| 1 | // Copyright 2023 The Fuchsia Authors |
| 2 | // |
| 3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
| 4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| 5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| 6 | // This file may not be copied, modified, or distributed except according to |
| 7 | // those terms. |
| 8 | |
| 9 | use core::{ |
| 10 | fmt::{Debug, Formatter}, |
| 11 | marker::PhantomData, |
| 12 | ptr::NonNull, |
| 13 | }; |
| 14 | |
| 15 | use crate::{ |
| 16 | pointer::{ |
| 17 | inner::PtrInner, |
| 18 | invariant::*, |
| 19 | transmute::{MutationCompatible, SizeEq, TransmuteFromPtr}, |
| 20 | }, |
| 21 | AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError, |
| 22 | }; |
| 23 | |
| 24 | /// Module used to gate access to [`Ptr`]'s fields. |
| 25 | mod def { |
| 26 | use super::*; |
| 27 | |
| 28 | #[cfg (doc)] |
| 29 | use super::super::invariant; |
| 30 | |
| 31 | /// A raw pointer with more restrictions. |
| 32 | /// |
| 33 | /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the |
| 34 | /// following ways (note that these requirements only hold of non-zero-sized |
| 35 | /// referents): |
| 36 | /// - It must derive from a valid allocation. |
| 37 | /// - It must reference a byte range which is contained inside the |
| 38 | /// allocation from which it derives. |
| 39 | /// - As a consequence, the byte range it references must have a size |
| 40 | /// which does not overflow `isize`. |
| 41 | /// |
| 42 | /// Depending on how `Ptr` is parameterized, it may have additional |
| 43 | /// invariants: |
| 44 | /// - `ptr` conforms to the aliasing invariant of |
| 45 | /// [`I::Aliasing`](invariant::Aliasing). |
| 46 | /// - `ptr` conforms to the alignment invariant of |
| 47 | /// [`I::Alignment`](invariant::Alignment). |
| 48 | /// - `ptr` conforms to the validity invariant of |
| 49 | /// [`I::Validity`](invariant::Validity). |
| 50 | /// |
| 51 | /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`. |
| 52 | /// |
| 53 | /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html |
| 54 | pub struct Ptr<'a, T, I> |
| 55 | where |
| 56 | T: ?Sized, |
| 57 | I: Invariants, |
| 58 | { |
| 59 | /// # Invariants |
| 60 | /// |
| 61 | /// 0. `ptr` conforms to the aliasing invariant of |
| 62 | /// [`I::Aliasing`](invariant::Aliasing). |
| 63 | /// 1. `ptr` conforms to the alignment invariant of |
| 64 | /// [`I::Alignment`](invariant::Alignment). |
| 65 | /// 2. `ptr` conforms to the validity invariant of |
| 66 | /// [`I::Validity`](invariant::Validity). |
| 67 | // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`. |
| 68 | ptr: PtrInner<'a, T>, |
| 69 | _invariants: PhantomData<I>, |
| 70 | } |
| 71 | |
| 72 | impl<'a, T, I> Ptr<'a, T, I> |
| 73 | where |
| 74 | T: 'a + ?Sized, |
| 75 | I: Invariants, |
| 76 | { |
| 77 | /// Constructs a `Ptr` from a [`NonNull`]. |
| 78 | /// |
| 79 | /// # Safety |
| 80 | /// |
| 81 | /// The caller promises that: |
| 82 | /// |
| 83 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` has valid |
| 84 | /// provenance for its referent, which is entirely contained in some |
| 85 | /// Rust allocation, `A`. |
| 86 | /// 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live |
| 87 | /// for at least `'a`. |
| 88 | /// 2. `ptr` conforms to the aliasing invariant of |
| 89 | /// [`I::Aliasing`](invariant::Aliasing). |
| 90 | /// 3. `ptr` conforms to the alignment invariant of |
| 91 | /// [`I::Alignment`](invariant::Alignment). |
| 92 | /// 4. `ptr` conforms to the validity invariant of |
| 93 | /// [`I::Validity`](invariant::Validity). |
| 94 | pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> { |
| 95 | // SAFETY: The caller has promised (in 0 - 1) to satisfy all safety |
| 96 | // invariants of `PtrInner::new`. |
| 97 | let ptr = unsafe { PtrInner::new(ptr) }; |
| 98 | // SAFETY: The caller has promised (in 2 - 4) to satisfy all safety |
| 99 | // invariants of `Ptr`. |
| 100 | Self { ptr, _invariants: PhantomData } |
| 101 | } |
| 102 | |
| 103 | /// Constructs a new `Ptr` from a [`PtrInner`]. |
| 104 | /// |
| 105 | /// # Safety |
| 106 | /// |
| 107 | /// The caller promises that: |
| 108 | /// |
| 109 | /// 0. `ptr` conforms to the aliasing invariant of |
| 110 | /// [`I::Aliasing`](invariant::Aliasing). |
| 111 | /// 1. `ptr` conforms to the alignment invariant of |
| 112 | /// [`I::Alignment`](invariant::Alignment). |
| 113 | /// 2. `ptr` conforms to the validity invariant of |
| 114 | /// [`I::Validity`](invariant::Validity). |
| 115 | pub(super) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> { |
| 116 | // SAFETY: The caller has promised to satisfy all safety invariants |
| 117 | // of `Ptr`. |
| 118 | Self { ptr, _invariants: PhantomData } |
| 119 | } |
| 120 | |
| 121 | /// Converts this `Ptr<T>` to a [`PtrInner<T>`]. |
| 122 | /// |
| 123 | /// Note that this method does not consume `self`. The caller should |
| 124 | /// watch out for `unsafe` code which uses the returned value in a way |
| 125 | /// that violates the safety invariants of `self`. |
| 126 | pub(crate) fn as_inner(&self) -> PtrInner<'a, T> { |
| 127 | self.ptr |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | #[allow (unreachable_pub)] // This is a false positive on our MSRV toolchain. |
| 133 | pub use def::Ptr; |
| 134 | |
| 135 | /// External trait implementations on [`Ptr`]. |
| 136 | mod _external { |
| 137 | use super::*; |
| 138 | |
| 139 | /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants |
| 140 | /// (besides aliasing) are unaffected by the number of references that exist |
| 141 | /// to `Ptr`'s referent. The notable cases are: |
| 142 | /// - Alignment is a property of the referent type (`T`) and the address, |
| 143 | /// both of which are unchanged |
| 144 | /// - Let `S(T, V)` be the set of bit values permitted to appear in the |
| 145 | /// referent of a `Ptr<T, I: Invariants<Validity = V>>`. Since this copy |
| 146 | /// does not change `I::Validity` or `T`, `S(T, I::Validity)` is also |
| 147 | /// unchanged. |
| 148 | /// |
| 149 | /// We are required to guarantee that the referents of the original `Ptr` |
| 150 | /// and of the copy (which, of course, are actually the same since they |
| 151 | /// live in the same byte address range) both remain in the set `S(T, |
| 152 | /// I::Validity)`. Since this invariant holds on the original `Ptr`, it |
| 153 | /// cannot be violated by the original `Ptr`, and thus the original `Ptr` |
| 154 | /// cannot be used to violate this invariant on the copy. The inverse |
| 155 | /// holds as well. |
| 156 | impl<'a, T, I> Copy for Ptr<'a, T, I> |
| 157 | where |
| 158 | T: 'a + ?Sized, |
| 159 | I: Invariants<Aliasing = Shared>, |
| 160 | { |
| 161 | } |
| 162 | |
| 163 | /// SAFETY: See the safety comment on `Copy`. |
| 164 | impl<'a, T, I> Clone for Ptr<'a, T, I> |
| 165 | where |
| 166 | T: 'a + ?Sized, |
| 167 | I: Invariants<Aliasing = Shared>, |
| 168 | { |
| 169 | #[inline ] |
| 170 | fn clone(&self) -> Self { |
| 171 | *self |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | impl<'a, T, I> Debug for Ptr<'a, T, I> |
| 176 | where |
| 177 | T: 'a + ?Sized, |
| 178 | I: Invariants, |
| 179 | { |
| 180 | #[inline ] |
| 181 | fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { |
| 182 | self.as_inner().as_non_null().fmt(f) |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | /// Methods for converting to and from `Ptr` and Rust's safe reference types. |
| 188 | mod _conversions { |
| 189 | use super::*; |
| 190 | |
| 191 | /// `&'a T` → `Ptr<'a, T>` |
| 192 | impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)> |
| 193 | where |
| 194 | T: 'a + ?Sized, |
| 195 | { |
| 196 | /// Constructs a `Ptr` from a shared reference. |
| 197 | #[doc (hidden)] |
| 198 | #[inline ] |
| 199 | pub fn from_ref(ptr: &'a T) -> Self { |
| 200 | let inner = PtrInner::from_ref(ptr); |
| 201 | // SAFETY: |
| 202 | // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing |
| 203 | // invariant of `Shared`. |
| 204 | // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment |
| 205 | // invariant of `Aligned`. |
| 206 | // 2. `ptr`'s referent, by invariant on `&'a T`, is a bit-valid `T`. |
| 207 | // This satisfies the requirement that a `Ptr<T, (_, _, Valid)>` |
| 208 | // point to a bit-valid `T`. Even if `T` permits interior |
| 209 | // mutation, this invariant guarantees that the returned `Ptr` |
| 210 | // can only ever be used to modify the referent to store |
| 211 | // bit-valid `T`s, which ensures that the returned `Ptr` cannot |
| 212 | // be used to violate the soundness of the original `ptr: &'a T` |
| 213 | // or of any other references that may exist to the same |
| 214 | // referent. |
| 215 | unsafe { Self::from_inner(inner) } |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /// `&'a mut T` → `Ptr<'a, T>` |
| 220 | impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)> |
| 221 | where |
| 222 | T: 'a + ?Sized, |
| 223 | { |
| 224 | /// Constructs a `Ptr` from an exclusive reference. |
| 225 | #[inline ] |
| 226 | pub(crate) fn from_mut(ptr: &'a mut T) -> Self { |
| 227 | let inner = PtrInner::from_mut(ptr); |
| 228 | // SAFETY: |
| 229 | // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing |
| 230 | // invariant of `Exclusive`. |
| 231 | // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment |
| 232 | // invariant of `Aligned`. |
| 233 | // 2. `ptr`'s referent, by invariant on `&'a mut T`, is a bit-valid |
| 234 | // `T`. This satisfies the requirement that a `Ptr<T, (_, _, |
| 235 | // Valid)>` point to a bit-valid `T`. This invariant guarantees |
| 236 | // that the returned `Ptr` can only ever be used to modify the |
| 237 | // referent to store bit-valid `T`s, which ensures that the |
| 238 | // returned `Ptr` cannot be used to violate the soundness of the |
| 239 | // original `ptr: &'a mut T`. |
| 240 | unsafe { Self::from_inner(inner) } |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | /// `Ptr<'a, T>` → `&'a T` |
| 245 | impl<'a, T, I> Ptr<'a, T, I> |
| 246 | where |
| 247 | T: 'a + ?Sized, |
| 248 | I: Invariants<Alignment = Aligned, Validity = Valid>, |
| 249 | I::Aliasing: Reference, |
| 250 | { |
| 251 | /// Converts `self` to a shared reference. |
| 252 | // This consumes `self`, not `&self`, because `self` is, logically, a |
| 253 | // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so |
| 254 | // this doesn't prevent the caller from still using the pointer after |
| 255 | // calling `as_ref`. |
| 256 | #[allow (clippy::wrong_self_convention)] |
| 257 | pub(crate) fn as_ref(self) -> &'a T { |
| 258 | let raw = self.as_inner().as_non_null(); |
| 259 | // SAFETY: This invocation of `NonNull::as_ref` satisfies its |
| 260 | // documented safety preconditions: |
| 261 | // |
| 262 | // 1. The pointer is properly aligned. This is ensured by-contract |
| 263 | // on `Ptr`, because the `I::Alignment` is `Aligned`. |
| 264 | // |
| 265 | // 2. If the pointer's referent is not zero-sized, then the pointer |
| 266 | // must be “dereferenceable” in the sense defined in the module |
| 267 | // documentation; i.e.: |
| 268 | // |
| 269 | // > The memory range of the given size starting at the pointer |
| 270 | // > must all be within the bounds of a single allocated object. |
| 271 | // > [2] |
| 272 | // |
| 273 | // This is ensured by contract on all `PtrInner`s. |
| 274 | // |
| 275 | // 3. The pointer must point to a validly-initialized instance of |
| 276 | // `T`. This is ensured by-contract on `Ptr`, because the |
| 277 | // `I::Validity` is `Valid`. |
| 278 | // |
| 279 | // 4. You must enforce Rust’s aliasing rules. This is ensured by |
| 280 | // contract on `Ptr`, because `I::Aliasing: Reference`. Either it |
| 281 | // is `Shared` or `Exclusive`. If it is `Shared`, other |
| 282 | // references may not mutate the referent outside of |
| 283 | // `UnsafeCell`s. |
| 284 | // |
| 285 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref |
| 286 | // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety |
| 287 | unsafe { raw.as_ref() } |
| 288 | } |
| 289 | } |
| 290 | |
| 291 | impl<'a, T, I> Ptr<'a, T, I> |
| 292 | where |
| 293 | T: 'a + ?Sized, |
| 294 | I: Invariants, |
| 295 | I::Aliasing: Reference, |
| 296 | { |
| 297 | /// Reborrows `self`, producing another `Ptr`. |
| 298 | /// |
| 299 | /// Since `self` is borrowed immutably, this prevents any mutable |
| 300 | /// methods from being called on `self` as long as the returned `Ptr` |
| 301 | /// exists. |
| 302 | #[doc (hidden)] |
| 303 | #[inline ] |
| 304 | #[allow (clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below. |
| 305 | pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I> |
| 306 | where |
| 307 | 'a: 'b, |
| 308 | { |
| 309 | // SAFETY: The following all hold by invariant on `self`, and thus |
| 310 | // hold of `ptr = self.as_inner()`: |
| 311 | // 0. SEE BELOW. |
| 312 | // 1. `ptr` conforms to the alignment invariant of |
| 313 | // [`I::Alignment`](invariant::Alignment). |
| 314 | // 2. `ptr` conforms to the validity invariant of |
| 315 | // [`I::Validity`](invariant::Validity). `self` and the returned |
| 316 | // `Ptr` permit the same bit values in their referents since they |
| 317 | // have the same referent type (`T`) and the same validity |
| 318 | // (`I::Validity`). Thus, regardless of what mutation is |
| 319 | // permitted (`Exclusive` aliasing or `Shared`-aliased interior |
| 320 | // mutation), neither can be used to write a value to the |
| 321 | // referent which violates the other's validity invariant. |
| 322 | // |
| 323 | // For aliasing (0 above), since `I::Aliasing: Reference`, |
| 324 | // there are two cases for `I::Aliasing`: |
| 325 | // - For `invariant::Shared`: `'a` outlives `'b`, and so the |
| 326 | // returned `Ptr` does not permit accessing the referent any |
| 327 | // longer than is possible via `self`. For shared aliasing, it is |
| 328 | // sound for multiple `Ptr`s to exist simultaneously which |
| 329 | // reference the same memory, so creating a new one is not |
| 330 | // problematic. |
| 331 | // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we |
| 332 | // return a `Ptr` with lifetime `'b`, `self` is inaccessible to |
| 333 | // the caller for the lifetime `'b` - in other words, `self` is |
| 334 | // inaccessible to the caller as long as the returned `Ptr` |
| 335 | // exists. Since `self` is an exclusive `Ptr`, no other live |
| 336 | // references or `Ptr`s may exist which refer to the same memory |
| 337 | // while `self` is live. Thus, as long as the returned `Ptr` |
| 338 | // exists, no other references or `Ptr`s which refer to the same |
| 339 | // memory may be live. |
| 340 | unsafe { Ptr::from_inner(self.as_inner()) } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | /// `Ptr<'a, T>` → `&'a mut T` |
| 345 | impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)> |
| 346 | where |
| 347 | T: 'a + ?Sized, |
| 348 | { |
| 349 | /// Converts `self` to a mutable reference. |
| 350 | #[allow (clippy::wrong_self_convention)] |
| 351 | pub(crate) fn as_mut(self) -> &'a mut T { |
| 352 | let mut raw = self.as_inner().as_non_null(); |
| 353 | // SAFETY: This invocation of `NonNull::as_mut` satisfies its |
| 354 | // documented safety preconditions: |
| 355 | // |
| 356 | // 1. The pointer is properly aligned. This is ensured by-contract |
| 357 | // on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`. |
| 358 | // |
| 359 | // 2. If the pointer's referent is not zero-sized, then the pointer |
| 360 | // must be “dereferenceable” in the sense defined in the module |
| 361 | // documentation; i.e.: |
| 362 | // |
| 363 | // > The memory range of the given size starting at the pointer |
| 364 | // > must all be within the bounds of a single allocated object. |
| 365 | // > [2] |
| 366 | // |
| 367 | // This is ensured by contract on all `PtrInner`s. |
| 368 | // |
| 369 | // 3. The pointer must point to a validly-initialized instance of |
| 370 | // `T`. This is ensured by-contract on `Ptr`, because the |
| 371 | // validity invariant is `Valid`. |
| 372 | // |
| 373 | // 4. You must enforce Rust’s aliasing rules. This is ensured by |
| 374 | // contract on `Ptr`, because the `ALIASING_INVARIANT` is |
| 375 | // `Exclusive`. |
| 376 | // |
| 377 | // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut |
| 378 | // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety |
| 379 | unsafe { raw.as_mut() } |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | /// `Ptr<'a, T>` → `Ptr<'a, U>` |
| 384 | impl<'a, T: ?Sized, I> Ptr<'a, T, I> |
| 385 | where |
| 386 | I: Invariants, |
| 387 | { |
| 388 | pub(crate) fn transmute<U, V, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)> |
| 389 | where |
| 390 | V: Validity, |
| 391 | U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R> + SizeEq<T> + ?Sized, |
| 392 | { |
| 393 | // SAFETY: |
| 394 | // - This cast preserves address and provenance |
| 395 | // - `U: SizeEq<T>` guarantees that this cast preserves the number |
| 396 | // of bytes in the referent |
| 397 | // - If aliasing is `Shared`, then by `U: TransmuteFromPtr<T>`, at |
| 398 | // least one of the following holds: |
| 399 | // - `T: Immutable` and `U: Immutable`, in which case it is |
| 400 | // trivially sound for shared code to operate on a `&T` and `&U` |
| 401 | // at the same time, as neither can perform interior mutation |
| 402 | // - It is directly guaranteed that it is sound for shared code to |
| 403 | // operate on these references simultaneously |
| 404 | // - By `U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is |
| 405 | // sound to perform this transmute. |
| 406 | unsafe { self.transmute_unchecked(|t: NonNull<T>| U::cast_from_raw(t)) } |
| 407 | } |
| 408 | |
| 409 | #[doc (hidden)] |
| 410 | #[inline (always)] |
| 411 | #[must_use ] |
| 412 | pub fn recall_validity<V, R>(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> |
| 413 | where |
| 414 | V: Validity, |
| 415 | T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R>, |
| 416 | { |
| 417 | // SAFETY: |
| 418 | // - This cast is a no-op, and so trivially preserves address, |
| 419 | // referent size, and provenance |
| 420 | // - It is trivially sound to have multiple `&T` referencing the same |
| 421 | // referent simultaneously |
| 422 | // - By `T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is |
| 423 | // sound to perform this transmute. |
| 424 | let ptr = unsafe { self.transmute_unchecked(|t| t) }; |
| 425 | // SAFETY: `self` and `ptr` have the same address and referent type. |
| 426 | // Therefore, if `self` satisfies `I::Alignment`, then so does |
| 427 | // `ptr`. |
| 428 | unsafe { ptr.assume_alignment::<I::Alignment>() } |
| 429 | } |
| 430 | |
| 431 | /// Casts to a different (unsized) target type without checking interior |
| 432 | /// mutability. |
| 433 | /// |
| 434 | /// Callers should prefer [`cast_unsized`] where possible. |
| 435 | /// |
| 436 | /// [`cast_unsized`]: Ptr::cast_unsized |
| 437 | /// |
| 438 | /// # Safety |
| 439 | /// |
| 440 | /// The caller promises that `u = cast(p)` is a pointer cast with the |
| 441 | /// following properties: |
| 442 | /// - `u` addresses a subset of the bytes addressed by `p` |
| 443 | /// - `u` has the same provenance as `p` |
| 444 | /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe |
| 445 | /// code, operating on a `&T` and `&U` with the same referent |
| 446 | /// simultaneously, to cause undefined behavior |
| 447 | /// - It is sound to transmute a pointer of type `T` with aliasing |
| 448 | /// `I::Aliasing` and validity `I::Validity` to a pointer of type `U` |
| 449 | /// with aliasing `I::Aliasing` and validity `V`. This is a subtle |
| 450 | /// soundness requirement that is a function of `T`, `U`, |
| 451 | /// `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the |
| 452 | /// presence, absence, or specific location of `UnsafeCell`s in `T` |
| 453 | /// and/or `U`. See [`Validity`] for more details. |
| 454 | /// |
| 455 | /// `transmute_unchecked` guarantees that the pointer passed to `cast` |
| 456 | /// will reference a byte sequence which is either contained inside a |
| 457 | /// single allocated object or is zero sized. In either case, this means |
| 458 | /// that its size will fit in an `isize` and it will not wrap around the |
| 459 | /// address space. |
| 460 | #[doc (hidden)] |
| 461 | #[inline ] |
| 462 | pub unsafe fn transmute_unchecked<U: ?Sized, V, F>( |
| 463 | self, |
| 464 | cast: F, |
| 465 | ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)> |
| 466 | where |
| 467 | V: Validity, |
| 468 | F: FnOnce(NonNull<T>) -> NonNull<U>, |
| 469 | { |
| 470 | // SAFETY: By invariant on `self`, `self.as_inner().as_non_null()` |
| 471 | // either references a zero-sized byte range, or else it references |
| 472 | // a byte range contained inside of a single allocated objection. |
| 473 | let ptr = cast(self.as_inner().as_non_null()); |
| 474 | |
| 475 | // SAFETY: |
| 476 | // |
| 477 | // Lemma 1: `ptr` has the same provenance as `self`. The caller |
| 478 | // promises that `cast` preserves provenance, and we call it with |
| 479 | // `self.as_inner().as_non_null()`. |
| 480 | // |
| 481 | // 0. By invariant, if `self`'s referent is not zero sized, then |
| 482 | // `self` has valid provenance for its entire referent, which is |
| 483 | // entirely contained in `A`. By Lemma 1, so does `ptr`. |
| 484 | // 1. By invariant on `self`, if `self`'s referent is not zero |
| 485 | // sized, then `A` is guaranteed to live for at least `'a`. |
| 486 | // 2. `ptr` conforms to the aliasing invariant of `I::Aliasing`: |
| 487 | // - `Exclusive`: `self` is the only `Ptr` or reference which is |
| 488 | // permitted to read or modify the referent for the lifetime |
| 489 | // `'a`. Since we consume `self` by value, the returned pointer |
| 490 | // remains the only `Ptr` or reference which is permitted to |
| 491 | // read or modify the referent for the lifetime `'a`. |
| 492 | // - `Shared`: Since `self` has aliasing `Shared`, we know that |
| 493 | // no other code may mutate the referent during the lifetime |
| 494 | // `'a`, except via `UnsafeCell`s, and except as permitted by |
| 495 | // `T`'s library safety invariants. The caller promises that |
| 496 | // any safe operations which can be permitted on a `&T` and a |
| 497 | // `&U` simultaneously must be sound. Thus, no operations on a |
| 498 | // `&U` could violate `&T`'s library safety invariants, and |
| 499 | // vice-versa. Since any mutation via shared references outside |
| 500 | // of `UnsafeCell`s is unsound, this must be impossible using |
| 501 | // `&T` and `&U`. |
| 502 | // - `Inaccessible`: There are no restrictions we need to uphold. |
| 503 | // 3. `ptr` trivially satisfies the alignment invariant `Unaligned`. |
| 504 | // 4. The caller promises that `ptr` conforms to the validity |
| 505 | // invariant `V` with respect to its referent type, `U`. |
| 506 | unsafe { Ptr::new(ptr) } |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>` |
| 511 | impl<'a, T, I> Ptr<'a, T, I> |
| 512 | where |
| 513 | I: Invariants, |
| 514 | { |
| 515 | /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned |
| 516 | /// `Unalign<T>`. |
| 517 | pub(crate) fn into_unalign( |
| 518 | self, |
| 519 | ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> { |
| 520 | // SAFETY: |
| 521 | // - This cast preserves provenance. |
| 522 | // - This cast preserves address. `Unalign<T>` promises to have the |
| 523 | // same size as `T`, and so the cast returns a pointer addressing |
| 524 | // the same byte range as `p`. |
| 525 | // - By the same argument, the returned pointer refers to |
| 526 | // `UnsafeCell`s at the same locations as `p`. |
| 527 | // - `Unalign<T>` promises to have the same bit validity as `T`. By |
| 528 | // invariant on `Validity`, the set of bit patterns allowed in the |
| 529 | // referent of a `Ptr<X, (_, _, V)>` is only a function of the |
| 530 | // validity of `X` and of `V`. Thus, the set of bit patterns |
| 531 | // allowed in the referent of a `Ptr<T, (_, _, I::Validity)>` is |
| 532 | // the same as the set of bit patterns allowed in the referent of |
| 533 | // a `Ptr<Unalign<T>, (_, _, I::Validity)>`. As a result, `self` |
| 534 | // and the returned `Ptr` permit the same set of bit patterns in |
| 535 | // their referents, and so neither can be used to violate the |
| 536 | // validity of the other. |
| 537 | let ptr = unsafe { |
| 538 | #[allow (clippy::as_conversions)] |
| 539 | self.transmute_unchecked(NonNull::cast::<crate::Unalign<T>>) |
| 540 | }; |
| 541 | ptr.bikeshed_recall_aligned() |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | impl<'a, T, I> Ptr<'a, T, I> |
| 546 | where |
| 547 | T: ?Sized, |
| 548 | I: Invariants<Validity = Valid>, |
| 549 | I::Aliasing: Reference, |
| 550 | { |
| 551 | /// Reads the referent. |
| 552 | #[must_use ] |
| 553 | #[inline ] |
| 554 | pub fn read_unaligned<R>(self) -> T |
| 555 | where |
| 556 | T: Copy, |
| 557 | T: Read<I::Aliasing, R>, |
| 558 | { |
| 559 | (*self.into_unalign().as_ref()).into_inner() |
| 560 | } |
| 561 | |
| 562 | /// Views the value as an aligned reference. |
| 563 | /// |
| 564 | /// This is only available if `T` is [`Unaligned`]. |
| 565 | #[must_use ] |
| 566 | #[inline ] |
| 567 | pub fn unaligned_as_ref(self) -> &'a T |
| 568 | where |
| 569 | T: crate::Unaligned, |
| 570 | { |
| 571 | self.bikeshed_recall_aligned().as_ref() |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | /// State transitions between invariants. |
| 577 | mod _transitions { |
| 578 | use crate::pointer::transmute::TryTransmuteFromPtr; |
| 579 | |
| 580 | use super::*; |
| 581 | |
| 582 | impl<'a, T, I> Ptr<'a, T, I> |
| 583 | where |
| 584 | T: 'a + ?Sized, |
| 585 | I: Invariants, |
| 586 | { |
| 587 | /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has |
| 588 | /// `Exclusive` aliasing, or generates a compile-time assertion failure. |
| 589 | /// |
| 590 | /// This allows code which is generic over aliasing to down-cast to a |
| 591 | /// concrete aliasing. |
| 592 | /// |
| 593 | /// [`Exclusive`]: crate::pointer::invariant::Exclusive |
| 594 | #[inline ] |
| 595 | pub(crate) fn into_exclusive_or_pme( |
| 596 | self, |
| 597 | ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> { |
| 598 | // NOTE(https://github.com/rust-lang/rust/issues/131625): We do this |
| 599 | // rather than just having `Aliasing::IS_EXCLUSIVE` have the panic |
| 600 | // behavior because doing it that way causes rustdoc to fail while |
| 601 | // attempting to document hidden items (since it evaluates the |
| 602 | // constant - and thus panics). |
| 603 | trait AliasingExt: Aliasing { |
| 604 | const IS_EXCL: bool; |
| 605 | } |
| 606 | |
| 607 | impl<A: Aliasing> AliasingExt for A { |
| 608 | const IS_EXCL: bool = { |
| 609 | const_assert!(Self::IS_EXCLUSIVE); |
| 610 | true |
| 611 | }; |
| 612 | } |
| 613 | |
| 614 | assert!(I::Aliasing::IS_EXCL); |
| 615 | |
| 616 | // SAFETY: We've confirmed that `self` already has the aliasing |
| 617 | // `Exclusive`. If it didn't, either the preceding assert would fail |
| 618 | // or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty* |
| 619 | // sure that it's guaranteed to fail const eval, but the `assert!` |
| 620 | // provides a backstop in case that doesn't work. |
| 621 | unsafe { self.assume_exclusive() } |
| 622 | } |
| 623 | |
| 624 | /// Assumes that `self` satisfies the invariants `H`. |
| 625 | /// |
| 626 | /// # Safety |
| 627 | /// |
| 628 | /// The caller promises that `self` satisfies the invariants `H`. |
| 629 | unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> { |
| 630 | // SAFETY: The caller has promised to satisfy all parameterized |
| 631 | // invariants of `Ptr`. `Ptr`'s other invariants are satisfied |
| 632 | // by-contract by the source `Ptr`. |
| 633 | unsafe { Ptr::from_inner(self.as_inner()) } |
| 634 | } |
| 635 | |
| 636 | /// Helps the type system unify two distinct invariant types which are |
| 637 | /// actually the same. |
| 638 | pub(crate) fn unify_invariants< |
| 639 | H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>, |
| 640 | >( |
| 641 | self, |
| 642 | ) -> Ptr<'a, T, H> { |
| 643 | // SAFETY: The associated type bounds on `H` ensure that the |
| 644 | // invariants are unchanged. |
| 645 | unsafe { self.assume_invariants::<H>() } |
| 646 | } |
| 647 | |
| 648 | /// Assumes that `self` satisfies the aliasing requirement of `A`. |
| 649 | /// |
| 650 | /// # Safety |
| 651 | /// |
| 652 | /// The caller promises that `self` satisfies the aliasing requirement |
| 653 | /// of `A`. |
| 654 | #[inline ] |
| 655 | pub(crate) unsafe fn assume_aliasing<A: Aliasing>( |
| 656 | self, |
| 657 | ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> { |
| 658 | // SAFETY: The caller promises that `self` satisfies the aliasing |
| 659 | // requirements of `A`. |
| 660 | unsafe { self.assume_invariants() } |
| 661 | } |
| 662 | |
| 663 | /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`]. |
| 664 | /// |
| 665 | /// # Safety |
| 666 | /// |
| 667 | /// The caller promises that `self` satisfies the aliasing requirement |
| 668 | /// of `Exclusive`. |
| 669 | /// |
| 670 | /// [`Exclusive`]: crate::pointer::invariant::Exclusive |
| 671 | #[inline ] |
| 672 | pub(crate) unsafe fn assume_exclusive( |
| 673 | self, |
| 674 | ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> { |
| 675 | // SAFETY: The caller promises that `self` satisfies the aliasing |
| 676 | // requirements of `Exclusive`. |
| 677 | unsafe { self.assume_aliasing::<Exclusive>() } |
| 678 | } |
| 679 | |
| 680 | /// Assumes that `self`'s referent is validly-aligned for `T` if |
| 681 | /// required by `A`. |
| 682 | /// |
| 683 | /// # Safety |
| 684 | /// |
| 685 | /// The caller promises that `self`'s referent conforms to the alignment |
| 686 | /// invariant of `T` if required by `A`. |
| 687 | #[inline ] |
| 688 | pub(crate) unsafe fn assume_alignment<A: Alignment>( |
| 689 | self, |
| 690 | ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> { |
| 691 | // SAFETY: The caller promises that `self`'s referent is |
| 692 | // well-aligned for `T` if required by `A` . |
| 693 | unsafe { self.assume_invariants() } |
| 694 | } |
| 695 | |
| 696 | /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr` |
| 697 | /// on success. |
| 698 | pub(crate) fn bikeshed_try_into_aligned( |
| 699 | self, |
| 700 | ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>> |
| 701 | where |
| 702 | T: Sized, |
| 703 | { |
| 704 | if let Err(err) = |
| 705 | crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null()) |
| 706 | { |
| 707 | return Err(err.with_src(self)); |
| 708 | } |
| 709 | |
| 710 | // SAFETY: We just checked the alignment. |
| 711 | Ok(unsafe { self.assume_alignment::<Aligned>() }) |
| 712 | } |
| 713 | |
| 714 | /// Recalls that `self`'s referent is validly-aligned for `T`. |
| 715 | #[inline ] |
| 716 | // TODO(#859): Reconsider the name of this method before making it |
| 717 | // public. |
| 718 | pub(crate) fn bikeshed_recall_aligned( |
| 719 | self, |
| 720 | ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)> |
| 721 | where |
| 722 | T: crate::Unaligned, |
| 723 | { |
| 724 | // SAFETY: The bound `T: Unaligned` ensures that `T` has no |
| 725 | // non-trivial alignment requirement. |
| 726 | unsafe { self.assume_alignment::<Aligned>() } |
| 727 | } |
| 728 | |
| 729 | /// Assumes that `self`'s referent conforms to the validity requirement |
| 730 | /// of `V`. |
| 731 | /// |
| 732 | /// # Safety |
| 733 | /// |
| 734 | /// The caller promises that `self`'s referent conforms to the validity |
| 735 | /// requirement of `V`. |
| 736 | #[doc (hidden)] |
| 737 | #[must_use ] |
| 738 | #[inline ] |
| 739 | pub unsafe fn assume_validity<V: Validity>( |
| 740 | self, |
| 741 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> { |
| 742 | // SAFETY: The caller promises that `self`'s referent conforms to |
| 743 | // the validity requirement of `V`. |
| 744 | unsafe { self.assume_invariants() } |
| 745 | } |
| 746 | |
| 747 | /// A shorthand for `self.assume_validity<invariant::Initialized>()`. |
| 748 | /// |
| 749 | /// # Safety |
| 750 | /// |
| 751 | /// The caller promises to uphold the safety preconditions of |
| 752 | /// `self.assume_validity<invariant::Initialized>()`. |
| 753 | #[doc (hidden)] |
| 754 | #[must_use ] |
| 755 | #[inline ] |
| 756 | pub unsafe fn assume_initialized( |
| 757 | self, |
| 758 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> { |
| 759 | // SAFETY: The caller has promised to uphold the safety |
| 760 | // preconditions. |
| 761 | unsafe { self.assume_validity::<Initialized>() } |
| 762 | } |
| 763 | |
| 764 | /// A shorthand for `self.assume_validity<Valid>()`. |
| 765 | /// |
| 766 | /// # Safety |
| 767 | /// |
| 768 | /// The caller promises to uphold the safety preconditions of |
| 769 | /// `self.assume_validity<Valid>()`. |
| 770 | #[doc (hidden)] |
| 771 | #[must_use ] |
| 772 | #[inline ] |
| 773 | pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> { |
| 774 | // SAFETY: The caller has promised to uphold the safety |
| 775 | // preconditions. |
| 776 | unsafe { self.assume_validity::<Valid>() } |
| 777 | } |
| 778 | |
| 779 | /// Recalls that `self`'s referent is initialized. |
| 780 | #[doc (hidden)] |
| 781 | #[must_use ] |
| 782 | #[inline ] |
| 783 | // TODO(#859): Reconsider the name of this method before making it |
| 784 | // public. |
| 785 | pub fn bikeshed_recall_initialized_from_bytes( |
| 786 | self, |
| 787 | ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> |
| 788 | where |
| 789 | T: crate::IntoBytes + crate::FromBytes, |
| 790 | I: Invariants<Validity = Valid>, |
| 791 | { |
| 792 | // SAFETY: The `T: IntoBytes + FromBytes` bound ensures that `T`'s |
| 793 | // bit validity is equivalent to `[u8]`. In other words, the set of |
| 794 | // allowed referents for a `Ptr<T, (_, _, Valid)>` is the set of |
| 795 | // initialized bit patterns. The same is true of the set of allowed |
| 796 | // referents for any `Ptr<_, (_, _, Initialized)>`. Thus, this call |
| 797 | // does not change the set of allowed values in the referent. |
| 798 | unsafe { self.assume_initialized() } |
| 799 | } |
| 800 | |
| 801 | /// Recalls that `self`'s referent is initialized. |
| 802 | #[doc (hidden)] |
| 803 | #[must_use ] |
| 804 | #[inline ] |
| 805 | // TODO(#859): Reconsider the name of this method before making it |
| 806 | // public. |
| 807 | pub fn bikeshed_recall_initialized_immutable( |
| 808 | self, |
| 809 | ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)> |
| 810 | where |
| 811 | T: crate::IntoBytes + crate::Immutable, |
| 812 | I: Invariants<Aliasing = Shared, Validity = Valid>, |
| 813 | { |
| 814 | // SAFETY: Let `O` (for "old") be the set of allowed bit patterns in |
| 815 | // `self`'s referent, and let `N` (for "new") be the set of allowed |
| 816 | // bit patterns in the referent of the returned `Ptr`. `T: |
| 817 | // IntoBytes` and `I: Invariants<Validity = Valid>` ensures that `O` |
| 818 | // cannot contain any uninitialized bit patterns. Since the returned |
| 819 | // `Ptr` has validity `Initialized`, `N` is equal to the set of all |
| 820 | // initialized bit patterns. Thus, `O` is a subset of `N`, and so |
| 821 | // the returned `Ptr`'s validity invariant is upheld. |
| 822 | // |
| 823 | // Since `T: Immutable` and aliasing is `Shared`, the returned `Ptr` |
| 824 | // cannot be used to modify the referent. Before this call, `self`'s |
| 825 | // referent is guaranteed by invariant on `Ptr` to satisfy `self`'s |
| 826 | // validity invariant. Since the returned `Ptr` cannot be used to |
| 827 | // modify the referent, this guarantee cannot be violated by the |
| 828 | // returned `Ptr` (even if `O` is a strict subset of `N`). |
| 829 | unsafe { self.assume_initialized() } |
| 830 | } |
| 831 | |
| 832 | /// Checks that `self`'s referent is validly initialized for `T`, |
| 833 | /// returning a `Ptr` with `Valid` on success. |
| 834 | /// |
| 835 | /// # Panics |
| 836 | /// |
| 837 | /// This method will panic if |
| 838 | /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics. |
| 839 | /// |
| 840 | /// # Safety |
| 841 | /// |
| 842 | /// On error, unsafe code may rely on this method's returned |
| 843 | /// `ValidityError` containing `self`. |
| 844 | #[inline ] |
| 845 | pub(crate) fn try_into_valid<R, S>( |
| 846 | mut self, |
| 847 | ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>> |
| 848 | where |
| 849 | T: TryFromBytes |
| 850 | + Read<I::Aliasing, R> |
| 851 | + TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, S>, |
| 852 | I::Aliasing: Reference, |
| 853 | I: Invariants<Validity = Initialized>, |
| 854 | { |
| 855 | // This call may panic. If that happens, it doesn't cause any soundness |
| 856 | // issues, as we have not generated any invalid state which we need to |
| 857 | // fix before returning. |
| 858 | if T::is_bit_valid(self.reborrow().forget_aligned()) { |
| 859 | // SAFETY: If `T::is_bit_valid`, code may assume that `self` |
| 860 | // contains a bit-valid instance of `T`. By `T: |
| 861 | // TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid>`, so |
| 862 | // long as `self`'s referent conforms to the `Valid` validity |
| 863 | // for `T` (which we just confired), then this transmute is |
| 864 | // sound. |
| 865 | Ok(unsafe { self.assume_valid() }) |
| 866 | } else { |
| 867 | Err(ValidityError::new(self)) |
| 868 | } |
| 869 | } |
| 870 | |
| 871 | /// Forgets that `self`'s referent is validly-aligned for `T`. |
| 872 | #[doc (hidden)] |
| 873 | #[must_use ] |
| 874 | #[inline ] |
| 875 | pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> { |
| 876 | // SAFETY: `Unaligned` is less restrictive than `Aligned`. |
| 877 | unsafe { self.assume_invariants() } |
| 878 | } |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | /// Casts of the referent type. |
| 883 | mod _casts { |
| 884 | use super::*; |
| 885 | |
| 886 | impl<'a, T, I> Ptr<'a, T, I> |
| 887 | where |
| 888 | T: 'a + ?Sized, |
| 889 | I: Invariants, |
| 890 | { |
| 891 | /// Casts to a different (unsized) target type without checking interior |
| 892 | /// mutability. |
| 893 | /// |
| 894 | /// Callers should prefer [`cast_unsized`] where possible. |
| 895 | /// |
| 896 | /// [`cast_unsized`]: Ptr::cast_unsized |
| 897 | /// |
| 898 | /// # Safety |
| 899 | /// |
| 900 | /// The caller promises that `u = cast(p)` is a pointer cast with the |
| 901 | /// following properties: |
| 902 | /// - `u` addresses a subset of the bytes addressed by `p` |
| 903 | /// - `u` has the same provenance as `p` |
| 904 | /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe |
| 905 | /// code, operating on a `&T` and `&U` with the same referent |
| 906 | /// simultaneously, to cause undefined behavior |
| 907 | /// |
| 908 | /// `cast_unsized_unchecked` guarantees that the pointer passed to |
| 909 | /// `cast` will reference a byte sequence which is either contained |
| 910 | /// inside a single allocated object or is zero sized. In either case, |
| 911 | /// this means that its size will fit in an `isize` and it will not wrap |
| 912 | /// around the address space. |
| 913 | #[doc (hidden)] |
| 914 | #[inline ] |
| 915 | pub unsafe fn cast_unsized_unchecked<U, F: FnOnce(NonNull<T>) -> NonNull<U>>( |
| 916 | self, |
| 917 | cast: F, |
| 918 | ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)> |
| 919 | where |
| 920 | U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized, |
| 921 | { |
| 922 | // SAFETY: |
| 923 | // - The caller promises that `u = cast(p)` is a pointer which |
| 924 | // satisfies: |
| 925 | // - `u` addresses a subset of the bytes addressed by `p` |
| 926 | // - `u` has the same provenance as `p` |
| 927 | // - If `I::Aliasing` is [`Shared`], it must not be possible for |
| 928 | // safe code, operating on a `&T` and `&U` with the same |
| 929 | // referent simultaneously, to cause undefined behavior |
| 930 | // - By `U: CastableFrom<T, I::Validity, I::Validity>`, |
| 931 | // `I::Validity` is either `Uninit` or `Initialized`. In both |
| 932 | // cases, the bit validity `I::Validity` has the same semantics |
| 933 | // regardless of referent type. In other words, the set of allowed |
| 934 | // referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U, |
| 935 | // (_, _, I::Validity)>` are identical. As a consequence, neither |
| 936 | // `self` nor the returned `Ptr` can be used to write values which |
| 937 | // are invalid for the other. |
| 938 | // |
| 939 | // `transmute_unchecked` guarantees that it will only pass pointers |
| 940 | // to `cast` which either reference a zero-sized byte range or |
| 941 | // reference a byte range which is entirely contained inside of an |
| 942 | // allocated object. |
| 943 | unsafe { self.transmute_unchecked(cast) } |
| 944 | } |
| 945 | |
| 946 | /// Casts to a different (unsized) target type. |
| 947 | /// |
| 948 | /// # Safety |
| 949 | /// |
| 950 | /// The caller promises that `u = cast(p)` is a pointer cast with the |
| 951 | /// following properties: |
| 952 | /// - `u` addresses a subset of the bytes addressed by `p` |
| 953 | /// - `u` has the same provenance as `p` |
| 954 | #[doc (hidden)] |
| 955 | #[inline ] |
| 956 | pub unsafe fn cast_unsized<U, F, R>( |
| 957 | self, |
| 958 | cast: F, |
| 959 | ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)> |
| 960 | where |
| 961 | T: MutationCompatible<U, I::Aliasing, I::Validity, I::Validity, R>, |
| 962 | U: 'a + ?Sized + CastableFrom<T, I::Validity, I::Validity>, |
| 963 | F: FnOnce(NonNull<T>) -> NonNull<U>, |
| 964 | { |
| 965 | // SAFETY: Because `T: MutationCompatible<U, I::Aliasing, R>`, one |
| 966 | // of the following holds: |
| 967 | // - `T: Read<I::Aliasing>` and `U: Read<I::Aliasing>`, in which |
| 968 | // case one of the following holds: |
| 969 | // - `I::Aliasing` is `Exclusive` |
| 970 | // - `T` and `U` are both `Immutable` |
| 971 | // - It is sound for safe code to operate on `&T` and `&U` with the |
| 972 | // same referent simultaneously |
| 973 | // |
| 974 | // The caller promises all other safety preconditions. |
| 975 | unsafe { self.cast_unsized_unchecked(cast) } |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | impl<'a, T, I> Ptr<'a, T, I> |
| 980 | where |
| 981 | T: 'a + KnownLayout + ?Sized, |
| 982 | I: Invariants<Validity = Initialized>, |
| 983 | { |
| 984 | /// Casts this pointer-to-initialized into a pointer-to-bytes. |
| 985 | #[allow (clippy::wrong_self_convention)] |
| 986 | pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)> |
| 987 | where |
| 988 | T: Read<I::Aliasing, R>, |
| 989 | I::Aliasing: Reference, |
| 990 | { |
| 991 | let bytes = match T::size_of_val_raw(self.as_inner().as_non_null()) { |
| 992 | Some(bytes) => bytes, |
| 993 | // SAFETY: `KnownLayout::size_of_val_raw` promises to always |
| 994 | // return `Some` so long as the resulting size fits in a |
| 995 | // `usize`. By invariant on `Ptr`, `self` refers to a range of |
| 996 | // bytes whose size fits in an `isize`, which implies that it |
| 997 | // also fits in a `usize`. |
| 998 | None => unsafe { core::hint::unreachable_unchecked() }, |
| 999 | }; |
| 1000 | |
| 1001 | // SAFETY: |
| 1002 | // - `slice_from_raw_parts_mut` and `.cast` both preserve the |
| 1003 | // pointer's address, and `bytes` is the length of `p`, so the |
| 1004 | // returned pointer addresses the same bytes as `p` |
| 1005 | // - `slice_from_raw_parts_mut` and `.cast` both preserve provenance |
| 1006 | let ptr: Ptr<'a, [u8], _> = unsafe { |
| 1007 | self.cast_unsized(|p: NonNull<T>| { |
| 1008 | let ptr = core::ptr::slice_from_raw_parts_mut(p.cast::<u8>().as_ptr(), bytes); |
| 1009 | // SAFETY: `ptr` has the same address as `p`, which is |
| 1010 | // non-null. |
| 1011 | core::ptr::NonNull::new_unchecked(ptr) |
| 1012 | }) |
| 1013 | }; |
| 1014 | |
| 1015 | let ptr = ptr.bikeshed_recall_aligned(); |
| 1016 | ptr.recall_validity() |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I> |
| 1021 | where |
| 1022 | T: 'a, |
| 1023 | I: Invariants, |
| 1024 | { |
| 1025 | /// Casts this pointer-to-array into a slice. |
| 1026 | #[allow (clippy::wrong_self_convention)] |
| 1027 | pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> { |
| 1028 | let slice = self.as_inner().as_slice(); |
| 1029 | // SAFETY: Note that, by post-condition on `PtrInner::as_slice`, |
| 1030 | // `slice` refers to the same byte range as `self.as_inner()`. |
| 1031 | // |
| 1032 | // 0. Thus, `slice` conforms to the aliasing invariant of |
| 1033 | // `I::Aliasing` because `self` does. |
| 1034 | // 1. By the above lemma, `slice` conforms to the alignment |
| 1035 | // invariant of `I::Alignment` because `self` does. |
| 1036 | // 2. Since `[T; N]` and `[T]` have the same bit validity [1][2], |
| 1037 | // and since `self` and the returned `Ptr` have the same validity |
| 1038 | // invariant, neither `self` nor the returned `Ptr` can be used |
| 1039 | // to write a value to the referent which violates the other's |
| 1040 | // validity invariant. |
| 1041 | // |
| 1042 | // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout: |
| 1043 | // |
| 1044 | // An array of `[T; N]` has a size of `size_of::<T>() * N` and the |
| 1045 | // same alignment of `T`. Arrays are laid out so that the |
| 1046 | // zero-based `nth` element of the array is offset from the start |
| 1047 | // of the array by `n * size_of::<T>()` bytes. |
| 1048 | // |
| 1049 | // ... |
| 1050 | // |
| 1051 | // Slices have the same layout as the section of the array they |
| 1052 | // slice. |
| 1053 | // |
| 1054 | // [2] Per https://doc.rust-lang.org/1.81.0/reference/types/array.html#array-types: |
| 1055 | // |
| 1056 | // All elements of arrays are always initialized |
| 1057 | unsafe { Ptr::from_inner(slice) } |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | /// For caller convenience, these methods are generic over alignment |
| 1062 | /// invariant. In practice, the referent is always well-aligned, because the |
| 1063 | /// alignment of `[u8]` is 1. |
| 1064 | impl<'a, I> Ptr<'a, [u8], I> |
| 1065 | where |
| 1066 | I: Invariants<Validity = Valid>, |
| 1067 | { |
| 1068 | /// Attempts to cast `self` to a `U` using the given cast type. |
| 1069 | /// |
| 1070 | /// If `U` is a slice DST and pointer metadata (`meta`) is provided, |
| 1071 | /// then the cast will only succeed if it would produce an object with |
| 1072 | /// the given metadata. |
| 1073 | /// |
| 1074 | /// Returns `None` if the resulting `U` would be invalidly-aligned, if |
| 1075 | /// no `U` can fit in `self`, or if the provided pointer metadata |
| 1076 | /// describes an invalid instance of `U`. On success, returns a pointer |
| 1077 | /// to the largest-possible `U` which fits in `self`. |
| 1078 | /// |
| 1079 | /// # Safety |
| 1080 | /// |
| 1081 | /// The caller may assume that this implementation is correct, and may |
| 1082 | /// rely on that assumption for the soundness of their code. In |
| 1083 | /// particular, the caller may assume that, if `try_cast_into` returns |
| 1084 | /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to |
| 1085 | /// non-overlapping byte ranges within `self`, and that `ptr` and |
| 1086 | /// `remainder` entirely cover `self`. Finally: |
| 1087 | /// - If this is a prefix cast, `ptr` has the same address as `self`. |
| 1088 | /// - If this is a suffix cast, `remainder` has the same address as |
| 1089 | /// `self`. |
| 1090 | #[inline (always)] |
| 1091 | pub(crate) fn try_cast_into<U, R>( |
| 1092 | self, |
| 1093 | cast_type: CastType, |
| 1094 | meta: Option<U::PointerMetadata>, |
| 1095 | ) -> Result< |
| 1096 | (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>), |
| 1097 | CastError<Self, U>, |
| 1098 | > |
| 1099 | where |
| 1100 | I::Aliasing: Reference, |
| 1101 | U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>, |
| 1102 | { |
| 1103 | let (inner, remainder) = |
| 1104 | self.as_inner().try_cast_into(cast_type, meta).map_err(|err| { |
| 1105 | err.map_src(|inner| |
| 1106 | // SAFETY: `PtrInner::try_cast_into` promises to return its |
| 1107 | // original argument on error, which was originally produced |
| 1108 | // by `self.as_inner()`, which is guaranteed to satisfy |
| 1109 | // `Ptr`'s invariants. |
| 1110 | unsafe { Ptr::from_inner(inner) }) |
| 1111 | })?; |
| 1112 | |
| 1113 | // SAFETY: |
| 1114 | // 0. Since `U: Read<I::Aliasing, _>`, either: |
| 1115 | // - `I::Aliasing` is `Exclusive`, in which case both `src` and |
| 1116 | // `ptr` conform to `Exclusive` |
| 1117 | // - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already |
| 1118 | // know that `[u8]: Immutable`). In this case, neither `U` nor |
| 1119 | // `[u8]` permit mutation, and so `Shared` aliasing is |
| 1120 | // satisfied. |
| 1121 | // 1. `ptr` conforms to the alignment invariant of `Aligned` because |
| 1122 | // it is derived from `try_cast_into`, which promises that the |
| 1123 | // object described by `target` is validly aligned for `U`. |
| 1124 | // 2. By trait bound, `self` - and thus `target` - is a bit-valid |
| 1125 | // `[u8]`. `Ptr<[u8], (_, _, Valid)>` and `Ptr<_, (_, _, |
| 1126 | // Initialized)>` have the same bit validity, and so neither |
| 1127 | // `self` nor `res` can be used to write a value to the referent |
| 1128 | // which violates the other's validity invariant. |
| 1129 | let res = unsafe { Ptr::from_inner(inner) }; |
| 1130 | |
| 1131 | // SAFETY: |
| 1132 | // 0. `self` and `remainder` both have the type `[u8]`. Thus, they |
| 1133 | // have `UnsafeCell`s at the same locations. Type casting does |
| 1134 | // not affect aliasing. |
| 1135 | // 1. `[u8]` has no alignment requirement. |
| 1136 | // 2. `self` has validity `Valid` and has type `[u8]`. Since |
| 1137 | // `remainder` references a subset of `self`'s referent, it is |
| 1138 | // also a bit-valid `[u8]`. Thus, neither `self` nor `remainder` |
| 1139 | // can be used to write a value to the referent which violates |
| 1140 | // the other's validity invariant. |
| 1141 | let remainder = unsafe { Ptr::from_inner(remainder) }; |
| 1142 | |
| 1143 | Ok((res, remainder)) |
| 1144 | } |
| 1145 | |
| 1146 | /// Attempts to cast `self` into a `U`, failing if all of the bytes of |
| 1147 | /// `self` cannot be treated as a `U`. |
| 1148 | /// |
| 1149 | /// In particular, this method fails if `self` is not validly-aligned |
| 1150 | /// for `U` or if `self`'s size is not a valid size for `U`. |
| 1151 | /// |
| 1152 | /// # Safety |
| 1153 | /// |
| 1154 | /// On success, the caller may assume that the returned pointer |
| 1155 | /// references the same byte range as `self`. |
| 1156 | #[allow (unused)] |
| 1157 | #[inline (always)] |
| 1158 | pub(crate) fn try_cast_into_no_leftover<U, R>( |
| 1159 | self, |
| 1160 | meta: Option<U::PointerMetadata>, |
| 1161 | ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>> |
| 1162 | where |
| 1163 | I::Aliasing: Reference, |
| 1164 | U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>, |
| 1165 | { |
| 1166 | // TODO(#67): Remove this allow. See NonNulSlicelExt for more |
| 1167 | // details. |
| 1168 | #[allow (unstable_name_collisions)] |
| 1169 | match self.try_cast_into(CastType::Prefix, meta) { |
| 1170 | Ok((slf, remainder)) => { |
| 1171 | if remainder.len() == 0 { |
| 1172 | Ok(slf) |
| 1173 | } else { |
| 1174 | // Undo the cast so we can return the original bytes. |
| 1175 | let slf = slf.as_bytes(); |
| 1176 | // Restore the initial alignment invariant of `self`. |
| 1177 | // |
| 1178 | // SAFETY: The referent type of `slf` is now equal to |
| 1179 | // that of `self`, but the alignment invariants |
| 1180 | // nominally differ. Since `slf` and `self` refer to the |
| 1181 | // same memory and no actions have been taken that would |
| 1182 | // violate the original invariants on `self`, it is |
| 1183 | // sound to apply the alignment invariant of `self` onto |
| 1184 | // `slf`. |
| 1185 | let slf = unsafe { slf.assume_alignment::<I::Alignment>() }; |
| 1186 | let slf = slf.unify_invariants(); |
| 1187 | Err(CastError::Size(SizeError::<_, U>::new(slf))) |
| 1188 | } |
| 1189 | } |
| 1190 | Err(err) => Err(err), |
| 1191 | } |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I> |
| 1196 | where |
| 1197 | T: 'a + ?Sized, |
| 1198 | I: Invariants<Aliasing = Exclusive>, |
| 1199 | { |
| 1200 | /// Converts this `Ptr` into a pointer to the underlying data. |
| 1201 | /// |
| 1202 | /// This call borrows the `UnsafeCell` mutably (at compile-time) which |
| 1203 | /// guarantees that we possess the only reference. |
| 1204 | /// |
| 1205 | /// This is like [`UnsafeCell::get_mut`], but for `Ptr`. |
| 1206 | /// |
| 1207 | /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut |
| 1208 | #[must_use ] |
| 1209 | #[inline (always)] |
| 1210 | pub fn get_mut(self) -> Ptr<'a, T, I> { |
| 1211 | // SAFETY: |
| 1212 | // - The closure uses an `as` cast, which preserves address range |
| 1213 | // and provenance. |
| 1214 | // - Aliasing is `Exclusive`, and so we are not required to promise |
| 1215 | // anything about the locations of `UnsafeCell`s. |
| 1216 | // - `UnsafeCell<T>` has the same bit validity as `T` [1]. |
| 1217 | // Technically the term "representation" doesn't guarantee this, |
| 1218 | // but the subsequent sentence in the documentation makes it clear |
| 1219 | // that this is the intention. |
| 1220 | // |
| 1221 | // By invariant on `Validity`, since `T` and `UnsafeCell<T>` have |
| 1222 | // the same bit validity, then the set of values which may appear |
| 1223 | // in the referent of a `Ptr<T, (_, _, V)>` is the same as the set |
| 1224 | // which may appear in the referent of a `Ptr<UnsafeCell<T>, (_, |
| 1225 | // _, V)>`. Thus, neither `self` nor `ptr` may be used to write a |
| 1226 | // value to the referent which would violate the other's validity |
| 1227 | // invariant. |
| 1228 | // |
| 1229 | // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout: |
| 1230 | // |
| 1231 | // `UnsafeCell<T>` has the same in-memory representation as its |
| 1232 | // inner type `T`. A consequence of this guarantee is that it is |
| 1233 | // possible to convert between `T` and `UnsafeCell<T>`. |
| 1234 | #[allow (clippy::as_conversions)] |
| 1235 | let ptr = unsafe { self.transmute_unchecked(cast!()) }; |
| 1236 | |
| 1237 | // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1], |
| 1238 | // and so if `self` is guaranteed to be aligned, then so is the |
| 1239 | // returned `Ptr`. |
| 1240 | // |
| 1241 | // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout: |
| 1242 | // |
| 1243 | // `UnsafeCell<T>` has the same in-memory representation as |
| 1244 | // its inner type `T`. A consequence of this guarantee is that |
| 1245 | // it is possible to convert between `T` and `UnsafeCell<T>`. |
| 1246 | let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() }; |
| 1247 | ptr.unify_invariants() |
| 1248 | } |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | /// Projections through the referent. |
| 1253 | mod _project { |
| 1254 | use super::*; |
| 1255 | |
| 1256 | impl<'a, T, I> Ptr<'a, [T], I> |
| 1257 | where |
| 1258 | T: 'a, |
| 1259 | I: Invariants, |
| 1260 | { |
| 1261 | /// The number of slice elements in the object referenced by `self`. |
| 1262 | /// |
| 1263 | /// # Safety |
| 1264 | /// |
| 1265 | /// Unsafe code my rely on `len` satisfying the above contract. |
| 1266 | pub(crate) fn len(&self) -> usize { |
| 1267 | self.as_inner().len() |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | impl<'a, T, I> Ptr<'a, [T], I> |
| 1272 | where |
| 1273 | T: 'a, |
| 1274 | I: Invariants, |
| 1275 | I::Aliasing: Reference, |
| 1276 | { |
| 1277 | /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`. |
| 1278 | pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> { |
| 1279 | // SAFETY: |
| 1280 | // 0. `elem` conforms to the aliasing invariant of `I::Aliasing` |
| 1281 | // because projection does not impact the aliasing invariant. |
| 1282 | // 1. `elem`, conditionally, conforms to the validity invariant of |
| 1283 | // `I::Alignment`. If `elem` is projected from data well-aligned |
| 1284 | // for `[T]`, `elem` will be valid for `T`. |
| 1285 | // 2. TODO: Need to cite facts about `[T]`'s layout (same for the |
| 1286 | // preceding points) |
| 1287 | self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) }) |
| 1288 | } |
| 1289 | } |
| 1290 | } |
| 1291 | |
| 1292 | #[cfg (test)] |
| 1293 | mod tests { |
| 1294 | use core::mem::{self, MaybeUninit}; |
| 1295 | |
| 1296 | use super::*; |
| 1297 | #[allow (unused)] // Needed on our MSRV, but considered unused on later toolchains. |
| 1298 | use crate::util::AsAddress; |
| 1299 | use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable}; |
| 1300 | |
| 1301 | mod test_ptr_try_cast_into_soundness { |
| 1302 | use super::*; |
| 1303 | |
| 1304 | // This test is designed so that if `Ptr::try_cast_into_xxx` are |
| 1305 | // buggy, it will manifest as unsoundness that Miri can detect. |
| 1306 | |
| 1307 | // - If `size_of::<T>() == 0`, `N == 4` |
| 1308 | // - Else, `N == 4 * size_of::<T>()` |
| 1309 | // |
| 1310 | // Each test will be run for each metadata in `metas`. |
| 1311 | fn test<T, I, const N: usize>(metas: I) |
| 1312 | where |
| 1313 | T: ?Sized + KnownLayout + Immutable + FromBytes, |
| 1314 | I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone, |
| 1315 | { |
| 1316 | let mut bytes = [MaybeUninit::<u8>::uninit(); N]; |
| 1317 | let initialized = [MaybeUninit::new(0u8); N]; |
| 1318 | for start in 0..=bytes.len() { |
| 1319 | for end in start..=bytes.len() { |
| 1320 | // Set all bytes to uninitialized other than those in |
| 1321 | // the range we're going to pass to `try_cast_from`. |
| 1322 | // This allows Miri to detect out-of-bounds reads |
| 1323 | // because they read uninitialized memory. Without this, |
| 1324 | // some out-of-bounds reads would still be in-bounds of |
| 1325 | // `bytes`, and so might spuriously be accepted. |
| 1326 | bytes = [MaybeUninit::<u8>::uninit(); N]; |
| 1327 | let bytes = &mut bytes[start..end]; |
| 1328 | // Initialize only the byte range we're going to pass to |
| 1329 | // `try_cast_from`. |
| 1330 | bytes.copy_from_slice(&initialized[start..end]); |
| 1331 | |
| 1332 | let bytes = { |
| 1333 | let bytes: *const [MaybeUninit<u8>] = bytes; |
| 1334 | #[allow (clippy::as_conversions)] |
| 1335 | let bytes = bytes as *const [u8]; |
| 1336 | // SAFETY: We just initialized these bytes to valid |
| 1337 | // `u8`s. |
| 1338 | unsafe { &*bytes } |
| 1339 | }; |
| 1340 | |
| 1341 | // SAFETY: The bytes in `slf` must be initialized. |
| 1342 | unsafe fn validate_and_get_len< |
| 1343 | T: ?Sized + KnownLayout + FromBytes + Immutable, |
| 1344 | >( |
| 1345 | slf: Ptr<'_, T, (Shared, Aligned, Initialized)>, |
| 1346 | ) -> usize { |
| 1347 | let t = slf.recall_validity().as_ref(); |
| 1348 | |
| 1349 | let bytes = { |
| 1350 | let len = mem::size_of_val(t); |
| 1351 | let t: *const T = t; |
| 1352 | // SAFETY: |
| 1353 | // - We know `t`'s bytes are all initialized |
| 1354 | // because we just read it from `slf`, which |
| 1355 | // points to an initialized range of bytes. If |
| 1356 | // there's a bug and this doesn't hold, then |
| 1357 | // that's exactly what we're hoping Miri will |
| 1358 | // catch! |
| 1359 | // - Since `T: FromBytes`, `T` doesn't contain |
| 1360 | // any `UnsafeCell`s, so it's okay for `t: T` |
| 1361 | // and a `&[u8]` to the same memory to be |
| 1362 | // alive concurrently. |
| 1363 | unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) } |
| 1364 | }; |
| 1365 | |
| 1366 | // This assertion ensures that `t`'s bytes are read |
| 1367 | // and compared to another value, which in turn |
| 1368 | // ensures that Miri gets a chance to notice if any |
| 1369 | // of `t`'s bytes are uninitialized, which they |
| 1370 | // shouldn't be (see the comment above). |
| 1371 | assert_eq!(bytes, vec![0u8; bytes.len()]); |
| 1372 | |
| 1373 | mem::size_of_val(t) |
| 1374 | } |
| 1375 | |
| 1376 | for meta in metas.clone().into_iter() { |
| 1377 | for cast_type in [CastType::Prefix, CastType::Suffix] { |
| 1378 | if let Ok((slf, remaining)) = Ptr::from_ref(bytes) |
| 1379 | .try_cast_into::<T, BecauseImmutable>(cast_type, meta) |
| 1380 | { |
| 1381 | // SAFETY: All bytes in `bytes` have been |
| 1382 | // initialized. |
| 1383 | let len = unsafe { validate_and_get_len(slf) }; |
| 1384 | assert_eq!(remaining.len(), bytes.len() - len); |
| 1385 | #[allow (unstable_name_collisions)] |
| 1386 | let bytes_addr = bytes.as_ptr().addr(); |
| 1387 | #[allow (unstable_name_collisions)] |
| 1388 | let remaining_addr = |
| 1389 | remaining.as_inner().as_non_null().as_ptr().addr(); |
| 1390 | match cast_type { |
| 1391 | CastType::Prefix => { |
| 1392 | assert_eq!(remaining_addr, bytes_addr + len) |
| 1393 | } |
| 1394 | CastType::Suffix => assert_eq!(remaining_addr, bytes_addr), |
| 1395 | } |
| 1396 | |
| 1397 | if let Some(want) = meta { |
| 1398 | let got = KnownLayout::pointer_to_metadata( |
| 1399 | slf.as_inner().as_non_null().as_ptr(), |
| 1400 | ); |
| 1401 | assert_eq!(got, want); |
| 1402 | } |
| 1403 | } |
| 1404 | } |
| 1405 | |
| 1406 | if let Ok(slf) = Ptr::from_ref(bytes) |
| 1407 | .try_cast_into_no_leftover::<T, BecauseImmutable>(meta) |
| 1408 | { |
| 1409 | // SAFETY: All bytes in `bytes` have been |
| 1410 | // initialized. |
| 1411 | let len = unsafe { validate_and_get_len(slf) }; |
| 1412 | assert_eq!(len, bytes.len()); |
| 1413 | |
| 1414 | if let Some(want) = meta { |
| 1415 | let got = KnownLayout::pointer_to_metadata( |
| 1416 | slf.as_inner().as_non_null().as_ptr(), |
| 1417 | ); |
| 1418 | assert_eq!(got, want); |
| 1419 | } |
| 1420 | } |
| 1421 | } |
| 1422 | } |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | #[derive (FromBytes, KnownLayout, Immutable)] |
| 1427 | #[repr (C)] |
| 1428 | struct SliceDst<T> { |
| 1429 | a: u8, |
| 1430 | trailing: [T], |
| 1431 | } |
| 1432 | |
| 1433 | // Each test case becomes its own `#[test]` function. We do this because |
| 1434 | // this test in particular takes far, far longer to execute under Miri |
| 1435 | // than all of our other tests combined. Previously, we had these |
| 1436 | // execute sequentially in a single test function. We run Miri tests in |
| 1437 | // parallel in CI, but this test being sequential meant that most of |
| 1438 | // that parallelism was wasted, as all other tests would finish in a |
| 1439 | // fraction of the total execution time, leaving this test to execute on |
| 1440 | // a single thread for the remainder of the test. By putting each test |
| 1441 | // case in its own function, we permit better use of available |
| 1442 | // parallelism. |
| 1443 | macro_rules! test { |
| 1444 | ($test_name:ident: $ty:ty) => { |
| 1445 | #[test] |
| 1446 | #[allow(non_snake_case)] |
| 1447 | fn $test_name() { |
| 1448 | const S: usize = core::mem::size_of::<$ty>(); |
| 1449 | const N: usize = if S == 0 { 4 } else { S * 4 }; |
| 1450 | test::<$ty, _, N>([None]); |
| 1451 | |
| 1452 | // If `$ty` is a ZST, then we can't pass `None` as the |
| 1453 | // pointer metadata, or else computing the correct trailing |
| 1454 | // slice length will panic. |
| 1455 | if S == 0 { |
| 1456 | test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]); |
| 1457 | test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]); |
| 1458 | } else { |
| 1459 | test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]); |
| 1460 | test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]); |
| 1461 | } |
| 1462 | } |
| 1463 | }; |
| 1464 | ($ty:ident) => { |
| 1465 | test!($ty: $ty); |
| 1466 | }; |
| 1467 | ($($ty:ident),*) => { $(test!($ty);)* } |
| 1468 | } |
| 1469 | |
| 1470 | test !(empty_tuple: ()); |
| 1471 | test !(u8, u16, u32, u64, u128, usize, AU64); |
| 1472 | test !(i8, i16, i32, i64, i128, isize); |
| 1473 | test !(f32, f64); |
| 1474 | } |
| 1475 | |
| 1476 | #[test ] |
| 1477 | fn test_try_cast_into_explicit_count() { |
| 1478 | macro_rules! test { |
| 1479 | ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{ |
| 1480 | let bytes = [0u8; $bytes]; |
| 1481 | let ptr = Ptr::from_ref(&bytes[..]); |
| 1482 | let res = |
| 1483 | ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems)); |
| 1484 | if let Some(expect) = $expect { |
| 1485 | let (ptr, _) = res.unwrap(); |
| 1486 | assert_eq!( |
| 1487 | KnownLayout::pointer_to_metadata(ptr.as_inner().as_non_null().as_ptr()), |
| 1488 | expect |
| 1489 | ); |
| 1490 | } else { |
| 1491 | let _ = res.unwrap_err(); |
| 1492 | } |
| 1493 | }}; |
| 1494 | } |
| 1495 | |
| 1496 | #[derive (KnownLayout, Immutable)] |
| 1497 | #[repr (C)] |
| 1498 | struct ZstDst { |
| 1499 | u: [u8; 8], |
| 1500 | slc: [()], |
| 1501 | } |
| 1502 | |
| 1503 | test !(ZstDst, 8, 0, Some(0)); |
| 1504 | test !(ZstDst, 7, 0, None); |
| 1505 | |
| 1506 | test !(ZstDst, 8, usize::MAX, Some(usize::MAX)); |
| 1507 | test !(ZstDst, 7, usize::MAX, None); |
| 1508 | |
| 1509 | #[derive (KnownLayout, Immutable)] |
| 1510 | #[repr (C)] |
| 1511 | struct Dst { |
| 1512 | u: [u8; 8], |
| 1513 | slc: [u8], |
| 1514 | } |
| 1515 | |
| 1516 | test !(Dst, 8, 0, Some(0)); |
| 1517 | test !(Dst, 7, 0, None); |
| 1518 | |
| 1519 | test !(Dst, 9, 1, Some(1)); |
| 1520 | test !(Dst, 8, 1, None); |
| 1521 | |
| 1522 | // If we didn't properly check for overflow, this would cause the |
| 1523 | // metadata to overflow to 0, and thus the cast would spuriously |
| 1524 | // succeed. |
| 1525 | test !(Dst, 8, usize::MAX - 8 + 1, None); |
| 1526 | } |
| 1527 | } |
| 1528 | |