| 1 | //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declaration of the Type class. For more "Type" |
| 10 | // stuff, look in DerivedTypes.h. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_IR_TYPE_H |
| 15 | #define LLVM_IR_TYPE_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/Support/CBindingWrapping.h" |
| 19 | #include "llvm/Support/Casting.h" |
| 20 | #include "llvm/Support/Compiler.h" |
| 21 | #include "llvm/Support/ErrorHandling.h" |
| 22 | #include "llvm/Support/TypeSize.h" |
| 23 | #include <cassert> |
| 24 | #include <cstdint> |
| 25 | #include <iterator> |
| 26 | |
| 27 | namespace llvm { |
| 28 | |
| 29 | class IntegerType; |
| 30 | struct fltSemantics; |
| 31 | class LLVMContext; |
| 32 | class PointerType; |
| 33 | class raw_ostream; |
| 34 | class StringRef; |
| 35 | template <typename PtrType> class SmallPtrSetImpl; |
| 36 | |
| 37 | /// The instances of the Type class are immutable: once they are created, |
| 38 | /// they are never changed. Also note that only one instance of a particular |
| 39 | /// type is ever created. Thus seeing if two types are equal is a matter of |
| 40 | /// doing a trivial pointer comparison. To enforce that no two equal instances |
| 41 | /// are created, Type instances can only be created via static factory methods |
| 42 | /// in class Type and in derived classes. Once allocated, Types are never |
| 43 | /// free'd. |
| 44 | /// |
| 45 | class Type { |
| 46 | public: |
| 47 | //===--------------------------------------------------------------------===// |
| 48 | /// Definitions of all of the base types for the Type system. Based on this |
| 49 | /// value, you can cast to a class defined in DerivedTypes.h. |
| 50 | /// Note: If you add an element to this, you need to add an element to the |
| 51 | /// Type::getPrimitiveType function, or else things will break! |
| 52 | /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. |
| 53 | /// |
| 54 | enum TypeID { |
| 55 | // PrimitiveTypes |
| 56 | HalfTyID = 0, ///< 16-bit floating point type |
| 57 | BFloatTyID, ///< 16-bit floating point type (7-bit significand) |
| 58 | FloatTyID, ///< 32-bit floating point type |
| 59 | DoubleTyID, ///< 64-bit floating point type |
| 60 | X86_FP80TyID, ///< 80-bit floating point type (X87) |
| 61 | FP128TyID, ///< 128-bit floating point type (112-bit significand) |
| 62 | PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) |
| 63 | VoidTyID, ///< type with no size |
| 64 | LabelTyID, ///< Labels |
| 65 | MetadataTyID, ///< Metadata |
| 66 | X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) |
| 67 | X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) |
| 68 | TokenTyID, ///< Tokens |
| 69 | |
| 70 | // Derived types... see DerivedTypes.h file. |
| 71 | IntegerTyID, ///< Arbitrary bit width integers |
| 72 | FunctionTyID, ///< Functions |
| 73 | PointerTyID, ///< Pointers |
| 74 | StructTyID, ///< Structures |
| 75 | ArrayTyID, ///< Arrays |
| 76 | FixedVectorTyID, ///< Fixed width SIMD vector type |
| 77 | ScalableVectorTyID, ///< Scalable SIMD vector type |
| 78 | TypedPointerTyID, ///< Typed pointer used by some GPU targets |
| 79 | TargetExtTyID, ///< Target extension type |
| 80 | }; |
| 81 | |
| 82 | private: |
| 83 | /// This refers to the LLVMContext in which this type was uniqued. |
| 84 | LLVMContext &Context; |
| 85 | |
| 86 | TypeID ID : 8; // The current base type of this type. |
| 87 | unsigned SubclassData : 24; // Space for subclasses to store data. |
| 88 | // Note that this should be synchronized with |
| 89 | // MAX_INT_BITS value in IntegerType class. |
| 90 | |
| 91 | protected: |
| 92 | friend class LLVMContextImpl; |
| 93 | |
| 94 | explicit Type(LLVMContext &C, TypeID tid) |
| 95 | : Context(C), ID(tid), SubclassData(0) {} |
| 96 | ~Type() = default; |
| 97 | |
| 98 | unsigned getSubclassData() const { return SubclassData; } |
| 99 | |
| 100 | void setSubclassData(unsigned val) { |
| 101 | SubclassData = val; |
| 102 | // Ensure we don't have any accidental truncation. |
| 103 | assert(getSubclassData() == val && "Subclass data too large for field" ); |
| 104 | } |
| 105 | |
| 106 | /// Keeps track of how many Type*'s there are in the ContainedTys list. |
| 107 | unsigned NumContainedTys = 0; |
| 108 | |
| 109 | /// A pointer to the array of Types contained by this Type. For example, this |
| 110 | /// includes the arguments of a function type, the elements of a structure, |
| 111 | /// the pointee of a pointer, the element type of an array, etc. This pointer |
| 112 | /// may be 0 for types that don't contain other types (Integer, Double, |
| 113 | /// Float). |
| 114 | Type * const *ContainedTys = nullptr; |
| 115 | |
| 116 | public: |
| 117 | /// Print the current type. |
| 118 | /// Omit the type details if \p NoDetails == true. |
| 119 | /// E.g., let %st = type { i32, i16 } |
| 120 | /// When \p NoDetails is true, we only print %st. |
| 121 | /// Put differently, \p NoDetails prints the type as if |
| 122 | /// inlined with the operands when printing an instruction. |
| 123 | void print(raw_ostream &O, bool IsForDebug = false, |
| 124 | bool NoDetails = false) const; |
| 125 | |
| 126 | void dump() const; |
| 127 | |
| 128 | /// Return the LLVMContext in which this type was uniqued. |
| 129 | LLVMContext &getContext() const { return Context; } |
| 130 | |
| 131 | //===--------------------------------------------------------------------===// |
| 132 | // Accessors for working with types. |
| 133 | // |
| 134 | |
| 135 | /// Return the type id for the type. This will return one of the TypeID enum |
| 136 | /// elements defined above. |
| 137 | TypeID getTypeID() const { return ID; } |
| 138 | |
| 139 | /// Return true if this is 'void'. |
| 140 | bool isVoidTy() const { return getTypeID() == VoidTyID; } |
| 141 | |
| 142 | /// Return true if this is 'half', a 16-bit IEEE fp type. |
| 143 | bool isHalfTy() const { return getTypeID() == HalfTyID; } |
| 144 | |
| 145 | /// Return true if this is 'bfloat', a 16-bit bfloat type. |
| 146 | bool isBFloatTy() const { return getTypeID() == BFloatTyID; } |
| 147 | |
| 148 | /// Return true if this is a 16-bit float type. |
| 149 | bool is16bitFPTy() const { |
| 150 | return getTypeID() == BFloatTyID || getTypeID() == HalfTyID; |
| 151 | } |
| 152 | |
| 153 | /// Return true if this is 'float', a 32-bit IEEE fp type. |
| 154 | bool isFloatTy() const { return getTypeID() == FloatTyID; } |
| 155 | |
| 156 | /// Return true if this is 'double', a 64-bit IEEE fp type. |
| 157 | bool isDoubleTy() const { return getTypeID() == DoubleTyID; } |
| 158 | |
| 159 | /// Return true if this is x86 long double. |
| 160 | bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } |
| 161 | |
| 162 | /// Return true if this is 'fp128'. |
| 163 | bool isFP128Ty() const { return getTypeID() == FP128TyID; } |
| 164 | |
| 165 | /// Return true if this is powerpc long double. |
| 166 | bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } |
| 167 | |
| 168 | /// Return true if this is a well-behaved IEEE-like type, which has a IEEE |
| 169 | /// compatible layout as defined by isIEEE(), and does not have unnormal |
| 170 | /// values |
| 171 | bool isIEEELikeFPTy() const { |
| 172 | switch (getTypeID()) { |
| 173 | case DoubleTyID: |
| 174 | case FloatTyID: |
| 175 | case HalfTyID: |
| 176 | case BFloatTyID: |
| 177 | case FP128TyID: |
| 178 | return true; |
| 179 | default: |
| 180 | return false; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | /// Return true if this is one of the floating-point types |
| 185 | bool isFloatingPointTy() const { |
| 186 | return isIEEELikeFPTy() || getTypeID() == X86_FP80TyID || |
| 187 | getTypeID() == PPC_FP128TyID; |
| 188 | } |
| 189 | |
| 190 | /// Returns true if this is a floating-point type that is an unevaluated sum |
| 191 | /// of multiple floating-point units. |
| 192 | /// An example of such a type is ppc_fp128, also known as double-double, which |
| 193 | /// consists of two IEEE 754 doubles. |
| 194 | bool isMultiUnitFPType() const { |
| 195 | return getTypeID() == PPC_FP128TyID; |
| 196 | } |
| 197 | |
| 198 | const fltSemantics &getFltSemantics() const; |
| 199 | |
| 200 | /// Return true if this is X86 MMX. |
| 201 | bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } |
| 202 | |
| 203 | /// Return true if this is X86 AMX. |
| 204 | bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } |
| 205 | |
| 206 | /// Return true if this is a target extension type. |
| 207 | bool isTargetExtTy() const { return getTypeID() == TargetExtTyID; } |
| 208 | |
| 209 | /// Return true if this is a target extension type with a scalable layout. |
| 210 | bool isScalableTargetExtTy() const; |
| 211 | |
| 212 | /// Return true if this is a scalable vector type or a target extension type |
| 213 | /// with a scalable layout. |
| 214 | bool isScalableTy() const; |
| 215 | |
| 216 | /// Return true if this is a FP type or a vector of FP. |
| 217 | bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } |
| 218 | |
| 219 | /// Return true if this is 'label'. |
| 220 | bool isLabelTy() const { return getTypeID() == LabelTyID; } |
| 221 | |
| 222 | /// Return true if this is 'metadata'. |
| 223 | bool isMetadataTy() const { return getTypeID() == MetadataTyID; } |
| 224 | |
| 225 | /// Return true if this is 'token'. |
| 226 | bool isTokenTy() const { return getTypeID() == TokenTyID; } |
| 227 | |
| 228 | /// True if this is an instance of IntegerType. |
| 229 | bool isIntegerTy() const { return getTypeID() == IntegerTyID; } |
| 230 | |
| 231 | /// Return true if this is an IntegerType of the given width. |
| 232 | bool isIntegerTy(unsigned Bitwidth) const; |
| 233 | |
| 234 | /// Return true if this is an integer type or a vector of integer types. |
| 235 | bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } |
| 236 | |
| 237 | /// Return true if this is an integer type or a vector of integer types of |
| 238 | /// the given width. |
| 239 | bool isIntOrIntVectorTy(unsigned BitWidth) const { |
| 240 | return getScalarType()->isIntegerTy(Bitwidth: BitWidth); |
| 241 | } |
| 242 | |
| 243 | /// Return true if this is an integer type or a pointer type. |
| 244 | bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } |
| 245 | |
| 246 | /// True if this is an instance of FunctionType. |
| 247 | bool isFunctionTy() const { return getTypeID() == FunctionTyID; } |
| 248 | |
| 249 | /// True if this is an instance of StructType. |
| 250 | bool isStructTy() const { return getTypeID() == StructTyID; } |
| 251 | |
| 252 | /// True if this is an instance of ArrayType. |
| 253 | bool isArrayTy() const { return getTypeID() == ArrayTyID; } |
| 254 | |
| 255 | /// True if this is an instance of PointerType. |
| 256 | bool isPointerTy() const { return getTypeID() == PointerTyID; } |
| 257 | |
| 258 | /// True if this is an instance of an opaque PointerType. |
| 259 | LLVM_DEPRECATED("Use isPointerTy() instead" , "isPointerTy" ) |
| 260 | bool isOpaquePointerTy() const { return isPointerTy(); }; |
| 261 | |
| 262 | /// Return true if this is a pointer type or a vector of pointer types. |
| 263 | bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } |
| 264 | |
| 265 | /// True if this is an instance of VectorType. |
| 266 | inline bool isVectorTy() const { |
| 267 | return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; |
| 268 | } |
| 269 | |
| 270 | /// Return true if this type could be converted with a lossless BitCast to |
| 271 | /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the |
| 272 | /// same size only where no re-interpretation of the bits is done. |
| 273 | /// Determine if this type could be losslessly bitcast to Ty |
| 274 | bool canLosslesslyBitCastTo(Type *Ty) const; |
| 275 | |
| 276 | /// Return true if this type is empty, that is, it has no elements or all of |
| 277 | /// its elements are empty. |
| 278 | bool isEmptyTy() const; |
| 279 | |
| 280 | /// Return true if the type is "first class", meaning it is a valid type for a |
| 281 | /// Value. |
| 282 | bool isFirstClassType() const { |
| 283 | return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; |
| 284 | } |
| 285 | |
| 286 | /// Return true if the type is a valid type for a register in codegen. This |
| 287 | /// includes all first-class types except struct and array types. |
| 288 | bool isSingleValueType() const { |
| 289 | return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || |
| 290 | isPointerTy() || isVectorTy() || isX86_AMXTy() || isTargetExtTy(); |
| 291 | } |
| 292 | |
| 293 | /// Return true if the type is an aggregate type. This means it is valid as |
| 294 | /// the first operand of an insertvalue or extractvalue instruction. This |
| 295 | /// includes struct and array types, but does not include vector types. |
| 296 | bool isAggregateType() const { |
| 297 | return getTypeID() == StructTyID || getTypeID() == ArrayTyID; |
| 298 | } |
| 299 | |
| 300 | /// Return true if it makes sense to take the size of this type. To get the |
| 301 | /// actual size for a particular target, it is reasonable to use the |
| 302 | /// DataLayout subsystem to do this. |
| 303 | bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { |
| 304 | // If it's a primitive, it is always sized. |
| 305 | if (getTypeID() == IntegerTyID || isFloatingPointTy() || |
| 306 | getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || |
| 307 | getTypeID() == X86_AMXTyID) |
| 308 | return true; |
| 309 | // If it is not something that can have a size (e.g. a function or label), |
| 310 | // it doesn't have a size. |
| 311 | if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && |
| 312 | !isVectorTy() && getTypeID() != TargetExtTyID) |
| 313 | return false; |
| 314 | // Otherwise we have to try harder to decide. |
| 315 | return isSizedDerivedType(Visited); |
| 316 | } |
| 317 | |
| 318 | /// Return the basic size of this type if it is a primitive type. These are |
| 319 | /// fixed by LLVM and are not target-dependent. |
| 320 | /// This will return zero if the type does not have a size or is not a |
| 321 | /// primitive type. |
| 322 | /// |
| 323 | /// If this is a scalable vector type, the scalable property will be set and |
| 324 | /// the runtime size will be a positive integer multiple of the base size. |
| 325 | /// |
| 326 | /// Note that this may not reflect the size of memory allocated for an |
| 327 | /// instance of the type or the number of bytes that are written when an |
| 328 | /// instance of the type is stored to memory. The DataLayout class provides |
| 329 | /// additional query functions to provide this information. |
| 330 | /// |
| 331 | TypeSize getPrimitiveSizeInBits() const LLVM_READONLY; |
| 332 | |
| 333 | /// If this is a vector type, return the getPrimitiveSizeInBits value for the |
| 334 | /// element type. Otherwise return the getPrimitiveSizeInBits value for this |
| 335 | /// type. |
| 336 | unsigned getScalarSizeInBits() const LLVM_READONLY; |
| 337 | |
| 338 | /// Return the width of the mantissa of this type. This is only valid on |
| 339 | /// floating-point types. If the FP type does not have a stable mantissa (e.g. |
| 340 | /// ppc long double), this method returns -1. |
| 341 | int getFPMantissaWidth() const; |
| 342 | |
| 343 | /// Return whether the type is IEEE compatible, as defined by the eponymous |
| 344 | /// method in APFloat. |
| 345 | bool isIEEE() const; |
| 346 | |
| 347 | /// If this is a vector type, return the element type, otherwise return |
| 348 | /// 'this'. |
| 349 | inline Type *getScalarType() const { |
| 350 | if (isVectorTy()) |
| 351 | return getContainedType(i: 0); |
| 352 | return const_cast<Type *>(this); |
| 353 | } |
| 354 | |
| 355 | //===--------------------------------------------------------------------===// |
| 356 | // Type Iteration support. |
| 357 | // |
| 358 | using subtype_iterator = Type * const *; |
| 359 | |
| 360 | subtype_iterator subtype_begin() const { return ContainedTys; } |
| 361 | subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} |
| 362 | ArrayRef<Type*> subtypes() const { |
| 363 | return ArrayRef(subtype_begin(), subtype_end()); |
| 364 | } |
| 365 | |
| 366 | using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; |
| 367 | |
| 368 | subtype_reverse_iterator subtype_rbegin() const { |
| 369 | return subtype_reverse_iterator(subtype_end()); |
| 370 | } |
| 371 | subtype_reverse_iterator subtype_rend() const { |
| 372 | return subtype_reverse_iterator(subtype_begin()); |
| 373 | } |
| 374 | |
| 375 | /// This method is used to implement the type iterator (defined at the end of |
| 376 | /// the file). For derived types, this returns the types 'contained' in the |
| 377 | /// derived type. |
| 378 | Type *getContainedType(unsigned i) const { |
| 379 | assert(i < NumContainedTys && "Index out of range!" ); |
| 380 | return ContainedTys[i]; |
| 381 | } |
| 382 | |
| 383 | /// Return the number of types in the derived type. |
| 384 | unsigned getNumContainedTypes() const { return NumContainedTys; } |
| 385 | |
| 386 | //===--------------------------------------------------------------------===// |
| 387 | // Helper methods corresponding to subclass methods. This forces a cast to |
| 388 | // the specified subclass and calls its accessor. "getArrayNumElements" (for |
| 389 | // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is |
| 390 | // only intended to cover the core methods that are frequently used, helper |
| 391 | // methods should not be added here. |
| 392 | |
| 393 | inline unsigned getIntegerBitWidth() const; |
| 394 | |
| 395 | inline Type *getFunctionParamType(unsigned i) const; |
| 396 | inline unsigned getFunctionNumParams() const; |
| 397 | inline bool isFunctionVarArg() const; |
| 398 | |
| 399 | inline StringRef getStructName() const; |
| 400 | inline unsigned getStructNumElements() const; |
| 401 | inline Type *getStructElementType(unsigned N) const; |
| 402 | |
| 403 | inline uint64_t getArrayNumElements() const; |
| 404 | |
| 405 | Type *getArrayElementType() const { |
| 406 | assert(getTypeID() == ArrayTyID); |
| 407 | return ContainedTys[0]; |
| 408 | } |
| 409 | |
| 410 | inline StringRef getTargetExtName() const; |
| 411 | |
| 412 | /// Only use this method in code that is not reachable with opaque pointers, |
| 413 | /// or part of deprecated methods that will be removed as part of the opaque |
| 414 | /// pointers transition. |
| 415 | [[deprecated("Pointers no longer have element types" )]] |
| 416 | Type *getNonOpaquePointerElementType() const { |
| 417 | llvm_unreachable("Pointers no longer have element types" ); |
| 418 | } |
| 419 | |
| 420 | /// Given vector type, change the element type, |
| 421 | /// whilst keeping the old number of elements. |
| 422 | /// For non-vectors simply returns \p EltTy. |
| 423 | inline Type *getWithNewType(Type *EltTy) const; |
| 424 | |
| 425 | /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, |
| 426 | /// whilst keeping the old number of lanes. |
| 427 | inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; |
| 428 | |
| 429 | /// Given scalar/vector integer type, returns a type with elements twice as |
| 430 | /// wide as in the original type. For vectors, preserves element count. |
| 431 | inline Type *getExtendedType() const; |
| 432 | |
| 433 | /// Get the address space of this pointer or pointer vector type. |
| 434 | inline unsigned getPointerAddressSpace() const; |
| 435 | |
| 436 | //===--------------------------------------------------------------------===// |
| 437 | // Static members exported by the Type class itself. Useful for getting |
| 438 | // instances of Type. |
| 439 | // |
| 440 | |
| 441 | /// Return a type based on an identifier. |
| 442 | static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); |
| 443 | |
| 444 | //===--------------------------------------------------------------------===// |
| 445 | // These are the builtin types that are always available. |
| 446 | // |
| 447 | static Type *getVoidTy(LLVMContext &C); |
| 448 | static Type *getLabelTy(LLVMContext &C); |
| 449 | static Type *getHalfTy(LLVMContext &C); |
| 450 | static Type *getBFloatTy(LLVMContext &C); |
| 451 | static Type *getFloatTy(LLVMContext &C); |
| 452 | static Type *getDoubleTy(LLVMContext &C); |
| 453 | static Type *getMetadataTy(LLVMContext &C); |
| 454 | static Type *getX86_FP80Ty(LLVMContext &C); |
| 455 | static Type *getFP128Ty(LLVMContext &C); |
| 456 | static Type *getPPC_FP128Ty(LLVMContext &C); |
| 457 | static Type *getX86_MMXTy(LLVMContext &C); |
| 458 | static Type *getX86_AMXTy(LLVMContext &C); |
| 459 | static Type *getTokenTy(LLVMContext &C); |
| 460 | static IntegerType *getIntNTy(LLVMContext &C, unsigned N); |
| 461 | static IntegerType *getInt1Ty(LLVMContext &C); |
| 462 | static IntegerType *getInt8Ty(LLVMContext &C); |
| 463 | static IntegerType *getInt16Ty(LLVMContext &C); |
| 464 | static IntegerType *getInt32Ty(LLVMContext &C); |
| 465 | static IntegerType *getInt64Ty(LLVMContext &C); |
| 466 | static IntegerType *getInt128Ty(LLVMContext &C); |
| 467 | template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { |
| 468 | int noOfBits = sizeof(ScalarTy) * CHAR_BIT; |
| 469 | if (std::is_integral<ScalarTy>::value) { |
| 470 | return (Type*) Type::getIntNTy(C, N: noOfBits); |
| 471 | } else if (std::is_floating_point<ScalarTy>::value) { |
| 472 | switch (noOfBits) { |
| 473 | case 32: |
| 474 | return Type::getFloatTy(C); |
| 475 | case 64: |
| 476 | return Type::getDoubleTy(C); |
| 477 | } |
| 478 | } |
| 479 | llvm_unreachable("Unsupported type in Type::getScalarTy" ); |
| 480 | } |
| 481 | static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S); |
| 482 | |
| 483 | //===--------------------------------------------------------------------===// |
| 484 | // Convenience methods for getting pointer types with one of the above builtin |
| 485 | // types as pointee. |
| 486 | // |
| 487 | static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); |
| 488 | static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
| 489 | static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
| 490 | static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); |
| 491 | static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); |
| 492 | static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); |
| 493 | static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); |
| 494 | static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); |
| 495 | static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0); |
| 496 | static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); |
| 497 | static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); |
| 498 | static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); |
| 499 | static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); |
| 500 | static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); |
| 501 | static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); |
| 502 | static Type *getWasm_ExternrefTy(LLVMContext &C); |
| 503 | static Type *getWasm_FuncrefTy(LLVMContext &C); |
| 504 | |
| 505 | /// Return a pointer to the current type. This is equivalent to |
| 506 | /// PointerType::get(Foo, AddrSpace). |
| 507 | /// TODO: Remove this after opaque pointer transition is complete. |
| 508 | PointerType *getPointerTo(unsigned AddrSpace = 0) const; |
| 509 | |
| 510 | private: |
| 511 | /// Derived types like structures and arrays are sized iff all of the members |
| 512 | /// of the type are sized as well. Since asking for their size is relatively |
| 513 | /// uncommon, move this operation out-of-line. |
| 514 | bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; |
| 515 | }; |
| 516 | |
| 517 | // Printing of types. |
| 518 | inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { |
| 519 | T.print(O&: OS); |
| 520 | return OS; |
| 521 | } |
| 522 | |
| 523 | // allow isa<PointerType>(x) to work without DerivedTypes.h included. |
| 524 | template <> struct isa_impl<PointerType, Type> { |
| 525 | static inline bool doit(const Type &Ty) { |
| 526 | return Ty.getTypeID() == Type::PointerTyID; |
| 527 | } |
| 528 | }; |
| 529 | |
| 530 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
| 531 | DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef) |
| 532 | |
| 533 | /* Specialized opaque type conversions. |
| 534 | */ |
| 535 | inline Type **unwrap(LLVMTypeRef* Tys) { |
| 536 | return reinterpret_cast<Type**>(Tys); |
| 537 | } |
| 538 | |
| 539 | inline LLVMTypeRef *wrap(Type **Tys) { |
| 540 | return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); |
| 541 | } |
| 542 | |
| 543 | } // end namespace llvm |
| 544 | |
| 545 | #endif // LLVM_IR_TYPE_H |
| 546 | |