| 1 | //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declarations of classes that represent "derived |
| 10 | // types". These are things like "arrays of x" or "structure of x, y, z" or |
| 11 | // "function returning x taking (y,z) as parameters", etc... |
| 12 | // |
| 13 | // The implementations of these classes live in the Type.cpp file. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_IR_DERIVEDTYPES_H |
| 18 | #define LLVM_IR_DERIVEDTYPES_H |
| 19 | |
| 20 | #include "llvm/ADT/ArrayRef.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/StringRef.h" |
| 23 | #include "llvm/IR/Type.h" |
| 24 | #include "llvm/Support/Casting.h" |
| 25 | #include "llvm/Support/Compiler.h" |
| 26 | #include "llvm/Support/TypeSize.h" |
| 27 | #include <cassert> |
| 28 | #include <cstdint> |
| 29 | |
| 30 | namespace llvm { |
| 31 | |
| 32 | class Value; |
| 33 | class APInt; |
| 34 | class LLVMContext; |
| 35 | |
| 36 | /// Class to represent integer types. Note that this class is also used to |
| 37 | /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and |
| 38 | /// Int64Ty. |
| 39 | /// Integer representation type |
| 40 | class IntegerType : public Type { |
| 41 | friend class LLVMContextImpl; |
| 42 | |
| 43 | protected: |
| 44 | explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){ |
| 45 | setSubclassData(NumBits); |
| 46 | } |
| 47 | |
| 48 | public: |
| 49 | /// This enum is just used to hold constants we need for IntegerType. |
| 50 | enum { |
| 51 | MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified |
| 52 | MAX_INT_BITS = (1<<23) ///< Maximum number of bits that can be specified |
| 53 | ///< Note that bit width is stored in the Type classes SubclassData field |
| 54 | ///< which has 24 bits. SelectionDAG type legalization can require a |
| 55 | ///< power of 2 IntegerType, so limit to the largest representable power |
| 56 | ///< of 2, 8388608. |
| 57 | }; |
| 58 | |
| 59 | /// This static method is the primary way of constructing an IntegerType. |
| 60 | /// If an IntegerType with the same NumBits value was previously instantiated, |
| 61 | /// that instance will be returned. Otherwise a new one will be created. Only |
| 62 | /// one instance with a given NumBits value is ever created. |
| 63 | /// Get or create an IntegerType instance. |
| 64 | static IntegerType *get(LLVMContext &C, unsigned NumBits); |
| 65 | |
| 66 | /// Returns type twice as wide the input type. |
| 67 | IntegerType *getExtendedType() const { |
| 68 | return Type::getIntNTy(C&: getContext(), N: 2 * getScalarSizeInBits()); |
| 69 | } |
| 70 | |
| 71 | /// Get the number of bits in this IntegerType |
| 72 | unsigned getBitWidth() const { return getSubclassData(); } |
| 73 | |
| 74 | /// Return a bitmask with ones set for all of the bits that can be set by an |
| 75 | /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc. |
| 76 | uint64_t getBitMask() const { |
| 77 | return ~uint64_t(0UL) >> (64-getBitWidth()); |
| 78 | } |
| 79 | |
| 80 | /// Return a uint64_t with just the most significant bit set (the sign bit, if |
| 81 | /// the value is treated as a signed number). |
| 82 | uint64_t getSignBit() const { |
| 83 | return 1ULL << (getBitWidth()-1); |
| 84 | } |
| 85 | |
| 86 | /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc. |
| 87 | /// @returns a bit mask with ones set for all the bits of this type. |
| 88 | /// Get a bit mask for this type. |
| 89 | APInt getMask() const; |
| 90 | |
| 91 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 92 | static bool classof(const Type *T) { |
| 93 | return T->getTypeID() == IntegerTyID; |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | unsigned Type::getIntegerBitWidth() const { |
| 98 | return cast<IntegerType>(Val: this)->getBitWidth(); |
| 99 | } |
| 100 | |
| 101 | /// Class to represent function types |
| 102 | /// |
| 103 | class FunctionType : public Type { |
| 104 | FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs); |
| 105 | |
| 106 | public: |
| 107 | FunctionType(const FunctionType &) = delete; |
| 108 | FunctionType &operator=(const FunctionType &) = delete; |
| 109 | |
| 110 | /// This static method is the primary way of constructing a FunctionType. |
| 111 | static FunctionType *get(Type *Result, |
| 112 | ArrayRef<Type*> Params, bool isVarArg); |
| 113 | |
| 114 | /// Create a FunctionType taking no parameters. |
| 115 | static FunctionType *get(Type *Result, bool isVarArg); |
| 116 | |
| 117 | /// Return true if the specified type is valid as a return type. |
| 118 | static bool isValidReturnType(Type *RetTy); |
| 119 | |
| 120 | /// Return true if the specified type is valid as an argument type. |
| 121 | static bool isValidArgumentType(Type *ArgTy); |
| 122 | |
| 123 | bool isVarArg() const { return getSubclassData()!=0; } |
| 124 | Type *getReturnType() const { return ContainedTys[0]; } |
| 125 | |
| 126 | using param_iterator = Type::subtype_iterator; |
| 127 | |
| 128 | param_iterator param_begin() const { return ContainedTys + 1; } |
| 129 | param_iterator param_end() const { return &ContainedTys[NumContainedTys]; } |
| 130 | ArrayRef<Type *> params() const { |
| 131 | return ArrayRef(param_begin(), param_end()); |
| 132 | } |
| 133 | |
| 134 | /// Parameter type accessors. |
| 135 | Type *getParamType(unsigned i) const { return ContainedTys[i+1]; } |
| 136 | |
| 137 | /// Return the number of fixed parameters this function type requires. |
| 138 | /// This does not consider varargs. |
| 139 | unsigned getNumParams() const { return NumContainedTys - 1; } |
| 140 | |
| 141 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 142 | static bool classof(const Type *T) { |
| 143 | return T->getTypeID() == FunctionTyID; |
| 144 | } |
| 145 | }; |
| 146 | static_assert(alignof(FunctionType) >= alignof(Type *), |
| 147 | "Alignment sufficient for objects appended to FunctionType" ); |
| 148 | |
| 149 | bool Type::isFunctionVarArg() const { |
| 150 | return cast<FunctionType>(Val: this)->isVarArg(); |
| 151 | } |
| 152 | |
| 153 | Type *Type::getFunctionParamType(unsigned i) const { |
| 154 | return cast<FunctionType>(Val: this)->getParamType(i); |
| 155 | } |
| 156 | |
| 157 | unsigned Type::getFunctionNumParams() const { |
| 158 | return cast<FunctionType>(Val: this)->getNumParams(); |
| 159 | } |
| 160 | |
| 161 | /// A handy container for a FunctionType+Callee-pointer pair, which can be |
| 162 | /// passed around as a single entity. This assists in replacing the use of |
| 163 | /// PointerType::getElementType() to access the function's type, since that's |
| 164 | /// slated for removal as part of the [opaque pointer types] project. |
| 165 | class FunctionCallee { |
| 166 | public: |
| 167 | // Allow implicit conversion from types which have a getFunctionType member |
| 168 | // (e.g. Function and InlineAsm). |
| 169 | template <typename T, typename U = decltype(&T::getFunctionType)> |
| 170 | FunctionCallee(T *Fn) |
| 171 | : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {} |
| 172 | |
| 173 | FunctionCallee(FunctionType *FnTy, Value *Callee) |
| 174 | : FnTy(FnTy), Callee(Callee) { |
| 175 | assert((FnTy == nullptr) == (Callee == nullptr)); |
| 176 | } |
| 177 | |
| 178 | FunctionCallee(std::nullptr_t) {} |
| 179 | |
| 180 | FunctionCallee() = default; |
| 181 | |
| 182 | FunctionType *getFunctionType() { return FnTy; } |
| 183 | |
| 184 | Value *getCallee() { return Callee; } |
| 185 | |
| 186 | explicit operator bool() { return Callee; } |
| 187 | |
| 188 | private: |
| 189 | FunctionType *FnTy = nullptr; |
| 190 | Value *Callee = nullptr; |
| 191 | }; |
| 192 | |
| 193 | /// Class to represent struct types. There are two different kinds of struct |
| 194 | /// types: Literal structs and Identified structs. |
| 195 | /// |
| 196 | /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must |
| 197 | /// always have a body when created. You can get one of these by using one of |
| 198 | /// the StructType::get() forms. |
| 199 | /// |
| 200 | /// Identified structs (e.g. %foo or %42) may optionally have a name and are not |
| 201 | /// uniqued. The names for identified structs are managed at the LLVMContext |
| 202 | /// level, so there can only be a single identified struct with a given name in |
| 203 | /// a particular LLVMContext. Identified structs may also optionally be opaque |
| 204 | /// (have no body specified). You get one of these by using one of the |
| 205 | /// StructType::create() forms. |
| 206 | /// |
| 207 | /// Independent of what kind of struct you have, the body of a struct type are |
| 208 | /// laid out in memory consecutively with the elements directly one after the |
| 209 | /// other (if the struct is packed) or (if not packed) with padding between the |
| 210 | /// elements as defined by DataLayout (which is required to match what the code |
| 211 | /// generator for a target expects). |
| 212 | /// |
| 213 | class StructType : public Type { |
| 214 | StructType(LLVMContext &C) : Type(C, StructTyID) {} |
| 215 | |
| 216 | enum { |
| 217 | /// This is the contents of the SubClassData field. |
| 218 | SCDB_HasBody = 1, |
| 219 | SCDB_Packed = 2, |
| 220 | SCDB_IsLiteral = 4, |
| 221 | SCDB_IsSized = 8, |
| 222 | SCDB_ContainsScalableVector = 16, |
| 223 | SCDB_NotContainsScalableVector = 32 |
| 224 | }; |
| 225 | |
| 226 | /// For a named struct that actually has a name, this is a pointer to the |
| 227 | /// symbol table entry (maintained by LLVMContext) for the struct. |
| 228 | /// This is null if the type is an literal struct or if it is a identified |
| 229 | /// type that has an empty name. |
| 230 | void *SymbolTableEntry = nullptr; |
| 231 | |
| 232 | public: |
| 233 | StructType(const StructType &) = delete; |
| 234 | StructType &operator=(const StructType &) = delete; |
| 235 | |
| 236 | /// This creates an identified struct. |
| 237 | static StructType *create(LLVMContext &Context, StringRef Name); |
| 238 | static StructType *create(LLVMContext &Context); |
| 239 | |
| 240 | static StructType *create(ArrayRef<Type *> Elements, StringRef Name, |
| 241 | bool isPacked = false); |
| 242 | static StructType *create(ArrayRef<Type *> Elements); |
| 243 | static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements, |
| 244 | StringRef Name, bool isPacked = false); |
| 245 | static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements); |
| 246 | template <class... Tys> |
| 247 | static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *> |
| 248 | create(StringRef Name, Type *elt1, Tys *... elts) { |
| 249 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
| 250 | return create(Elements: ArrayRef<Type *>({elt1, elts...}), Name); |
| 251 | } |
| 252 | |
| 253 | /// This static method is the primary way to create a literal StructType. |
| 254 | static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements, |
| 255 | bool isPacked = false); |
| 256 | |
| 257 | /// Create an empty structure type. |
| 258 | static StructType *get(LLVMContext &Context, bool isPacked = false); |
| 259 | |
| 260 | /// This static method is a convenience method for creating structure types by |
| 261 | /// specifying the elements as arguments. Note that this method always returns |
| 262 | /// a non-packed struct, and requires at least one element type. |
| 263 | template <class... Tys> |
| 264 | static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *> |
| 265 | get(Type *elt1, Tys *... elts) { |
| 266 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
| 267 | LLVMContext &Ctx = elt1->getContext(); |
| 268 | return StructType::get(Context&: Ctx, Elements: ArrayRef<Type *>({elt1, elts...})); |
| 269 | } |
| 270 | |
| 271 | /// Return the type with the specified name, or null if there is none by that |
| 272 | /// name. |
| 273 | static StructType *getTypeByName(LLVMContext &C, StringRef Name); |
| 274 | |
| 275 | bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; } |
| 276 | |
| 277 | /// Return true if this type is uniqued by structural equivalence, false if it |
| 278 | /// is a struct definition. |
| 279 | bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; } |
| 280 | |
| 281 | /// Return true if this is a type with an identity that has no body specified |
| 282 | /// yet. These prints as 'opaque' in .ll files. |
| 283 | bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; } |
| 284 | |
| 285 | /// isSized - Return true if this is a sized type. |
| 286 | bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const; |
| 287 | |
| 288 | /// Returns true if this struct contains a scalable vector. |
| 289 | bool |
| 290 | containsScalableVectorType(SmallPtrSetImpl<Type *> *Visited = nullptr) const; |
| 291 | |
| 292 | /// Returns true if this struct contains homogeneous scalable vector types. |
| 293 | /// Note that the definition of homogeneous scalable vector type is not |
| 294 | /// recursive here. That means the following structure will return false |
| 295 | /// when calling this function. |
| 296 | /// {{<vscale x 2 x i32>, <vscale x 4 x i64>}, |
| 297 | /// {<vscale x 2 x i32>, <vscale x 4 x i64>}} |
| 298 | bool containsHomogeneousScalableVectorTypes() const; |
| 299 | |
| 300 | /// Return true if this is a named struct that has a non-empty name. |
| 301 | bool hasName() const { return SymbolTableEntry != nullptr; } |
| 302 | |
| 303 | /// Return the name for this struct type if it has an identity. |
| 304 | /// This may return an empty string for an unnamed struct type. Do not call |
| 305 | /// this on an literal type. |
| 306 | StringRef getName() const; |
| 307 | |
| 308 | /// Change the name of this type to the specified name, or to a name with a |
| 309 | /// suffix if there is a collision. Do not call this on an literal type. |
| 310 | void setName(StringRef Name); |
| 311 | |
| 312 | /// Specify a body for an opaque identified type. |
| 313 | void setBody(ArrayRef<Type*> Elements, bool isPacked = false); |
| 314 | |
| 315 | template <typename... Tys> |
| 316 | std::enable_if_t<are_base_of<Type, Tys...>::value, void> |
| 317 | setBody(Type *elt1, Tys *... elts) { |
| 318 | assert(elt1 && "Cannot create a struct type with no elements with this" ); |
| 319 | setBody(Elements: ArrayRef<Type *>({elt1, elts...})); |
| 320 | } |
| 321 | |
| 322 | /// Return true if the specified type is valid as a element type. |
| 323 | static bool isValidElementType(Type *ElemTy); |
| 324 | |
| 325 | // Iterator access to the elements. |
| 326 | using element_iterator = Type::subtype_iterator; |
| 327 | |
| 328 | element_iterator element_begin() const { return ContainedTys; } |
| 329 | element_iterator element_end() const { return &ContainedTys[NumContainedTys];} |
| 330 | ArrayRef<Type *> elements() const { |
| 331 | return ArrayRef(element_begin(), element_end()); |
| 332 | } |
| 333 | |
| 334 | /// Return true if this is layout identical to the specified struct. |
| 335 | bool isLayoutIdentical(StructType *Other) const; |
| 336 | |
| 337 | /// Random access to the elements |
| 338 | unsigned getNumElements() const { return NumContainedTys; } |
| 339 | Type *getElementType(unsigned N) const { |
| 340 | assert(N < NumContainedTys && "Element number out of range!" ); |
| 341 | return ContainedTys[N]; |
| 342 | } |
| 343 | /// Given an index value into the type, return the type of the element. |
| 344 | Type *getTypeAtIndex(const Value *V) const; |
| 345 | Type *getTypeAtIndex(unsigned N) const { return getElementType(N); } |
| 346 | bool indexValid(const Value *V) const; |
| 347 | bool indexValid(unsigned Idx) const { return Idx < getNumElements(); } |
| 348 | |
| 349 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 350 | static bool classof(const Type *T) { |
| 351 | return T->getTypeID() == StructTyID; |
| 352 | } |
| 353 | }; |
| 354 | |
| 355 | StringRef Type::getStructName() const { |
| 356 | return cast<StructType>(Val: this)->getName(); |
| 357 | } |
| 358 | |
| 359 | unsigned Type::getStructNumElements() const { |
| 360 | return cast<StructType>(Val: this)->getNumElements(); |
| 361 | } |
| 362 | |
| 363 | Type *Type::getStructElementType(unsigned N) const { |
| 364 | return cast<StructType>(Val: this)->getElementType(N); |
| 365 | } |
| 366 | |
| 367 | /// Class to represent array types. |
| 368 | class ArrayType : public Type { |
| 369 | /// The element type of the array. |
| 370 | Type *ContainedType; |
| 371 | /// Number of elements in the array. |
| 372 | uint64_t NumElements; |
| 373 | |
| 374 | ArrayType(Type *ElType, uint64_t NumEl); |
| 375 | |
| 376 | public: |
| 377 | ArrayType(const ArrayType &) = delete; |
| 378 | ArrayType &operator=(const ArrayType &) = delete; |
| 379 | |
| 380 | uint64_t getNumElements() const { return NumElements; } |
| 381 | Type *getElementType() const { return ContainedType; } |
| 382 | |
| 383 | /// This static method is the primary way to construct an ArrayType |
| 384 | static ArrayType *get(Type *ElementType, uint64_t NumElements); |
| 385 | |
| 386 | /// Return true if the specified type is valid as a element type. |
| 387 | static bool isValidElementType(Type *ElemTy); |
| 388 | |
| 389 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 390 | static bool classof(const Type *T) { |
| 391 | return T->getTypeID() == ArrayTyID; |
| 392 | } |
| 393 | }; |
| 394 | |
| 395 | uint64_t Type::getArrayNumElements() const { |
| 396 | return cast<ArrayType>(Val: this)->getNumElements(); |
| 397 | } |
| 398 | |
| 399 | /// Base class of all SIMD vector types |
| 400 | class VectorType : public Type { |
| 401 | /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the |
| 402 | /// minimum number of elements of type Ty contained within the vector, and |
| 403 | /// 'vscale x' indicates that the total element count is an integer multiple |
| 404 | /// of 'n', where the multiple is either guaranteed to be one, or is |
| 405 | /// statically unknown at compile time. |
| 406 | /// |
| 407 | /// If the multiple is known to be 1, then the extra term is discarded in |
| 408 | /// textual IR: |
| 409 | /// |
| 410 | /// <4 x i32> - a vector containing 4 i32s |
| 411 | /// <vscale x 4 x i32> - a vector containing an unknown integer multiple |
| 412 | /// of 4 i32s |
| 413 | |
| 414 | /// The element type of the vector. |
| 415 | Type *ContainedType; |
| 416 | |
| 417 | protected: |
| 418 | /// The element quantity of this vector. The meaning of this value depends |
| 419 | /// on the type of vector: |
| 420 | /// - For FixedVectorType = <ElementQuantity x ty>, there are |
| 421 | /// exactly ElementQuantity elements in this vector. |
| 422 | /// - For ScalableVectorType = <vscale x ElementQuantity x ty>, |
| 423 | /// there are vscale * ElementQuantity elements in this vector, where |
| 424 | /// vscale is a runtime-constant integer greater than 0. |
| 425 | const unsigned ElementQuantity; |
| 426 | |
| 427 | VectorType(Type *ElType, unsigned EQ, Type::TypeID TID); |
| 428 | |
| 429 | public: |
| 430 | VectorType(const VectorType &) = delete; |
| 431 | VectorType &operator=(const VectorType &) = delete; |
| 432 | |
| 433 | Type *getElementType() const { return ContainedType; } |
| 434 | |
| 435 | /// This static method is the primary way to construct an VectorType. |
| 436 | static VectorType *get(Type *ElementType, ElementCount EC); |
| 437 | |
| 438 | static VectorType *get(Type *ElementType, unsigned NumElements, |
| 439 | bool Scalable) { |
| 440 | return VectorType::get(ElementType, |
| 441 | EC: ElementCount::get(MinVal: NumElements, Scalable)); |
| 442 | } |
| 443 | |
| 444 | static VectorType *get(Type *ElementType, const VectorType *Other) { |
| 445 | return VectorType::get(ElementType, EC: Other->getElementCount()); |
| 446 | } |
| 447 | |
| 448 | /// This static method gets a VectorType with the same number of elements as |
| 449 | /// the input type, and the element type is an integer type of the same width |
| 450 | /// as the input element type. |
| 451 | static VectorType *getInteger(VectorType *VTy) { |
| 452 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| 453 | assert(EltBits && "Element size must be of a non-zero size" ); |
| 454 | Type *EltTy = IntegerType::get(C&: VTy->getContext(), NumBits: EltBits); |
| 455 | return VectorType::get(ElementType: EltTy, EC: VTy->getElementCount()); |
| 456 | } |
| 457 | |
| 458 | /// This static method is like getInteger except that the element types are |
| 459 | /// twice as wide as the elements in the input type. |
| 460 | static VectorType *getExtendedElementVectorType(VectorType *VTy) { |
| 461 | assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints." ); |
| 462 | auto *EltTy = cast<IntegerType>(Val: VTy->getElementType()); |
| 463 | return VectorType::get(ElementType: EltTy->getExtendedType(), EC: VTy->getElementCount()); |
| 464 | } |
| 465 | |
| 466 | // This static method gets a VectorType with the same number of elements as |
| 467 | // the input type, and the element type is an integer or float type which |
| 468 | // is half as wide as the elements in the input type. |
| 469 | static VectorType *getTruncatedElementVectorType(VectorType *VTy) { |
| 470 | Type *EltTy; |
| 471 | if (VTy->getElementType()->isFloatingPointTy()) { |
| 472 | switch(VTy->getElementType()->getTypeID()) { |
| 473 | case DoubleTyID: |
| 474 | EltTy = Type::getFloatTy(C&: VTy->getContext()); |
| 475 | break; |
| 476 | case FloatTyID: |
| 477 | EltTy = Type::getHalfTy(C&: VTy->getContext()); |
| 478 | break; |
| 479 | default: |
| 480 | llvm_unreachable("Cannot create narrower fp vector element type" ); |
| 481 | } |
| 482 | } else { |
| 483 | unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); |
| 484 | assert((EltBits & 1) == 0 && |
| 485 | "Cannot truncate vector element with odd bit-width" ); |
| 486 | EltTy = IntegerType::get(C&: VTy->getContext(), NumBits: EltBits / 2); |
| 487 | } |
| 488 | return VectorType::get(ElementType: EltTy, EC: VTy->getElementCount()); |
| 489 | } |
| 490 | |
| 491 | // This static method returns a VectorType with a smaller number of elements |
| 492 | // of a larger type than the input element type. For example, a <16 x i8> |
| 493 | // subdivided twice would return <4 x i32> |
| 494 | static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) { |
| 495 | for (int i = 0; i < NumSubdivs; ++i) { |
| 496 | VTy = VectorType::getDoubleElementsVectorType(VTy); |
| 497 | VTy = VectorType::getTruncatedElementVectorType(VTy); |
| 498 | } |
| 499 | return VTy; |
| 500 | } |
| 501 | |
| 502 | /// This static method returns a VectorType with half as many elements as the |
| 503 | /// input type and the same element type. |
| 504 | static VectorType *getHalfElementsVectorType(VectorType *VTy) { |
| 505 | auto EltCnt = VTy->getElementCount(); |
| 506 | assert(EltCnt.isKnownEven() && |
| 507 | "Cannot halve vector with odd number of elements." ); |
| 508 | return VectorType::get(ElementType: VTy->getElementType(), |
| 509 | EC: EltCnt.divideCoefficientBy(RHS: 2)); |
| 510 | } |
| 511 | |
| 512 | /// This static method returns a VectorType with twice as many elements as the |
| 513 | /// input type and the same element type. |
| 514 | static VectorType *getDoubleElementsVectorType(VectorType *VTy) { |
| 515 | auto EltCnt = VTy->getElementCount(); |
| 516 | assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX && |
| 517 | "Too many elements in vector" ); |
| 518 | return VectorType::get(ElementType: VTy->getElementType(), EC: EltCnt * 2); |
| 519 | } |
| 520 | |
| 521 | /// Return true if the specified type is valid as a element type. |
| 522 | static bool isValidElementType(Type *ElemTy); |
| 523 | |
| 524 | /// Return an ElementCount instance to represent the (possibly scalable) |
| 525 | /// number of elements in the vector. |
| 526 | inline ElementCount getElementCount() const; |
| 527 | |
| 528 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 529 | static bool classof(const Type *T) { |
| 530 | return T->getTypeID() == FixedVectorTyID || |
| 531 | T->getTypeID() == ScalableVectorTyID; |
| 532 | } |
| 533 | }; |
| 534 | |
| 535 | /// Class to represent fixed width SIMD vectors |
| 536 | class FixedVectorType : public VectorType { |
| 537 | protected: |
| 538 | FixedVectorType(Type *ElTy, unsigned NumElts) |
| 539 | : VectorType(ElTy, NumElts, FixedVectorTyID) {} |
| 540 | |
| 541 | public: |
| 542 | static FixedVectorType *get(Type *ElementType, unsigned NumElts); |
| 543 | |
| 544 | static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) { |
| 545 | return get(ElementType, NumElts: FVTy->getNumElements()); |
| 546 | } |
| 547 | |
| 548 | static FixedVectorType *getInteger(FixedVectorType *VTy) { |
| 549 | return cast<FixedVectorType>(Val: VectorType::getInteger(VTy)); |
| 550 | } |
| 551 | |
| 552 | static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) { |
| 553 | return cast<FixedVectorType>(Val: VectorType::getExtendedElementVectorType(VTy)); |
| 554 | } |
| 555 | |
| 556 | static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) { |
| 557 | return cast<FixedVectorType>( |
| 558 | Val: VectorType::getTruncatedElementVectorType(VTy)); |
| 559 | } |
| 560 | |
| 561 | static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy, |
| 562 | int NumSubdivs) { |
| 563 | return cast<FixedVectorType>( |
| 564 | Val: VectorType::getSubdividedVectorType(VTy, NumSubdivs)); |
| 565 | } |
| 566 | |
| 567 | static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) { |
| 568 | return cast<FixedVectorType>(Val: VectorType::getHalfElementsVectorType(VTy)); |
| 569 | } |
| 570 | |
| 571 | static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) { |
| 572 | return cast<FixedVectorType>(Val: VectorType::getDoubleElementsVectorType(VTy)); |
| 573 | } |
| 574 | |
| 575 | static bool classof(const Type *T) { |
| 576 | return T->getTypeID() == FixedVectorTyID; |
| 577 | } |
| 578 | |
| 579 | unsigned getNumElements() const { return ElementQuantity; } |
| 580 | }; |
| 581 | |
| 582 | /// Class to represent scalable SIMD vectors |
| 583 | class ScalableVectorType : public VectorType { |
| 584 | protected: |
| 585 | ScalableVectorType(Type *ElTy, unsigned MinNumElts) |
| 586 | : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {} |
| 587 | |
| 588 | public: |
| 589 | static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts); |
| 590 | |
| 591 | static ScalableVectorType *get(Type *ElementType, |
| 592 | const ScalableVectorType *SVTy) { |
| 593 | return get(ElementType, MinNumElts: SVTy->getMinNumElements()); |
| 594 | } |
| 595 | |
| 596 | static ScalableVectorType *getInteger(ScalableVectorType *VTy) { |
| 597 | return cast<ScalableVectorType>(Val: VectorType::getInteger(VTy)); |
| 598 | } |
| 599 | |
| 600 | static ScalableVectorType * |
| 601 | getExtendedElementVectorType(ScalableVectorType *VTy) { |
| 602 | return cast<ScalableVectorType>( |
| 603 | Val: VectorType::getExtendedElementVectorType(VTy)); |
| 604 | } |
| 605 | |
| 606 | static ScalableVectorType * |
| 607 | getTruncatedElementVectorType(ScalableVectorType *VTy) { |
| 608 | return cast<ScalableVectorType>( |
| 609 | Val: VectorType::getTruncatedElementVectorType(VTy)); |
| 610 | } |
| 611 | |
| 612 | static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy, |
| 613 | int NumSubdivs) { |
| 614 | return cast<ScalableVectorType>( |
| 615 | Val: VectorType::getSubdividedVectorType(VTy, NumSubdivs)); |
| 616 | } |
| 617 | |
| 618 | static ScalableVectorType * |
| 619 | getHalfElementsVectorType(ScalableVectorType *VTy) { |
| 620 | return cast<ScalableVectorType>(Val: VectorType::getHalfElementsVectorType(VTy)); |
| 621 | } |
| 622 | |
| 623 | static ScalableVectorType * |
| 624 | getDoubleElementsVectorType(ScalableVectorType *VTy) { |
| 625 | return cast<ScalableVectorType>( |
| 626 | Val: VectorType::getDoubleElementsVectorType(VTy)); |
| 627 | } |
| 628 | |
| 629 | /// Get the minimum number of elements in this vector. The actual number of |
| 630 | /// elements in the vector is an integer multiple of this value. |
| 631 | uint64_t getMinNumElements() const { return ElementQuantity; } |
| 632 | |
| 633 | static bool classof(const Type *T) { |
| 634 | return T->getTypeID() == ScalableVectorTyID; |
| 635 | } |
| 636 | }; |
| 637 | |
| 638 | inline ElementCount VectorType::getElementCount() const { |
| 639 | return ElementCount::get(MinVal: ElementQuantity, Scalable: isa<ScalableVectorType>(Val: this)); |
| 640 | } |
| 641 | |
| 642 | /// Class to represent pointers. |
| 643 | class PointerType : public Type { |
| 644 | explicit PointerType(LLVMContext &C, unsigned AddrSpace); |
| 645 | |
| 646 | public: |
| 647 | PointerType(const PointerType &) = delete; |
| 648 | PointerType &operator=(const PointerType &) = delete; |
| 649 | |
| 650 | /// This constructs a pointer to an object of the specified type in a numbered |
| 651 | /// address space. |
| 652 | static PointerType *get(Type *ElementType, unsigned AddressSpace); |
| 653 | /// This constructs an opaque pointer to an object in a numbered address |
| 654 | /// space. |
| 655 | static PointerType *get(LLVMContext &C, unsigned AddressSpace); |
| 656 | |
| 657 | /// This constructs a pointer to an object of the specified type in the |
| 658 | /// default address space (address space zero). |
| 659 | static PointerType *getUnqual(Type *ElementType) { |
| 660 | return PointerType::get(ElementType, AddressSpace: 0); |
| 661 | } |
| 662 | |
| 663 | /// This constructs an opaque pointer to an object in the |
| 664 | /// default address space (address space zero). |
| 665 | static PointerType *getUnqual(LLVMContext &C) { |
| 666 | return PointerType::get(C, AddressSpace: 0); |
| 667 | } |
| 668 | |
| 669 | /// This constructs a pointer type with the same pointee type as input |
| 670 | /// PointerType (or opaque pointer if the input PointerType is opaque) and the |
| 671 | /// given address space. This is only useful during the opaque pointer |
| 672 | /// transition. |
| 673 | /// TODO: remove after opaque pointer transition is complete. |
| 674 | [[deprecated("Use PointerType::get() with LLVMContext argument instead" )]] |
| 675 | static PointerType *getWithSamePointeeType(PointerType *PT, |
| 676 | unsigned AddressSpace) { |
| 677 | return get(C&: PT->getContext(), AddressSpace); |
| 678 | } |
| 679 | |
| 680 | [[deprecated("Always returns true" )]] |
| 681 | bool isOpaque() const { return true; } |
| 682 | |
| 683 | /// Return true if the specified type is valid as a element type. |
| 684 | static bool isValidElementType(Type *ElemTy); |
| 685 | |
| 686 | /// Return true if we can load or store from a pointer to this type. |
| 687 | static bool isLoadableOrStorableType(Type *ElemTy); |
| 688 | |
| 689 | /// Return the address space of the Pointer type. |
| 690 | inline unsigned getAddressSpace() const { return getSubclassData(); } |
| 691 | |
| 692 | /// Return true if either this is an opaque pointer type or if this pointee |
| 693 | /// type matches Ty. Primarily used for checking if an instruction's pointer |
| 694 | /// operands are valid types. Will be useless after non-opaque pointers are |
| 695 | /// removed. |
| 696 | [[deprecated("Always returns true" )]] |
| 697 | bool isOpaqueOrPointeeTypeMatches(Type *) { |
| 698 | return true; |
| 699 | } |
| 700 | |
| 701 | /// Return true if both pointer types have the same element type. Two opaque |
| 702 | /// pointers are considered to have the same element type, while an opaque |
| 703 | /// and a non-opaque pointer have different element types. |
| 704 | /// TODO: Remove after opaque pointer transition is complete. |
| 705 | [[deprecated("Always returns true" )]] |
| 706 | bool hasSameElementTypeAs(PointerType *Other) { |
| 707 | return true; |
| 708 | } |
| 709 | |
| 710 | /// Implement support type inquiry through isa, cast, and dyn_cast. |
| 711 | static bool classof(const Type *T) { |
| 712 | return T->getTypeID() == PointerTyID; |
| 713 | } |
| 714 | }; |
| 715 | |
| 716 | Type *Type::getExtendedType() const { |
| 717 | assert( |
| 718 | isIntOrIntVectorTy() && |
| 719 | "Original type expected to be a vector of integers or a scalar integer." ); |
| 720 | if (auto *VTy = dyn_cast<VectorType>(Val: this)) |
| 721 | return VectorType::getExtendedElementVectorType( |
| 722 | VTy: const_cast<VectorType *>(VTy)); |
| 723 | return cast<IntegerType>(Val: this)->getExtendedType(); |
| 724 | } |
| 725 | |
| 726 | Type *Type::getWithNewType(Type *EltTy) const { |
| 727 | if (auto *VTy = dyn_cast<VectorType>(Val: this)) |
| 728 | return VectorType::get(ElementType: EltTy, EC: VTy->getElementCount()); |
| 729 | return EltTy; |
| 730 | } |
| 731 | |
| 732 | Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const { |
| 733 | assert( |
| 734 | isIntOrIntVectorTy() && |
| 735 | "Original type expected to be a vector of integers or a scalar integer." ); |
| 736 | return getWithNewType(EltTy: getIntNTy(C&: getContext(), N: NewBitWidth)); |
| 737 | } |
| 738 | |
| 739 | unsigned Type::getPointerAddressSpace() const { |
| 740 | return cast<PointerType>(Val: getScalarType())->getAddressSpace(); |
| 741 | } |
| 742 | |
| 743 | /// Class to represent target extensions types, which are generally |
| 744 | /// unintrospectable from target-independent optimizations. |
| 745 | /// |
| 746 | /// Target extension types have a string name, and optionally have type and/or |
| 747 | /// integer parameters. The exact meaning of any parameters is dependent on the |
| 748 | /// target. |
| 749 | class TargetExtType : public Type { |
| 750 | TargetExtType(LLVMContext &C, StringRef Name, ArrayRef<Type *> Types, |
| 751 | ArrayRef<unsigned> Ints); |
| 752 | |
| 753 | // These strings are ultimately owned by the context. |
| 754 | StringRef Name; |
| 755 | unsigned *IntParams; |
| 756 | |
| 757 | public: |
| 758 | TargetExtType(const TargetExtType &) = delete; |
| 759 | TargetExtType &operator=(const TargetExtType &) = delete; |
| 760 | |
| 761 | /// Return a target extension type having the specified name and optional |
| 762 | /// type and integer parameters. |
| 763 | static TargetExtType *get(LLVMContext &Context, StringRef Name, |
| 764 | ArrayRef<Type *> Types = std::nullopt, |
| 765 | ArrayRef<unsigned> Ints = std::nullopt); |
| 766 | |
| 767 | /// Return the name for this target extension type. Two distinct target |
| 768 | /// extension types may have the same name if their type or integer parameters |
| 769 | /// differ. |
| 770 | StringRef getName() const { return Name; } |
| 771 | |
| 772 | /// Return the type parameters for this particular target extension type. If |
| 773 | /// there are no parameters, an empty array is returned. |
| 774 | ArrayRef<Type *> type_params() const { |
| 775 | return ArrayRef(type_param_begin(), type_param_end()); |
| 776 | } |
| 777 | |
| 778 | using type_param_iterator = Type::subtype_iterator; |
| 779 | type_param_iterator type_param_begin() const { return ContainedTys; } |
| 780 | type_param_iterator type_param_end() const { |
| 781 | return &ContainedTys[NumContainedTys]; |
| 782 | } |
| 783 | |
| 784 | Type *getTypeParameter(unsigned i) const { return getContainedType(i); } |
| 785 | unsigned getNumTypeParameters() const { return getNumContainedTypes(); } |
| 786 | |
| 787 | /// Return the integer parameters for this particular target extension type. |
| 788 | /// If there are no parameters, an empty array is returned. |
| 789 | ArrayRef<unsigned> int_params() const { |
| 790 | return ArrayRef(IntParams, getNumIntParameters()); |
| 791 | } |
| 792 | |
| 793 | unsigned getIntParameter(unsigned i) const { return IntParams[i]; } |
| 794 | unsigned getNumIntParameters() const { return getSubclassData(); } |
| 795 | |
| 796 | enum Property { |
| 797 | /// zeroinitializer is valid for this target extension type. |
| 798 | HasZeroInit = 1U << 0, |
| 799 | /// This type may be used as the value type of a global variable. |
| 800 | CanBeGlobal = 1U << 1, |
| 801 | }; |
| 802 | |
| 803 | /// Returns true if the target extension type contains the given property. |
| 804 | bool hasProperty(Property Prop) const; |
| 805 | |
| 806 | /// Returns an underlying layout type for the target extension type. This |
| 807 | /// type can be used to query size and alignment information, if it is |
| 808 | /// appropriate (although note that the layout type may also be void). It is |
| 809 | /// not legal to bitcast between this type and the layout type, however. |
| 810 | Type *getLayoutType() const; |
| 811 | |
| 812 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
| 813 | static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; } |
| 814 | }; |
| 815 | |
| 816 | StringRef Type::getTargetExtName() const { |
| 817 | return cast<TargetExtType>(Val: this)->getName(); |
| 818 | } |
| 819 | |
| 820 | } // end namespace llvm |
| 821 | |
| 822 | #endif // LLVM_IR_DERIVEDTYPES_H |
| 823 | |