0, |
1980 | /// mug_size: u8, |
1981 | /// temperature: u8, |
1982 | /// marshmallows: [[u8; 2]], |
1983 | /// } |
1984 | /// |
1985 | /// // These are more bytes than are needed to encode a `Packet`. |
1986 | /// let bytes = &mut [0, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
1987 | /// |
1988 | /// let (prefix, packet) = Packet::try_mut_from_suffix(bytes).unwrap(); |
1989 | /// |
1990 | /// assert_eq!(packet.mug_size, 240); |
1991 | /// assert_eq!(packet.temperature, 77); |
1992 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
1993 | /// assert_eq!(prefix, &[0u8][..]); |
1994 | /// |
1995 | /// prefix[0] = 111; |
1996 | /// packet.temperature = 222; |
1997 | /// |
1998 | /// assert_eq!(bytes, [111, 0xC0, 0xC0, 240, 222, 2, 3, 4, 5, 6, 7]); |
1999 | /// |
2000 | /// // These bytes are not valid instance of `Packet`. |
2001 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0x10][..]; |
2002 | /// assert!(Packet::try_mut_from_suffix(bytes).is_err()); |
2003 | /// ``` |
2004 | #[must_use = "has no side effects" ] |
2005 | #[inline ] |
2006 | fn try_mut_from_suffix( |
2007 | source: &mut [u8], |
2008 | ) -> Result<(&mut [u8], &mut Self), TryCastError<&mut [u8], Self>> |
2009 | where |
2010 | Self: KnownLayout + IntoBytes, |
2011 | { |
2012 | static_assert_dst_is_not_zst!(Self); |
2013 | try_mut_from_prefix_suffix(source, CastType::Suffix, None).map(swap) |
2014 | } |
2015 | |
2016 | /// Attempts to interpret the given `source` as a `&Self` with a DST length |
2017 | /// equal to `count`. |
2018 | /// |
2019 | /// This method attempts to return a reference to `source` interpreted as a |
2020 | /// `Self` with `count` trailing elements. If the length of `source` is not |
2021 | /// equal to the size of `Self` with `count` elements, if `source` is not |
2022 | /// appropriately aligned, or if `source` does not contain a valid instance |
2023 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2024 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2025 | /// |
2026 | /// [self-unaligned]: Unaligned |
2027 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2028 | /// |
2029 | /// # Examples |
2030 | /// |
2031 | /// ``` |
2032 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2033 | /// use zerocopy::TryFromBytes; |
2034 | /// # use zerocopy_derive::*; |
2035 | /// |
2036 | /// // The only valid value of this type is the byte `0xC0` |
2037 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2038 | /// #[repr(u8)] |
2039 | /// enum C0 { xC0 = 0xC0 } |
2040 | /// |
2041 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2042 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2043 | /// #[repr(C)] |
2044 | /// struct C0C0(C0, C0); |
2045 | /// |
2046 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2047 | /// #[repr(C)] |
2048 | /// struct Packet { |
2049 | /// magic_number: C0C0, |
2050 | /// mug_size: u8, |
2051 | /// temperature: u8, |
2052 | /// marshmallows: [[u8; 2]], |
2053 | /// } |
2054 | /// |
2055 | /// let bytes = &[0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2056 | /// |
2057 | /// let packet = Packet::try_ref_from_bytes_with_elems(bytes, 3).unwrap(); |
2058 | /// |
2059 | /// assert_eq!(packet.mug_size, 240); |
2060 | /// assert_eq!(packet.temperature, 77); |
2061 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2062 | /// |
2063 | /// // These bytes are not valid instance of `Packet`. |
2064 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0xC0][..]; |
2065 | /// assert!(Packet::try_ref_from_bytes_with_elems(bytes, 3).is_err()); |
2066 | /// ``` |
2067 | /// |
2068 | /// Since an explicit `count` is provided, this method supports types with |
2069 | /// zero-sized trailing slice elements. Methods such as [`try_ref_from_bytes`] |
2070 | /// which do not take an explicit count do not support such types. |
2071 | /// |
2072 | /// ``` |
2073 | /// use core::num::NonZeroU16; |
2074 | /// use zerocopy::*; |
2075 | /// # use zerocopy_derive::*; |
2076 | /// |
2077 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
2078 | /// #[repr(C)] |
2079 | /// struct ZSTy { |
2080 | /// leading_sized: NonZeroU16, |
2081 | /// trailing_dst: [()], |
2082 | /// } |
2083 | /// |
2084 | /// let src = 0xCAFEu16.as_bytes(); |
2085 | /// let zsty = ZSTy::try_ref_from_bytes_with_elems(src, 42).unwrap(); |
2086 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2087 | /// ``` |
2088 | /// |
2089 | /// [`try_ref_from_bytes`]: TryFromBytes::try_ref_from_bytes |
2090 | #[must_use = "has no side effects" ] |
2091 | #[inline ] |
2092 | fn try_ref_from_bytes_with_elems( |
2093 | source: &[u8], |
2094 | count: usize, |
2095 | ) -> Result<&Self, TryCastError<&[u8], Self>> |
2096 | where |
2097 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
2098 | { |
2099 | match Ptr::from_ref(source).try_cast_into_no_leftover::<Self, BecauseImmutable>(Some(count)) |
2100 | { |
2101 | Ok(source) => { |
2102 | // This call may panic. If that happens, it doesn't cause any soundness |
2103 | // issues, as we have not generated any invalid state which we need to |
2104 | // fix before returning. |
2105 | // |
2106 | // Note that one panic or post-monomorphization error condition is |
2107 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2108 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2109 | // condition will not happen. |
2110 | match source.try_into_valid() { |
2111 | Ok(source) => Ok(source.as_ref()), |
2112 | Err(e) => { |
2113 | Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into()) |
2114 | } |
2115 | } |
2116 | } |
2117 | Err(e) => Err(e.map_src(Ptr::as_ref).into()), |
2118 | } |
2119 | } |
2120 | |
2121 | /// Attempts to interpret the prefix of the given `source` as a `&Self` with |
2122 | /// a DST length equal to `count`. |
2123 | /// |
2124 | /// This method attempts to return a reference to the prefix of `source` |
2125 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2126 | /// to the remaining bytes. If the length of `source` is less than the size |
2127 | /// of `Self` with `count` elements, if `source` is not appropriately |
2128 | /// aligned, or if the prefix of `source` does not contain a valid instance |
2129 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2130 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2131 | /// |
2132 | /// [self-unaligned]: Unaligned |
2133 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2134 | /// |
2135 | /// # Examples |
2136 | /// |
2137 | /// ``` |
2138 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2139 | /// use zerocopy::TryFromBytes; |
2140 | /// # use zerocopy_derive::*; |
2141 | /// |
2142 | /// // The only valid value of this type is the byte `0xC0` |
2143 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2144 | /// #[repr(u8)] |
2145 | /// enum C0 { xC0 = 0xC0 } |
2146 | /// |
2147 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2148 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2149 | /// #[repr(C)] |
2150 | /// struct C0C0(C0, C0); |
2151 | /// |
2152 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2153 | /// #[repr(C)] |
2154 | /// struct Packet { |
2155 | /// magic_number: C0C0, |
2156 | /// mug_size: u8, |
2157 | /// temperature: u8, |
2158 | /// marshmallows: [[u8; 2]], |
2159 | /// } |
2160 | /// |
2161 | /// let bytes = &[0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7, 8][..]; |
2162 | /// |
2163 | /// let (packet, suffix) = Packet::try_ref_from_prefix_with_elems(bytes, 3).unwrap(); |
2164 | /// |
2165 | /// assert_eq!(packet.mug_size, 240); |
2166 | /// assert_eq!(packet.temperature, 77); |
2167 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2168 | /// assert_eq!(suffix, &[8u8][..]); |
2169 | /// |
2170 | /// // These bytes are not valid instance of `Packet`. |
2171 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2172 | /// assert!(Packet::try_ref_from_prefix_with_elems(bytes, 3).is_err()); |
2173 | /// ``` |
2174 | /// |
2175 | /// Since an explicit `count` is provided, this method supports types with |
2176 | /// zero-sized trailing slice elements. Methods such as [`try_ref_from_prefix`] |
2177 | /// which do not take an explicit count do not support such types. |
2178 | /// |
2179 | /// ``` |
2180 | /// use core::num::NonZeroU16; |
2181 | /// use zerocopy::*; |
2182 | /// # use zerocopy_derive::*; |
2183 | /// |
2184 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
2185 | /// #[repr(C)] |
2186 | /// struct ZSTy { |
2187 | /// leading_sized: NonZeroU16, |
2188 | /// trailing_dst: [()], |
2189 | /// } |
2190 | /// |
2191 | /// let src = 0xCAFEu16.as_bytes(); |
2192 | /// let (zsty, _) = ZSTy::try_ref_from_prefix_with_elems(src, 42).unwrap(); |
2193 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2194 | /// ``` |
2195 | /// |
2196 | /// [`try_ref_from_prefix`]: TryFromBytes::try_ref_from_prefix |
2197 | #[must_use = "has no side effects" ] |
2198 | #[inline ] |
2199 | fn try_ref_from_prefix_with_elems( |
2200 | source: &[u8], |
2201 | count: usize, |
2202 | ) -> Result<(&Self, &[u8]), TryCastError<&[u8], Self>> |
2203 | where |
2204 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
2205 | { |
2206 | try_ref_from_prefix_suffix(source, CastType::Prefix, Some(count)) |
2207 | } |
2208 | |
2209 | /// Attempts to interpret the suffix of the given `source` as a `&Self` with |
2210 | /// a DST length equal to `count`. |
2211 | /// |
2212 | /// This method attempts to return a reference to the suffix of `source` |
2213 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2214 | /// to the preceding bytes. If the length of `source` is less than the size |
2215 | /// of `Self` with `count` elements, if the suffix of `source` is not |
2216 | /// appropriately aligned, or if the suffix of `source` does not contain a |
2217 | /// valid instance of `Self`, this returns `Err`. If [`Self: |
2218 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
2219 | /// error][ConvertError::from]. |
2220 | /// |
2221 | /// [self-unaligned]: Unaligned |
2222 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2223 | /// |
2224 | /// # Examples |
2225 | /// |
2226 | /// ``` |
2227 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2228 | /// use zerocopy::TryFromBytes; |
2229 | /// # use zerocopy_derive::*; |
2230 | /// |
2231 | /// // The only valid value of this type is the byte `0xC0` |
2232 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2233 | /// #[repr(u8)] |
2234 | /// enum C0 { xC0 = 0xC0 } |
2235 | /// |
2236 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2237 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2238 | /// #[repr(C)] |
2239 | /// struct C0C0(C0, C0); |
2240 | /// |
2241 | /// #[derive(TryFromBytes, KnownLayout, Immutable)] |
2242 | /// #[repr(C)] |
2243 | /// struct Packet { |
2244 | /// magic_number: C0C0, |
2245 | /// mug_size: u8, |
2246 | /// temperature: u8, |
2247 | /// marshmallows: [[u8; 2]], |
2248 | /// } |
2249 | /// |
2250 | /// let bytes = &[123, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2251 | /// |
2252 | /// let (prefix, packet) = Packet::try_ref_from_suffix_with_elems(bytes, 3).unwrap(); |
2253 | /// |
2254 | /// assert_eq!(packet.mug_size, 240); |
2255 | /// assert_eq!(packet.temperature, 77); |
2256 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2257 | /// assert_eq!(prefix, &[123u8][..]); |
2258 | /// |
2259 | /// // These bytes are not valid instance of `Packet`. |
2260 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2261 | /// assert!(Packet::try_ref_from_suffix_with_elems(bytes, 3).is_err()); |
2262 | /// ``` |
2263 | /// |
2264 | /// Since an explicit `count` is provided, this method supports types with |
2265 | /// zero-sized trailing slice elements. Methods such as [`try_ref_from_prefix`] |
2266 | /// which do not take an explicit count do not support such types. |
2267 | /// |
2268 | /// ``` |
2269 | /// use core::num::NonZeroU16; |
2270 | /// use zerocopy::*; |
2271 | /// # use zerocopy_derive::*; |
2272 | /// |
2273 | /// #[derive(TryFromBytes, Immutable, KnownLayout)] |
2274 | /// #[repr(C)] |
2275 | /// struct ZSTy { |
2276 | /// leading_sized: NonZeroU16, |
2277 | /// trailing_dst: [()], |
2278 | /// } |
2279 | /// |
2280 | /// let src = 0xCAFEu16.as_bytes(); |
2281 | /// let (_, zsty) = ZSTy::try_ref_from_suffix_with_elems(src, 42).unwrap(); |
2282 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2283 | /// ``` |
2284 | /// |
2285 | /// [`try_ref_from_prefix`]: TryFromBytes::try_ref_from_prefix |
2286 | #[must_use = "has no side effects" ] |
2287 | #[inline ] |
2288 | fn try_ref_from_suffix_with_elems( |
2289 | source: &[u8], |
2290 | count: usize, |
2291 | ) -> Result<(&[u8], &Self), TryCastError<&[u8], Self>> |
2292 | where |
2293 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
2294 | { |
2295 | try_ref_from_prefix_suffix(source, CastType::Suffix, Some(count)).map(swap) |
2296 | } |
2297 | |
2298 | /// Attempts to interpret the given `source` as a `&mut Self` with a DST |
2299 | /// length equal to `count`. |
2300 | /// |
2301 | /// This method attempts to return a reference to `source` interpreted as a |
2302 | /// `Self` with `count` trailing elements. If the length of `source` is not |
2303 | /// equal to the size of `Self` with `count` elements, if `source` is not |
2304 | /// appropriately aligned, or if `source` does not contain a valid instance |
2305 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2306 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2307 | /// |
2308 | /// [self-unaligned]: Unaligned |
2309 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2310 | /// |
2311 | /// # Examples |
2312 | /// |
2313 | /// ``` |
2314 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2315 | /// use zerocopy::TryFromBytes; |
2316 | /// # use zerocopy_derive::*; |
2317 | /// |
2318 | /// // The only valid value of this type is the byte `0xC0` |
2319 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2320 | /// #[repr(u8)] |
2321 | /// enum C0 { xC0 = 0xC0 } |
2322 | /// |
2323 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2324 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2325 | /// #[repr(C)] |
2326 | /// struct C0C0(C0, C0); |
2327 | /// |
2328 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2329 | /// #[repr(C, packed)] |
2330 | /// struct Packet { |
2331 | /// magic_number: C0C0, |
2332 | /// mug_size: u8, |
2333 | /// temperature: u8, |
2334 | /// marshmallows: [[u8; 2]], |
2335 | /// } |
2336 | /// |
2337 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2338 | /// |
2339 | /// let packet = Packet::try_mut_from_bytes_with_elems(bytes, 3).unwrap(); |
2340 | /// |
2341 | /// assert_eq!(packet.mug_size, 240); |
2342 | /// assert_eq!(packet.temperature, 77); |
2343 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2344 | /// |
2345 | /// packet.temperature = 111; |
2346 | /// |
2347 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 2, 3, 4, 5, 6, 7]); |
2348 | /// |
2349 | /// // These bytes are not valid instance of `Packet`. |
2350 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0xC0][..]; |
2351 | /// assert!(Packet::try_mut_from_bytes_with_elems(bytes, 3).is_err()); |
2352 | /// ``` |
2353 | /// |
2354 | /// Since an explicit `count` is provided, this method supports types with |
2355 | /// zero-sized trailing slice elements. Methods such as [`try_mut_from_bytes`] |
2356 | /// which do not take an explicit count do not support such types. |
2357 | /// |
2358 | /// ``` |
2359 | /// use core::num::NonZeroU16; |
2360 | /// use zerocopy::*; |
2361 | /// # use zerocopy_derive::*; |
2362 | /// |
2363 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2364 | /// #[repr(C, packed)] |
2365 | /// struct ZSTy { |
2366 | /// leading_sized: NonZeroU16, |
2367 | /// trailing_dst: [()], |
2368 | /// } |
2369 | /// |
2370 | /// let mut src = 0xCAFEu16; |
2371 | /// let src = src.as_mut_bytes(); |
2372 | /// let zsty = ZSTy::try_mut_from_bytes_with_elems(src, 42).unwrap(); |
2373 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2374 | /// ``` |
2375 | /// |
2376 | /// [`try_mut_from_bytes`]: TryFromBytes::try_mut_from_bytes |
2377 | #[must_use = "has no side effects" ] |
2378 | #[inline ] |
2379 | fn try_mut_from_bytes_with_elems( |
2380 | source: &mut [u8], |
2381 | count: usize, |
2382 | ) -> Result<&mut Self, TryCastError<&mut [u8], Self>> |
2383 | where |
2384 | Self: KnownLayout<PointerMetadata = usize> + IntoBytes, |
2385 | { |
2386 | match Ptr::from_mut(source).try_cast_into_no_leftover::<Self, BecauseExclusive>(Some(count)) |
2387 | { |
2388 | Ok(source) => { |
2389 | // This call may panic. If that happens, it doesn't cause any soundness |
2390 | // issues, as we have not generated any invalid state which we need to |
2391 | // fix before returning. |
2392 | // |
2393 | // Note that one panic or post-monomorphization error condition is |
2394 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2395 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2396 | // condition will not happen. |
2397 | match source.try_into_valid() { |
2398 | Ok(source) => Ok(source.as_mut()), |
2399 | Err(e) => { |
2400 | Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into()) |
2401 | } |
2402 | } |
2403 | } |
2404 | Err(e) => Err(e.map_src(Ptr::as_mut).into()), |
2405 | } |
2406 | } |
2407 | |
2408 | /// Attempts to interpret the prefix of the given `source` as a `&mut Self` |
2409 | /// with a DST length equal to `count`. |
2410 | /// |
2411 | /// This method attempts to return a reference to the prefix of `source` |
2412 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2413 | /// to the remaining bytes. If the length of `source` is less than the size |
2414 | /// of `Self` with `count` elements, if `source` is not appropriately |
2415 | /// aligned, or if the prefix of `source` does not contain a valid instance |
2416 | /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], |
2417 | /// you can [infallibly discard the alignment error][ConvertError::from]. |
2418 | /// |
2419 | /// [self-unaligned]: Unaligned |
2420 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2421 | /// |
2422 | /// # Examples |
2423 | /// |
2424 | /// ``` |
2425 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2426 | /// use zerocopy::TryFromBytes; |
2427 | /// # use zerocopy_derive::*; |
2428 | /// |
2429 | /// // The only valid value of this type is the byte `0xC0` |
2430 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2431 | /// #[repr(u8)] |
2432 | /// enum C0 { xC0 = 0xC0 } |
2433 | /// |
2434 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2435 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2436 | /// #[repr(C)] |
2437 | /// struct C0C0(C0, C0); |
2438 | /// |
2439 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2440 | /// #[repr(C, packed)] |
2441 | /// struct Packet { |
2442 | /// magic_number: C0C0, |
2443 | /// mug_size: u8, |
2444 | /// temperature: u8, |
2445 | /// marshmallows: [[u8; 2]], |
2446 | /// } |
2447 | /// |
2448 | /// let bytes = &mut [0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7, 8][..]; |
2449 | /// |
2450 | /// let (packet, suffix) = Packet::try_mut_from_prefix_with_elems(bytes, 3).unwrap(); |
2451 | /// |
2452 | /// assert_eq!(packet.mug_size, 240); |
2453 | /// assert_eq!(packet.temperature, 77); |
2454 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2455 | /// assert_eq!(suffix, &[8u8][..]); |
2456 | /// |
2457 | /// packet.temperature = 111; |
2458 | /// suffix[0] = 222; |
2459 | /// |
2460 | /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 2, 3, 4, 5, 6, 7, 222]); |
2461 | /// |
2462 | /// // These bytes are not valid instance of `Packet`. |
2463 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2464 | /// assert!(Packet::try_mut_from_prefix_with_elems(bytes, 3).is_err()); |
2465 | /// ``` |
2466 | /// |
2467 | /// Since an explicit `count` is provided, this method supports types with |
2468 | /// zero-sized trailing slice elements. Methods such as [`try_mut_from_prefix`] |
2469 | /// which do not take an explicit count do not support such types. |
2470 | /// |
2471 | /// ``` |
2472 | /// use core::num::NonZeroU16; |
2473 | /// use zerocopy::*; |
2474 | /// # use zerocopy_derive::*; |
2475 | /// |
2476 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2477 | /// #[repr(C, packed)] |
2478 | /// struct ZSTy { |
2479 | /// leading_sized: NonZeroU16, |
2480 | /// trailing_dst: [()], |
2481 | /// } |
2482 | /// |
2483 | /// let mut src = 0xCAFEu16; |
2484 | /// let src = src.as_mut_bytes(); |
2485 | /// let (zsty, _) = ZSTy::try_mut_from_prefix_with_elems(src, 42).unwrap(); |
2486 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2487 | /// ``` |
2488 | /// |
2489 | /// [`try_mut_from_prefix`]: TryFromBytes::try_mut_from_prefix |
2490 | #[must_use = "has no side effects" ] |
2491 | #[inline ] |
2492 | fn try_mut_from_prefix_with_elems( |
2493 | source: &mut [u8], |
2494 | count: usize, |
2495 | ) -> Result<(&mut Self, &mut [u8]), TryCastError<&mut [u8], Self>> |
2496 | where |
2497 | Self: KnownLayout<PointerMetadata = usize> + IntoBytes, |
2498 | { |
2499 | try_mut_from_prefix_suffix(source, CastType::Prefix, Some(count)) |
2500 | } |
2501 | |
2502 | /// Attempts to interpret the suffix of the given `source` as a `&mut Self` |
2503 | /// with a DST length equal to `count`. |
2504 | /// |
2505 | /// This method attempts to return a reference to the suffix of `source` |
2506 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
2507 | /// to the preceding bytes. If the length of `source` is less than the size |
2508 | /// of `Self` with `count` elements, if the suffix of `source` is not |
2509 | /// appropriately aligned, or if the suffix of `source` does not contain a |
2510 | /// valid instance of `Self`, this returns `Err`. If [`Self: |
2511 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
2512 | /// error][ConvertError::from]. |
2513 | /// |
2514 | /// [self-unaligned]: Unaligned |
2515 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
2516 | /// |
2517 | /// # Examples |
2518 | /// |
2519 | /// ``` |
2520 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2521 | /// use zerocopy::TryFromBytes; |
2522 | /// # use zerocopy_derive::*; |
2523 | /// |
2524 | /// // The only valid value of this type is the byte `0xC0` |
2525 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2526 | /// #[repr(u8)] |
2527 | /// enum C0 { xC0 = 0xC0 } |
2528 | /// |
2529 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2530 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2531 | /// #[repr(C)] |
2532 | /// struct C0C0(C0, C0); |
2533 | /// |
2534 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2535 | /// #[repr(C, packed)] |
2536 | /// struct Packet { |
2537 | /// magic_number: C0C0, |
2538 | /// mug_size: u8, |
2539 | /// temperature: u8, |
2540 | /// marshmallows: [[u8; 2]], |
2541 | /// } |
2542 | /// |
2543 | /// let bytes = &mut [123, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..]; |
2544 | /// |
2545 | /// let (prefix, packet) = Packet::try_mut_from_suffix_with_elems(bytes, 3).unwrap(); |
2546 | /// |
2547 | /// assert_eq!(packet.mug_size, 240); |
2548 | /// assert_eq!(packet.temperature, 77); |
2549 | /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]); |
2550 | /// assert_eq!(prefix, &[123u8][..]); |
2551 | /// |
2552 | /// prefix[0] = 111; |
2553 | /// packet.temperature = 222; |
2554 | /// |
2555 | /// assert_eq!(bytes, [111, 0xC0, 0xC0, 240, 222, 2, 3, 4, 5, 6, 7]); |
2556 | /// |
2557 | /// // These bytes are not valid instance of `Packet`. |
2558 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..]; |
2559 | /// assert!(Packet::try_mut_from_suffix_with_elems(bytes, 3).is_err()); |
2560 | /// ``` |
2561 | /// |
2562 | /// Since an explicit `count` is provided, this method supports types with |
2563 | /// zero-sized trailing slice elements. Methods such as [`try_mut_from_prefix`] |
2564 | /// which do not take an explicit count do not support such types. |
2565 | /// |
2566 | /// ``` |
2567 | /// use core::num::NonZeroU16; |
2568 | /// use zerocopy::*; |
2569 | /// # use zerocopy_derive::*; |
2570 | /// |
2571 | /// #[derive(TryFromBytes, IntoBytes, KnownLayout)] |
2572 | /// #[repr(C, packed)] |
2573 | /// struct ZSTy { |
2574 | /// leading_sized: NonZeroU16, |
2575 | /// trailing_dst: [()], |
2576 | /// } |
2577 | /// |
2578 | /// let mut src = 0xCAFEu16; |
2579 | /// let src = src.as_mut_bytes(); |
2580 | /// let (_, zsty) = ZSTy::try_mut_from_suffix_with_elems(src, 42).unwrap(); |
2581 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
2582 | /// ``` |
2583 | /// |
2584 | /// [`try_mut_from_prefix`]: TryFromBytes::try_mut_from_prefix |
2585 | #[must_use = "has no side effects" ] |
2586 | #[inline ] |
2587 | fn try_mut_from_suffix_with_elems( |
2588 | source: &mut [u8], |
2589 | count: usize, |
2590 | ) -> Result<(&mut [u8], &mut Self), TryCastError<&mut [u8], Self>> |
2591 | where |
2592 | Self: KnownLayout<PointerMetadata = usize> + IntoBytes, |
2593 | { |
2594 | try_mut_from_prefix_suffix(source, CastType::Suffix, Some(count)).map(swap) |
2595 | } |
2596 | |
2597 | /// Attempts to read the given `source` as a `Self`. |
2598 | /// |
2599 | /// If `source.len() != size_of::<Self>()` or the bytes are not a valid |
2600 | /// instance of `Self`, this returns `Err`. |
2601 | /// |
2602 | /// # Examples |
2603 | /// |
2604 | /// ``` |
2605 | /// use zerocopy::TryFromBytes; |
2606 | /// # use zerocopy_derive::*; |
2607 | /// |
2608 | /// // The only valid value of this type is the byte `0xC0` |
2609 | /// #[derive(TryFromBytes)] |
2610 | /// #[repr(u8)] |
2611 | /// enum C0 { xC0 = 0xC0 } |
2612 | /// |
2613 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2614 | /// #[derive(TryFromBytes)] |
2615 | /// #[repr(C)] |
2616 | /// struct C0C0(C0, C0); |
2617 | /// |
2618 | /// #[derive(TryFromBytes)] |
2619 | /// #[repr(C)] |
2620 | /// struct Packet { |
2621 | /// magic_number: C0C0, |
2622 | /// mug_size: u8, |
2623 | /// temperature: u8, |
2624 | /// } |
2625 | /// |
2626 | /// let bytes = &[0xC0, 0xC0, 240, 77][..]; |
2627 | /// |
2628 | /// let packet = Packet::try_read_from_bytes(bytes).unwrap(); |
2629 | /// |
2630 | /// assert_eq!(packet.mug_size, 240); |
2631 | /// assert_eq!(packet.temperature, 77); |
2632 | /// |
2633 | /// // These bytes are not valid instance of `Packet`. |
2634 | /// let bytes = &mut [0x10, 0xC0, 240, 77][..]; |
2635 | /// assert!(Packet::try_read_from_bytes(bytes).is_err()); |
2636 | /// ``` |
2637 | #[must_use = "has no side effects" ] |
2638 | #[inline ] |
2639 | fn try_read_from_bytes(source: &[u8]) -> Result<Self, TryReadError<&[u8], Self>> |
2640 | where |
2641 | Self: Sized, |
2642 | { |
2643 | let candidate = match CoreMaybeUninit::<Self>::read_from_bytes(source) { |
2644 | Ok(candidate) => candidate, |
2645 | Err(e) => { |
2646 | return Err(TryReadError::Size(e.with_dst())); |
2647 | } |
2648 | }; |
2649 | // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of |
2650 | // its bytes are initialized. |
2651 | unsafe { try_read_from(source, candidate) } |
2652 | } |
2653 | |
2654 | /// Attempts to read a `Self` from the prefix of the given `source`. |
2655 | /// |
2656 | /// This attempts to read a `Self` from the first `size_of::<Self>()` bytes |
2657 | /// of `source`, returning that `Self` and any remaining bytes. If |
2658 | /// `source.len() < size_of::<Self>()` or the bytes are not a valid instance |
2659 | /// of `Self`, it returns `Err`. |
2660 | /// |
2661 | /// # Examples |
2662 | /// |
2663 | /// ``` |
2664 | /// use zerocopy::TryFromBytes; |
2665 | /// # use zerocopy_derive::*; |
2666 | /// |
2667 | /// // The only valid value of this type is the byte `0xC0` |
2668 | /// #[derive(TryFromBytes)] |
2669 | /// #[repr(u8)] |
2670 | /// enum C0 { xC0 = 0xC0 } |
2671 | /// |
2672 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2673 | /// #[derive(TryFromBytes)] |
2674 | /// #[repr(C)] |
2675 | /// struct C0C0(C0, C0); |
2676 | /// |
2677 | /// #[derive(TryFromBytes)] |
2678 | /// #[repr(C)] |
2679 | /// struct Packet { |
2680 | /// magic_number: C0C0, |
2681 | /// mug_size: u8, |
2682 | /// temperature: u8, |
2683 | /// } |
2684 | /// |
2685 | /// // These are more bytes than are needed to encode a `Packet`. |
2686 | /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
2687 | /// |
2688 | /// let (packet, suffix) = Packet::try_read_from_prefix(bytes).unwrap(); |
2689 | /// |
2690 | /// assert_eq!(packet.mug_size, 240); |
2691 | /// assert_eq!(packet.temperature, 77); |
2692 | /// assert_eq!(suffix, &[0u8, 1, 2, 3, 4, 5, 6][..]); |
2693 | /// |
2694 | /// // These bytes are not valid instance of `Packet`. |
2695 | /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..]; |
2696 | /// assert!(Packet::try_read_from_prefix(bytes).is_err()); |
2697 | /// ``` |
2698 | #[must_use = "has no side effects" ] |
2699 | #[inline ] |
2700 | fn try_read_from_prefix(source: &[u8]) -> Result<(Self, &[u8]), TryReadError<&[u8], Self>> |
2701 | where |
2702 | Self: Sized, |
2703 | { |
2704 | let (candidate, suffix) = match CoreMaybeUninit::<Self>::read_from_prefix(source) { |
2705 | Ok(candidate) => candidate, |
2706 | Err(e) => { |
2707 | return Err(TryReadError::Size(e.with_dst())); |
2708 | } |
2709 | }; |
2710 | // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of |
2711 | // its bytes are initialized. |
2712 | unsafe { try_read_from(source, candidate).map(|slf| (slf, suffix)) } |
2713 | } |
2714 | |
2715 | /// Attempts to read a `Self` from the suffix of the given `source`. |
2716 | /// |
2717 | /// This attempts to read a `Self` from the last `size_of::<Self>()` bytes |
2718 | /// of `source`, returning that `Self` and any preceding bytes. If |
2719 | /// `source.len() < size_of::<Self>()` or the bytes are not a valid instance |
2720 | /// of `Self`, it returns `Err`. |
2721 | /// |
2722 | /// # Examples |
2723 | /// |
2724 | /// ``` |
2725 | /// # #![allow (non_camel_case_types)] // For C0::xC0 |
2726 | /// use zerocopy::TryFromBytes; |
2727 | /// # use zerocopy_derive::*; |
2728 | /// |
2729 | /// // The only valid value of this type is the byte `0xC0` |
2730 | /// #[derive(TryFromBytes)] |
2731 | /// #[repr(u8)] |
2732 | /// enum C0 { xC0 = 0xC0 } |
2733 | /// |
2734 | /// // The only valid value of this type is the bytes `0xC0C0`. |
2735 | /// #[derive(TryFromBytes)] |
2736 | /// #[repr(C)] |
2737 | /// struct C0C0(C0, C0); |
2738 | /// |
2739 | /// #[derive(TryFromBytes)] |
2740 | /// #[repr(C)] |
2741 | /// struct Packet { |
2742 | /// magic_number: C0C0, |
2743 | /// mug_size: u8, |
2744 | /// temperature: u8, |
2745 | /// } |
2746 | /// |
2747 | /// // These are more bytes than are needed to encode a `Packet`. |
2748 | /// let bytes = &[0, 1, 2, 3, 4, 5, 0xC0, 0xC0, 240, 77][..]; |
2749 | /// |
2750 | /// let (prefix, packet) = Packet::try_read_from_suffix(bytes).unwrap(); |
2751 | /// |
2752 | /// assert_eq!(packet.mug_size, 240); |
2753 | /// assert_eq!(packet.temperature, 77); |
2754 | /// assert_eq!(prefix, &[0u8, 1, 2, 3, 4, 5][..]); |
2755 | /// |
2756 | /// // These bytes are not valid instance of `Packet`. |
2757 | /// let bytes = &[0, 1, 2, 3, 4, 5, 0x10, 0xC0, 240, 77][..]; |
2758 | /// assert!(Packet::try_read_from_suffix(bytes).is_err()); |
2759 | /// ``` |
2760 | #[must_use = "has no side effects" ] |
2761 | #[inline ] |
2762 | fn try_read_from_suffix(source: &[u8]) -> Result<(&[u8], Self), TryReadError<&[u8], Self>> |
2763 | where |
2764 | Self: Sized, |
2765 | { |
2766 | let (prefix, candidate) = match CoreMaybeUninit::<Self>::read_from_suffix(source) { |
2767 | Ok(candidate) => candidate, |
2768 | Err(e) => { |
2769 | return Err(TryReadError::Size(e.with_dst())); |
2770 | } |
2771 | }; |
2772 | // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of |
2773 | // its bytes are initialized. |
2774 | unsafe { try_read_from(source, candidate).map(|slf| (prefix, slf)) } |
2775 | } |
2776 | } |
2777 | |
2778 | #[inline (always)] |
2779 | fn try_ref_from_prefix_suffix<T: TryFromBytes + KnownLayout + Immutable + ?Sized>( |
2780 | source: &[u8], |
2781 | cast_type: CastType, |
2782 | meta: Option<T::PointerMetadata>, |
2783 | ) -> Result<(&T, &[u8]), TryCastError<&[u8], T>> { |
2784 | match Ptr::from_ref(ptr:source).try_cast_into::<T, BecauseImmutable>(cast_type, meta) { |
2785 | Ok((source: Ptr<'_, T, (Shared, Aligned, …)>, prefix_suffix: Ptr<'_, [u8], (Shared, Aligned, …)>)) => { |
2786 | // This call may panic. If that happens, it doesn't cause any soundness |
2787 | // issues, as we have not generated any invalid state which we need to |
2788 | // fix before returning. |
2789 | // |
2790 | // Note that one panic or post-monomorphization error condition is |
2791 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2792 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2793 | // condition will not happen. |
2794 | match source.try_into_valid() { |
2795 | Ok(valid: Ptr<'_, T, (Shared, Aligned, …)>) => Ok((valid.as_ref(), prefix_suffix.as_ref())), |
2796 | Err(e: ValidityError, …>) => Err(e.map_src(|src: Ptr<'_, T, (Shared, Aligned, …)>| src.as_bytes::<BecauseImmutable>().as_ref()).into()), |
2797 | } |
2798 | } |
2799 | Err(e: ConvertError, …, …>) => Err(e.map_src(Ptr::as_ref).into()), |
2800 | } |
2801 | } |
2802 | |
2803 | #[inline (always)] |
2804 | fn try_mut_from_prefix_suffix<T: IntoBytes + TryFromBytes + KnownLayout + ?Sized>( |
2805 | candidate: &mut [u8], |
2806 | cast_type: CastType, |
2807 | meta: Option<T::PointerMetadata>, |
2808 | ) -> Result<(&mut T, &mut [u8]), TryCastError<&mut [u8], T>> { |
2809 | match Ptr::from_mut(ptr:candidate).try_cast_into::<T, BecauseExclusive>(cast_type, meta) { |
2810 | Ok((candidate: Ptr<'_, T, (Exclusive, Aligned, …)>, prefix_suffix: Ptr<'_, [u8], (Exclusive, …)>)) => { |
2811 | // This call may panic. If that happens, it doesn't cause any soundness |
2812 | // issues, as we have not generated any invalid state which we need to |
2813 | // fix before returning. |
2814 | // |
2815 | // Note that one panic or post-monomorphization error condition is |
2816 | // calling `try_into_valid` (and thus `is_bit_valid`) with a shared |
2817 | // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic |
2818 | // condition will not happen. |
2819 | match candidate.try_into_valid() { |
2820 | Ok(valid: Ptr<'_, T, (Exclusive, Aligned, …)>) => Ok((valid.as_mut(), prefix_suffix.as_mut())), |
2821 | Err(e: ValidityError, …>) => Err(e.map_src(|src: Ptr<'_, T, (Exclusive, Aligned, …)>| src.as_bytes::<BecauseExclusive>().as_mut()).into()), |
2822 | } |
2823 | } |
2824 | Err(e: ConvertError, …, …>) => Err(e.map_src(Ptr::as_mut).into()), |
2825 | } |
2826 | } |
2827 | |
2828 | #[inline (always)] |
2829 | fn swap<T, U>((t: T, u: U): (T, U)) -> (U, T) { |
2830 | (u, t) |
2831 | } |
2832 | |
2833 | /// # Safety |
2834 | /// |
2835 | /// All bytes of `candidate` must be initialized. |
2836 | #[inline (always)] |
2837 | unsafe fn try_read_from<S, T: TryFromBytes>( |
2838 | source: S, |
2839 | mut candidate: CoreMaybeUninit<T>, |
2840 | ) -> Result<T, TryReadError<S, T>> { |
2841 | // We use `from_mut` despite not mutating via `c_ptr` so that we don't need |
2842 | // to add a `T: Immutable` bound. |
2843 | let c_ptr = Ptr::from_mut(&mut candidate); |
2844 | // SAFETY: `c_ptr` has no uninitialized sub-ranges because it derived from |
2845 | // `candidate`, which the caller promises is entirely initialized. Since |
2846 | // `candidate` is a `MaybeUninit`, it has no validity requirements, and so |
2847 | // no values written to an `Initialized` `c_ptr` can violate its validity. |
2848 | // Since `c_ptr` has `Exclusive` aliasing, no mutations may happen except |
2849 | // via `c_ptr` so long as it is live, so we don't need to worry about the |
2850 | // fact that `c_ptr` may have more restricted validity than `candidate`. |
2851 | let c_ptr = unsafe { c_ptr.assume_validity::<invariant::Initialized>() }; |
2852 | let c_ptr = c_ptr.transmute(); |
2853 | |
2854 | // Since we don't have `T: KnownLayout`, we hack around that by using |
2855 | // `Wrapping<T>`, which implements `KnownLayout` even if `T` doesn't. |
2856 | // |
2857 | // This call may panic. If that happens, it doesn't cause any soundness |
2858 | // issues, as we have not generated any invalid state which we need to fix |
2859 | // before returning. |
2860 | // |
2861 | // Note that one panic or post-monomorphization error condition is calling |
2862 | // `try_into_valid` (and thus `is_bit_valid`) with a shared pointer when |
2863 | // `Self: !Immutable`. Since `Self: Immutable`, this panic condition will |
2864 | // not happen. |
2865 | if !Wrapping::<T>::is_bit_valid(c_ptr.forget_aligned()) { |
2866 | return Err(ValidityError::new(source).into()); |
2867 | } |
2868 | |
2869 | fn _assert_same_size_and_validity<T>() |
2870 | where |
2871 | Wrapping<T>: pointer::TransmuteFrom<T, invariant::Valid, invariant::Valid>, |
2872 | T: pointer::TransmuteFrom<Wrapping<T>, invariant::Valid, invariant::Valid>, |
2873 | { |
2874 | } |
2875 | |
2876 | _assert_same_size_and_validity::<T>(); |
2877 | |
2878 | // SAFETY: We just validated that `candidate` contains a valid |
2879 | // `Wrapping<T>`, which has the same size and bit validity as `T`, as |
2880 | // guaranteed by the preceding type assertion. |
2881 | Ok(unsafe { candidate.assume_init() }) |
2882 | } |
2883 | |
2884 | /// Types for which a sequence of bytes all set to zero represents a valid |
2885 | /// instance of the type. |
2886 | /// |
2887 | /// Any memory region of the appropriate length which is guaranteed to contain |
2888 | /// only zero bytes can be viewed as any `FromZeros` type with no runtime |
2889 | /// overhead. This is useful whenever memory is known to be in a zeroed state, |
2890 | /// such memory returned from some allocation routines. |
2891 | /// |
2892 | /// # Warning: Padding bytes |
2893 | /// |
2894 | /// Note that, when a value is moved or copied, only the non-padding bytes of |
2895 | /// that value are guaranteed to be preserved. It is unsound to assume that |
2896 | /// values written to padding bytes are preserved after a move or copy. For more |
2897 | /// details, see the [`FromBytes` docs][frombytes-warning-padding-bytes]. |
2898 | /// |
2899 | /// [frombytes-warning-padding-bytes]: FromBytes#warning-padding-bytes |
2900 | /// |
2901 | /// # Implementation |
2902 | /// |
2903 | /// **Do not implement this trait yourself!** Instead, use |
2904 | /// [`#[derive(FromZeros)]`][derive]; e.g.: |
2905 | /// |
2906 | /// ``` |
2907 | /// # use zerocopy_derive::{FromZeros, Immutable}; |
2908 | /// #[derive(FromZeros)] |
2909 | /// struct MyStruct { |
2910 | /// # /* |
2911 | /// ... |
2912 | /// # */ |
2913 | /// } |
2914 | /// |
2915 | /// #[derive(FromZeros)] |
2916 | /// #[repr(u8)] |
2917 | /// enum MyEnum { |
2918 | /// # Variant0, |
2919 | /// # /* |
2920 | /// ... |
2921 | /// # */ |
2922 | /// } |
2923 | /// |
2924 | /// #[derive(FromZeros, Immutable)] |
2925 | /// union MyUnion { |
2926 | /// # variant: u8, |
2927 | /// # /* |
2928 | /// ... |
2929 | /// # */ |
2930 | /// } |
2931 | /// ``` |
2932 | /// |
2933 | /// This derive performs a sophisticated, compile-time safety analysis to |
2934 | /// determine whether a type is `FromZeros`. |
2935 | /// |
2936 | /// # Safety |
2937 | /// |
2938 | /// *This section describes what is required in order for `T: FromZeros`, and |
2939 | /// what unsafe code may assume of such types. If you don't plan on implementing |
2940 | /// `FromZeros` manually, and you don't plan on writing unsafe code that |
2941 | /// operates on `FromZeros` types, then you don't need to read this section.* |
2942 | /// |
2943 | /// If `T: FromZeros`, then unsafe code may assume that it is sound to produce a |
2944 | /// `T` whose bytes are all initialized to zero. If a type is marked as |
2945 | /// `FromZeros` which violates this contract, it may cause undefined behavior. |
2946 | /// |
2947 | /// `#[derive(FromZeros)]` only permits [types which satisfy these |
2948 | /// requirements][derive-analysis]. |
2949 | /// |
2950 | #[cfg_attr ( |
2951 | feature = "derive" , |
2952 | doc = "[derive]: zerocopy_derive::FromZeros" , |
2953 | doc = "[derive-analysis]: zerocopy_derive::FromZeros#analysis" |
2954 | )] |
2955 | #[cfg_attr ( |
2956 | not(feature = "derive" ), |
2957 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromZeros.html" ), |
2958 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromZeros.html#analysis" ), |
2959 | )] |
2960 | #[cfg_attr ( |
2961 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
2962 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(FromZeros)]` to `{Self}`" ) |
2963 | )] |
2964 | pub unsafe trait FromZeros: TryFromBytes { |
2965 | // The `Self: Sized` bound makes it so that `FromZeros` is still object |
2966 | // safe. |
2967 | #[doc (hidden)] |
2968 | fn only_derive_is_allowed_to_implement_this_trait() |
2969 | where |
2970 | Self: Sized; |
2971 | |
2972 | /// Overwrites `self` with zeros. |
2973 | /// |
2974 | /// Sets every byte in `self` to 0. While this is similar to doing `*self = |
2975 | /// Self::new_zeroed()`, it differs in that `zero` does not semantically |
2976 | /// drop the current value and replace it with a new one — it simply |
2977 | /// modifies the bytes of the existing value. |
2978 | /// |
2979 | /// # Examples |
2980 | /// |
2981 | /// ``` |
2982 | /// # use zerocopy::FromZeros; |
2983 | /// # use zerocopy_derive::*; |
2984 | /// # |
2985 | /// #[derive(FromZeros)] |
2986 | /// #[repr(C)] |
2987 | /// struct PacketHeader { |
2988 | /// src_port: [u8; 2], |
2989 | /// dst_port: [u8; 2], |
2990 | /// length: [u8; 2], |
2991 | /// checksum: [u8; 2], |
2992 | /// } |
2993 | /// |
2994 | /// let mut header = PacketHeader { |
2995 | /// src_port: 100u16.to_be_bytes(), |
2996 | /// dst_port: 200u16.to_be_bytes(), |
2997 | /// length: 300u16.to_be_bytes(), |
2998 | /// checksum: 400u16.to_be_bytes(), |
2999 | /// }; |
3000 | /// |
3001 | /// header.zero(); |
3002 | /// |
3003 | /// assert_eq!(header.src_port, [0, 0]); |
3004 | /// assert_eq!(header.dst_port, [0, 0]); |
3005 | /// assert_eq!(header.length, [0, 0]); |
3006 | /// assert_eq!(header.checksum, [0, 0]); |
3007 | /// ``` |
3008 | #[inline (always)] |
3009 | fn zero(&mut self) { |
3010 | let slf: *mut Self = self; |
3011 | let len = mem::size_of_val(self); |
3012 | // SAFETY: |
3013 | // - `self` is guaranteed by the type system to be valid for writes of |
3014 | // size `size_of_val(self)`. |
3015 | // - `u8`'s alignment is 1, and thus `self` is guaranteed to be aligned |
3016 | // as required by `u8`. |
3017 | // - Since `Self: FromZeros`, the all-zeros instance is a valid instance |
3018 | // of `Self.` |
3019 | // |
3020 | // TODO(#429): Add references to docs and quotes. |
3021 | unsafe { ptr::write_bytes(slf.cast::<u8>(), 0, len) }; |
3022 | } |
3023 | |
3024 | /// Creates an instance of `Self` from zeroed bytes. |
3025 | /// |
3026 | /// # Examples |
3027 | /// |
3028 | /// ``` |
3029 | /// # use zerocopy::FromZeros; |
3030 | /// # use zerocopy_derive::*; |
3031 | /// # |
3032 | /// #[derive(FromZeros)] |
3033 | /// #[repr(C)] |
3034 | /// struct PacketHeader { |
3035 | /// src_port: [u8; 2], |
3036 | /// dst_port: [u8; 2], |
3037 | /// length: [u8; 2], |
3038 | /// checksum: [u8; 2], |
3039 | /// } |
3040 | /// |
3041 | /// let header: PacketHeader = FromZeros::new_zeroed(); |
3042 | /// |
3043 | /// assert_eq!(header.src_port, [0, 0]); |
3044 | /// assert_eq!(header.dst_port, [0, 0]); |
3045 | /// assert_eq!(header.length, [0, 0]); |
3046 | /// assert_eq!(header.checksum, [0, 0]); |
3047 | /// ``` |
3048 | #[must_use = "has no side effects" ] |
3049 | #[inline (always)] |
3050 | fn new_zeroed() -> Self |
3051 | where |
3052 | Self: Sized, |
3053 | { |
3054 | // SAFETY: `FromZeros` says that the all-zeros bit pattern is legal. |
3055 | unsafe { mem::zeroed() } |
3056 | } |
3057 | |
3058 | /// Creates a `Box<Self>` from zeroed bytes. |
3059 | /// |
3060 | /// This function is useful for allocating large values on the heap and |
3061 | /// zero-initializing them, without ever creating a temporary instance of |
3062 | /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()` |
3063 | /// will allocate `[u8; 1048576]` directly on the heap; it does not require |
3064 | /// storing `[u8; 1048576]` in a temporary variable on the stack. |
3065 | /// |
3066 | /// On systems that use a heap implementation that supports allocating from |
3067 | /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may |
3068 | /// have performance benefits. |
3069 | /// |
3070 | /// # Errors |
3071 | /// |
3072 | /// Returns an error on allocation failure. Allocation failure is guaranteed |
3073 | /// never to cause a panic or an abort. |
3074 | #[must_use = "has no side effects (other than allocation)" ] |
3075 | #[cfg (any(feature = "alloc" , test))] |
3076 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3077 | #[inline ] |
3078 | fn new_box_zeroed() -> Result<Box<Self>, AllocError> |
3079 | where |
3080 | Self: Sized, |
3081 | { |
3082 | // If `T` is a ZST, then return a proper boxed instance of it. There is |
3083 | // no allocation, but `Box` does require a correct dangling pointer. |
3084 | let layout = Layout::new::<Self>(); |
3085 | if layout.size() == 0 { |
3086 | // Construct the `Box` from a dangling pointer to avoid calling |
3087 | // `Self::new_zeroed`. This ensures that stack space is never |
3088 | // allocated for `Self` even on lower opt-levels where this branch |
3089 | // might not get optimized out. |
3090 | |
3091 | // SAFETY: Per [1], when `T` is a ZST, `Box<T>`'s only validity |
3092 | // requirements are that the pointer is non-null and sufficiently |
3093 | // aligned. Per [2], `NonNull::dangling` produces a pointer which |
3094 | // is sufficiently aligned. Since the produced pointer is a |
3095 | // `NonNull`, it is non-null. |
3096 | // |
3097 | // [1] Per https://doc.rust-lang.org/nightly/std/boxed/index.html#memory-layout: |
3098 | // |
3099 | // For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned. |
3100 | // |
3101 | // [2] Per https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.dangling: |
3102 | // |
3103 | // Creates a new `NonNull` that is dangling, but well-aligned. |
3104 | return Ok(unsafe { Box::from_raw(NonNull::dangling().as_ptr()) }); |
3105 | } |
3106 | |
3107 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
3108 | #[allow (clippy::undocumented_unsafe_blocks)] |
3109 | let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() }; |
3110 | if ptr.is_null() { |
3111 | return Err(AllocError); |
3112 | } |
3113 | // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
3114 | #[allow (clippy::undocumented_unsafe_blocks)] |
3115 | Ok(unsafe { Box::from_raw(ptr) }) |
3116 | } |
3117 | |
3118 | /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes. |
3119 | /// |
3120 | /// This function is useful for allocating large values of `[Self]` on the |
3121 | /// heap and zero-initializing them, without ever creating a temporary |
3122 | /// instance of `[Self; _]` on the stack. For example, |
3123 | /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on |
3124 | /// the heap; it does not require storing the slice on the stack. |
3125 | /// |
3126 | /// On systems that use a heap implementation that supports allocating from |
3127 | /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance |
3128 | /// benefits. |
3129 | /// |
3130 | /// If `Self` is a zero-sized type, then this function will return a |
3131 | /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any |
3132 | /// actual information, but its `len()` property will report the correct |
3133 | /// value. |
3134 | /// |
3135 | /// # Errors |
3136 | /// |
3137 | /// Returns an error on allocation failure. Allocation failure is |
3138 | /// guaranteed never to cause a panic or an abort. |
3139 | #[must_use = "has no side effects (other than allocation)" ] |
3140 | #[cfg (feature = "alloc" )] |
3141 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3142 | #[inline ] |
3143 | fn new_box_zeroed_with_elems(count: usize) -> Result<Box<Self>, AllocError> |
3144 | where |
3145 | Self: KnownLayout<PointerMetadata = usize>, |
3146 | { |
3147 | // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of |
3148 | // `new_box`. The referent of the pointer returned by `alloc_zeroed` |
3149 | // (and, consequently, the `Box` derived from it) is a valid instance of |
3150 | // `Self`, because `Self` is `FromZeros`. |
3151 | unsafe { crate::util::new_box(count, alloc::alloc::alloc_zeroed) } |
3152 | } |
3153 | |
3154 | #[deprecated (since = "0.8.0" , note = "renamed to `FromZeros::new_box_zeroed_with_elems`" )] |
3155 | #[doc (hidden)] |
3156 | #[cfg (feature = "alloc" )] |
3157 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3158 | #[must_use = "has no side effects (other than allocation)" ] |
3159 | #[inline (always)] |
3160 | fn new_box_slice_zeroed(len: usize) -> Result<Box<[Self]>, AllocError> |
3161 | where |
3162 | Self: Sized, |
3163 | { |
3164 | <[Self]>::new_box_zeroed_with_elems(len) |
3165 | } |
3166 | |
3167 | /// Creates a `Vec<Self>` from zeroed bytes. |
3168 | /// |
3169 | /// This function is useful for allocating large values of `Vec`s and |
3170 | /// zero-initializing them, without ever creating a temporary instance of |
3171 | /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For |
3172 | /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the |
3173 | /// heap; it does not require storing intermediate values on the stack. |
3174 | /// |
3175 | /// On systems that use a heap implementation that supports allocating from |
3176 | /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits. |
3177 | /// |
3178 | /// If `Self` is a zero-sized type, then this function will return a |
3179 | /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any |
3180 | /// actual information, but its `len()` property will report the correct |
3181 | /// value. |
3182 | /// |
3183 | /// # Errors |
3184 | /// |
3185 | /// Returns an error on allocation failure. Allocation failure is |
3186 | /// guaranteed never to cause a panic or an abort. |
3187 | #[must_use = "has no side effects (other than allocation)" ] |
3188 | #[cfg (feature = "alloc" )] |
3189 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
3190 | #[inline (always)] |
3191 | fn new_vec_zeroed(len: usize) -> Result<Vec<Self>, AllocError> |
3192 | where |
3193 | Self: Sized, |
3194 | { |
3195 | <[Self]>::new_box_zeroed_with_elems(len).map(Into::into) |
3196 | } |
3197 | |
3198 | /// Extends a `Vec<Self>` by pushing `additional` new items onto the end of |
3199 | /// the vector. The new items are initialized with zeros. |
3200 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
3201 | #[cfg (feature = "alloc" )] |
3202 | #[cfg_attr (doc_cfg, doc(cfg(all(rust = "1.57.0" , feature = "alloc" ))))] |
3203 | #[inline (always)] |
3204 | fn extend_vec_zeroed(v: &mut Vec<Self>, additional: usize) -> Result<(), AllocError> |
3205 | where |
3206 | Self: Sized, |
3207 | { |
3208 | // PANICS: We pass `v.len()` for `position`, so the `position > v.len()` |
3209 | // panic condition is not satisfied. |
3210 | <Self as FromZeros>::insert_vec_zeroed(v, v.len(), additional) |
3211 | } |
3212 | |
3213 | /// Inserts `additional` new items into `Vec<Self>` at `position`. The new |
3214 | /// items are initialized with zeros. |
3215 | /// |
3216 | /// # Panics |
3217 | /// |
3218 | /// Panics if `position > v.len()`. |
3219 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
3220 | #[cfg (feature = "alloc" )] |
3221 | #[cfg_attr (doc_cfg, doc(cfg(all(rust = "1.57.0" , feature = "alloc" ))))] |
3222 | #[inline ] |
3223 | fn insert_vec_zeroed( |
3224 | v: &mut Vec<Self>, |
3225 | position: usize, |
3226 | additional: usize, |
3227 | ) -> Result<(), AllocError> |
3228 | where |
3229 | Self: Sized, |
3230 | { |
3231 | assert!(position <= v.len()); |
3232 | // We only conditionally compile on versions on which `try_reserve` is |
3233 | // stable; the Clippy lint is a false positive. |
3234 | #[allow (clippy::incompatible_msrv)] |
3235 | v.try_reserve(additional).map_err(|_| AllocError)?; |
3236 | // SAFETY: The `try_reserve` call guarantees that these cannot overflow: |
3237 | // * `ptr.add(position)` |
3238 | // * `position + additional` |
3239 | // * `v.len() + additional` |
3240 | // |
3241 | // `v.len() - position` cannot overflow because we asserted that |
3242 | // `position <= v.len()`. |
3243 | unsafe { |
3244 | // This is a potentially overlapping copy. |
3245 | let ptr = v.as_mut_ptr(); |
3246 | #[allow (clippy::arithmetic_side_effects)] |
3247 | ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position); |
3248 | ptr.add(position).write_bytes(0, additional); |
3249 | #[allow (clippy::arithmetic_side_effects)] |
3250 | v.set_len(v.len() + additional); |
3251 | } |
3252 | |
3253 | Ok(()) |
3254 | } |
3255 | } |
3256 | |
3257 | /// Analyzes whether a type is [`FromBytes`]. |
3258 | /// |
3259 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
3260 | /// the [safety conditions] of `FromBytes` and implements `FromBytes` and its |
3261 | /// supertraits if it is sound to do so. This derive can be applied to structs, |
3262 | /// enums, and unions; |
3263 | /// e.g.: |
3264 | /// |
3265 | /// ``` |
3266 | /// # use zerocopy_derive::{FromBytes, FromZeros, Immutable}; |
3267 | /// #[derive(FromBytes)] |
3268 | /// struct MyStruct { |
3269 | /// # /* |
3270 | /// ... |
3271 | /// # */ |
3272 | /// } |
3273 | /// |
3274 | /// #[derive(FromBytes)] |
3275 | /// #[repr(u8)] |
3276 | /// enum MyEnum { |
3277 | /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
3278 | /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
3279 | /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
3280 | /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
3281 | /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
3282 | /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
3283 | /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
3284 | /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
3285 | /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
3286 | /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
3287 | /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
3288 | /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
3289 | /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
3290 | /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
3291 | /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
3292 | /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
3293 | /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
3294 | /// # VFF, |
3295 | /// # /* |
3296 | /// ... |
3297 | /// # */ |
3298 | /// } |
3299 | /// |
3300 | /// #[derive(FromBytes, Immutable)] |
3301 | /// union MyUnion { |
3302 | /// # variant: u8, |
3303 | /// # /* |
3304 | /// ... |
3305 | /// # */ |
3306 | /// } |
3307 | /// ``` |
3308 | /// |
3309 | /// [safety conditions]: trait@FromBytes#safety |
3310 | /// |
3311 | /// # Analysis |
3312 | /// |
3313 | /// *This section describes, roughly, the analysis performed by this derive to |
3314 | /// determine whether it is sound to implement `FromBytes` for a given type. |
3315 | /// Unless you are modifying the implementation of this derive, or attempting to |
3316 | /// manually implement `FromBytes` for a type yourself, you don't need to read |
3317 | /// this section.* |
3318 | /// |
3319 | /// If a type has the following properties, then this derive can implement |
3320 | /// `FromBytes` for that type: |
3321 | /// |
3322 | /// - If the type is a struct, all of its fields must be `FromBytes`. |
3323 | /// - If the type is an enum: |
3324 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
3325 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
3326 | /// - The maximum number of discriminants must be used (so that every possible |
3327 | /// bit pattern is a valid one). Be very careful when using the `C`, |
3328 | /// `usize`, or `isize` representations, as their size is |
3329 | /// platform-dependent. |
3330 | /// - Its fields must be `FromBytes`. |
3331 | /// |
3332 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
3333 | /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
3334 | /// implementation details of this derive. |
3335 | /// |
3336 | /// ## Why isn't an explicit representation required for structs? |
3337 | /// |
3338 | /// Neither this derive, nor the [safety conditions] of `FromBytes`, requires |
3339 | /// that structs are marked with `#[repr(C)]`. |
3340 | /// |
3341 | /// Per the [Rust reference](reference), |
3342 | /// |
3343 | /// > The representation of a type can change the padding between fields, but |
3344 | /// > does not change the layout of the fields themselves. |
3345 | /// |
3346 | /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
3347 | /// |
3348 | /// Since the layout of structs only consists of padding bytes and field bytes, |
3349 | /// a struct is soundly `FromBytes` if: |
3350 | /// 1. its padding is soundly `FromBytes`, and |
3351 | /// 2. its fields are soundly `FromBytes`. |
3352 | /// |
3353 | /// The answer to the first question is always yes: padding bytes do not have |
3354 | /// any validity constraints. A [discussion] of this question in the Unsafe Code |
3355 | /// Guidelines Working Group concluded that it would be virtually unimaginable |
3356 | /// for future versions of rustc to add validity constraints to padding bytes. |
3357 | /// |
3358 | /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
3359 | /// |
3360 | /// Whether a struct is soundly `FromBytes` therefore solely depends on whether |
3361 | /// its fields are `FromBytes`. |
3362 | // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
3363 | // attribute. |
3364 | #[cfg (any(feature = "derive" , test))] |
3365 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
3366 | pub use zerocopy_derive::FromBytes; |
3367 | |
3368 | /// Types for which any bit pattern is valid. |
3369 | /// |
3370 | /// Any memory region of the appropriate length which contains initialized bytes |
3371 | /// can be viewed as any `FromBytes` type with no runtime overhead. This is |
3372 | /// useful for efficiently parsing bytes as structured data. |
3373 | /// |
3374 | /// # Warning: Padding bytes |
3375 | /// |
3376 | /// Note that, when a value is moved or copied, only the non-padding bytes of |
3377 | /// that value are guaranteed to be preserved. It is unsound to assume that |
3378 | /// values written to padding bytes are preserved after a move or copy. For |
3379 | /// example, the following is unsound: |
3380 | /// |
3381 | /// ```rust,no_run |
3382 | /// use core::mem::{size_of, transmute}; |
3383 | /// use zerocopy::FromZeros; |
3384 | /// # use zerocopy_derive::*; |
3385 | /// |
3386 | /// // Assume `Foo` is a type with padding bytes. |
3387 | /// #[derive(FromZeros, Default)] |
3388 | /// struct Foo { |
3389 | /// # /* |
3390 | /// ... |
3391 | /// # */ |
3392 | /// } |
3393 | /// |
3394 | /// let mut foo: Foo = Foo::default(); |
3395 | /// FromZeros::zero(&mut foo); |
3396 | /// // UNSOUND: Although `FromZeros::zero` writes zeros to all bytes of `foo`, |
3397 | /// // those writes are not guaranteed to be preserved in padding bytes when |
3398 | /// // `foo` is moved, so this may expose padding bytes as `u8`s. |
3399 | /// let foo_bytes: [u8; size_of::<Foo>()] = unsafe { transmute(foo) }; |
3400 | /// ``` |
3401 | /// |
3402 | /// # Implementation |
3403 | /// |
3404 | /// **Do not implement this trait yourself!** Instead, use |
3405 | /// [`#[derive(FromBytes)]`][derive]; e.g.: |
3406 | /// |
3407 | /// ``` |
3408 | /// # use zerocopy_derive::{FromBytes, Immutable}; |
3409 | /// #[derive(FromBytes)] |
3410 | /// struct MyStruct { |
3411 | /// # /* |
3412 | /// ... |
3413 | /// # */ |
3414 | /// } |
3415 | /// |
3416 | /// #[derive(FromBytes)] |
3417 | /// #[repr(u8)] |
3418 | /// enum MyEnum { |
3419 | /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
3420 | /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
3421 | /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
3422 | /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
3423 | /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
3424 | /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
3425 | /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
3426 | /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
3427 | /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
3428 | /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
3429 | /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
3430 | /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
3431 | /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
3432 | /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
3433 | /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
3434 | /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
3435 | /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
3436 | /// # VFF, |
3437 | /// # /* |
3438 | /// ... |
3439 | /// # */ |
3440 | /// } |
3441 | /// |
3442 | /// #[derive(FromBytes, Immutable)] |
3443 | /// union MyUnion { |
3444 | /// # variant: u8, |
3445 | /// # /* |
3446 | /// ... |
3447 | /// # */ |
3448 | /// } |
3449 | /// ``` |
3450 | /// |
3451 | /// This derive performs a sophisticated, compile-time safety analysis to |
3452 | /// determine whether a type is `FromBytes`. |
3453 | /// |
3454 | /// # Safety |
3455 | /// |
3456 | /// *This section describes what is required in order for `T: FromBytes`, and |
3457 | /// what unsafe code may assume of such types. If you don't plan on implementing |
3458 | /// `FromBytes` manually, and you don't plan on writing unsafe code that |
3459 | /// operates on `FromBytes` types, then you don't need to read this section.* |
3460 | /// |
3461 | /// If `T: FromBytes`, then unsafe code may assume that it is sound to produce a |
3462 | /// `T` whose bytes are initialized to any sequence of valid `u8`s (in other |
3463 | /// words, any byte value which is not uninitialized). If a type is marked as |
3464 | /// `FromBytes` which violates this contract, it may cause undefined behavior. |
3465 | /// |
3466 | /// `#[derive(FromBytes)]` only permits [types which satisfy these |
3467 | /// requirements][derive-analysis]. |
3468 | /// |
3469 | #[cfg_attr ( |
3470 | feature = "derive" , |
3471 | doc = "[derive]: zerocopy_derive::FromBytes" , |
3472 | doc = "[derive-analysis]: zerocopy_derive::FromBytes#analysis" |
3473 | )] |
3474 | #[cfg_attr ( |
3475 | not(feature = "derive" ), |
3476 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromBytes.html" ), |
3477 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.FromBytes.html#analysis" ), |
3478 | )] |
3479 | #[cfg_attr ( |
3480 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
3481 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(FromBytes)]` to `{Self}`" ) |
3482 | )] |
3483 | pub unsafe trait FromBytes: FromZeros { |
3484 | // The `Self: Sized` bound makes it so that `FromBytes` is still object |
3485 | // safe. |
3486 | #[doc (hidden)] |
3487 | fn only_derive_is_allowed_to_implement_this_trait() |
3488 | where |
3489 | Self: Sized; |
3490 | |
3491 | /// Interprets the given `source` as a `&Self`. |
3492 | /// |
3493 | /// This method attempts to return a reference to `source` interpreted as a |
3494 | /// `Self`. If the length of `source` is not a [valid size of |
3495 | /// `Self`][valid-size], or if `source` is not appropriately aligned, this |
3496 | /// returns `Err`. If [`Self: Unaligned`][self-unaligned], you can |
3497 | /// [infallibly discard the alignment error][size-error-from]. |
3498 | /// |
3499 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3500 | /// |
3501 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3502 | /// [self-unaligned]: Unaligned |
3503 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3504 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3505 | /// |
3506 | /// # Compile-Time Assertions |
3507 | /// |
3508 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3509 | /// component is zero-sized. Attempting to use this method on such types |
3510 | /// results in a compile-time assertion error; e.g.: |
3511 | /// |
3512 | /// ```compile_fail,E0080 |
3513 | /// use zerocopy::*; |
3514 | /// # use zerocopy_derive::*; |
3515 | /// |
3516 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3517 | /// #[repr(C)] |
3518 | /// struct ZSTy { |
3519 | /// leading_sized: u16, |
3520 | /// trailing_dst: [()], |
3521 | /// } |
3522 | /// |
3523 | /// let _ = ZSTy::ref_from_bytes(0u16.as_bytes()); // âš Compile Error! |
3524 | /// ``` |
3525 | /// |
3526 | /// # Examples |
3527 | /// |
3528 | /// ``` |
3529 | /// use zerocopy::FromBytes; |
3530 | /// # use zerocopy_derive::*; |
3531 | /// |
3532 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3533 | /// #[repr(C)] |
3534 | /// struct PacketHeader { |
3535 | /// src_port: [u8; 2], |
3536 | /// dst_port: [u8; 2], |
3537 | /// length: [u8; 2], |
3538 | /// checksum: [u8; 2], |
3539 | /// } |
3540 | /// |
3541 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3542 | /// #[repr(C)] |
3543 | /// struct Packet { |
3544 | /// header: PacketHeader, |
3545 | /// body: [u8], |
3546 | /// } |
3547 | /// |
3548 | /// // These bytes encode a `Packet`. |
3549 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11][..]; |
3550 | /// |
3551 | /// let packet = Packet::ref_from_bytes(bytes).unwrap(); |
3552 | /// |
3553 | /// assert_eq!(packet.header.src_port, [0, 1]); |
3554 | /// assert_eq!(packet.header.dst_port, [2, 3]); |
3555 | /// assert_eq!(packet.header.length, [4, 5]); |
3556 | /// assert_eq!(packet.header.checksum, [6, 7]); |
3557 | /// assert_eq!(packet.body, [8, 9, 10, 11]); |
3558 | /// ``` |
3559 | #[must_use = "has no side effects" ] |
3560 | #[inline ] |
3561 | fn ref_from_bytes(source: &[u8]) -> Result<&Self, CastError<&[u8], Self>> |
3562 | where |
3563 | Self: KnownLayout + Immutable, |
3564 | { |
3565 | static_assert_dst_is_not_zst!(Self); |
3566 | match Ptr::from_ref(source).try_cast_into_no_leftover::<_, BecauseImmutable>(None) { |
3567 | Ok(ptr) => Ok(ptr.recall_validity().as_ref()), |
3568 | Err(err) => Err(err.map_src(|src| src.as_ref())), |
3569 | } |
3570 | } |
3571 | |
3572 | /// Interprets the prefix of the given `source` as a `&Self` without |
3573 | /// copying. |
3574 | /// |
3575 | /// This method computes the [largest possible size of `Self`][valid-size] |
3576 | /// that can fit in the leading bytes of `source`, then attempts to return |
3577 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3578 | /// to the remaining bytes. If there are insufficient bytes, or if `source` |
3579 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
3580 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
3581 | /// error][size-error-from]. |
3582 | /// |
3583 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3584 | /// |
3585 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3586 | /// [self-unaligned]: Unaligned |
3587 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3588 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3589 | /// |
3590 | /// # Compile-Time Assertions |
3591 | /// |
3592 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3593 | /// component is zero-sized. See [`ref_from_prefix_with_elems`], which does |
3594 | /// support such types. Attempting to use this method on such types results |
3595 | /// in a compile-time assertion error; e.g.: |
3596 | /// |
3597 | /// ```compile_fail,E0080 |
3598 | /// use zerocopy::*; |
3599 | /// # use zerocopy_derive::*; |
3600 | /// |
3601 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3602 | /// #[repr(C)] |
3603 | /// struct ZSTy { |
3604 | /// leading_sized: u16, |
3605 | /// trailing_dst: [()], |
3606 | /// } |
3607 | /// |
3608 | /// let _ = ZSTy::ref_from_prefix(0u16.as_bytes()); // âš Compile Error! |
3609 | /// ``` |
3610 | /// |
3611 | /// [`ref_from_prefix_with_elems`]: FromBytes::ref_from_prefix_with_elems |
3612 | /// |
3613 | /// # Examples |
3614 | /// |
3615 | /// ``` |
3616 | /// use zerocopy::FromBytes; |
3617 | /// # use zerocopy_derive::*; |
3618 | /// |
3619 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3620 | /// #[repr(C)] |
3621 | /// struct PacketHeader { |
3622 | /// src_port: [u8; 2], |
3623 | /// dst_port: [u8; 2], |
3624 | /// length: [u8; 2], |
3625 | /// checksum: [u8; 2], |
3626 | /// } |
3627 | /// |
3628 | /// #[derive(FromBytes, KnownLayout, Immutable)] |
3629 | /// #[repr(C)] |
3630 | /// struct Packet { |
3631 | /// header: PacketHeader, |
3632 | /// body: [[u8; 2]], |
3633 | /// } |
3634 | /// |
3635 | /// // These are more bytes than are needed to encode a `Packet`. |
3636 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14][..]; |
3637 | /// |
3638 | /// let (packet, suffix) = Packet::ref_from_prefix(bytes).unwrap(); |
3639 | /// |
3640 | /// assert_eq!(packet.header.src_port, [0, 1]); |
3641 | /// assert_eq!(packet.header.dst_port, [2, 3]); |
3642 | /// assert_eq!(packet.header.length, [4, 5]); |
3643 | /// assert_eq!(packet.header.checksum, [6, 7]); |
3644 | /// assert_eq!(packet.body, [[8, 9], [10, 11], [12, 13]]); |
3645 | /// assert_eq!(suffix, &[14u8][..]); |
3646 | /// ``` |
3647 | #[must_use = "has no side effects" ] |
3648 | #[inline ] |
3649 | fn ref_from_prefix(source: &[u8]) -> Result<(&Self, &[u8]), CastError<&[u8], Self>> |
3650 | where |
3651 | Self: KnownLayout + Immutable, |
3652 | { |
3653 | static_assert_dst_is_not_zst!(Self); |
3654 | ref_from_prefix_suffix(source, None, CastType::Prefix) |
3655 | } |
3656 | |
3657 | /// Interprets the suffix of the given bytes as a `&Self`. |
3658 | /// |
3659 | /// This method computes the [largest possible size of `Self`][valid-size] |
3660 | /// that can fit in the trailing bytes of `source`, then attempts to return |
3661 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3662 | /// to the preceding bytes. If there are insufficient bytes, or if that |
3663 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
3664 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
3665 | /// alignment error][size-error-from]. |
3666 | /// |
3667 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3668 | /// |
3669 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3670 | /// [self-unaligned]: Unaligned |
3671 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3672 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3673 | /// |
3674 | /// # Compile-Time Assertions |
3675 | /// |
3676 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3677 | /// component is zero-sized. See [`ref_from_suffix_with_elems`], which does |
3678 | /// support such types. Attempting to use this method on such types results |
3679 | /// in a compile-time assertion error; e.g.: |
3680 | /// |
3681 | /// ```compile_fail,E0080 |
3682 | /// use zerocopy::*; |
3683 | /// # use zerocopy_derive::*; |
3684 | /// |
3685 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3686 | /// #[repr(C)] |
3687 | /// struct ZSTy { |
3688 | /// leading_sized: u16, |
3689 | /// trailing_dst: [()], |
3690 | /// } |
3691 | /// |
3692 | /// let _ = ZSTy::ref_from_suffix(0u16.as_bytes()); // âš Compile Error! |
3693 | /// ``` |
3694 | /// |
3695 | /// [`ref_from_suffix_with_elems`]: FromBytes::ref_from_suffix_with_elems |
3696 | /// |
3697 | /// # Examples |
3698 | /// |
3699 | /// ``` |
3700 | /// use zerocopy::FromBytes; |
3701 | /// # use zerocopy_derive::*; |
3702 | /// |
3703 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
3704 | /// #[repr(C)] |
3705 | /// struct PacketTrailer { |
3706 | /// frame_check_sequence: [u8; 4], |
3707 | /// } |
3708 | /// |
3709 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
3710 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
3711 | /// |
3712 | /// let (prefix, trailer) = PacketTrailer::ref_from_suffix(bytes).unwrap(); |
3713 | /// |
3714 | /// assert_eq!(prefix, &[0, 1, 2, 3, 4, 5][..]); |
3715 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
3716 | /// ``` |
3717 | #[must_use = "has no side effects" ] |
3718 | #[inline ] |
3719 | fn ref_from_suffix(source: &[u8]) -> Result<(&[u8], &Self), CastError<&[u8], Self>> |
3720 | where |
3721 | Self: Immutable + KnownLayout, |
3722 | { |
3723 | static_assert_dst_is_not_zst!(Self); |
3724 | ref_from_prefix_suffix(source, None, CastType::Suffix).map(swap) |
3725 | } |
3726 | |
3727 | /// Interprets the given `source` as a `&mut Self`. |
3728 | /// |
3729 | /// This method attempts to return a reference to `source` interpreted as a |
3730 | /// `Self`. If the length of `source` is not a [valid size of |
3731 | /// `Self`][valid-size], or if `source` is not appropriately aligned, this |
3732 | /// returns `Err`. If [`Self: Unaligned`][self-unaligned], you can |
3733 | /// [infallibly discard the alignment error][size-error-from]. |
3734 | /// |
3735 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3736 | /// |
3737 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3738 | /// [self-unaligned]: Unaligned |
3739 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3740 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3741 | /// |
3742 | /// # Compile-Time Assertions |
3743 | /// |
3744 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3745 | /// component is zero-sized. See [`mut_from_prefix_with_elems`], which does |
3746 | /// support such types. Attempting to use this method on such types results |
3747 | /// in a compile-time assertion error; e.g.: |
3748 | /// |
3749 | /// ```compile_fail,E0080 |
3750 | /// use zerocopy::*; |
3751 | /// # use zerocopy_derive::*; |
3752 | /// |
3753 | /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)] |
3754 | /// #[repr(C, packed)] |
3755 | /// struct ZSTy { |
3756 | /// leading_sized: [u8; 2], |
3757 | /// trailing_dst: [()], |
3758 | /// } |
3759 | /// |
3760 | /// let mut source = [85, 85]; |
3761 | /// let _ = ZSTy::mut_from_bytes(&mut source[..]); // âš Compile Error! |
3762 | /// ``` |
3763 | /// |
3764 | /// [`mut_from_prefix_with_elems`]: FromBytes::mut_from_prefix_with_elems |
3765 | /// |
3766 | /// # Examples |
3767 | /// |
3768 | /// ``` |
3769 | /// use zerocopy::FromBytes; |
3770 | /// # use zerocopy_derive::*; |
3771 | /// |
3772 | /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)] |
3773 | /// #[repr(C)] |
3774 | /// struct PacketHeader { |
3775 | /// src_port: [u8; 2], |
3776 | /// dst_port: [u8; 2], |
3777 | /// length: [u8; 2], |
3778 | /// checksum: [u8; 2], |
3779 | /// } |
3780 | /// |
3781 | /// // These bytes encode a `PacketHeader`. |
3782 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
3783 | /// |
3784 | /// let header = PacketHeader::mut_from_bytes(bytes).unwrap(); |
3785 | /// |
3786 | /// assert_eq!(header.src_port, [0, 1]); |
3787 | /// assert_eq!(header.dst_port, [2, 3]); |
3788 | /// assert_eq!(header.length, [4, 5]); |
3789 | /// assert_eq!(header.checksum, [6, 7]); |
3790 | /// |
3791 | /// header.checksum = [0, 0]; |
3792 | /// |
3793 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0]); |
3794 | /// ``` |
3795 | #[must_use = "has no side effects" ] |
3796 | #[inline ] |
3797 | fn mut_from_bytes(source: &mut [u8]) -> Result<&mut Self, CastError<&mut [u8], Self>> |
3798 | where |
3799 | Self: IntoBytes + KnownLayout, |
3800 | { |
3801 | static_assert_dst_is_not_zst!(Self); |
3802 | match Ptr::from_mut(source).try_cast_into_no_leftover::<_, BecauseExclusive>(None) { |
3803 | Ok(ptr) => Ok(ptr.recall_validity().as_mut()), |
3804 | Err(err) => Err(err.map_src(|src| src.as_mut())), |
3805 | } |
3806 | } |
3807 | |
3808 | /// Interprets the prefix of the given `source` as a `&mut Self` without |
3809 | /// copying. |
3810 | /// |
3811 | /// This method computes the [largest possible size of `Self`][valid-size] |
3812 | /// that can fit in the leading bytes of `source`, then attempts to return |
3813 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3814 | /// to the remaining bytes. If there are insufficient bytes, or if `source` |
3815 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
3816 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
3817 | /// error][size-error-from]. |
3818 | /// |
3819 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3820 | /// |
3821 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3822 | /// [self-unaligned]: Unaligned |
3823 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3824 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3825 | /// |
3826 | /// # Compile-Time Assertions |
3827 | /// |
3828 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3829 | /// component is zero-sized. See [`mut_from_suffix_with_elems`], which does |
3830 | /// support such types. Attempting to use this method on such types results |
3831 | /// in a compile-time assertion error; e.g.: |
3832 | /// |
3833 | /// ```compile_fail,E0080 |
3834 | /// use zerocopy::*; |
3835 | /// # use zerocopy_derive::*; |
3836 | /// |
3837 | /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)] |
3838 | /// #[repr(C, packed)] |
3839 | /// struct ZSTy { |
3840 | /// leading_sized: [u8; 2], |
3841 | /// trailing_dst: [()], |
3842 | /// } |
3843 | /// |
3844 | /// let mut source = [85, 85]; |
3845 | /// let _ = ZSTy::mut_from_prefix(&mut source[..]); // âš Compile Error! |
3846 | /// ``` |
3847 | /// |
3848 | /// [`mut_from_suffix_with_elems`]: FromBytes::mut_from_suffix_with_elems |
3849 | /// |
3850 | /// # Examples |
3851 | /// |
3852 | /// ``` |
3853 | /// use zerocopy::FromBytes; |
3854 | /// # use zerocopy_derive::*; |
3855 | /// |
3856 | /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)] |
3857 | /// #[repr(C)] |
3858 | /// struct PacketHeader { |
3859 | /// src_port: [u8; 2], |
3860 | /// dst_port: [u8; 2], |
3861 | /// length: [u8; 2], |
3862 | /// checksum: [u8; 2], |
3863 | /// } |
3864 | /// |
3865 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
3866 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
3867 | /// |
3868 | /// let (header, body) = PacketHeader::mut_from_prefix(bytes).unwrap(); |
3869 | /// |
3870 | /// assert_eq!(header.src_port, [0, 1]); |
3871 | /// assert_eq!(header.dst_port, [2, 3]); |
3872 | /// assert_eq!(header.length, [4, 5]); |
3873 | /// assert_eq!(header.checksum, [6, 7]); |
3874 | /// assert_eq!(body, &[8, 9][..]); |
3875 | /// |
3876 | /// header.checksum = [0, 0]; |
3877 | /// body.fill(1); |
3878 | /// |
3879 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 1, 1]); |
3880 | /// ``` |
3881 | #[must_use = "has no side effects" ] |
3882 | #[inline ] |
3883 | fn mut_from_prefix( |
3884 | source: &mut [u8], |
3885 | ) -> Result<(&mut Self, &mut [u8]), CastError<&mut [u8], Self>> |
3886 | where |
3887 | Self: IntoBytes + KnownLayout, |
3888 | { |
3889 | static_assert_dst_is_not_zst!(Self); |
3890 | mut_from_prefix_suffix(source, None, CastType::Prefix) |
3891 | } |
3892 | |
3893 | /// Interprets the suffix of the given `source` as a `&mut Self` without |
3894 | /// copying. |
3895 | /// |
3896 | /// This method computes the [largest possible size of `Self`][valid-size] |
3897 | /// that can fit in the trailing bytes of `source`, then attempts to return |
3898 | /// both a reference to those bytes interpreted as a `Self`, and a reference |
3899 | /// to the preceding bytes. If there are insufficient bytes, or if that |
3900 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
3901 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
3902 | /// alignment error][size-error-from]. |
3903 | /// |
3904 | /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst]. |
3905 | /// |
3906 | /// [valid-size]: crate::KnownLayout#what-is-a-valid-size |
3907 | /// [self-unaligned]: Unaligned |
3908 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3909 | /// [slice-dst]: KnownLayout#dynamically-sized-types |
3910 | /// |
3911 | /// # Compile-Time Assertions |
3912 | /// |
3913 | /// This method cannot yet be used on unsized types whose dynamically-sized |
3914 | /// component is zero-sized. Attempting to use this method on such types |
3915 | /// results in a compile-time assertion error; e.g.: |
3916 | /// |
3917 | /// ```compile_fail,E0080 |
3918 | /// use zerocopy::*; |
3919 | /// # use zerocopy_derive::*; |
3920 | /// |
3921 | /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)] |
3922 | /// #[repr(C, packed)] |
3923 | /// struct ZSTy { |
3924 | /// leading_sized: [u8; 2], |
3925 | /// trailing_dst: [()], |
3926 | /// } |
3927 | /// |
3928 | /// let mut source = [85, 85]; |
3929 | /// let _ = ZSTy::mut_from_suffix(&mut source[..]); // âš Compile Error! |
3930 | /// ``` |
3931 | /// |
3932 | /// # Examples |
3933 | /// |
3934 | /// ``` |
3935 | /// use zerocopy::FromBytes; |
3936 | /// # use zerocopy_derive::*; |
3937 | /// |
3938 | /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)] |
3939 | /// #[repr(C)] |
3940 | /// struct PacketTrailer { |
3941 | /// frame_check_sequence: [u8; 4], |
3942 | /// } |
3943 | /// |
3944 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
3945 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
3946 | /// |
3947 | /// let (prefix, trailer) = PacketTrailer::mut_from_suffix(bytes).unwrap(); |
3948 | /// |
3949 | /// assert_eq!(prefix, &[0u8, 1, 2, 3, 4, 5][..]); |
3950 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
3951 | /// |
3952 | /// prefix.fill(0); |
3953 | /// trailer.frame_check_sequence.fill(1); |
3954 | /// |
3955 | /// assert_eq!(bytes, [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]); |
3956 | /// ``` |
3957 | #[must_use = "has no side effects" ] |
3958 | #[inline ] |
3959 | fn mut_from_suffix( |
3960 | source: &mut [u8], |
3961 | ) -> Result<(&mut [u8], &mut Self), CastError<&mut [u8], Self>> |
3962 | where |
3963 | Self: IntoBytes + KnownLayout, |
3964 | { |
3965 | static_assert_dst_is_not_zst!(Self); |
3966 | mut_from_prefix_suffix(source, None, CastType::Suffix).map(swap) |
3967 | } |
3968 | |
3969 | /// Interprets the given `source` as a `&Self` with a DST length equal to |
3970 | /// `count`. |
3971 | /// |
3972 | /// This method attempts to return a reference to `source` interpreted as a |
3973 | /// `Self` with `count` trailing elements. If the length of `source` is not |
3974 | /// equal to the size of `Self` with `count` elements, or if `source` is not |
3975 | /// appropriately aligned, this returns `Err`. If [`Self: |
3976 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
3977 | /// error][size-error-from]. |
3978 | /// |
3979 | /// [self-unaligned]: Unaligned |
3980 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
3981 | /// |
3982 | /// # Examples |
3983 | /// |
3984 | /// ``` |
3985 | /// use zerocopy::FromBytes; |
3986 | /// # use zerocopy_derive::*; |
3987 | /// |
3988 | /// # #[derive(Debug, PartialEq, Eq)] |
3989 | /// #[derive(FromBytes, Immutable)] |
3990 | /// #[repr(C)] |
3991 | /// struct Pixel { |
3992 | /// r: u8, |
3993 | /// g: u8, |
3994 | /// b: u8, |
3995 | /// a: u8, |
3996 | /// } |
3997 | /// |
3998 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7][..]; |
3999 | /// |
4000 | /// let pixels = <[Pixel]>::ref_from_bytes_with_elems(bytes, 2).unwrap(); |
4001 | /// |
4002 | /// assert_eq!(pixels, &[ |
4003 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4004 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4005 | /// ]); |
4006 | /// |
4007 | /// ``` |
4008 | /// |
4009 | /// Since an explicit `count` is provided, this method supports types with |
4010 | /// zero-sized trailing slice elements. Methods such as [`ref_from_bytes`] |
4011 | /// which do not take an explicit count do not support such types. |
4012 | /// |
4013 | /// ``` |
4014 | /// use zerocopy::*; |
4015 | /// # use zerocopy_derive::*; |
4016 | /// |
4017 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
4018 | /// #[repr(C)] |
4019 | /// struct ZSTy { |
4020 | /// leading_sized: [u8; 2], |
4021 | /// trailing_dst: [()], |
4022 | /// } |
4023 | /// |
4024 | /// let src = &[85, 85][..]; |
4025 | /// let zsty = ZSTy::ref_from_bytes_with_elems(src, 42).unwrap(); |
4026 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4027 | /// ``` |
4028 | /// |
4029 | /// [`ref_from_bytes`]: FromBytes::ref_from_bytes |
4030 | #[must_use = "has no side effects" ] |
4031 | #[inline ] |
4032 | fn ref_from_bytes_with_elems( |
4033 | source: &[u8], |
4034 | count: usize, |
4035 | ) -> Result<&Self, CastError<&[u8], Self>> |
4036 | where |
4037 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
4038 | { |
4039 | let source = Ptr::from_ref(source); |
4040 | let maybe_slf = source.try_cast_into_no_leftover::<_, BecauseImmutable>(Some(count)); |
4041 | match maybe_slf { |
4042 | Ok(slf) => Ok(slf.recall_validity().as_ref()), |
4043 | Err(err) => Err(err.map_src(|s| s.as_ref())), |
4044 | } |
4045 | } |
4046 | |
4047 | /// Interprets the prefix of the given `source` as a DST `&Self` with length |
4048 | /// equal to `count`. |
4049 | /// |
4050 | /// This method attempts to return a reference to the prefix of `source` |
4051 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4052 | /// to the remaining bytes. If there are insufficient bytes, or if `source` |
4053 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
4054 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
4055 | /// error][size-error-from]. |
4056 | /// |
4057 | /// [self-unaligned]: Unaligned |
4058 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4059 | /// |
4060 | /// # Examples |
4061 | /// |
4062 | /// ``` |
4063 | /// use zerocopy::FromBytes; |
4064 | /// # use zerocopy_derive::*; |
4065 | /// |
4066 | /// # #[derive(Debug, PartialEq, Eq)] |
4067 | /// #[derive(FromBytes, Immutable)] |
4068 | /// #[repr(C)] |
4069 | /// struct Pixel { |
4070 | /// r: u8, |
4071 | /// g: u8, |
4072 | /// b: u8, |
4073 | /// a: u8, |
4074 | /// } |
4075 | /// |
4076 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4077 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4078 | /// |
4079 | /// let (pixels, suffix) = <[Pixel]>::ref_from_prefix_with_elems(bytes, 2).unwrap(); |
4080 | /// |
4081 | /// assert_eq!(pixels, &[ |
4082 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4083 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4084 | /// ]); |
4085 | /// |
4086 | /// assert_eq!(suffix, &[8, 9]); |
4087 | /// ``` |
4088 | /// |
4089 | /// Since an explicit `count` is provided, this method supports types with |
4090 | /// zero-sized trailing slice elements. Methods such as [`ref_from_prefix`] |
4091 | /// which do not take an explicit count do not support such types. |
4092 | /// |
4093 | /// ``` |
4094 | /// use zerocopy::*; |
4095 | /// # use zerocopy_derive::*; |
4096 | /// |
4097 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
4098 | /// #[repr(C)] |
4099 | /// struct ZSTy { |
4100 | /// leading_sized: [u8; 2], |
4101 | /// trailing_dst: [()], |
4102 | /// } |
4103 | /// |
4104 | /// let src = &[85, 85][..]; |
4105 | /// let (zsty, _) = ZSTy::ref_from_prefix_with_elems(src, 42).unwrap(); |
4106 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4107 | /// ``` |
4108 | /// |
4109 | /// [`ref_from_prefix`]: FromBytes::ref_from_prefix |
4110 | #[must_use = "has no side effects" ] |
4111 | #[inline ] |
4112 | fn ref_from_prefix_with_elems( |
4113 | source: &[u8], |
4114 | count: usize, |
4115 | ) -> Result<(&Self, &[u8]), CastError<&[u8], Self>> |
4116 | where |
4117 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
4118 | { |
4119 | ref_from_prefix_suffix(source, Some(count), CastType::Prefix) |
4120 | } |
4121 | |
4122 | /// Interprets the suffix of the given `source` as a DST `&Self` with length |
4123 | /// equal to `count`. |
4124 | /// |
4125 | /// This method attempts to return a reference to the suffix of `source` |
4126 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4127 | /// to the preceding bytes. If there are insufficient bytes, or if that |
4128 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
4129 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
4130 | /// alignment error][size-error-from]. |
4131 | /// |
4132 | /// [self-unaligned]: Unaligned |
4133 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4134 | /// |
4135 | /// # Examples |
4136 | /// |
4137 | /// ``` |
4138 | /// use zerocopy::FromBytes; |
4139 | /// # use zerocopy_derive::*; |
4140 | /// |
4141 | /// # #[derive(Debug, PartialEq, Eq)] |
4142 | /// #[derive(FromBytes, Immutable)] |
4143 | /// #[repr(C)] |
4144 | /// struct Pixel { |
4145 | /// r: u8, |
4146 | /// g: u8, |
4147 | /// b: u8, |
4148 | /// a: u8, |
4149 | /// } |
4150 | /// |
4151 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4152 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4153 | /// |
4154 | /// let (prefix, pixels) = <[Pixel]>::ref_from_suffix_with_elems(bytes, 2).unwrap(); |
4155 | /// |
4156 | /// assert_eq!(prefix, &[0, 1]); |
4157 | /// |
4158 | /// assert_eq!(pixels, &[ |
4159 | /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
4160 | /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
4161 | /// ]); |
4162 | /// ``` |
4163 | /// |
4164 | /// Since an explicit `count` is provided, this method supports types with |
4165 | /// zero-sized trailing slice elements. Methods such as [`ref_from_suffix`] |
4166 | /// which do not take an explicit count do not support such types. |
4167 | /// |
4168 | /// ``` |
4169 | /// use zerocopy::*; |
4170 | /// # use zerocopy_derive::*; |
4171 | /// |
4172 | /// #[derive(FromBytes, Immutable, KnownLayout)] |
4173 | /// #[repr(C)] |
4174 | /// struct ZSTy { |
4175 | /// leading_sized: [u8; 2], |
4176 | /// trailing_dst: [()], |
4177 | /// } |
4178 | /// |
4179 | /// let src = &[85, 85][..]; |
4180 | /// let (_, zsty) = ZSTy::ref_from_suffix_with_elems(src, 42).unwrap(); |
4181 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4182 | /// ``` |
4183 | /// |
4184 | /// [`ref_from_suffix`]: FromBytes::ref_from_suffix |
4185 | #[must_use = "has no side effects" ] |
4186 | #[inline ] |
4187 | fn ref_from_suffix_with_elems( |
4188 | source: &[u8], |
4189 | count: usize, |
4190 | ) -> Result<(&[u8], &Self), CastError<&[u8], Self>> |
4191 | where |
4192 | Self: KnownLayout<PointerMetadata = usize> + Immutable, |
4193 | { |
4194 | ref_from_prefix_suffix(source, Some(count), CastType::Suffix).map(swap) |
4195 | } |
4196 | |
4197 | /// Interprets the given `source` as a `&mut Self` with a DST length equal |
4198 | /// to `count`. |
4199 | /// |
4200 | /// This method attempts to return a reference to `source` interpreted as a |
4201 | /// `Self` with `count` trailing elements. If the length of `source` is not |
4202 | /// equal to the size of `Self` with `count` elements, or if `source` is not |
4203 | /// appropriately aligned, this returns `Err`. If [`Self: |
4204 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
4205 | /// error][size-error-from]. |
4206 | /// |
4207 | /// [self-unaligned]: Unaligned |
4208 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4209 | /// |
4210 | /// # Examples |
4211 | /// |
4212 | /// ``` |
4213 | /// use zerocopy::FromBytes; |
4214 | /// # use zerocopy_derive::*; |
4215 | /// |
4216 | /// # #[derive(Debug, PartialEq, Eq)] |
4217 | /// #[derive(KnownLayout, FromBytes, IntoBytes, Immutable)] |
4218 | /// #[repr(C)] |
4219 | /// struct Pixel { |
4220 | /// r: u8, |
4221 | /// g: u8, |
4222 | /// b: u8, |
4223 | /// a: u8, |
4224 | /// } |
4225 | /// |
4226 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
4227 | /// |
4228 | /// let pixels = <[Pixel]>::mut_from_bytes_with_elems(bytes, 2).unwrap(); |
4229 | /// |
4230 | /// assert_eq!(pixels, &[ |
4231 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4232 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4233 | /// ]); |
4234 | /// |
4235 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
4236 | /// |
4237 | /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0]); |
4238 | /// ``` |
4239 | /// |
4240 | /// Since an explicit `count` is provided, this method supports types with |
4241 | /// zero-sized trailing slice elements. Methods such as [`mut_from`] which |
4242 | /// do not take an explicit count do not support such types. |
4243 | /// |
4244 | /// ``` |
4245 | /// use zerocopy::*; |
4246 | /// # use zerocopy_derive::*; |
4247 | /// |
4248 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
4249 | /// #[repr(C, packed)] |
4250 | /// struct ZSTy { |
4251 | /// leading_sized: [u8; 2], |
4252 | /// trailing_dst: [()], |
4253 | /// } |
4254 | /// |
4255 | /// let src = &mut [85, 85][..]; |
4256 | /// let zsty = ZSTy::mut_from_bytes_with_elems(src, 42).unwrap(); |
4257 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4258 | /// ``` |
4259 | /// |
4260 | /// [`mut_from`]: FromBytes::mut_from |
4261 | #[must_use = "has no side effects" ] |
4262 | #[inline ] |
4263 | fn mut_from_bytes_with_elems( |
4264 | source: &mut [u8], |
4265 | count: usize, |
4266 | ) -> Result<&mut Self, CastError<&mut [u8], Self>> |
4267 | where |
4268 | Self: IntoBytes + KnownLayout<PointerMetadata = usize> + Immutable, |
4269 | { |
4270 | let source = Ptr::from_mut(source); |
4271 | let maybe_slf = source.try_cast_into_no_leftover::<_, BecauseImmutable>(Some(count)); |
4272 | match maybe_slf { |
4273 | Ok(slf) => Ok(slf |
4274 | .recall_validity::<_, (_, (_, (BecauseExclusive, BecauseExclusive)))>() |
4275 | .as_mut()), |
4276 | Err(err) => Err(err.map_src(|s| s.as_mut())), |
4277 | } |
4278 | } |
4279 | |
4280 | /// Interprets the prefix of the given `source` as a `&mut Self` with DST |
4281 | /// length equal to `count`. |
4282 | /// |
4283 | /// This method attempts to return a reference to the prefix of `source` |
4284 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4285 | /// to the preceding bytes. If there are insufficient bytes, or if `source` |
4286 | /// is not appropriately aligned, this returns `Err`. If [`Self: |
4287 | /// Unaligned`][self-unaligned], you can [infallibly discard the alignment |
4288 | /// error][size-error-from]. |
4289 | /// |
4290 | /// [self-unaligned]: Unaligned |
4291 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4292 | /// |
4293 | /// # Examples |
4294 | /// |
4295 | /// ``` |
4296 | /// use zerocopy::FromBytes; |
4297 | /// # use zerocopy_derive::*; |
4298 | /// |
4299 | /// # #[derive(Debug, PartialEq, Eq)] |
4300 | /// #[derive(KnownLayout, FromBytes, IntoBytes, Immutable)] |
4301 | /// #[repr(C)] |
4302 | /// struct Pixel { |
4303 | /// r: u8, |
4304 | /// g: u8, |
4305 | /// b: u8, |
4306 | /// a: u8, |
4307 | /// } |
4308 | /// |
4309 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4310 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4311 | /// |
4312 | /// let (pixels, suffix) = <[Pixel]>::mut_from_prefix_with_elems(bytes, 2).unwrap(); |
4313 | /// |
4314 | /// assert_eq!(pixels, &[ |
4315 | /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
4316 | /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
4317 | /// ]); |
4318 | /// |
4319 | /// assert_eq!(suffix, &[8, 9]); |
4320 | /// |
4321 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
4322 | /// suffix.fill(1); |
4323 | /// |
4324 | /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0, 1, 1]); |
4325 | /// ``` |
4326 | /// |
4327 | /// Since an explicit `count` is provided, this method supports types with |
4328 | /// zero-sized trailing slice elements. Methods such as [`mut_from_prefix`] |
4329 | /// which do not take an explicit count do not support such types. |
4330 | /// |
4331 | /// ``` |
4332 | /// use zerocopy::*; |
4333 | /// # use zerocopy_derive::*; |
4334 | /// |
4335 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
4336 | /// #[repr(C, packed)] |
4337 | /// struct ZSTy { |
4338 | /// leading_sized: [u8; 2], |
4339 | /// trailing_dst: [()], |
4340 | /// } |
4341 | /// |
4342 | /// let src = &mut [85, 85][..]; |
4343 | /// let (zsty, _) = ZSTy::mut_from_prefix_with_elems(src, 42).unwrap(); |
4344 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4345 | /// ``` |
4346 | /// |
4347 | /// [`mut_from_prefix`]: FromBytes::mut_from_prefix |
4348 | #[must_use = "has no side effects" ] |
4349 | #[inline ] |
4350 | fn mut_from_prefix_with_elems( |
4351 | source: &mut [u8], |
4352 | count: usize, |
4353 | ) -> Result<(&mut Self, &mut [u8]), CastError<&mut [u8], Self>> |
4354 | where |
4355 | Self: IntoBytes + KnownLayout<PointerMetadata = usize>, |
4356 | { |
4357 | mut_from_prefix_suffix(source, Some(count), CastType::Prefix) |
4358 | } |
4359 | |
4360 | /// Interprets the suffix of the given `source` as a `&mut Self` with DST |
4361 | /// length equal to `count`. |
4362 | /// |
4363 | /// This method attempts to return a reference to the suffix of `source` |
4364 | /// interpreted as a `Self` with `count` trailing elements, and a reference |
4365 | /// to the remaining bytes. If there are insufficient bytes, or if that |
4366 | /// suffix of `source` is not appropriately aligned, this returns `Err`. If |
4367 | /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the |
4368 | /// alignment error][size-error-from]. |
4369 | /// |
4370 | /// [self-unaligned]: Unaligned |
4371 | /// [size-error-from]: error/struct.SizeError.html#method.from-1 |
4372 | /// |
4373 | /// # Examples |
4374 | /// |
4375 | /// ``` |
4376 | /// use zerocopy::FromBytes; |
4377 | /// # use zerocopy_derive::*; |
4378 | /// |
4379 | /// # #[derive(Debug, PartialEq, Eq)] |
4380 | /// #[derive(FromBytes, IntoBytes, Immutable)] |
4381 | /// #[repr(C)] |
4382 | /// struct Pixel { |
4383 | /// r: u8, |
4384 | /// g: u8, |
4385 | /// b: u8, |
4386 | /// a: u8, |
4387 | /// } |
4388 | /// |
4389 | /// // These are more bytes than are needed to encode two `Pixel`s. |
4390 | /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4391 | /// |
4392 | /// let (prefix, pixels) = <[Pixel]>::mut_from_suffix_with_elems(bytes, 2).unwrap(); |
4393 | /// |
4394 | /// assert_eq!(prefix, &[0, 1]); |
4395 | /// |
4396 | /// assert_eq!(pixels, &[ |
4397 | /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
4398 | /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
4399 | /// ]); |
4400 | /// |
4401 | /// prefix.fill(9); |
4402 | /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
4403 | /// |
4404 | /// assert_eq!(bytes, [9, 9, 2, 3, 4, 5, 0, 0, 0, 0]); |
4405 | /// ``` |
4406 | /// |
4407 | /// Since an explicit `count` is provided, this method supports types with |
4408 | /// zero-sized trailing slice elements. Methods such as [`mut_from_suffix`] |
4409 | /// which do not take an explicit count do not support such types. |
4410 | /// |
4411 | /// ``` |
4412 | /// use zerocopy::*; |
4413 | /// # use zerocopy_derive::*; |
4414 | /// |
4415 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
4416 | /// #[repr(C, packed)] |
4417 | /// struct ZSTy { |
4418 | /// leading_sized: [u8; 2], |
4419 | /// trailing_dst: [()], |
4420 | /// } |
4421 | /// |
4422 | /// let src = &mut [85, 85][..]; |
4423 | /// let (_, zsty) = ZSTy::mut_from_suffix_with_elems(src, 42).unwrap(); |
4424 | /// assert_eq!(zsty.trailing_dst.len(), 42); |
4425 | /// ``` |
4426 | /// |
4427 | /// [`mut_from_suffix`]: FromBytes::mut_from_suffix |
4428 | #[must_use = "has no side effects" ] |
4429 | #[inline ] |
4430 | fn mut_from_suffix_with_elems( |
4431 | source: &mut [u8], |
4432 | count: usize, |
4433 | ) -> Result<(&mut [u8], &mut Self), CastError<&mut [u8], Self>> |
4434 | where |
4435 | Self: IntoBytes + KnownLayout<PointerMetadata = usize>, |
4436 | { |
4437 | mut_from_prefix_suffix(source, Some(count), CastType::Suffix).map(swap) |
4438 | } |
4439 | |
4440 | /// Reads a copy of `Self` from the given `source`. |
4441 | /// |
4442 | /// If `source.len() != size_of::<Self>()`, `read_from_bytes` returns `Err`. |
4443 | /// |
4444 | /// # Examples |
4445 | /// |
4446 | /// ``` |
4447 | /// use zerocopy::FromBytes; |
4448 | /// # use zerocopy_derive::*; |
4449 | /// |
4450 | /// #[derive(FromBytes)] |
4451 | /// #[repr(C)] |
4452 | /// struct PacketHeader { |
4453 | /// src_port: [u8; 2], |
4454 | /// dst_port: [u8; 2], |
4455 | /// length: [u8; 2], |
4456 | /// checksum: [u8; 2], |
4457 | /// } |
4458 | /// |
4459 | /// // These bytes encode a `PacketHeader`. |
4460 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7][..]; |
4461 | /// |
4462 | /// let header = PacketHeader::read_from_bytes(bytes).unwrap(); |
4463 | /// |
4464 | /// assert_eq!(header.src_port, [0, 1]); |
4465 | /// assert_eq!(header.dst_port, [2, 3]); |
4466 | /// assert_eq!(header.length, [4, 5]); |
4467 | /// assert_eq!(header.checksum, [6, 7]); |
4468 | /// ``` |
4469 | #[must_use = "has no side effects" ] |
4470 | #[inline ] |
4471 | fn read_from_bytes(source: &[u8]) -> Result<Self, SizeError<&[u8], Self>> |
4472 | where |
4473 | Self: Sized, |
4474 | { |
4475 | match Ref::<_, Unalign<Self>>::sized_from(source) { |
4476 | Ok(r) => Ok(Ref::read(&r).into_inner()), |
4477 | Err(CastError::Size(e)) => Err(e.with_dst()), |
4478 | Err(CastError::Alignment(_)) => { |
4479 | // SAFETY: `Unalign<Self>` is trivially aligned, so |
4480 | // `Ref::sized_from` cannot fail due to unmet alignment |
4481 | // requirements. |
4482 | unsafe { core::hint::unreachable_unchecked() } |
4483 | } |
4484 | Err(CastError::Validity(i)) => match i {}, |
4485 | } |
4486 | } |
4487 | |
4488 | /// Reads a copy of `Self` from the prefix of the given `source`. |
4489 | /// |
4490 | /// This attempts to read a `Self` from the first `size_of::<Self>()` bytes |
4491 | /// of `source`, returning that `Self` and any remaining bytes. If |
4492 | /// `source.len() < size_of::<Self>()`, it returns `Err`. |
4493 | /// |
4494 | /// # Examples |
4495 | /// |
4496 | /// ``` |
4497 | /// use zerocopy::FromBytes; |
4498 | /// # use zerocopy_derive::*; |
4499 | /// |
4500 | /// #[derive(FromBytes)] |
4501 | /// #[repr(C)] |
4502 | /// struct PacketHeader { |
4503 | /// src_port: [u8; 2], |
4504 | /// dst_port: [u8; 2], |
4505 | /// length: [u8; 2], |
4506 | /// checksum: [u8; 2], |
4507 | /// } |
4508 | /// |
4509 | /// // These are more bytes than are needed to encode a `PacketHeader`. |
4510 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4511 | /// |
4512 | /// let (header, body) = PacketHeader::read_from_prefix(bytes).unwrap(); |
4513 | /// |
4514 | /// assert_eq!(header.src_port, [0, 1]); |
4515 | /// assert_eq!(header.dst_port, [2, 3]); |
4516 | /// assert_eq!(header.length, [4, 5]); |
4517 | /// assert_eq!(header.checksum, [6, 7]); |
4518 | /// assert_eq!(body, [8, 9]); |
4519 | /// ``` |
4520 | #[must_use = "has no side effects" ] |
4521 | #[inline ] |
4522 | fn read_from_prefix(source: &[u8]) -> Result<(Self, &[u8]), SizeError<&[u8], Self>> |
4523 | where |
4524 | Self: Sized, |
4525 | { |
4526 | match Ref::<_, Unalign<Self>>::sized_from_prefix(source) { |
4527 | Ok((r, suffix)) => Ok((Ref::read(&r).into_inner(), suffix)), |
4528 | Err(CastError::Size(e)) => Err(e.with_dst()), |
4529 | Err(CastError::Alignment(_)) => { |
4530 | // SAFETY: `Unalign<Self>` is trivially aligned, so |
4531 | // `Ref::sized_from_prefix` cannot fail due to unmet alignment |
4532 | // requirements. |
4533 | unsafe { core::hint::unreachable_unchecked() } |
4534 | } |
4535 | Err(CastError::Validity(i)) => match i {}, |
4536 | } |
4537 | } |
4538 | |
4539 | /// Reads a copy of `Self` from the suffix of the given `source`. |
4540 | /// |
4541 | /// This attempts to read a `Self` from the last `size_of::<Self>()` bytes |
4542 | /// of `source`, returning that `Self` and any preceding bytes. If |
4543 | /// `source.len() < size_of::<Self>()`, it returns `Err`. |
4544 | /// |
4545 | /// # Examples |
4546 | /// |
4547 | /// ``` |
4548 | /// use zerocopy::FromBytes; |
4549 | /// # use zerocopy_derive::*; |
4550 | /// |
4551 | /// #[derive(FromBytes)] |
4552 | /// #[repr(C)] |
4553 | /// struct PacketTrailer { |
4554 | /// frame_check_sequence: [u8; 4], |
4555 | /// } |
4556 | /// |
4557 | /// // These are more bytes than are needed to encode a `PacketTrailer`. |
4558 | /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
4559 | /// |
4560 | /// let (prefix, trailer) = PacketTrailer::read_from_suffix(bytes).unwrap(); |
4561 | /// |
4562 | /// assert_eq!(prefix, [0, 1, 2, 3, 4, 5]); |
4563 | /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
4564 | /// ``` |
4565 | #[must_use = "has no side effects" ] |
4566 | #[inline ] |
4567 | fn read_from_suffix(source: &[u8]) -> Result<(&[u8], Self), SizeError<&[u8], Self>> |
4568 | where |
4569 | Self: Sized, |
4570 | { |
4571 | match Ref::<_, Unalign<Self>>::sized_from_suffix(source) { |
4572 | Ok((prefix, r)) => Ok((prefix, Ref::read(&r).into_inner())), |
4573 | Err(CastError::Size(e)) => Err(e.with_dst()), |
4574 | Err(CastError::Alignment(_)) => { |
4575 | // SAFETY: `Unalign<Self>` is trivially aligned, so |
4576 | // `Ref::sized_from_suffix` cannot fail due to unmet alignment |
4577 | // requirements. |
4578 | unsafe { core::hint::unreachable_unchecked() } |
4579 | } |
4580 | Err(CastError::Validity(i)) => match i {}, |
4581 | } |
4582 | } |
4583 | |
4584 | /// Reads a copy of `self` from an `io::Read`. |
4585 | /// |
4586 | /// This is useful for interfacing with operating system byte sinks (files, |
4587 | /// sockets, etc.). |
4588 | /// |
4589 | /// # Examples |
4590 | /// |
4591 | /// ```no_run |
4592 | /// use zerocopy::{byteorder::big_endian::*, FromBytes}; |
4593 | /// use std::fs::File; |
4594 | /// # use zerocopy_derive::*; |
4595 | /// |
4596 | /// #[derive(FromBytes)] |
4597 | /// #[repr(C)] |
4598 | /// struct BitmapFileHeader { |
4599 | /// signature: [u8; 2], |
4600 | /// size: U32, |
4601 | /// reserved: U64, |
4602 | /// offset: U64, |
4603 | /// } |
4604 | /// |
4605 | /// let mut file = File::open("image.bin").unwrap(); |
4606 | /// let header = BitmapFileHeader::read_from_io(&mut file).unwrap(); |
4607 | /// ``` |
4608 | #[cfg (feature = "std" )] |
4609 | #[inline (always)] |
4610 | fn read_from_io<R>(mut src: R) -> io::Result<Self> |
4611 | where |
4612 | Self: Sized, |
4613 | R: io::Read, |
4614 | { |
4615 | // NOTE(#2319, #2320): We do `buf.zero()` separately rather than |
4616 | // constructing `let buf = CoreMaybeUninit::zeroed()` because, if `Self` |
4617 | // contains padding bytes, then a typed copy of `CoreMaybeUninit<Self>` |
4618 | // will not necessarily preserve zeros written to those padding byte |
4619 | // locations, and so `buf` could contain uninitialized bytes. |
4620 | let mut buf = CoreMaybeUninit::<Self>::uninit(); |
4621 | buf.zero(); |
4622 | |
4623 | let ptr = Ptr::from_mut(&mut buf); |
4624 | // SAFETY: After `buf.zero()`, `buf` consists entirely of initialized, |
4625 | // zeroed bytes. Since `MaybeUninit` has no validity requirements, `ptr` |
4626 | // cannot be used to write values which will violate `buf`'s bit |
4627 | // validity. Since `ptr` has `Exclusive` aliasing, nothing other than |
4628 | // `ptr` may be used to mutate `ptr`'s referent, and so its bit validity |
4629 | // cannot be violated even though `buf` may have more permissive bit |
4630 | // validity than `ptr`. |
4631 | let ptr = unsafe { ptr.assume_validity::<invariant::Initialized>() }; |
4632 | let ptr = ptr.as_bytes::<BecauseExclusive>(); |
4633 | src.read_exact(ptr.as_mut())?; |
4634 | // SAFETY: `buf` entirely consists of initialized bytes, and `Self` is |
4635 | // `FromBytes`. |
4636 | Ok(unsafe { buf.assume_init() }) |
4637 | } |
4638 | |
4639 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::ref_from_bytes`" )] |
4640 | #[doc (hidden)] |
4641 | #[must_use = "has no side effects" ] |
4642 | #[inline (always)] |
4643 | fn ref_from(source: &[u8]) -> Option<&Self> |
4644 | where |
4645 | Self: KnownLayout + Immutable, |
4646 | { |
4647 | Self::ref_from_bytes(source).ok() |
4648 | } |
4649 | |
4650 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::mut_from_bytes`" )] |
4651 | #[doc (hidden)] |
4652 | #[must_use = "has no side effects" ] |
4653 | #[inline (always)] |
4654 | fn mut_from(source: &mut [u8]) -> Option<&mut Self> |
4655 | where |
4656 | Self: KnownLayout + IntoBytes, |
4657 | { |
4658 | Self::mut_from_bytes(source).ok() |
4659 | } |
4660 | |
4661 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::ref_from_prefix_with_elems`" )] |
4662 | #[doc (hidden)] |
4663 | #[must_use = "has no side effects" ] |
4664 | #[inline (always)] |
4665 | fn slice_from_prefix(source: &[u8], count: usize) -> Option<(&[Self], &[u8])> |
4666 | where |
4667 | Self: Sized + Immutable, |
4668 | { |
4669 | <[Self]>::ref_from_prefix_with_elems(source, count).ok() |
4670 | } |
4671 | |
4672 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::ref_from_suffix_with_elems`" )] |
4673 | #[doc (hidden)] |
4674 | #[must_use = "has no side effects" ] |
4675 | #[inline (always)] |
4676 | fn slice_from_suffix(source: &[u8], count: usize) -> Option<(&[u8], &[Self])> |
4677 | where |
4678 | Self: Sized + Immutable, |
4679 | { |
4680 | <[Self]>::ref_from_suffix_with_elems(source, count).ok() |
4681 | } |
4682 | |
4683 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::mut_from_prefix_with_elems`" )] |
4684 | #[doc (hidden)] |
4685 | #[must_use = "has no side effects" ] |
4686 | #[inline (always)] |
4687 | fn mut_slice_from_prefix(source: &mut [u8], count: usize) -> Option<(&mut [Self], &mut [u8])> |
4688 | where |
4689 | Self: Sized + IntoBytes, |
4690 | { |
4691 | <[Self]>::mut_from_prefix_with_elems(source, count).ok() |
4692 | } |
4693 | |
4694 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::mut_from_suffix_with_elems`" )] |
4695 | #[doc (hidden)] |
4696 | #[must_use = "has no side effects" ] |
4697 | #[inline (always)] |
4698 | fn mut_slice_from_suffix(source: &mut [u8], count: usize) -> Option<(&mut [u8], &mut [Self])> |
4699 | where |
4700 | Self: Sized + IntoBytes, |
4701 | { |
4702 | <[Self]>::mut_from_suffix_with_elems(source, count).ok() |
4703 | } |
4704 | |
4705 | #[deprecated (since = "0.8.0" , note = "renamed to `FromBytes::read_from_bytes`" )] |
4706 | #[doc (hidden)] |
4707 | #[must_use = "has no side effects" ] |
4708 | #[inline (always)] |
4709 | fn read_from(source: &[u8]) -> Option<Self> |
4710 | where |
4711 | Self: Sized, |
4712 | { |
4713 | Self::read_from_bytes(source).ok() |
4714 | } |
4715 | } |
4716 | |
4717 | /// Interprets the given affix of the given bytes as a `&Self`. |
4718 | /// |
4719 | /// This method computes the largest possible size of `Self` that can fit in the |
4720 | /// prefix or suffix bytes of `source`, then attempts to return both a reference |
4721 | /// to those bytes interpreted as a `Self`, and a reference to the excess bytes. |
4722 | /// If there are insufficient bytes, or if that affix of `source` is not |
4723 | /// appropriately aligned, this returns `Err`. |
4724 | #[inline (always)] |
4725 | fn ref_from_prefix_suffix<T: FromBytes + KnownLayout + Immutable + ?Sized>( |
4726 | source: &[u8], |
4727 | meta: Option<T::PointerMetadata>, |
4728 | cast_type: CastType, |
4729 | ) -> Result<(&T, &[u8]), CastError<&[u8], T>> { |
4730 | let (slf: Ptr<'_, T, (Shared, Aligned, …)>, prefix_suffix: Ptr<'_, [u8], (Shared, Aligned, …)>) = Ptr::from_ref(source) |
4731 | .try_cast_into::<_, BecauseImmutable>(cast_type, meta) |
4732 | .map_err(|err: ConvertError, …, …>| err.map_src(|s: Ptr<'_, [u8], (Shared, Aligned, …)>| s.as_ref()))?; |
4733 | Ok((slf.recall_validity().as_ref(), prefix_suffix.as_ref())) |
4734 | } |
4735 | |
4736 | /// Interprets the given affix of the given bytes as a `&mut Self` without |
4737 | /// copying. |
4738 | /// |
4739 | /// This method computes the largest possible size of `Self` that can fit in the |
4740 | /// prefix or suffix bytes of `source`, then attempts to return both a reference |
4741 | /// to those bytes interpreted as a `Self`, and a reference to the excess bytes. |
4742 | /// If there are insufficient bytes, or if that affix of `source` is not |
4743 | /// appropriately aligned, this returns `Err`. |
4744 | #[inline (always)] |
4745 | fn mut_from_prefix_suffix<T: FromBytes + IntoBytes + KnownLayout + ?Sized>( |
4746 | source: &mut [u8], |
4747 | meta: Option<T::PointerMetadata>, |
4748 | cast_type: CastType, |
4749 | ) -> Result<(&mut T, &mut [u8]), CastError<&mut [u8], T>> { |
4750 | let (slf: Ptr<'_, T, (Exclusive, Aligned, …)>, prefix_suffix: Ptr<'_, [u8], (Exclusive, …)>) = Ptr::from_mut(source) |
4751 | .try_cast_into::<_, BecauseExclusive>(cast_type, meta) |
4752 | .map_err(|err: ConvertError, …, …>| err.map_src(|s: Ptr<'_, [u8], (Exclusive, …)>| s.as_mut()))?; |
4753 | Ok((slf.recall_validity().as_mut(), prefix_suffix.as_mut())) |
4754 | } |
4755 | |
4756 | /// Analyzes whether a type is [`IntoBytes`]. |
4757 | /// |
4758 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
4759 | /// the [safety conditions] of `IntoBytes` and implements `IntoBytes` if it is |
4760 | /// sound to do so. This derive can be applied to structs and enums (see below |
4761 | /// for union support); e.g.: |
4762 | /// |
4763 | /// ``` |
4764 | /// # use zerocopy_derive::{IntoBytes}; |
4765 | /// #[derive(IntoBytes)] |
4766 | /// #[repr(C)] |
4767 | /// struct MyStruct { |
4768 | /// # /* |
4769 | /// ... |
4770 | /// # */ |
4771 | /// } |
4772 | /// |
4773 | /// #[derive(IntoBytes)] |
4774 | /// #[repr(u8)] |
4775 | /// enum MyEnum { |
4776 | /// # Variant, |
4777 | /// # /* |
4778 | /// ... |
4779 | /// # */ |
4780 | /// } |
4781 | /// ``` |
4782 | /// |
4783 | /// [safety conditions]: trait@IntoBytes#safety |
4784 | /// |
4785 | /// # Error Messages |
4786 | /// |
4787 | /// On Rust toolchains prior to 1.78.0, due to the way that the custom derive |
4788 | /// for `IntoBytes` is implemented, you may get an error like this: |
4789 | /// |
4790 | /// ```text |
4791 | /// error[E0277]: the trait bound `(): PaddingFree<Foo, true>` is not satisfied |
4792 | /// --> lib.rs:23:10 |
4793 | /// | |
4794 | /// 1 | #[derive(IntoBytes)] |
4795 | /// | ^^^^^^^^^ the trait `PaddingFree<Foo, true>` is not implemented for `()` |
4796 | /// | |
4797 | /// = help: the following implementations were found: |
4798 | /// <() as PaddingFree<T, false>> |
4799 | /// ``` |
4800 | /// |
4801 | /// This error indicates that the type being annotated has padding bytes, which |
4802 | /// is illegal for `IntoBytes` types. Consider reducing the alignment of some |
4803 | /// fields by using types in the [`byteorder`] module, wrapping field types in |
4804 | /// [`Unalign`], adding explicit struct fields where those padding bytes would |
4805 | /// be, or using `#[repr(packed)]`. See the Rust Reference's page on [type |
4806 | /// layout] for more information about type layout and padding. |
4807 | /// |
4808 | /// [type layout]: https://doc.rust-lang.org/reference/type-layout.html |
4809 | /// |
4810 | /// # Unions |
4811 | /// |
4812 | /// Currently, union bit validity is [up in the air][union-validity], and so |
4813 | /// zerocopy does not support `#[derive(IntoBytes)]` on unions by default. |
4814 | /// However, implementing `IntoBytes` on a union type is likely sound on all |
4815 | /// existing Rust toolchains - it's just that it may become unsound in the |
4816 | /// future. You can opt-in to `#[derive(IntoBytes)]` support on unions by |
4817 | /// passing the unstable `zerocopy_derive_union_into_bytes` cfg: |
4818 | /// |
4819 | /// ```shell |
4820 | /// $ RUSTFLAGS='--cfg zerocopy_derive_union_into_bytes' cargo build |
4821 | /// ``` |
4822 | /// |
4823 | /// However, it is your responsibility to ensure that this derive is sound on |
4824 | /// the specific versions of the Rust toolchain you are using! We make no |
4825 | /// stability or soundness guarantees regarding this cfg, and may remove it at |
4826 | /// any point. |
4827 | /// |
4828 | /// We are actively working with Rust to stabilize the necessary language |
4829 | /// guarantees to support this in a forwards-compatible way, which will enable |
4830 | /// us to remove the cfg gate. As part of this effort, we need to know how much |
4831 | /// demand there is for this feature. If you would like to use `IntoBytes` on |
4832 | /// unions, [please let us know][discussion]. |
4833 | /// |
4834 | /// [union-validity]: https://github.com/rust-lang/unsafe-code-guidelines/issues/438 |
4835 | /// [discussion]: https://github.com/google/zerocopy/discussions/1802 |
4836 | /// |
4837 | /// # Analysis |
4838 | /// |
4839 | /// *This section describes, roughly, the analysis performed by this derive to |
4840 | /// determine whether it is sound to implement `IntoBytes` for a given type. |
4841 | /// Unless you are modifying the implementation of this derive, or attempting to |
4842 | /// manually implement `IntoBytes` for a type yourself, you don't need to read |
4843 | /// this section.* |
4844 | /// |
4845 | /// If a type has the following properties, then this derive can implement |
4846 | /// `IntoBytes` for that type: |
4847 | /// |
4848 | /// - If the type is a struct, its fields must be [`IntoBytes`]. Additionally: |
4849 | /// - if the type is `repr(transparent)` or `repr(packed)`, it is |
4850 | /// [`IntoBytes`] if its fields are [`IntoBytes`]; else, |
4851 | /// - if the type is `repr(C)` with at most one field, it is [`IntoBytes`] |
4852 | /// if its field is [`IntoBytes`]; else, |
4853 | /// - if the type has no generic parameters, it is [`IntoBytes`] if the type |
4854 | /// is sized and has no padding bytes; else, |
4855 | /// - if the type is `repr(C)`, its fields must be [`Unaligned`]. |
4856 | /// - If the type is an enum: |
4857 | /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
4858 | /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
4859 | /// - It must have no padding bytes. |
4860 | /// - Its fields must be [`IntoBytes`]. |
4861 | /// |
4862 | /// This analysis is subject to change. Unsafe code may *only* rely on the |
4863 | /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
4864 | /// implementation details of this derive. |
4865 | /// |
4866 | /// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html |
4867 | #[cfg (any(feature = "derive" , test))] |
4868 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
4869 | pub use zerocopy_derive::IntoBytes; |
4870 | |
4871 | /// Types that can be converted to an immutable slice of initialized bytes. |
4872 | /// |
4873 | /// Any `IntoBytes` type can be converted to a slice of initialized bytes of the |
4874 | /// same size. This is useful for efficiently serializing structured data as raw |
4875 | /// bytes. |
4876 | /// |
4877 | /// # Implementation |
4878 | /// |
4879 | /// **Do not implement this trait yourself!** Instead, use |
4880 | /// [`#[derive(IntoBytes)]`][derive]; e.g.: |
4881 | /// |
4882 | /// ``` |
4883 | /// # use zerocopy_derive::IntoBytes; |
4884 | /// #[derive(IntoBytes)] |
4885 | /// #[repr(C)] |
4886 | /// struct MyStruct { |
4887 | /// # /* |
4888 | /// ... |
4889 | /// # */ |
4890 | /// } |
4891 | /// |
4892 | /// #[derive(IntoBytes)] |
4893 | /// #[repr(u8)] |
4894 | /// enum MyEnum { |
4895 | /// # Variant0, |
4896 | /// # /* |
4897 | /// ... |
4898 | /// # */ |
4899 | /// } |
4900 | /// ``` |
4901 | /// |
4902 | /// This derive performs a sophisticated, compile-time safety analysis to |
4903 | /// determine whether a type is `IntoBytes`. See the [derive |
4904 | /// documentation][derive] for guidance on how to interpret error messages |
4905 | /// produced by the derive's analysis. |
4906 | /// |
4907 | /// # Safety |
4908 | /// |
4909 | /// *This section describes what is required in order for `T: IntoBytes`, and |
4910 | /// what unsafe code may assume of such types. If you don't plan on implementing |
4911 | /// `IntoBytes` manually, and you don't plan on writing unsafe code that |
4912 | /// operates on `IntoBytes` types, then you don't need to read this section.* |
4913 | /// |
4914 | /// If `T: IntoBytes`, then unsafe code may assume that it is sound to treat any |
4915 | /// `t: T` as an immutable `[u8]` of length `size_of_val(t)`. If a type is |
4916 | /// marked as `IntoBytes` which violates this contract, it may cause undefined |
4917 | /// behavior. |
4918 | /// |
4919 | /// `#[derive(IntoBytes)]` only permits [types which satisfy these |
4920 | /// requirements][derive-analysis]. |
4921 | /// |
4922 | #[cfg_attr ( |
4923 | feature = "derive" , |
4924 | doc = "[derive]: zerocopy_derive::IntoBytes" , |
4925 | doc = "[derive-analysis]: zerocopy_derive::IntoBytes#analysis" |
4926 | )] |
4927 | #[cfg_attr ( |
4928 | not(feature = "derive" ), |
4929 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.IntoBytes.html" ), |
4930 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.IntoBytes.html#analysis" ), |
4931 | )] |
4932 | #[cfg_attr ( |
4933 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
4934 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(IntoBytes)]` to `{Self}`" ) |
4935 | )] |
4936 | pub unsafe trait IntoBytes { |
4937 | // The `Self: Sized` bound makes it so that this function doesn't prevent |
4938 | // `IntoBytes` from being object safe. Note that other `IntoBytes` methods |
4939 | // prevent object safety, but those provide a benefit in exchange for object |
4940 | // safety. If at some point we remove those methods, change their type |
4941 | // signatures, or move them out of this trait so that `IntoBytes` is object |
4942 | // safe again, it's important that this function not prevent object safety. |
4943 | #[doc (hidden)] |
4944 | fn only_derive_is_allowed_to_implement_this_trait() |
4945 | where |
4946 | Self: Sized; |
4947 | |
4948 | /// Gets the bytes of this value. |
4949 | /// |
4950 | /// # Examples |
4951 | /// |
4952 | /// ``` |
4953 | /// use zerocopy::IntoBytes; |
4954 | /// # use zerocopy_derive::*; |
4955 | /// |
4956 | /// #[derive(IntoBytes, Immutable)] |
4957 | /// #[repr(C)] |
4958 | /// struct PacketHeader { |
4959 | /// src_port: [u8; 2], |
4960 | /// dst_port: [u8; 2], |
4961 | /// length: [u8; 2], |
4962 | /// checksum: [u8; 2], |
4963 | /// } |
4964 | /// |
4965 | /// let header = PacketHeader { |
4966 | /// src_port: [0, 1], |
4967 | /// dst_port: [2, 3], |
4968 | /// length: [4, 5], |
4969 | /// checksum: [6, 7], |
4970 | /// }; |
4971 | /// |
4972 | /// let bytes = header.as_bytes(); |
4973 | /// |
4974 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
4975 | /// ``` |
4976 | #[must_use = "has no side effects" ] |
4977 | #[inline (always)] |
4978 | fn as_bytes(&self) -> &[u8] |
4979 | where |
4980 | Self: Immutable, |
4981 | { |
4982 | // Note that this method does not have a `Self: Sized` bound; |
4983 | // `size_of_val` works for unsized values too. |
4984 | let len = mem::size_of_val(self); |
4985 | let slf: *const Self = self; |
4986 | |
4987 | // SAFETY: |
4988 | // - `slf.cast::<u8>()` is valid for reads for `len * size_of::<u8>()` |
4989 | // many bytes because... |
4990 | // - `slf` is the same pointer as `self`, and `self` is a reference |
4991 | // which points to an object whose size is `len`. Thus... |
4992 | // - The entire region of `len` bytes starting at `slf` is contained |
4993 | // within a single allocation. |
4994 | // - `slf` is non-null. |
4995 | // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
4996 | // - `Self: IntoBytes` ensures that all of the bytes of `slf` are |
4997 | // initialized. |
4998 | // - Since `slf` is derived from `self`, and `self` is an immutable |
4999 | // reference, the only other references to this memory region that |
5000 | // could exist are other immutable references, and those don't allow |
5001 | // mutation. `Self: Immutable` prohibits types which contain |
5002 | // `UnsafeCell`s, which are the only types for which this rule |
5003 | // wouldn't be sufficient. |
5004 | // - The total size of the resulting slice is no larger than |
5005 | // `isize::MAX` because no allocation produced by safe code can be |
5006 | // larger than `isize::MAX`. |
5007 | // |
5008 | // TODO(#429): Add references to docs and quotes. |
5009 | unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) } |
5010 | } |
5011 | |
5012 | /// Gets the bytes of this value mutably. |
5013 | /// |
5014 | /// # Examples |
5015 | /// |
5016 | /// ``` |
5017 | /// use zerocopy::IntoBytes; |
5018 | /// # use zerocopy_derive::*; |
5019 | /// |
5020 | /// # #[derive(Eq, PartialEq, Debug)] |
5021 | /// #[derive(FromBytes, IntoBytes, Immutable)] |
5022 | /// #[repr(C)] |
5023 | /// struct PacketHeader { |
5024 | /// src_port: [u8; 2], |
5025 | /// dst_port: [u8; 2], |
5026 | /// length: [u8; 2], |
5027 | /// checksum: [u8; 2], |
5028 | /// } |
5029 | /// |
5030 | /// let mut header = PacketHeader { |
5031 | /// src_port: [0, 1], |
5032 | /// dst_port: [2, 3], |
5033 | /// length: [4, 5], |
5034 | /// checksum: [6, 7], |
5035 | /// }; |
5036 | /// |
5037 | /// let bytes = header.as_mut_bytes(); |
5038 | /// |
5039 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
5040 | /// |
5041 | /// bytes.reverse(); |
5042 | /// |
5043 | /// assert_eq!(header, PacketHeader { |
5044 | /// src_port: [7, 6], |
5045 | /// dst_port: [5, 4], |
5046 | /// length: [3, 2], |
5047 | /// checksum: [1, 0], |
5048 | /// }); |
5049 | /// ``` |
5050 | #[must_use = "has no side effects" ] |
5051 | #[inline (always)] |
5052 | fn as_mut_bytes(&mut self) -> &mut [u8] |
5053 | where |
5054 | Self: FromBytes, |
5055 | { |
5056 | // Note that this method does not have a `Self: Sized` bound; |
5057 | // `size_of_val` works for unsized values too. |
5058 | let len = mem::size_of_val(self); |
5059 | let slf: *mut Self = self; |
5060 | |
5061 | // SAFETY: |
5062 | // - `slf.cast::<u8>()` is valid for reads and writes for `len * |
5063 | // size_of::<u8>()` many bytes because... |
5064 | // - `slf` is the same pointer as `self`, and `self` is a reference |
5065 | // which points to an object whose size is `len`. Thus... |
5066 | // - The entire region of `len` bytes starting at `slf` is contained |
5067 | // within a single allocation. |
5068 | // - `slf` is non-null. |
5069 | // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
5070 | // - `Self: IntoBytes` ensures that all of the bytes of `slf` are |
5071 | // initialized. |
5072 | // - `Self: FromBytes` ensures that no write to this memory region |
5073 | // could result in it containing an invalid `Self`. |
5074 | // - Since `slf` is derived from `self`, and `self` is a mutable |
5075 | // reference, no other references to this memory region can exist. |
5076 | // - The total size of the resulting slice is no larger than |
5077 | // `isize::MAX` because no allocation produced by safe code can be |
5078 | // larger than `isize::MAX`. |
5079 | // |
5080 | // TODO(#429): Add references to docs and quotes. |
5081 | unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) } |
5082 | } |
5083 | |
5084 | /// Writes a copy of `self` to `dst`. |
5085 | /// |
5086 | /// If `dst.len() != size_of_val(self)`, `write_to` returns `Err`. |
5087 | /// |
5088 | /// # Examples |
5089 | /// |
5090 | /// ``` |
5091 | /// use zerocopy::IntoBytes; |
5092 | /// # use zerocopy_derive::*; |
5093 | /// |
5094 | /// #[derive(IntoBytes, Immutable)] |
5095 | /// #[repr(C)] |
5096 | /// struct PacketHeader { |
5097 | /// src_port: [u8; 2], |
5098 | /// dst_port: [u8; 2], |
5099 | /// length: [u8; 2], |
5100 | /// checksum: [u8; 2], |
5101 | /// } |
5102 | /// |
5103 | /// let header = PacketHeader { |
5104 | /// src_port: [0, 1], |
5105 | /// dst_port: [2, 3], |
5106 | /// length: [4, 5], |
5107 | /// checksum: [6, 7], |
5108 | /// }; |
5109 | /// |
5110 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0]; |
5111 | /// |
5112 | /// header.write_to(&mut bytes[..]); |
5113 | /// |
5114 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
5115 | /// ``` |
5116 | /// |
5117 | /// If too many or too few target bytes are provided, `write_to` returns |
5118 | /// `Err` and leaves the target bytes unmodified: |
5119 | /// |
5120 | /// ``` |
5121 | /// # use zerocopy::IntoBytes; |
5122 | /// # let header = u128::MAX; |
5123 | /// let mut excessive_bytes = &mut [0u8; 128][..]; |
5124 | /// |
5125 | /// let write_result = header.write_to(excessive_bytes); |
5126 | /// |
5127 | /// assert!(write_result.is_err()); |
5128 | /// assert_eq!(excessive_bytes, [0u8; 128]); |
5129 | /// ``` |
5130 | #[must_use = "callers should check the return value to see if the operation succeeded" ] |
5131 | #[inline ] |
5132 | fn write_to(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>> |
5133 | where |
5134 | Self: Immutable, |
5135 | { |
5136 | let src = self.as_bytes(); |
5137 | if dst.len() == src.len() { |
5138 | // SAFETY: Within this branch of the conditional, we have ensured |
5139 | // that `dst.len()` is equal to `src.len()`. Neither the size of the |
5140 | // source nor the size of the destination change between the above |
5141 | // size check and the invocation of `copy_unchecked`. |
5142 | unsafe { util::copy_unchecked(src, dst) } |
5143 | Ok(()) |
5144 | } else { |
5145 | Err(SizeError::new(self)) |
5146 | } |
5147 | } |
5148 | |
5149 | /// Writes a copy of `self` to the prefix of `dst`. |
5150 | /// |
5151 | /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes |
5152 | /// of `dst`. If `dst.len() < size_of_val(self)`, it returns `Err`. |
5153 | /// |
5154 | /// # Examples |
5155 | /// |
5156 | /// ``` |
5157 | /// use zerocopy::IntoBytes; |
5158 | /// # use zerocopy_derive::*; |
5159 | /// |
5160 | /// #[derive(IntoBytes, Immutable)] |
5161 | /// #[repr(C)] |
5162 | /// struct PacketHeader { |
5163 | /// src_port: [u8; 2], |
5164 | /// dst_port: [u8; 2], |
5165 | /// length: [u8; 2], |
5166 | /// checksum: [u8; 2], |
5167 | /// } |
5168 | /// |
5169 | /// let header = PacketHeader { |
5170 | /// src_port: [0, 1], |
5171 | /// dst_port: [2, 3], |
5172 | /// length: [4, 5], |
5173 | /// checksum: [6, 7], |
5174 | /// }; |
5175 | /// |
5176 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
5177 | /// |
5178 | /// header.write_to_prefix(&mut bytes[..]); |
5179 | /// |
5180 | /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7, 0, 0]); |
5181 | /// ``` |
5182 | /// |
5183 | /// If insufficient target bytes are provided, `write_to_prefix` returns |
5184 | /// `Err` and leaves the target bytes unmodified: |
5185 | /// |
5186 | /// ``` |
5187 | /// # use zerocopy::IntoBytes; |
5188 | /// # let header = u128::MAX; |
5189 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
5190 | /// |
5191 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
5192 | /// |
5193 | /// assert!(write_result.is_err()); |
5194 | /// assert_eq!(insufficent_bytes, [0, 0]); |
5195 | /// ``` |
5196 | #[must_use = "callers should check the return value to see if the operation succeeded" ] |
5197 | #[inline ] |
5198 | fn write_to_prefix(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>> |
5199 | where |
5200 | Self: Immutable, |
5201 | { |
5202 | let src = self.as_bytes(); |
5203 | match dst.get_mut(..src.len()) { |
5204 | Some(dst) => { |
5205 | // SAFETY: Within this branch of the `match`, we have ensured |
5206 | // through fallible subslicing that `dst.len()` is equal to |
5207 | // `src.len()`. Neither the size of the source nor the size of |
5208 | // the destination change between the above subslicing operation |
5209 | // and the invocation of `copy_unchecked`. |
5210 | unsafe { util::copy_unchecked(src, dst) } |
5211 | Ok(()) |
5212 | } |
5213 | None => Err(SizeError::new(self)), |
5214 | } |
5215 | } |
5216 | |
5217 | /// Writes a copy of `self` to the suffix of `dst`. |
5218 | /// |
5219 | /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of |
5220 | /// `dst`. If `dst.len() < size_of_val(self)`, it returns `Err`. |
5221 | /// |
5222 | /// # Examples |
5223 | /// |
5224 | /// ``` |
5225 | /// use zerocopy::IntoBytes; |
5226 | /// # use zerocopy_derive::*; |
5227 | /// |
5228 | /// #[derive(IntoBytes, Immutable)] |
5229 | /// #[repr(C)] |
5230 | /// struct PacketHeader { |
5231 | /// src_port: [u8; 2], |
5232 | /// dst_port: [u8; 2], |
5233 | /// length: [u8; 2], |
5234 | /// checksum: [u8; 2], |
5235 | /// } |
5236 | /// |
5237 | /// let header = PacketHeader { |
5238 | /// src_port: [0, 1], |
5239 | /// dst_port: [2, 3], |
5240 | /// length: [4, 5], |
5241 | /// checksum: [6, 7], |
5242 | /// }; |
5243 | /// |
5244 | /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
5245 | /// |
5246 | /// header.write_to_suffix(&mut bytes[..]); |
5247 | /// |
5248 | /// assert_eq!(bytes, [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]); |
5249 | /// |
5250 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
5251 | /// |
5252 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
5253 | /// |
5254 | /// assert!(write_result.is_err()); |
5255 | /// assert_eq!(insufficent_bytes, [0, 0]); |
5256 | /// ``` |
5257 | /// |
5258 | /// If insufficient target bytes are provided, `write_to_suffix` returns |
5259 | /// `Err` and leaves the target bytes unmodified: |
5260 | /// |
5261 | /// ``` |
5262 | /// # use zerocopy::IntoBytes; |
5263 | /// # let header = u128::MAX; |
5264 | /// let mut insufficent_bytes = &mut [0, 0][..]; |
5265 | /// |
5266 | /// let write_result = header.write_to_suffix(insufficent_bytes); |
5267 | /// |
5268 | /// assert!(write_result.is_err()); |
5269 | /// assert_eq!(insufficent_bytes, [0, 0]); |
5270 | /// ``` |
5271 | #[must_use = "callers should check the return value to see if the operation succeeded" ] |
5272 | #[inline ] |
5273 | fn write_to_suffix(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>> |
5274 | where |
5275 | Self: Immutable, |
5276 | { |
5277 | let src = self.as_bytes(); |
5278 | let start = if let Some(start) = dst.len().checked_sub(src.len()) { |
5279 | start |
5280 | } else { |
5281 | return Err(SizeError::new(self)); |
5282 | }; |
5283 | let dst = if let Some(dst) = dst.get_mut(start..) { |
5284 | dst |
5285 | } else { |
5286 | // get_mut() should never return None here. We return a `SizeError` |
5287 | // rather than .unwrap() because in the event the branch is not |
5288 | // optimized away, returning a value is generally lighter-weight |
5289 | // than panicking. |
5290 | return Err(SizeError::new(self)); |
5291 | }; |
5292 | // SAFETY: Through fallible subslicing of `dst`, we have ensured that |
5293 | // `dst.len()` is equal to `src.len()`. Neither the size of the source |
5294 | // nor the size of the destination change between the above subslicing |
5295 | // operation and the invocation of `copy_unchecked`. |
5296 | unsafe { |
5297 | util::copy_unchecked(src, dst); |
5298 | } |
5299 | Ok(()) |
5300 | } |
5301 | |
5302 | /// Writes a copy of `self` to an `io::Write`. |
5303 | /// |
5304 | /// This is a shorthand for `dst.write_all(self.as_bytes())`, and is useful |
5305 | /// for interfacing with operating system byte sinks (files, sockets, etc.). |
5306 | /// |
5307 | /// # Examples |
5308 | /// |
5309 | /// ```no_run |
5310 | /// use zerocopy::{byteorder::big_endian::U16, FromBytes, IntoBytes}; |
5311 | /// use std::fs::File; |
5312 | /// # use zerocopy_derive::*; |
5313 | /// |
5314 | /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)] |
5315 | /// #[repr(C, packed)] |
5316 | /// struct GrayscaleImage { |
5317 | /// height: U16, |
5318 | /// width: U16, |
5319 | /// pixels: [U16], |
5320 | /// } |
5321 | /// |
5322 | /// let image = GrayscaleImage::ref_from_bytes(&[0, 0, 0, 0][..]).unwrap(); |
5323 | /// let mut file = File::create("image.bin").unwrap(); |
5324 | /// image.write_to_io(&mut file).unwrap(); |
5325 | /// ``` |
5326 | /// |
5327 | /// If the write fails, `write_to_io` returns `Err` and a partial write may |
5328 | /// have occured; e.g.: |
5329 | /// |
5330 | /// ``` |
5331 | /// # use zerocopy::IntoBytes; |
5332 | /// |
5333 | /// let src = u128::MAX; |
5334 | /// let mut dst = [0u8; 2]; |
5335 | /// |
5336 | /// let write_result = src.write_to_io(&mut dst[..]); |
5337 | /// |
5338 | /// assert!(write_result.is_err()); |
5339 | /// assert_eq!(dst, [255, 255]); |
5340 | /// ``` |
5341 | #[cfg (feature = "std" )] |
5342 | #[inline (always)] |
5343 | fn write_to_io<W>(&self, mut dst: W) -> io::Result<()> |
5344 | where |
5345 | Self: Immutable, |
5346 | W: io::Write, |
5347 | { |
5348 | dst.write_all(self.as_bytes()) |
5349 | } |
5350 | |
5351 | #[deprecated (since = "0.8.0" , note = "`IntoBytes::as_bytes_mut` was renamed to `as_mut_bytes`" )] |
5352 | #[doc (hidden)] |
5353 | #[inline ] |
5354 | fn as_bytes_mut(&mut self) -> &mut [u8] |
5355 | where |
5356 | Self: FromBytes, |
5357 | { |
5358 | self.as_mut_bytes() |
5359 | } |
5360 | } |
5361 | |
5362 | /// Analyzes whether a type is [`Unaligned`]. |
5363 | /// |
5364 | /// This derive analyzes, at compile time, whether the annotated type satisfies |
5365 | /// the [safety conditions] of `Unaligned` and implements `Unaligned` if it is |
5366 | /// sound to do so. This derive can be applied to structs, enums, and unions; |
5367 | /// e.g.: |
5368 | /// |
5369 | /// ``` |
5370 | /// # use zerocopy_derive::Unaligned; |
5371 | /// #[derive(Unaligned)] |
5372 | /// #[repr(C)] |
5373 | /// struct MyStruct { |
5374 | /// # /* |
5375 | /// ... |
5376 | /// # */ |
5377 | /// } |
5378 | /// |
5379 | /// #[derive(Unaligned)] |
5380 | /// #[repr(u8)] |
5381 | /// enum MyEnum { |
5382 | /// # Variant0, |
5383 | /// # /* |
5384 | /// ... |
5385 | /// # */ |
5386 | /// } |
5387 | /// |
5388 | /// #[derive(Unaligned)] |
5389 | /// #[repr(packed)] |
5390 | /// union MyUnion { |
5391 | /// # variant: u8, |
5392 | /// # /* |
5393 | /// ... |
5394 | /// # */ |
5395 | /// } |
5396 | /// ``` |
5397 | /// |
5398 | /// # Analysis |
5399 | /// |
5400 | /// *This section describes, roughly, the analysis performed by this derive to |
5401 | /// determine whether it is sound to implement `Unaligned` for a given type. |
5402 | /// Unless you are modifying the implementation of this derive, or attempting to |
5403 | /// manually implement `Unaligned` for a type yourself, you don't need to read |
5404 | /// this section.* |
5405 | /// |
5406 | /// If a type has the following properties, then this derive can implement |
5407 | /// `Unaligned` for that type: |
5408 | /// |
5409 | /// - If the type is a struct or union: |
5410 | /// - If `repr(align(N))` is provided, `N` must equal 1. |
5411 | /// - If the type is `repr(C)` or `repr(transparent)`, all fields must be |
5412 | /// [`Unaligned`]. |
5413 | /// - If the type is not `repr(C)` or `repr(transparent)`, it must be |
5414 | /// `repr(packed)` or `repr(packed(1))`. |
5415 | /// - If the type is an enum: |
5416 | /// - If `repr(align(N))` is provided, `N` must equal 1. |
5417 | /// - It must be a field-less enum (meaning that all variants have no fields). |
5418 | /// - It must be `repr(i8)` or `repr(u8)`. |
5419 | /// |
5420 | /// [safety conditions]: trait@Unaligned#safety |
5421 | #[cfg (any(feature = "derive" , test))] |
5422 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
5423 | pub use zerocopy_derive::Unaligned; |
5424 | |
5425 | /// Types with no alignment requirement. |
5426 | /// |
5427 | /// If `T: Unaligned`, then `align_of::<T>() == 1`. |
5428 | /// |
5429 | /// # Implementation |
5430 | /// |
5431 | /// **Do not implement this trait yourself!** Instead, use |
5432 | /// [`#[derive(Unaligned)]`][derive]; e.g.: |
5433 | /// |
5434 | /// ``` |
5435 | /// # use zerocopy_derive::Unaligned; |
5436 | /// #[derive(Unaligned)] |
5437 | /// #[repr(C)] |
5438 | /// struct MyStruct { |
5439 | /// # /* |
5440 | /// ... |
5441 | /// # */ |
5442 | /// } |
5443 | /// |
5444 | /// #[derive(Unaligned)] |
5445 | /// #[repr(u8)] |
5446 | /// enum MyEnum { |
5447 | /// # Variant0, |
5448 | /// # /* |
5449 | /// ... |
5450 | /// # */ |
5451 | /// } |
5452 | /// |
5453 | /// #[derive(Unaligned)] |
5454 | /// #[repr(packed)] |
5455 | /// union MyUnion { |
5456 | /// # variant: u8, |
5457 | /// # /* |
5458 | /// ... |
5459 | /// # */ |
5460 | /// } |
5461 | /// ``` |
5462 | /// |
5463 | /// This derive performs a sophisticated, compile-time safety analysis to |
5464 | /// determine whether a type is `Unaligned`. |
5465 | /// |
5466 | /// # Safety |
5467 | /// |
5468 | /// *This section describes what is required in order for `T: Unaligned`, and |
5469 | /// what unsafe code may assume of such types. If you don't plan on implementing |
5470 | /// `Unaligned` manually, and you don't plan on writing unsafe code that |
5471 | /// operates on `Unaligned` types, then you don't need to read this section.* |
5472 | /// |
5473 | /// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a |
5474 | /// reference to `T` at any memory location regardless of alignment. If a type |
5475 | /// is marked as `Unaligned` which violates this contract, it may cause |
5476 | /// undefined behavior. |
5477 | /// |
5478 | /// `#[derive(Unaligned)]` only permits [types which satisfy these |
5479 | /// requirements][derive-analysis]. |
5480 | /// |
5481 | #[cfg_attr ( |
5482 | feature = "derive" , |
5483 | doc = "[derive]: zerocopy_derive::Unaligned" , |
5484 | doc = "[derive-analysis]: zerocopy_derive::Unaligned#analysis" |
5485 | )] |
5486 | #[cfg_attr ( |
5487 | not(feature = "derive" ), |
5488 | doc = concat!("[derive]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Unaligned.html" ), |
5489 | doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/" , env!("CARGO_PKG_VERSION" ), "/zerocopy/derive.Unaligned.html#analysis" ), |
5490 | )] |
5491 | #[cfg_attr ( |
5492 | zerocopy_diagnostic_on_unimplemented_1_78_0, |
5493 | diagnostic::on_unimplemented(note = "Consider adding `#[derive(Unaligned)]` to `{Self}`" ) |
5494 | )] |
5495 | pub unsafe trait Unaligned { |
5496 | // The `Self: Sized` bound makes it so that `Unaligned` is still object |
5497 | // safe. |
5498 | #[doc (hidden)] |
5499 | fn only_derive_is_allowed_to_implement_this_trait() |
5500 | where |
5501 | Self: Sized; |
5502 | } |
5503 | |
5504 | /// Derives an optimized implementation of [`Hash`] for types that implement |
5505 | /// [`IntoBytes`] and [`Immutable`]. |
5506 | /// |
5507 | /// The standard library's derive for `Hash` generates a recursive descent |
5508 | /// into the fields of the type it is applied to. Instead, the implementation |
5509 | /// derived by this macro makes a single call to [`Hasher::write()`] for both |
5510 | /// [`Hash::hash()`] and [`Hash::hash_slice()`], feeding the hasher the bytes |
5511 | /// of the type or slice all at once. |
5512 | /// |
5513 | /// [`Hash`]: core::hash::Hash |
5514 | /// [`Hash::hash()`]: core::hash::Hash::hash() |
5515 | /// [`Hash::hash_slice()`]: core::hash::Hash::hash_slice() |
5516 | #[cfg (any(feature = "derive" , test))] |
5517 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
5518 | pub use zerocopy_derive::ByteHash; |
5519 | |
5520 | /// Derives an optimized implementation of [`PartialEq`] and [`Eq`] for types |
5521 | /// that implement [`IntoBytes`] and [`Immutable`]. |
5522 | /// |
5523 | /// The standard library's derive for [`PartialEq`] generates a recursive |
5524 | /// descent into the fields of the type it is applied to. Instead, the |
5525 | /// implementation derived by this macro performs a single slice comparison of |
5526 | /// the bytes of the two values being compared. |
5527 | #[cfg (any(feature = "derive" , test))] |
5528 | #[cfg_attr (doc_cfg, doc(cfg(feature = "derive" )))] |
5529 | pub use zerocopy_derive::ByteEq; |
5530 | |
5531 | #[cfg (feature = "alloc" )] |
5532 | #[cfg_attr (doc_cfg, doc(cfg(feature = "alloc" )))] |
5533 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5534 | mod alloc_support { |
5535 | use super::*; |
5536 | |
5537 | /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the |
5538 | /// vector. The new items are initialized with zeros. |
5539 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5540 | #[doc (hidden)] |
5541 | #[deprecated (since = "0.8.0" , note = "moved to `FromZeros`" )] |
5542 | #[inline (always)] |
5543 | pub fn extend_vec_zeroed<T: FromZeros>( |
5544 | v: &mut Vec<T>, |
5545 | additional: usize, |
5546 | ) -> Result<(), AllocError> { |
5547 | <T as FromZeros>::extend_vec_zeroed(v, additional) |
5548 | } |
5549 | |
5550 | /// Inserts `additional` new items into `Vec<T>` at `position`. The new |
5551 | /// items are initialized with zeros. |
5552 | /// |
5553 | /// # Panics |
5554 | /// |
5555 | /// Panics if `position > v.len()`. |
5556 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5557 | #[doc (hidden)] |
5558 | #[deprecated (since = "0.8.0" , note = "moved to `FromZeros`" )] |
5559 | #[inline (always)] |
5560 | pub fn insert_vec_zeroed<T: FromZeros>( |
5561 | v: &mut Vec<T>, |
5562 | position: usize, |
5563 | additional: usize, |
5564 | ) -> Result<(), AllocError> { |
5565 | <T as FromZeros>::insert_vec_zeroed(v, position, additional) |
5566 | } |
5567 | } |
5568 | |
5569 | #[cfg (feature = "alloc" )] |
5570 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
5571 | #[doc (hidden)] |
5572 | pub use alloc_support::*; |
5573 | |
5574 | #[cfg (test)] |
5575 | #[allow (clippy::assertions_on_result_states, clippy::unreadable_literal)] |
5576 | mod tests { |
5577 | use static_assertions::assert_impl_all; |
5578 | |
5579 | use super::*; |
5580 | use crate::util::testutil::*; |
5581 | |
5582 | // An unsized type. |
5583 | // |
5584 | // This is used to test the custom derives of our traits. The `[u8]` type |
5585 | // gets a hand-rolled impl, so it doesn't exercise our custom derives. |
5586 | #[derive (Debug, Eq, PartialEq, FromBytes, IntoBytes, Unaligned, Immutable)] |
5587 | #[repr (transparent)] |
5588 | struct Unsized([u8]); |
5589 | |
5590 | impl Unsized { |
5591 | fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized { |
5592 | // SAFETY: This *probably* sound - since the layouts of `[u8]` and |
5593 | // `Unsized` are the same, so are the layouts of `&mut [u8]` and |
5594 | // `&mut Unsized`. [1] Even if it turns out that this isn't actually |
5595 | // guaranteed by the language spec, we can just change this since |
5596 | // it's in test code. |
5597 | // |
5598 | // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375 |
5599 | unsafe { mem::transmute(slc) } |
5600 | } |
5601 | } |
5602 | |
5603 | #[test ] |
5604 | fn test_known_layout() { |
5605 | // Test that `$ty` and `ManuallyDrop<$ty>` have the expected layout. |
5606 | // Test that `PhantomData<$ty>` has the same layout as `()` regardless |
5607 | // of `$ty`. |
5608 | macro_rules! test { |
5609 | ($ty:ty, $expect:expr) => { |
5610 | let expect = $expect; |
5611 | assert_eq!(<$ty as KnownLayout>::LAYOUT, expect); |
5612 | assert_eq!(<ManuallyDrop<$ty> as KnownLayout>::LAYOUT, expect); |
5613 | assert_eq!(<PhantomData<$ty> as KnownLayout>::LAYOUT, <() as KnownLayout>::LAYOUT); |
5614 | }; |
5615 | } |
5616 | |
5617 | let layout = |offset, align, _trailing_slice_elem_size| DstLayout { |
5618 | align: NonZeroUsize::new(align).unwrap(), |
5619 | size_info: match _trailing_slice_elem_size { |
5620 | None => SizeInfo::Sized { size: offset }, |
5621 | Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
5622 | }, |
5623 | }; |
5624 | |
5625 | test !((), layout(0, 1, None)); |
5626 | test !(u8, layout(1, 1, None)); |
5627 | // Use `align_of` because `u64` alignment may be smaller than 8 on some |
5628 | // platforms. |
5629 | test !(u64, layout(8, mem::align_of::<u64>(), None)); |
5630 | test !(AU64, layout(8, 8, None)); |
5631 | |
5632 | test !(Option<&'static ()>, usize::LAYOUT); |
5633 | |
5634 | test !([()], layout(0, 1, Some(0))); |
5635 | test !([u8], layout(0, 1, Some(1))); |
5636 | test !(str, layout(0, 1, Some(1))); |
5637 | } |
5638 | |
5639 | #[cfg (feature = "derive" )] |
5640 | #[test ] |
5641 | fn test_known_layout_derive() { |
5642 | // In this and other files (`late_compile_pass.rs`, |
5643 | // `mid_compile_pass.rs`, and `struct.rs`), we test success and failure |
5644 | // modes of `derive(KnownLayout)` for the following combination of |
5645 | // properties: |
5646 | // |
5647 | // +------------+--------------------------------------+-----------+ |
5648 | // | | trailing field properties | | |
5649 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5650 | // |------------+----------+----------------+----------+-----------| |
5651 | // | N | N | N | N | KL00 | |
5652 | // | N | N | N | Y | KL01 | |
5653 | // | N | N | Y | N | KL02 | |
5654 | // | N | N | Y | Y | KL03 | |
5655 | // | N | Y | N | N | KL04 | |
5656 | // | N | Y | N | Y | KL05 | |
5657 | // | N | Y | Y | N | KL06 | |
5658 | // | N | Y | Y | Y | KL07 | |
5659 | // | Y | N | N | N | KL08 | |
5660 | // | Y | N | N | Y | KL09 | |
5661 | // | Y | N | Y | N | KL10 | |
5662 | // | Y | N | Y | Y | KL11 | |
5663 | // | Y | Y | N | N | KL12 | |
5664 | // | Y | Y | N | Y | KL13 | |
5665 | // | Y | Y | Y | N | KL14 | |
5666 | // | Y | Y | Y | Y | KL15 | |
5667 | // +------------+----------+----------------+----------+-----------+ |
5668 | |
5669 | struct NotKnownLayout<T = ()> { |
5670 | _t: T, |
5671 | } |
5672 | |
5673 | #[derive (KnownLayout)] |
5674 | #[repr (C)] |
5675 | struct AlignSize<const ALIGN: usize, const SIZE: usize> |
5676 | where |
5677 | elain::Align<ALIGN>: elain::Alignment, |
5678 | { |
5679 | _align: elain::Align<ALIGN>, |
5680 | size: [u8; SIZE], |
5681 | } |
5682 | |
5683 | type AU16 = AlignSize<2, 2>; |
5684 | type AU32 = AlignSize<4, 4>; |
5685 | |
5686 | fn _assert_kl<T: ?Sized + KnownLayout>(_: &T) {} |
5687 | |
5688 | let sized_layout = |align, size| DstLayout { |
5689 | align: NonZeroUsize::new(align).unwrap(), |
5690 | size_info: SizeInfo::Sized { size }, |
5691 | }; |
5692 | |
5693 | let unsized_layout = |align, elem_size, offset| DstLayout { |
5694 | align: NonZeroUsize::new(align).unwrap(), |
5695 | size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }), |
5696 | }; |
5697 | |
5698 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5699 | // | N | N | N | Y | KL01 | |
5700 | #[allow (dead_code)] |
5701 | #[derive (KnownLayout)] |
5702 | struct KL01(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5703 | |
5704 | let expected = DstLayout::for_type::<KL01>(); |
5705 | |
5706 | assert_eq!(<KL01 as KnownLayout>::LAYOUT, expected); |
5707 | assert_eq!(<KL01 as KnownLayout>::LAYOUT, sized_layout(4, 8)); |
5708 | |
5709 | // ...with `align(N)`: |
5710 | #[allow (dead_code)] |
5711 | #[derive (KnownLayout)] |
5712 | #[repr (align(64))] |
5713 | struct KL01Align(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5714 | |
5715 | let expected = DstLayout::for_type::<KL01Align>(); |
5716 | |
5717 | assert_eq!(<KL01Align as KnownLayout>::LAYOUT, expected); |
5718 | assert_eq!(<KL01Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
5719 | |
5720 | // ...with `packed`: |
5721 | #[allow (dead_code)] |
5722 | #[derive (KnownLayout)] |
5723 | #[repr (packed)] |
5724 | struct KL01Packed(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5725 | |
5726 | let expected = DstLayout::for_type::<KL01Packed>(); |
5727 | |
5728 | assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, expected); |
5729 | assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, sized_layout(1, 6)); |
5730 | |
5731 | // ...with `packed(N)`: |
5732 | #[allow (dead_code)] |
5733 | #[derive (KnownLayout)] |
5734 | #[repr (packed(2))] |
5735 | struct KL01PackedN(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
5736 | |
5737 | assert_impl_all!(KL01PackedN: KnownLayout); |
5738 | |
5739 | let expected = DstLayout::for_type::<KL01PackedN>(); |
5740 | |
5741 | assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, expected); |
5742 | assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
5743 | |
5744 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5745 | // | N | N | Y | Y | KL03 | |
5746 | #[allow (dead_code)] |
5747 | #[derive (KnownLayout)] |
5748 | struct KL03(NotKnownLayout, u8); |
5749 | |
5750 | let expected = DstLayout::for_type::<KL03>(); |
5751 | |
5752 | assert_eq!(<KL03 as KnownLayout>::LAYOUT, expected); |
5753 | assert_eq!(<KL03 as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
5754 | |
5755 | // ... with `align(N)` |
5756 | #[allow (dead_code)] |
5757 | #[derive (KnownLayout)] |
5758 | #[repr (align(64))] |
5759 | struct KL03Align(NotKnownLayout<AU32>, u8); |
5760 | |
5761 | let expected = DstLayout::for_type::<KL03Align>(); |
5762 | |
5763 | assert_eq!(<KL03Align as KnownLayout>::LAYOUT, expected); |
5764 | assert_eq!(<KL03Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
5765 | |
5766 | // ... with `packed`: |
5767 | #[allow (dead_code)] |
5768 | #[derive (KnownLayout)] |
5769 | #[repr (packed)] |
5770 | struct KL03Packed(NotKnownLayout<AU32>, u8); |
5771 | |
5772 | let expected = DstLayout::for_type::<KL03Packed>(); |
5773 | |
5774 | assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, expected); |
5775 | assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, sized_layout(1, 5)); |
5776 | |
5777 | // ... with `packed(N)` |
5778 | #[allow (dead_code)] |
5779 | #[derive (KnownLayout)] |
5780 | #[repr (packed(2))] |
5781 | struct KL03PackedN(NotKnownLayout<AU32>, u8); |
5782 | |
5783 | assert_impl_all!(KL03PackedN: KnownLayout); |
5784 | |
5785 | let expected = DstLayout::for_type::<KL03PackedN>(); |
5786 | |
5787 | assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, expected); |
5788 | assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
5789 | |
5790 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5791 | // | N | Y | N | Y | KL05 | |
5792 | #[allow (dead_code)] |
5793 | #[derive (KnownLayout)] |
5794 | struct KL05<T>(u8, T); |
5795 | |
5796 | fn _test_kl05<T>(t: T) -> impl KnownLayout { |
5797 | KL05(0u8, t) |
5798 | } |
5799 | |
5800 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5801 | // | N | Y | Y | Y | KL07 | |
5802 | #[allow (dead_code)] |
5803 | #[derive (KnownLayout)] |
5804 | struct KL07<T: KnownLayout>(u8, T); |
5805 | |
5806 | fn _test_kl07<T: KnownLayout>(t: T) -> impl KnownLayout { |
5807 | let _ = KL07(0u8, t); |
5808 | } |
5809 | |
5810 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5811 | // | Y | N | Y | N | KL10 | |
5812 | #[allow (dead_code)] |
5813 | #[derive (KnownLayout)] |
5814 | #[repr (C)] |
5815 | struct KL10(NotKnownLayout<AU32>, [u8]); |
5816 | |
5817 | let expected = DstLayout::new_zst(None) |
5818 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
5819 | .extend(<[u8] as KnownLayout>::LAYOUT, None) |
5820 | .pad_to_align(); |
5821 | |
5822 | assert_eq!(<KL10 as KnownLayout>::LAYOUT, expected); |
5823 | assert_eq!(<KL10 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 4)); |
5824 | |
5825 | // ...with `align(N)`: |
5826 | #[allow (dead_code)] |
5827 | #[derive (KnownLayout)] |
5828 | #[repr (C, align(64))] |
5829 | struct KL10Align(NotKnownLayout<AU32>, [u8]); |
5830 | |
5831 | let repr_align = NonZeroUsize::new(64); |
5832 | |
5833 | let expected = DstLayout::new_zst(repr_align) |
5834 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
5835 | .extend(<[u8] as KnownLayout>::LAYOUT, None) |
5836 | .pad_to_align(); |
5837 | |
5838 | assert_eq!(<KL10Align as KnownLayout>::LAYOUT, expected); |
5839 | assert_eq!(<KL10Align as KnownLayout>::LAYOUT, unsized_layout(64, 1, 4)); |
5840 | |
5841 | // ...with `packed`: |
5842 | #[allow (dead_code)] |
5843 | #[derive (KnownLayout)] |
5844 | #[repr (C, packed)] |
5845 | struct KL10Packed(NotKnownLayout<AU32>, [u8]); |
5846 | |
5847 | let repr_packed = NonZeroUsize::new(1); |
5848 | |
5849 | let expected = DstLayout::new_zst(None) |
5850 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
5851 | .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
5852 | .pad_to_align(); |
5853 | |
5854 | assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, expected); |
5855 | assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, unsized_layout(1, 1, 4)); |
5856 | |
5857 | // ...with `packed(N)`: |
5858 | #[allow (dead_code)] |
5859 | #[derive (KnownLayout)] |
5860 | #[repr (C, packed(2))] |
5861 | struct KL10PackedN(NotKnownLayout<AU32>, [u8]); |
5862 | |
5863 | let repr_packed = NonZeroUsize::new(2); |
5864 | |
5865 | let expected = DstLayout::new_zst(None) |
5866 | .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
5867 | .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
5868 | .pad_to_align(); |
5869 | |
5870 | assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, expected); |
5871 | assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
5872 | |
5873 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5874 | // | Y | N | Y | Y | KL11 | |
5875 | #[allow (dead_code)] |
5876 | #[derive (KnownLayout)] |
5877 | #[repr (C)] |
5878 | struct KL11(NotKnownLayout<AU64>, u8); |
5879 | |
5880 | let expected = DstLayout::new_zst(None) |
5881 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
5882 | .extend(<u8 as KnownLayout>::LAYOUT, None) |
5883 | .pad_to_align(); |
5884 | |
5885 | assert_eq!(<KL11 as KnownLayout>::LAYOUT, expected); |
5886 | assert_eq!(<KL11 as KnownLayout>::LAYOUT, sized_layout(8, 16)); |
5887 | |
5888 | // ...with `align(N)`: |
5889 | #[allow (dead_code)] |
5890 | #[derive (KnownLayout)] |
5891 | #[repr (C, align(64))] |
5892 | struct KL11Align(NotKnownLayout<AU64>, u8); |
5893 | |
5894 | let repr_align = NonZeroUsize::new(64); |
5895 | |
5896 | let expected = DstLayout::new_zst(repr_align) |
5897 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
5898 | .extend(<u8 as KnownLayout>::LAYOUT, None) |
5899 | .pad_to_align(); |
5900 | |
5901 | assert_eq!(<KL11Align as KnownLayout>::LAYOUT, expected); |
5902 | assert_eq!(<KL11Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
5903 | |
5904 | // ...with `packed`: |
5905 | #[allow (dead_code)] |
5906 | #[derive (KnownLayout)] |
5907 | #[repr (C, packed)] |
5908 | struct KL11Packed(NotKnownLayout<AU64>, u8); |
5909 | |
5910 | let repr_packed = NonZeroUsize::new(1); |
5911 | |
5912 | let expected = DstLayout::new_zst(None) |
5913 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
5914 | .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
5915 | .pad_to_align(); |
5916 | |
5917 | assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, expected); |
5918 | assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, sized_layout(1, 9)); |
5919 | |
5920 | // ...with `packed(N)`: |
5921 | #[allow (dead_code)] |
5922 | #[derive (KnownLayout)] |
5923 | #[repr (C, packed(2))] |
5924 | struct KL11PackedN(NotKnownLayout<AU64>, u8); |
5925 | |
5926 | let repr_packed = NonZeroUsize::new(2); |
5927 | |
5928 | let expected = DstLayout::new_zst(None) |
5929 | .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
5930 | .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
5931 | .pad_to_align(); |
5932 | |
5933 | assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, expected); |
5934 | assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, sized_layout(2, 10)); |
5935 | |
5936 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5937 | // | Y | Y | Y | N | KL14 | |
5938 | #[allow (dead_code)] |
5939 | #[derive (KnownLayout)] |
5940 | #[repr (C)] |
5941 | struct KL14<T: ?Sized + KnownLayout>(u8, T); |
5942 | |
5943 | fn _test_kl14<T: ?Sized + KnownLayout>(kl: &KL14<T>) { |
5944 | _assert_kl(kl) |
5945 | } |
5946 | |
5947 | // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
5948 | // | Y | Y | Y | Y | KL15 | |
5949 | #[allow (dead_code)] |
5950 | #[derive (KnownLayout)] |
5951 | #[repr (C)] |
5952 | struct KL15<T: KnownLayout>(u8, T); |
5953 | |
5954 | fn _test_kl15<T: KnownLayout>(t: T) -> impl KnownLayout { |
5955 | let _ = KL15(0u8, t); |
5956 | } |
5957 | |
5958 | // Test a variety of combinations of field types: |
5959 | // - () |
5960 | // - u8 |
5961 | // - AU16 |
5962 | // - [()] |
5963 | // - [u8] |
5964 | // - [AU16] |
5965 | |
5966 | #[allow (clippy::upper_case_acronyms, dead_code)] |
5967 | #[derive (KnownLayout)] |
5968 | #[repr (C)] |
5969 | struct KLTU<T, U: ?Sized>(T, U); |
5970 | |
5971 | assert_eq!(<KLTU<(), ()> as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
5972 | |
5973 | assert_eq!(<KLTU<(), u8> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
5974 | |
5975 | assert_eq!(<KLTU<(), AU16> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
5976 | |
5977 | assert_eq!(<KLTU<(), [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 0)); |
5978 | |
5979 | assert_eq!(<KLTU<(), [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
5980 | |
5981 | assert_eq!(<KLTU<(), [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 0)); |
5982 | |
5983 | assert_eq!(<KLTU<u8, ()> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
5984 | |
5985 | assert_eq!(<KLTU<u8, u8> as KnownLayout>::LAYOUT, sized_layout(1, 2)); |
5986 | |
5987 | assert_eq!(<KLTU<u8, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
5988 | |
5989 | assert_eq!(<KLTU<u8, [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 1)); |
5990 | |
5991 | assert_eq!(<KLTU<u8, [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
5992 | |
5993 | assert_eq!(<KLTU<u8, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
5994 | |
5995 | assert_eq!(<KLTU<AU16, ()> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
5996 | |
5997 | assert_eq!(<KLTU<AU16, u8> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
5998 | |
5999 | assert_eq!(<KLTU<AU16, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
6000 | |
6001 | assert_eq!(<KLTU<AU16, [()]> as KnownLayout>::LAYOUT, unsized_layout(2, 0, 2)); |
6002 | |
6003 | assert_eq!(<KLTU<AU16, [u8]> as KnownLayout>::LAYOUT, unsized_layout(2, 1, 2)); |
6004 | |
6005 | assert_eq!(<KLTU<AU16, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
6006 | |
6007 | // Test a variety of field counts. |
6008 | |
6009 | #[derive (KnownLayout)] |
6010 | #[repr (C)] |
6011 | struct KLF0; |
6012 | |
6013 | assert_eq!(<KLF0 as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
6014 | |
6015 | #[derive (KnownLayout)] |
6016 | #[repr (C)] |
6017 | struct KLF1([u8]); |
6018 | |
6019 | assert_eq!(<KLF1 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
6020 | |
6021 | #[derive (KnownLayout)] |
6022 | #[repr (C)] |
6023 | struct KLF2(NotKnownLayout<u8>, [u8]); |
6024 | |
6025 | assert_eq!(<KLF2 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
6026 | |
6027 | #[derive (KnownLayout)] |
6028 | #[repr (C)] |
6029 | struct KLF3(NotKnownLayout<u8>, NotKnownLayout<AU16>, [u8]); |
6030 | |
6031 | assert_eq!(<KLF3 as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
6032 | |
6033 | #[derive (KnownLayout)] |
6034 | #[repr (C)] |
6035 | struct KLF4(NotKnownLayout<u8>, NotKnownLayout<AU16>, NotKnownLayout<AU32>, [u8]); |
6036 | |
6037 | assert_eq!(<KLF4 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 8)); |
6038 | } |
6039 | |
6040 | #[test ] |
6041 | fn test_object_safety() { |
6042 | fn _takes_no_cell(_: &dyn Immutable) {} |
6043 | fn _takes_unaligned(_: &dyn Unaligned) {} |
6044 | } |
6045 | |
6046 | #[test ] |
6047 | fn test_from_zeros_only() { |
6048 | // Test types that implement `FromZeros` but not `FromBytes`. |
6049 | |
6050 | assert!(!bool::new_zeroed()); |
6051 | assert_eq!(char::new_zeroed(), ' \0' ); |
6052 | |
6053 | #[cfg (feature = "alloc" )] |
6054 | { |
6055 | assert_eq!(bool::new_box_zeroed(), Ok(Box::new(false))); |
6056 | assert_eq!(char::new_box_zeroed(), Ok(Box::new(' \0' ))); |
6057 | |
6058 | assert_eq!( |
6059 | <[bool]>::new_box_zeroed_with_elems(3).unwrap().as_ref(), |
6060 | [false, false, false] |
6061 | ); |
6062 | assert_eq!( |
6063 | <[char]>::new_box_zeroed_with_elems(3).unwrap().as_ref(), |
6064 | [' \0' , ' \0' , ' \0' ] |
6065 | ); |
6066 | |
6067 | assert_eq!(bool::new_vec_zeroed(3).unwrap().as_ref(), [false, false, false]); |
6068 | assert_eq!(char::new_vec_zeroed(3).unwrap().as_ref(), [' \0' , ' \0' , ' \0' ]); |
6069 | } |
6070 | |
6071 | let mut string = "hello" .to_string(); |
6072 | let s: &mut str = string.as_mut(); |
6073 | assert_eq!(s, "hello" ); |
6074 | s.zero(); |
6075 | assert_eq!(s, " \0\0\0\0\0" ); |
6076 | } |
6077 | |
6078 | #[test ] |
6079 | fn test_zst_count_preserved() { |
6080 | // Test that, when an explicit count is provided to for a type with a |
6081 | // ZST trailing slice element, that count is preserved. This is |
6082 | // important since, for such types, all element counts result in objects |
6083 | // of the same size, and so the correct behavior is ambiguous. However, |
6084 | // preserving the count as requested by the user is the behavior that we |
6085 | // document publicly. |
6086 | |
6087 | // FromZeros methods |
6088 | #[cfg (feature = "alloc" )] |
6089 | assert_eq!(<[()]>::new_box_zeroed_with_elems(3).unwrap().len(), 3); |
6090 | #[cfg (feature = "alloc" )] |
6091 | assert_eq!(<()>::new_vec_zeroed(3).unwrap().len(), 3); |
6092 | |
6093 | // FromBytes methods |
6094 | assert_eq!(<[()]>::ref_from_bytes_with_elems(&[][..], 3).unwrap().len(), 3); |
6095 | assert_eq!(<[()]>::ref_from_prefix_with_elems(&[][..], 3).unwrap().0.len(), 3); |
6096 | assert_eq!(<[()]>::ref_from_suffix_with_elems(&[][..], 3).unwrap().1.len(), 3); |
6097 | assert_eq!(<[()]>::mut_from_bytes_with_elems(&mut [][..], 3).unwrap().len(), 3); |
6098 | assert_eq!(<[()]>::mut_from_prefix_with_elems(&mut [][..], 3).unwrap().0.len(), 3); |
6099 | assert_eq!(<[()]>::mut_from_suffix_with_elems(&mut [][..], 3).unwrap().1.len(), 3); |
6100 | } |
6101 | |
6102 | #[test ] |
6103 | fn test_read_write() { |
6104 | const VAL: u64 = 0x12345678; |
6105 | #[cfg (target_endian = "big" )] |
6106 | const VAL_BYTES: [u8; 8] = VAL.to_be_bytes(); |
6107 | #[cfg (target_endian = "little" )] |
6108 | const VAL_BYTES: [u8; 8] = VAL.to_le_bytes(); |
6109 | const ZEROS: [u8; 8] = [0u8; 8]; |
6110 | |
6111 | // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`. |
6112 | |
6113 | assert_eq!(u64::read_from_bytes(&VAL_BYTES[..]), Ok(VAL)); |
6114 | // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all |
6115 | // zeros. |
6116 | let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
6117 | assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Ok((VAL, &ZEROS[..]))); |
6118 | assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Ok((&VAL_BYTES[..], 0))); |
6119 | // The first 8 bytes are all zeros and the second 8 bytes are from |
6120 | // `VAL_BYTES` |
6121 | let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
6122 | assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Ok((0, &VAL_BYTES[..]))); |
6123 | assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Ok((&ZEROS[..], VAL))); |
6124 | |
6125 | // Test `IntoBytes::{write_to, write_to_prefix, write_to_suffix}`. |
6126 | |
6127 | let mut bytes = [0u8; 8]; |
6128 | assert_eq!(VAL.write_to(&mut bytes[..]), Ok(())); |
6129 | assert_eq!(bytes, VAL_BYTES); |
6130 | let mut bytes = [0u8; 16]; |
6131 | assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Ok(())); |
6132 | let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
6133 | assert_eq!(bytes, want); |
6134 | let mut bytes = [0u8; 16]; |
6135 | assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Ok(())); |
6136 | let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
6137 | assert_eq!(bytes, want); |
6138 | } |
6139 | |
6140 | #[test ] |
6141 | #[cfg (feature = "std" )] |
6142 | fn test_read_io_with_padding_soundness() { |
6143 | // This test is designed to exhibit potential UB in |
6144 | // `FromBytes::read_from_io`. (see #2319, #2320). |
6145 | |
6146 | // On most platforms (where `align_of::<u16>() == 2`), `WithPadding` |
6147 | // will have inter-field padding between `x` and `y`. |
6148 | #[derive (FromBytes)] |
6149 | #[repr (C)] |
6150 | struct WithPadding { |
6151 | x: u8, |
6152 | y: u16, |
6153 | } |
6154 | struct ReadsInRead; |
6155 | impl std::io::Read for ReadsInRead { |
6156 | fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> { |
6157 | // This body branches on every byte of `buf`, ensuring that it |
6158 | // exhibits UB if any byte of `buf` is uninitialized. |
6159 | if buf.iter().all(|&x| x == 0) { |
6160 | Ok(buf.len()) |
6161 | } else { |
6162 | buf.iter_mut().for_each(|x| *x = 0); |
6163 | Ok(buf.len()) |
6164 | } |
6165 | } |
6166 | } |
6167 | assert!(matches!(WithPadding::read_from_io(ReadsInRead), Ok(WithPadding { x: 0, y: 0 }))); |
6168 | } |
6169 | |
6170 | #[test ] |
6171 | #[cfg (feature = "std" )] |
6172 | fn test_read_write_io() { |
6173 | let mut long_buffer = [0, 0, 0, 0]; |
6174 | assert!(matches!(u16::MAX.write_to_io(&mut long_buffer[..]), Ok(()))); |
6175 | assert_eq!(long_buffer, [255, 255, 0, 0]); |
6176 | assert!(matches!(u16::read_from_io(&long_buffer[..]), Ok(u16::MAX))); |
6177 | |
6178 | let mut short_buffer = [0, 0]; |
6179 | assert!(u32::MAX.write_to_io(&mut short_buffer[..]).is_err()); |
6180 | assert_eq!(short_buffer, [255, 255]); |
6181 | assert!(u32::read_from_io(&short_buffer[..]).is_err()); |
6182 | } |
6183 | |
6184 | #[test ] |
6185 | fn test_try_from_bytes_try_read_from() { |
6186 | assert_eq!(<bool as TryFromBytes>::try_read_from_bytes(&[0]), Ok(false)); |
6187 | assert_eq!(<bool as TryFromBytes>::try_read_from_bytes(&[1]), Ok(true)); |
6188 | |
6189 | assert_eq!(<bool as TryFromBytes>::try_read_from_prefix(&[0, 2]), Ok((false, &[2][..]))); |
6190 | assert_eq!(<bool as TryFromBytes>::try_read_from_prefix(&[1, 2]), Ok((true, &[2][..]))); |
6191 | |
6192 | assert_eq!(<bool as TryFromBytes>::try_read_from_suffix(&[2, 0]), Ok((&[2][..], false))); |
6193 | assert_eq!(<bool as TryFromBytes>::try_read_from_suffix(&[2, 1]), Ok((&[2][..], true))); |
6194 | |
6195 | // If we don't pass enough bytes, it fails. |
6196 | assert!(matches!( |
6197 | <u8 as TryFromBytes>::try_read_from_bytes(&[]), |
6198 | Err(TryReadError::Size(_)) |
6199 | )); |
6200 | assert!(matches!( |
6201 | <u8 as TryFromBytes>::try_read_from_prefix(&[]), |
6202 | Err(TryReadError::Size(_)) |
6203 | )); |
6204 | assert!(matches!( |
6205 | <u8 as TryFromBytes>::try_read_from_suffix(&[]), |
6206 | Err(TryReadError::Size(_)) |
6207 | )); |
6208 | |
6209 | // If we pass too many bytes, it fails. |
6210 | assert!(matches!( |
6211 | <u8 as TryFromBytes>::try_read_from_bytes(&[0, 0]), |
6212 | Err(TryReadError::Size(_)) |
6213 | )); |
6214 | |
6215 | // If we pass an invalid value, it fails. |
6216 | assert!(matches!( |
6217 | <bool as TryFromBytes>::try_read_from_bytes(&[2]), |
6218 | Err(TryReadError::Validity(_)) |
6219 | )); |
6220 | assert!(matches!( |
6221 | <bool as TryFromBytes>::try_read_from_prefix(&[2, 0]), |
6222 | Err(TryReadError::Validity(_)) |
6223 | )); |
6224 | assert!(matches!( |
6225 | <bool as TryFromBytes>::try_read_from_suffix(&[0, 2]), |
6226 | Err(TryReadError::Validity(_)) |
6227 | )); |
6228 | |
6229 | // Reading from a misaligned buffer should still succeed. Since `AU64`'s |
6230 | // alignment is 8, and since we read from two adjacent addresses one |
6231 | // byte apart, it is guaranteed that at least one of them (though |
6232 | // possibly both) will be misaligned. |
6233 | let bytes: [u8; 9] = [0, 0, 0, 0, 0, 0, 0, 0, 0]; |
6234 | assert_eq!(<AU64 as TryFromBytes>::try_read_from_bytes(&bytes[..8]), Ok(AU64(0))); |
6235 | assert_eq!(<AU64 as TryFromBytes>::try_read_from_bytes(&bytes[1..9]), Ok(AU64(0))); |
6236 | |
6237 | assert_eq!( |
6238 | <AU64 as TryFromBytes>::try_read_from_prefix(&bytes[..8]), |
6239 | Ok((AU64(0), &[][..])) |
6240 | ); |
6241 | assert_eq!( |
6242 | <AU64 as TryFromBytes>::try_read_from_prefix(&bytes[1..9]), |
6243 | Ok((AU64(0), &[][..])) |
6244 | ); |
6245 | |
6246 | assert_eq!( |
6247 | <AU64 as TryFromBytes>::try_read_from_suffix(&bytes[..8]), |
6248 | Ok((&[][..], AU64(0))) |
6249 | ); |
6250 | assert_eq!( |
6251 | <AU64 as TryFromBytes>::try_read_from_suffix(&bytes[1..9]), |
6252 | Ok((&[][..], AU64(0))) |
6253 | ); |
6254 | } |
6255 | |
6256 | #[test ] |
6257 | fn test_ref_from_mut_from() { |
6258 | // Test `FromBytes::{ref_from, mut_from}{,_prefix,Suffix}` success cases |
6259 | // Exhaustive coverage for these methods is covered by the `Ref` tests above, |
6260 | // which these helper methods defer to. |
6261 | |
6262 | let mut buf = |
6263 | Align::<[u8; 16], AU64>::new([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
6264 | |
6265 | assert_eq!( |
6266 | AU64::ref_from_bytes(&buf.t[8..]).unwrap().0.to_ne_bytes(), |
6267 | [8, 9, 10, 11, 12, 13, 14, 15] |
6268 | ); |
6269 | let suffix = AU64::mut_from_bytes(&mut buf.t[8..]).unwrap(); |
6270 | suffix.0 = 0x0101010101010101; |
6271 | // The `[u8:9]` is a non-half size of the full buffer, which would catch |
6272 | // `from_prefix` having the same implementation as `from_suffix` (issues #506, #511). |
6273 | assert_eq!( |
6274 | <[u8; 9]>::ref_from_suffix(&buf.t[..]).unwrap(), |
6275 | (&[0, 1, 2, 3, 4, 5, 6][..], &[7u8, 1, 1, 1, 1, 1, 1, 1, 1]) |
6276 | ); |
6277 | let (prefix, suffix) = AU64::mut_from_suffix(&mut buf.t[1..]).unwrap(); |
6278 | assert_eq!(prefix, &mut [1u8, 2, 3, 4, 5, 6, 7][..]); |
6279 | suffix.0 = 0x0202020202020202; |
6280 | let (prefix, suffix) = <[u8; 10]>::mut_from_suffix(&mut buf.t[..]).unwrap(); |
6281 | assert_eq!(prefix, &mut [0u8, 1, 2, 3, 4, 5][..]); |
6282 | suffix[0] = 42; |
6283 | assert_eq!( |
6284 | <[u8; 9]>::ref_from_prefix(&buf.t[..]).unwrap(), |
6285 | (&[0u8, 1, 2, 3, 4, 5, 42, 7, 2], &[2u8, 2, 2, 2, 2, 2, 2][..]) |
6286 | ); |
6287 | <[u8; 2]>::mut_from_prefix(&mut buf.t[..]).unwrap().0[1] = 30; |
6288 | assert_eq!(buf.t, [0, 30, 2, 3, 4, 5, 42, 7, 2, 2, 2, 2, 2, 2, 2, 2]); |
6289 | } |
6290 | |
6291 | #[test ] |
6292 | fn test_ref_from_mut_from_error() { |
6293 | // Test `FromBytes::{ref_from, mut_from}{,_prefix,Suffix}` error cases. |
6294 | |
6295 | // Fail because the buffer is too large. |
6296 | let mut buf = Align::<[u8; 16], AU64>::default(); |
6297 | // `buf.t` should be aligned to 8, so only the length check should fail. |
6298 | assert!(AU64::ref_from_bytes(&buf.t[..]).is_err()); |
6299 | assert!(AU64::mut_from_bytes(&mut buf.t[..]).is_err()); |
6300 | assert!(<[u8; 8]>::ref_from_bytes(&buf.t[..]).is_err()); |
6301 | assert!(<[u8; 8]>::mut_from_bytes(&mut buf.t[..]).is_err()); |
6302 | |
6303 | // Fail because the buffer is too small. |
6304 | let mut buf = Align::<[u8; 4], AU64>::default(); |
6305 | assert!(AU64::ref_from_bytes(&buf.t[..]).is_err()); |
6306 | assert!(AU64::mut_from_bytes(&mut buf.t[..]).is_err()); |
6307 | assert!(<[u8; 8]>::ref_from_bytes(&buf.t[..]).is_err()); |
6308 | assert!(<[u8; 8]>::mut_from_bytes(&mut buf.t[..]).is_err()); |
6309 | assert!(AU64::ref_from_prefix(&buf.t[..]).is_err()); |
6310 | assert!(AU64::mut_from_prefix(&mut buf.t[..]).is_err()); |
6311 | assert!(AU64::ref_from_suffix(&buf.t[..]).is_err()); |
6312 | assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_err()); |
6313 | assert!(<[u8; 8]>::ref_from_prefix(&buf.t[..]).is_err()); |
6314 | assert!(<[u8; 8]>::mut_from_prefix(&mut buf.t[..]).is_err()); |
6315 | assert!(<[u8; 8]>::ref_from_suffix(&buf.t[..]).is_err()); |
6316 | assert!(<[u8; 8]>::mut_from_suffix(&mut buf.t[..]).is_err()); |
6317 | |
6318 | // Fail because the alignment is insufficient. |
6319 | let mut buf = Align::<[u8; 13], AU64>::default(); |
6320 | assert!(AU64::ref_from_bytes(&buf.t[1..]).is_err()); |
6321 | assert!(AU64::mut_from_bytes(&mut buf.t[1..]).is_err()); |
6322 | assert!(AU64::ref_from_bytes(&buf.t[1..]).is_err()); |
6323 | assert!(AU64::mut_from_bytes(&mut buf.t[1..]).is_err()); |
6324 | assert!(AU64::ref_from_prefix(&buf.t[1..]).is_err()); |
6325 | assert!(AU64::mut_from_prefix(&mut buf.t[1..]).is_err()); |
6326 | assert!(AU64::ref_from_suffix(&buf.t[..]).is_err()); |
6327 | assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_err()); |
6328 | } |
6329 | |
6330 | #[test ] |
6331 | fn test_to_methods() { |
6332 | /// Run a series of tests by calling `IntoBytes` methods on `t`. |
6333 | /// |
6334 | /// `bytes` is the expected byte sequence returned from `t.as_bytes()` |
6335 | /// before `t` has been modified. `post_mutation` is the expected |
6336 | /// sequence returned from `t.as_bytes()` after `t.as_mut_bytes()[0]` |
6337 | /// has had its bits flipped (by applying `^= 0xFF`). |
6338 | /// |
6339 | /// `N` is the size of `t` in bytes. |
6340 | fn test<T: FromBytes + IntoBytes + Immutable + Debug + Eq + ?Sized, const N: usize>( |
6341 | t: &mut T, |
6342 | bytes: &[u8], |
6343 | post_mutation: &T, |
6344 | ) { |
6345 | // Test that we can access the underlying bytes, and that we get the |
6346 | // right bytes and the right number of bytes. |
6347 | assert_eq!(t.as_bytes(), bytes); |
6348 | |
6349 | // Test that changes to the underlying byte slices are reflected in |
6350 | // the original object. |
6351 | t.as_mut_bytes()[0] ^= 0xFF; |
6352 | assert_eq!(t, post_mutation); |
6353 | t.as_mut_bytes()[0] ^= 0xFF; |
6354 | |
6355 | // `write_to` rejects slices that are too small or too large. |
6356 | assert!(t.write_to(&mut vec![0; N - 1][..]).is_err()); |
6357 | assert!(t.write_to(&mut vec![0; N + 1][..]).is_err()); |
6358 | |
6359 | // `write_to` works as expected. |
6360 | let mut bytes = [0; N]; |
6361 | assert_eq!(t.write_to(&mut bytes[..]), Ok(())); |
6362 | assert_eq!(bytes, t.as_bytes()); |
6363 | |
6364 | // `write_to_prefix` rejects slices that are too small. |
6365 | assert!(t.write_to_prefix(&mut vec![0; N - 1][..]).is_err()); |
6366 | |
6367 | // `write_to_prefix` works with exact-sized slices. |
6368 | let mut bytes = [0; N]; |
6369 | assert_eq!(t.write_to_prefix(&mut bytes[..]), Ok(())); |
6370 | assert_eq!(bytes, t.as_bytes()); |
6371 | |
6372 | // `write_to_prefix` works with too-large slices, and any bytes past |
6373 | // the prefix aren't modified. |
6374 | let mut too_many_bytes = vec![0; N + 1]; |
6375 | too_many_bytes[N] = 123; |
6376 | assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Ok(())); |
6377 | assert_eq!(&too_many_bytes[..N], t.as_bytes()); |
6378 | assert_eq!(too_many_bytes[N], 123); |
6379 | |
6380 | // `write_to_suffix` rejects slices that are too small. |
6381 | assert!(t.write_to_suffix(&mut vec![0; N - 1][..]).is_err()); |
6382 | |
6383 | // `write_to_suffix` works with exact-sized slices. |
6384 | let mut bytes = [0; N]; |
6385 | assert_eq!(t.write_to_suffix(&mut bytes[..]), Ok(())); |
6386 | assert_eq!(bytes, t.as_bytes()); |
6387 | |
6388 | // `write_to_suffix` works with too-large slices, and any bytes |
6389 | // before the suffix aren't modified. |
6390 | let mut too_many_bytes = vec![0; N + 1]; |
6391 | too_many_bytes[0] = 123; |
6392 | assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Ok(())); |
6393 | assert_eq!(&too_many_bytes[1..], t.as_bytes()); |
6394 | assert_eq!(too_many_bytes[0], 123); |
6395 | } |
6396 | |
6397 | #[derive (Debug, Eq, PartialEq, FromBytes, IntoBytes, Immutable)] |
6398 | #[repr (C)] |
6399 | struct Foo { |
6400 | a: u32, |
6401 | b: Wrapping<u32>, |
6402 | c: Option<NonZeroU32>, |
6403 | } |
6404 | |
6405 | let expected_bytes: Vec<u8> = if cfg!(target_endian = "little" ) { |
6406 | vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] |
6407 | } else { |
6408 | vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0] |
6409 | }; |
6410 | let post_mutation_expected_a = |
6411 | if cfg!(target_endian = "little" ) { 0x00_00_00_FE } else { 0xFF_00_00_01 }; |
6412 | test ::<_, 12>( |
6413 | &mut Foo { a: 1, b: Wrapping(2), c: None }, |
6414 | expected_bytes.as_bytes(), |
6415 | &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None }, |
6416 | ); |
6417 | test ::<_, 3>( |
6418 | Unsized::from_mut_slice(&mut [1, 2, 3]), |
6419 | &[1, 2, 3], |
6420 | Unsized::from_mut_slice(&mut [0xFE, 2, 3]), |
6421 | ); |
6422 | } |
6423 | |
6424 | #[test ] |
6425 | fn test_array() { |
6426 | #[derive (FromBytes, IntoBytes, Immutable)] |
6427 | #[repr (C)] |
6428 | struct Foo { |
6429 | a: [u16; 33], |
6430 | } |
6431 | |
6432 | let foo = Foo { a: [0xFFFF; 33] }; |
6433 | let expected = [0xFFu8; 66]; |
6434 | assert_eq!(foo.as_bytes(), &expected[..]); |
6435 | } |
6436 | |
6437 | #[test ] |
6438 | fn test_new_zeroed() { |
6439 | assert!(!bool::new_zeroed()); |
6440 | assert_eq!(u64::new_zeroed(), 0); |
6441 | // This test exists in order to exercise unsafe code, especially when |
6442 | // running under Miri. |
6443 | #[allow (clippy::unit_cmp)] |
6444 | { |
6445 | assert_eq!(<()>::new_zeroed(), ()); |
6446 | } |
6447 | } |
6448 | |
6449 | #[test ] |
6450 | fn test_transparent_packed_generic_struct() { |
6451 | #[derive (IntoBytes, FromBytes, Unaligned)] |
6452 | #[repr (transparent)] |
6453 | #[allow (dead_code)] // We never construct this type |
6454 | struct Foo<T> { |
6455 | _t: T, |
6456 | _phantom: PhantomData<()>, |
6457 | } |
6458 | |
6459 | assert_impl_all!(Foo<u32>: FromZeros, FromBytes, IntoBytes); |
6460 | assert_impl_all!(Foo<u8>: Unaligned); |
6461 | |
6462 | #[derive (IntoBytes, FromBytes, Unaligned)] |
6463 | #[repr (C, packed)] |
6464 | #[allow (dead_code)] // We never construct this type |
6465 | struct Bar<T, U> { |
6466 | _t: T, |
6467 | _u: U, |
6468 | } |
6469 | |
6470 | assert_impl_all!(Bar<u8, AU64>: FromZeros, FromBytes, IntoBytes, Unaligned); |
6471 | } |
6472 | |
6473 | #[cfg (feature = "alloc" )] |
6474 | mod alloc { |
6475 | use super::*; |
6476 | |
6477 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6478 | #[test ] |
6479 | fn test_extend_vec_zeroed() { |
6480 | // Test extending when there is an existing allocation. |
6481 | let mut v = vec![100u16, 200, 300]; |
6482 | FromZeros::extend_vec_zeroed(&mut v, 3).unwrap(); |
6483 | assert_eq!(v.len(), 6); |
6484 | assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]); |
6485 | drop(v); |
6486 | |
6487 | // Test extending when there is no existing allocation. |
6488 | let mut v: Vec<u64> = Vec::new(); |
6489 | FromZeros::extend_vec_zeroed(&mut v, 3).unwrap(); |
6490 | assert_eq!(v.len(), 3); |
6491 | assert_eq!(&*v, &[0, 0, 0]); |
6492 | drop(v); |
6493 | } |
6494 | |
6495 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6496 | #[test ] |
6497 | fn test_extend_vec_zeroed_zst() { |
6498 | // Test extending when there is an existing (fake) allocation. |
6499 | let mut v = vec![(), (), ()]; |
6500 | <()>::extend_vec_zeroed(&mut v, 3).unwrap(); |
6501 | assert_eq!(v.len(), 6); |
6502 | assert_eq!(&*v, &[(), (), (), (), (), ()]); |
6503 | drop(v); |
6504 | |
6505 | // Test extending when there is no existing (fake) allocation. |
6506 | let mut v: Vec<()> = Vec::new(); |
6507 | <()>::extend_vec_zeroed(&mut v, 3).unwrap(); |
6508 | assert_eq!(&*v, &[(), (), ()]); |
6509 | drop(v); |
6510 | } |
6511 | |
6512 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6513 | #[test ] |
6514 | fn test_insert_vec_zeroed() { |
6515 | // Insert at start (no existing allocation). |
6516 | let mut v: Vec<u64> = Vec::new(); |
6517 | u64::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6518 | assert_eq!(v.len(), 2); |
6519 | assert_eq!(&*v, &[0, 0]); |
6520 | drop(v); |
6521 | |
6522 | // Insert at start. |
6523 | let mut v = vec![100u64, 200, 300]; |
6524 | u64::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6525 | assert_eq!(v.len(), 5); |
6526 | assert_eq!(&*v, &[0, 0, 100, 200, 300]); |
6527 | drop(v); |
6528 | |
6529 | // Insert at middle. |
6530 | let mut v = vec![100u64, 200, 300]; |
6531 | u64::insert_vec_zeroed(&mut v, 1, 1).unwrap(); |
6532 | assert_eq!(v.len(), 4); |
6533 | assert_eq!(&*v, &[100, 0, 200, 300]); |
6534 | drop(v); |
6535 | |
6536 | // Insert at end. |
6537 | let mut v = vec![100u64, 200, 300]; |
6538 | u64::insert_vec_zeroed(&mut v, 3, 1).unwrap(); |
6539 | assert_eq!(v.len(), 4); |
6540 | assert_eq!(&*v, &[100, 200, 300, 0]); |
6541 | drop(v); |
6542 | } |
6543 | |
6544 | #[cfg (zerocopy_panic_in_const_and_vec_try_reserve_1_57_0)] |
6545 | #[test ] |
6546 | fn test_insert_vec_zeroed_zst() { |
6547 | // Insert at start (no existing fake allocation). |
6548 | let mut v: Vec<()> = Vec::new(); |
6549 | <()>::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6550 | assert_eq!(v.len(), 2); |
6551 | assert_eq!(&*v, &[(), ()]); |
6552 | drop(v); |
6553 | |
6554 | // Insert at start. |
6555 | let mut v = vec![(), (), ()]; |
6556 | <()>::insert_vec_zeroed(&mut v, 0, 2).unwrap(); |
6557 | assert_eq!(v.len(), 5); |
6558 | assert_eq!(&*v, &[(), (), (), (), ()]); |
6559 | drop(v); |
6560 | |
6561 | // Insert at middle. |
6562 | let mut v = vec![(), (), ()]; |
6563 | <()>::insert_vec_zeroed(&mut v, 1, 1).unwrap(); |
6564 | assert_eq!(v.len(), 4); |
6565 | assert_eq!(&*v, &[(), (), (), ()]); |
6566 | drop(v); |
6567 | |
6568 | // Insert at end. |
6569 | let mut v = vec![(), (), ()]; |
6570 | <()>::insert_vec_zeroed(&mut v, 3, 1).unwrap(); |
6571 | assert_eq!(v.len(), 4); |
6572 | assert_eq!(&*v, &[(), (), (), ()]); |
6573 | drop(v); |
6574 | } |
6575 | |
6576 | #[test ] |
6577 | fn test_new_box_zeroed() { |
6578 | assert_eq!(u64::new_box_zeroed(), Ok(Box::new(0))); |
6579 | } |
6580 | |
6581 | #[test ] |
6582 | fn test_new_box_zeroed_array() { |
6583 | drop(<[u32; 0x1000]>::new_box_zeroed()); |
6584 | } |
6585 | |
6586 | #[test ] |
6587 | fn test_new_box_zeroed_zst() { |
6588 | // This test exists in order to exercise unsafe code, especially |
6589 | // when running under Miri. |
6590 | #[allow (clippy::unit_cmp)] |
6591 | { |
6592 | assert_eq!(<()>::new_box_zeroed(), Ok(Box::new(()))); |
6593 | } |
6594 | } |
6595 | |
6596 | #[test ] |
6597 | fn test_new_box_zeroed_with_elems() { |
6598 | let mut s: Box<[u64]> = <[u64]>::new_box_zeroed_with_elems(3).unwrap(); |
6599 | assert_eq!(s.len(), 3); |
6600 | assert_eq!(&*s, &[0, 0, 0]); |
6601 | s[1] = 3; |
6602 | assert_eq!(&*s, &[0, 3, 0]); |
6603 | } |
6604 | |
6605 | #[test ] |
6606 | fn test_new_box_zeroed_with_elems_empty() { |
6607 | let s: Box<[u64]> = <[u64]>::new_box_zeroed_with_elems(0).unwrap(); |
6608 | assert_eq!(s.len(), 0); |
6609 | } |
6610 | |
6611 | #[test ] |
6612 | fn test_new_box_zeroed_with_elems_zst() { |
6613 | let mut s: Box<[()]> = <[()]>::new_box_zeroed_with_elems(3).unwrap(); |
6614 | assert_eq!(s.len(), 3); |
6615 | assert!(s.get(10).is_none()); |
6616 | // This test exists in order to exercise unsafe code, especially |
6617 | // when running under Miri. |
6618 | #[allow (clippy::unit_cmp)] |
6619 | { |
6620 | assert_eq!(s[1], ()); |
6621 | } |
6622 | s[2] = (); |
6623 | } |
6624 | |
6625 | #[test ] |
6626 | fn test_new_box_zeroed_with_elems_zst_empty() { |
6627 | let s: Box<[()]> = <[()]>::new_box_zeroed_with_elems(0).unwrap(); |
6628 | assert_eq!(s.len(), 0); |
6629 | } |
6630 | |
6631 | #[test ] |
6632 | fn new_box_zeroed_with_elems_errors() { |
6633 | assert_eq!(<[u16]>::new_box_zeroed_with_elems(usize::MAX), Err(AllocError)); |
6634 | |
6635 | let max = <usize as core::convert::TryFrom<_>>::try_from(isize::MAX).unwrap(); |
6636 | assert_eq!( |
6637 | <[u16]>::new_box_zeroed_with_elems((max / mem::size_of::<u16>()) + 1), |
6638 | Err(AllocError) |
6639 | ); |
6640 | } |
6641 | } |
6642 | } |
6643 | |