1 | // Copyright 2024 The Fuchsia Authors |
2 | // |
3 | // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 |
4 | // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
5 | // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
6 | // This file may not be copied, modified, or distributed except according to |
7 | // those terms. |
8 | |
9 | use core::{marker::PhantomData, ops::Range, ptr::NonNull}; |
10 | |
11 | #[allow (unused_imports)] |
12 | use crate::util::polyfills::NumExt as _; |
13 | use crate::{ |
14 | layout::{CastType, DstLayout, MetadataCastError}, |
15 | util::AsAddress, |
16 | AlignmentError, CastError, KnownLayout, PointerMetadata, SizeError, |
17 | }; |
18 | |
19 | pub(crate) use _def::PtrInner; |
20 | |
21 | mod _def { |
22 | use super::*; |
23 | /// The inner pointer stored inside a [`Ptr`][crate::Ptr]. |
24 | /// |
25 | /// `PtrInner<'a, T>` is [covariant] in `'a` and invariant in `T`. |
26 | /// |
27 | /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html |
28 | pub(crate) struct PtrInner<'a, T> |
29 | where |
30 | T: ?Sized, |
31 | { |
32 | /// # Invariants |
33 | /// |
34 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` has valid |
35 | /// provenance for its referent, which is entirely contained in some |
36 | /// Rust allocation, `A`. |
37 | /// 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live |
38 | /// for at least `'a`. |
39 | /// |
40 | /// # Postconditions |
41 | /// |
42 | /// By virtue of these invariants, code may assume the following, which |
43 | /// are logical implications of the invariants: |
44 | /// - `ptr`'s referent is not larger than `isize::MAX` bytes \[1\] |
45 | /// - `ptr`'s referent does not wrap around the address space \[1\] |
46 | /// |
47 | /// \[1\] Per <https://doc.rust-lang.org/1.85.0/std/ptr/index.html#allocated-object>: |
48 | /// |
49 | /// For any allocated object with `base` address, `size`, and a set of |
50 | /// `addresses`, the following are guaranteed: |
51 | /// ... |
52 | /// - `size <= isize::MAX` |
53 | /// |
54 | /// As a consequence of these guarantees, given any address `a` within |
55 | /// the set of addresses of an allocated object: |
56 | /// ... |
57 | /// - It is guaranteed that, given `o = a - base` (i.e., the offset of |
58 | /// `a` within the allocated object), `base + o` will not wrap around |
59 | /// the address space (in other words, will not overflow `usize`) |
60 | ptr: NonNull<T>, |
61 | // SAFETY: `&'a UnsafeCell<T>` is covariant in `'a` and invariant in `T` |
62 | // [1]. We use this construction rather than the equivalent `&mut T`, |
63 | // because our MSRV of 1.65 prohibits `&mut` types in const contexts. |
64 | // |
65 | // [1] https://doc.rust-lang.org/1.81.0/reference/subtyping.html#variance |
66 | _marker: PhantomData<&'a core::cell::UnsafeCell<T>>, |
67 | } |
68 | |
69 | impl<'a, T: 'a + ?Sized> Copy for PtrInner<'a, T> {} |
70 | impl<'a, T: 'a + ?Sized> Clone for PtrInner<'a, T> { |
71 | fn clone(&self) -> PtrInner<'a, T> { |
72 | // SAFETY: None of the invariants on `ptr` are affected by having |
73 | // multiple copies of a `PtrInner`. |
74 | *self |
75 | } |
76 | } |
77 | |
78 | impl<'a, T: 'a + ?Sized> PtrInner<'a, T> { |
79 | /// Constructs a `Ptr` from a [`NonNull`]. |
80 | /// |
81 | /// # Safety |
82 | /// |
83 | /// The caller promises that: |
84 | /// |
85 | /// 0. If `ptr`'s referent is not zero sized, then `ptr` has valid |
86 | /// provenance for its referent, which is entirely contained in some |
87 | /// Rust allocation, `A`. |
88 | /// 1. If `ptr`'s referent is not zero sized, `A` is guaranteed to live |
89 | /// for at least `'a`. |
90 | pub(crate) const unsafe fn new(ptr: NonNull<T>) -> PtrInner<'a, T> { |
91 | // SAFETY: The caller has promised to satisfy all safety invariants |
92 | // of `PtrInner`. |
93 | Self { ptr, _marker: PhantomData } |
94 | } |
95 | |
96 | /// Converts this `PtrInner<T>` to a [`NonNull<T>`]. |
97 | /// |
98 | /// Note that this method does not consume `self`. The caller should |
99 | /// watch out for `unsafe` code which uses the returned `NonNull` in a |
100 | /// way that violates the safety invariants of `self`. |
101 | pub(crate) const fn as_non_null(&self) -> NonNull<T> { |
102 | self.ptr |
103 | } |
104 | } |
105 | } |
106 | |
107 | impl<'a, T: ?Sized> PtrInner<'a, T> { |
108 | /// Constructs a `PtrInner` from a reference. |
109 | #[inline ] |
110 | pub(crate) fn from_ref(ptr: &'a T) -> Self { |
111 | let ptr = NonNull::from(ptr); |
112 | // SAFETY: |
113 | // 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on |
114 | // `&'a T` [1], has valid provenance for its referent, which is |
115 | // entirely contained in some Rust allocation, `A`. |
116 | // 1. If `ptr`'s referent is not zero sized, then `A`, by invariant on |
117 | // `&'a T`, is guaranteed to live for at least `'a`. |
118 | // |
119 | // [1] Per https://doc.rust-lang.org/1.85.0/std/primitive.reference.html#safety: |
120 | // |
121 | // For all types, `T: ?Sized`, and for all `t: &T` or `t: &mut T`, |
122 | // when such values cross an API boundary, the following invariants |
123 | // must generally be upheld: |
124 | // ... |
125 | // - if `size_of_val(t) > 0`, then `t` is dereferenceable for |
126 | // `size_of_val(t)` many bytes |
127 | // |
128 | // If `t` points at address `a`, being “dereferenceable” for N bytes |
129 | // means that the memory range `[a, a + N)` is all contained within a |
130 | // single allocated object. |
131 | unsafe { Self::new(ptr) } |
132 | } |
133 | |
134 | /// Constructs a `PtrInner` from a mutable reference. |
135 | #[inline ] |
136 | pub(crate) fn from_mut(ptr: &'a mut T) -> Self { |
137 | let ptr = NonNull::from(ptr); |
138 | // SAFETY: |
139 | // 0. If `ptr`'s referent is not zero sized, then `ptr`, by invariant on |
140 | // `&'a mut T` [1], has valid provenance for its referent, which is |
141 | // entirely contained in some Rust allocation, `A`. |
142 | // 1. If `ptr`'s referent is not zero sized, then `A`, by invariant on |
143 | // `&'a mut T`, is guaranteed to live for at least `'a`. |
144 | // |
145 | // [1] Per https://doc.rust-lang.org/1.85.0/std/primitive.reference.html#safety: |
146 | // |
147 | // For all types, `T: ?Sized`, and for all `t: &T` or `t: &mut T`, |
148 | // when such values cross an API boundary, the following invariants |
149 | // must generally be upheld: |
150 | // ... |
151 | // - if `size_of_val(t) > 0`, then `t` is dereferenceable for |
152 | // `size_of_val(t)` many bytes |
153 | // |
154 | // If `t` points at address `a`, being “dereferenceable” for N bytes |
155 | // means that the memory range `[a, a + N)` is all contained within a |
156 | // single allocated object. |
157 | unsafe { Self::new(ptr) } |
158 | } |
159 | } |
160 | |
161 | #[allow (clippy::needless_lifetimes)] |
162 | impl<'a, T> PtrInner<'a, [T]> { |
163 | /// Creates a pointer which addresses the given `range` of self. |
164 | /// |
165 | /// # Safety |
166 | /// |
167 | /// `range` is a valid range (`start <= end`) and `end <= self.len()`. |
168 | pub(crate) unsafe fn slice_unchecked(self, range: Range<usize>) -> Self { |
169 | let base = self.as_non_null().cast::<T>().as_ptr(); |
170 | |
171 | // SAFETY: The caller promises that `start <= end <= self.len()`. By |
172 | // invariant, if `self`'s referent is not zero-sized, then `self` refers |
173 | // to a byte range which is contained within a single allocation, which |
174 | // is no more than `isize::MAX` bytes long, and which does not wrap |
175 | // around the address space. Thus, this pointer arithmetic remains |
176 | // in-bounds of the same allocation, and does not wrap around the |
177 | // address space. The offset (in bytes) does not overflow `isize`. |
178 | // |
179 | // If `self`'s referent is zero-sized, then these conditions are |
180 | // trivially satisfied. |
181 | let base = unsafe { base.add(range.start) }; |
182 | |
183 | // SAFETY: The caller promises that `start <= end`, and so this will not |
184 | // underflow. |
185 | #[allow (unstable_name_collisions, clippy::incompatible_msrv)] |
186 | let len = unsafe { range.end.unchecked_sub(range.start) }; |
187 | |
188 | let ptr = core::ptr::slice_from_raw_parts_mut(base, len); |
189 | |
190 | // SAFETY: By invariant, `self`'s referent is either a ZST or lives |
191 | // entirely in an allocation. `ptr` points inside of or one byte past |
192 | // the end of that referent. Thus, in either case, `ptr` is non-null. |
193 | let ptr = unsafe { NonNull::new_unchecked(ptr) }; |
194 | |
195 | // SAFETY: |
196 | // |
197 | // Lemma 0: `ptr` addresses a subset of the bytes addressed by `self`, |
198 | // and has the same provenance. Proof: The caller guarantees |
199 | // that `start <= end <= self.len()`. Thus, `base` is in-bounds |
200 | // of `self`, and `base + (end - start)` is also in-bounds of |
201 | // self. Finally, `ptr` is constructed using |
202 | // provenance-preserving operations. |
203 | // |
204 | // 0. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not |
205 | // zero sized, then `ptr` has valid provenance for its referent, |
206 | // which is entirely contained in some Rust allocation, `A`. |
207 | // 1. Per Lemma 0 and by invariant on `self`, if `ptr`'s referent is not |
208 | // zero sized, then `A` is guaranteed to live for at least `'a`. |
209 | unsafe { PtrInner::new(ptr) } |
210 | } |
211 | |
212 | /// Splits the slice in two. |
213 | /// |
214 | /// # Safety |
215 | /// |
216 | /// The caller promises that `l_len <= self.len()`. |
217 | /// |
218 | /// Given `let (left, right) = ptr.split_at(l_len)`, it is guaranteed |
219 | /// that `left` and `right` are contiguous and non-overlapping. |
220 | pub(crate) unsafe fn split_at(self, l_len: usize) -> (Self, Self) { |
221 | // SAFETY: The caller promises that `l_len <= self.len()`. |
222 | // Trivially, `0 <= l_len`. |
223 | let left = unsafe { self.slice_unchecked(0..l_len) }; |
224 | |
225 | // SAFETY: The caller promises that `l_len <= self.len() = |
226 | // slf.len()`. Trivially, `slf.len() <= slf.len()`. |
227 | let right = unsafe { self.slice_unchecked(l_len..self.len()) }; |
228 | |
229 | // SAFETY: `left` and `right` are non-overlapping. Proof: `left` is |
230 | // constructed from `slf` with `l_len` as its (exclusive) upper |
231 | // bound, while `right` is constructed from `slf` with `l_len` as |
232 | // its (inclusive) lower bound. Thus, no index is a member of both |
233 | // ranges. |
234 | (left, right) |
235 | } |
236 | |
237 | /// Iteratively projects the elements `PtrInner<T>` from `PtrInner<[T]>`. |
238 | pub(crate) fn iter(&self) -> impl Iterator<Item = PtrInner<'a, T>> { |
239 | // TODO(#429): Once `NonNull::cast` documents that it preserves |
240 | // provenance, cite those docs. |
241 | let base = self.as_non_null().cast::<T>().as_ptr(); |
242 | (0..self.len()).map(move |i| { |
243 | // TODO(https://github.com/rust-lang/rust/issues/74265): Use |
244 | // `NonNull::get_unchecked_mut`. |
245 | |
246 | // SAFETY: If the following conditions are not satisfied |
247 | // `pointer::cast` may induce Undefined Behavior [1]: |
248 | // |
249 | // > - The computed offset, `count * size_of::<T>()` bytes, must not |
250 | // > overflow `isize``. |
251 | // > - If the computed offset is non-zero, then `self` must be |
252 | // > derived from a pointer to some allocated object, and the |
253 | // > entire memory range between `self` and the result must be in |
254 | // > bounds of that allocated object. In particular, this range |
255 | // > must not “wrap around” the edge of the address space. |
256 | // |
257 | // [1] https://doc.rust-lang.org/std/primitive.pointer.html#method.add |
258 | // |
259 | // We satisfy both of these conditions here: |
260 | // - By invariant on `Ptr`, `self` addresses a byte range whose |
261 | // length fits in an `isize`. Since `elem` is contained in `self`, |
262 | // the computed offset of `elem` must fit within `isize.` |
263 | // - If the computed offset is non-zero, then this means that the |
264 | // referent is not zero-sized. In this case, `base` points to an |
265 | // allocated object (by invariant on `self`). Thus: |
266 | // - By contract, `self.len()` accurately reflects the number of |
267 | // elements in the slice. `i` is in bounds of `c.len()` by |
268 | // construction, and so the result of this addition cannot |
269 | // overflow past the end of the allocation referred to by `c`. |
270 | // - By invariant on `Ptr`, `self` addresses a byte range which |
271 | // does not wrap around the address space. Since `elem` is |
272 | // contained in `self`, the computed offset of `elem` must wrap |
273 | // around the address space. |
274 | // |
275 | // TODO(#429): Once `pointer::add` documents that it preserves |
276 | // provenance, cite those docs. |
277 | let elem = unsafe { base.add(i) }; |
278 | |
279 | // SAFETY: `elem` must not be null. `base` is constructed from a |
280 | // `NonNull` pointer, and the addition that produces `elem` must not |
281 | // overflow or wrap around, so `elem >= base > 0`. |
282 | // |
283 | // TODO(#429): Once `NonNull::new_unchecked` documents that it |
284 | // preserves provenance, cite those docs. |
285 | let elem = unsafe { NonNull::new_unchecked(elem) }; |
286 | |
287 | // SAFETY: The safety invariants of `Ptr::new` (see definition) are |
288 | // satisfied: |
289 | // 0. If `elem`'s referent is not zero sized, then `elem` has valid |
290 | // provenance for its referent, because it derived from `self` |
291 | // using a series of provenance-preserving operations, and |
292 | // because `self` has valid provenance for its referent. By the |
293 | // same argument, `elem`'s referent is entirely contained within |
294 | // the same allocated object as `self`'s referent. |
295 | // 1. If `elem`'s referent is not zero sized, then the allocation of |
296 | // `elem` is guaranteed to live for at least `'a`, because `elem` |
297 | // is entirely contained in `self`, which lives for at least `'a` |
298 | // by invariant on `Ptr`. |
299 | unsafe { PtrInner::new(elem) } |
300 | }) |
301 | } |
302 | |
303 | /// The number of slice elements in the object referenced by `self`. |
304 | /// |
305 | /// # Safety |
306 | /// |
307 | /// Unsafe code my rely on `len` satisfying the above contract. |
308 | pub(crate) fn len(&self) -> usize { |
309 | self.trailing_slice_len() |
310 | } |
311 | } |
312 | |
313 | #[allow (clippy::needless_lifetimes)] |
314 | impl<'a, T> PtrInner<'a, T> |
315 | where |
316 | T: ?Sized + KnownLayout<PointerMetadata = usize>, |
317 | { |
318 | /// The number of trailing slice elements in the object referenced by |
319 | /// `self`. |
320 | /// |
321 | /// # Safety |
322 | /// |
323 | /// Unsafe code my rely on `trailing_slice_len` satisfying the above |
324 | /// contract. |
325 | pub(super) fn trailing_slice_len(&self) -> usize { |
326 | T::pointer_to_metadata(self.as_non_null().as_ptr()) |
327 | } |
328 | } |
329 | |
330 | impl<'a, T, const N: usize> PtrInner<'a, [T; N]> { |
331 | /// Casts this pointer-to-array into a slice. |
332 | /// |
333 | /// # Safety |
334 | /// |
335 | /// Callers may assume that the returned `PtrInner` references the same |
336 | /// address and length as `self`. |
337 | #[allow (clippy::wrong_self_convention)] |
338 | pub(crate) fn as_slice(self) -> PtrInner<'a, [T]> { |
339 | let start = self.as_non_null().cast::<T>().as_ptr(); |
340 | let slice = core::ptr::slice_from_raw_parts_mut(start, N); |
341 | // SAFETY: `slice` is not null, because it is derived from `start` |
342 | // which is non-null. |
343 | let slice = unsafe { NonNull::new_unchecked(slice) }; |
344 | // SAFETY: Lemma: In the following safety arguments, note that `slice` |
345 | // is derived from `self` in two steps: first, by casting `self: [T; N]` |
346 | // to `start: T`, then by constructing a pointer to a slice starting at |
347 | // `start` of length `N`. As a result, `slice` references exactly the |
348 | // same allocation as `self`, if any. |
349 | // |
350 | // 0. By the above lemma, if `slice`'s referent is not zero sized, then |
351 | // `slice` has the same referent as `self`. By invariant on `self`, |
352 | // this referent is entirely contained within some allocation, `A`. |
353 | // Because `slice` was constructed using provenance-preserving |
354 | // operations, it has provenance for its entire referent. |
355 | // 1. By the above lemma, if `slice`'s referent is not zero sized, then |
356 | // `A` is guaranteed to live for at least `'a`, because it is derived |
357 | // from the same allocation as `self`, which, by invariant on `Ptr`, |
358 | // lives for at least `'a`. |
359 | unsafe { PtrInner::new(slice) } |
360 | } |
361 | } |
362 | |
363 | impl<'a> PtrInner<'a, [u8]> { |
364 | /// Attempts to cast `self` to a `U` using the given cast type. |
365 | /// |
366 | /// If `U` is a slice DST and pointer metadata (`meta`) is provided, then |
367 | /// the cast will only succeed if it would produce an object with the given |
368 | /// metadata. |
369 | /// |
370 | /// Returns `None` if the resulting `U` would be invalidly-aligned, if no |
371 | /// `U` can fit in `self`, or if the provided pointer metadata describes an |
372 | /// invalid instance of `U`. On success, returns a pointer to the |
373 | /// largest-possible `U` which fits in `self`. |
374 | /// |
375 | /// # Safety |
376 | /// |
377 | /// The caller may assume that this implementation is correct, and may rely |
378 | /// on that assumption for the soundness of their code. In particular, the |
379 | /// caller may assume that, if `try_cast_into` returns `Some((ptr, |
380 | /// remainder))`, then `ptr` and `remainder` refer to non-overlapping byte |
381 | /// ranges within `self`, and that `ptr` and `remainder` entirely cover |
382 | /// `self`. Finally: |
383 | /// - If this is a prefix cast, `ptr` has the same address as `self`. |
384 | /// - If this is a suffix cast, `remainder` has the same address as `self`. |
385 | #[inline ] |
386 | pub(crate) fn try_cast_into<U>( |
387 | self, |
388 | cast_type: CastType, |
389 | meta: Option<U::PointerMetadata>, |
390 | ) -> Result<(PtrInner<'a, U>, PtrInner<'a, [u8]>), CastError<Self, U>> |
391 | where |
392 | U: 'a + ?Sized + KnownLayout, |
393 | { |
394 | let layout = match meta { |
395 | None => U::LAYOUT, |
396 | // This can return `None` if the metadata describes an object |
397 | // which can't fit in an `isize`. |
398 | Some(meta) => { |
399 | let size = match meta.size_for_metadata(U::LAYOUT) { |
400 | Some(size) => size, |
401 | None => return Err(CastError::Size(SizeError::new(self))), |
402 | }; |
403 | DstLayout { align: U::LAYOUT.align, size_info: crate::SizeInfo::Sized { size } } |
404 | } |
405 | }; |
406 | // PANICS: By invariant, the byte range addressed by |
407 | // `self.as_non_null()` does not wrap around the address space. This |
408 | // implies that the sum of the address (represented as a `usize`) and |
409 | // length do not overflow `usize`, as required by |
410 | // `validate_cast_and_convert_metadata`. Thus, this call to |
411 | // `validate_cast_and_convert_metadata` will only panic if `U` is a DST |
412 | // whose trailing slice element is zero-sized. |
413 | let maybe_metadata = layout.validate_cast_and_convert_metadata( |
414 | AsAddress::addr(self.as_non_null().as_ptr()), |
415 | self.len(), |
416 | cast_type, |
417 | ); |
418 | |
419 | let (elems, split_at) = match maybe_metadata { |
420 | Ok((elems, split_at)) => (elems, split_at), |
421 | Err(MetadataCastError::Alignment) => { |
422 | // SAFETY: Since `validate_cast_and_convert_metadata` returned |
423 | // an alignment error, `U` must have an alignment requirement |
424 | // greater than one. |
425 | let err = unsafe { AlignmentError::<_, U>::new_unchecked(self) }; |
426 | return Err(CastError::Alignment(err)); |
427 | } |
428 | Err(MetadataCastError::Size) => return Err(CastError::Size(SizeError::new(self))), |
429 | }; |
430 | |
431 | // SAFETY: `validate_cast_and_convert_metadata` promises to return |
432 | // `split_at <= self.len()`. |
433 | let (l_slice, r_slice) = unsafe { self.split_at(split_at) }; |
434 | |
435 | let (target, remainder) = match cast_type { |
436 | CastType::Prefix => (l_slice, r_slice), |
437 | CastType::Suffix => (r_slice, l_slice), |
438 | }; |
439 | |
440 | let base = target.as_non_null().cast::<u8>(); |
441 | |
442 | let elems = <U as KnownLayout>::PointerMetadata::from_elem_count(elems); |
443 | // For a slice DST type, if `meta` is `Some(elems)`, then we synthesize |
444 | // `layout` to describe a sized type whose size is equal to the size of |
445 | // the instance that we are asked to cast. For sized types, |
446 | // `validate_cast_and_convert_metadata` returns `elems == 0`. Thus, in |
447 | // this case, we need to use the `elems` passed by the caller, not the |
448 | // one returned by `validate_cast_and_convert_metadata`. |
449 | let elems = meta.unwrap_or(elems); |
450 | |
451 | let ptr = U::raw_from_ptr_len(base, elems); |
452 | |
453 | // SAFETY: |
454 | // 0. By invariant, if `target`'s referent is not zero sized, then |
455 | // `target` has provenance valid for some Rust allocation, `A`. |
456 | // Because `ptr` is derived from `target` via provenance-preserving |
457 | // operations, `ptr` will also have provenance valid for its entire |
458 | // referent. |
459 | // 1. `validate_cast_and_convert_metadata` promises that the object |
460 | // described by `elems` and `split_at` lives at a byte range which is |
461 | // a subset of the input byte range. Thus, by invariant, if |
462 | // `target`'s referent is not zero sized, then `target` refers to an |
463 | // allocation which is guaranteed to live for at least `'a`, and thus |
464 | // so does `ptr`. |
465 | Ok((unsafe { PtrInner::new(ptr) }, remainder)) |
466 | } |
467 | } |
468 | |
469 | #[cfg (test)] |
470 | mod tests { |
471 | use super::*; |
472 | |
473 | #[test ] |
474 | fn test_split_at() { |
475 | const N: usize = 16; |
476 | let arr = [1; N]; |
477 | let ptr = PtrInner::from_ref(&arr).as_slice(); |
478 | for i in 0..=N { |
479 | assert_eq!(ptr.len(), N); |
480 | // SAFETY: `i` is in bounds by construction. |
481 | let (l, r) = unsafe { ptr.split_at(i) }; |
482 | // SAFETY: Points to a valid value by construction. |
483 | #[allow (clippy::undocumented_unsafe_blocks)] // Clippy false positive |
484 | let l_sum: usize = l |
485 | .iter() |
486 | .map(|ptr| unsafe { core::ptr::read_unaligned(ptr.as_non_null().as_ptr()) }) |
487 | .sum(); |
488 | // SAFETY: Points to a valid value by construction. |
489 | #[allow (clippy::undocumented_unsafe_blocks)] // Clippy false positive |
490 | let r_sum: usize = r |
491 | .iter() |
492 | .map(|ptr| unsafe { core::ptr::read_unaligned(ptr.as_non_null().as_ptr()) }) |
493 | .sum(); |
494 | assert_eq!(l_sum, i); |
495 | assert_eq!(r_sum, N - i); |
496 | assert_eq!(l_sum + r_sum, N); |
497 | } |
498 | } |
499 | } |
500 | |