1 | /* Functions related to invoking -*- C++ -*- methods and overloaded functions. |
2 | Copyright (C) 1987-2025 Free Software Foundation, Inc. |
3 | Contributed by Michael Tiemann (tiemann@cygnus.com) and |
4 | modified by Brendan Kehoe (brendan@cygnus.com). |
5 | |
6 | This file is part of GCC. |
7 | |
8 | GCC is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by |
10 | the Free Software Foundation; either version 3, or (at your option) |
11 | any later version. |
12 | |
13 | GCC is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 | GNU General Public License for more details. |
17 | |
18 | You should have received a copy of the GNU General Public License |
19 | along with GCC; see the file COPYING3. If not see |
20 | <http://www.gnu.org/licenses/>. */ |
21 | |
22 | |
23 | /* High-level class interface. */ |
24 | |
25 | #include "config.h" |
26 | #include "system.h" |
27 | #include "coretypes.h" |
28 | #include "target.h" |
29 | #include "cp-tree.h" |
30 | #include "timevar.h" |
31 | #include "stringpool.h" |
32 | #include "cgraph.h" |
33 | #include "stor-layout.h" |
34 | #include "trans-mem.h" |
35 | #include "flags.h" |
36 | #include "toplev.h" |
37 | #include "intl.h" |
38 | #include "convert.h" |
39 | #include "langhooks.h" |
40 | #include "c-family/c-objc.h" |
41 | #include "internal-fn.h" |
42 | #include "stringpool.h" |
43 | #include "attribs.h" |
44 | #include "decl.h" |
45 | #include "c-family/c-type-mismatch.h" |
46 | #include "tristate.h" |
47 | #include "tree-pretty-print-markup.h" |
48 | |
49 | /* The various kinds of conversion. */ |
50 | |
51 | enum conversion_kind { |
52 | ck_identity, |
53 | ck_lvalue, |
54 | ck_fnptr, |
55 | ck_qual, |
56 | ck_std, |
57 | ck_ptr, |
58 | ck_pmem, |
59 | ck_base, |
60 | ck_ref_bind, |
61 | ck_user, |
62 | ck_ambig, |
63 | ck_list, |
64 | ck_aggr, |
65 | ck_rvalue, |
66 | /* When LOOKUP_SHORTCUT_BAD_CONVS is set, we may return a conversion of |
67 | this kind whenever we know the true conversion is either bad or outright |
68 | invalid, but we don't want to attempt to compute the bad conversion (for |
69 | sake of avoiding unnecessary instantiation). bad_p should always be set |
70 | for these. */ |
71 | ck_deferred_bad, |
72 | }; |
73 | |
74 | /* The rank of the conversion. Order of the enumerals matters; better |
75 | conversions should come earlier in the list. */ |
76 | |
77 | enum conversion_rank { |
78 | cr_identity, |
79 | cr_exact, |
80 | cr_promotion, |
81 | cr_std, |
82 | cr_pbool, |
83 | cr_user, |
84 | cr_ellipsis, |
85 | cr_bad |
86 | }; |
87 | |
88 | /* An implicit conversion sequence, in the sense of [over.best.ics]. |
89 | The first conversion to be performed is at the end of the chain. |
90 | That conversion is always a cr_identity conversion. */ |
91 | |
92 | struct conversion { |
93 | /* The kind of conversion represented by this step. */ |
94 | conversion_kind kind; |
95 | /* The rank of this conversion. */ |
96 | conversion_rank rank; |
97 | BOOL_BITFIELD user_conv_p : 1; |
98 | BOOL_BITFIELD ellipsis_p : 1; |
99 | BOOL_BITFIELD this_p : 1; |
100 | /* True if this conversion would be permitted with a bending of |
101 | language standards, e.g. disregarding pointer qualifiers or |
102 | converting integers to pointers. */ |
103 | BOOL_BITFIELD bad_p : 1; |
104 | /* If KIND is ck_ref_bind or ck_base, true to indicate that a |
105 | temporary should be created to hold the result of the |
106 | conversion. If KIND is ck_ambig or ck_user, true means force |
107 | copy-initialization. */ |
108 | BOOL_BITFIELD need_temporary_p : 1; |
109 | /* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion |
110 | from a pointer-to-derived to pointer-to-base is being performed. */ |
111 | BOOL_BITFIELD base_p : 1; |
112 | /* If KIND is ck_ref_bind, true when either an lvalue reference is |
113 | being bound to an lvalue expression or an rvalue reference is |
114 | being bound to an rvalue expression. If KIND is ck_rvalue or ck_base, |
115 | true when we are treating an lvalue as an rvalue (12.8p33). If |
116 | ck_identity, we will be binding a reference directly or decaying to |
117 | a pointer. */ |
118 | BOOL_BITFIELD rvaluedness_matches_p: 1; |
119 | BOOL_BITFIELD check_narrowing: 1; |
120 | /* Whether check_narrowing should only check TREE_CONSTANTs; used |
121 | in build_converted_constant_expr. */ |
122 | BOOL_BITFIELD check_narrowing_const_only: 1; |
123 | /* True if this conversion is taking place in a copy-initialization context |
124 | and we should only consider converting constructors. Only set in |
125 | ck_base and ck_rvalue. */ |
126 | BOOL_BITFIELD copy_init_p : 1; |
127 | /* The type of the expression resulting from the conversion. */ |
128 | tree type; |
129 | union { |
130 | /* The next conversion in the chain. Since the conversions are |
131 | arranged from outermost to innermost, the NEXT conversion will |
132 | actually be performed before this conversion. This variant is |
133 | used only when KIND is neither ck_identity, ck_aggr, ck_ambig nor |
134 | ck_list. Please use the next_conversion function instead |
135 | of using this field directly. */ |
136 | conversion *next; |
137 | /* The expression at the beginning of the conversion chain. This |
138 | variant is used only if KIND is ck_identity, ck_aggr, or ck_ambig. |
139 | You can use conv_get_original_expr to get this expression. */ |
140 | tree expr; |
141 | /* The array of conversions for an initializer_list, so this |
142 | variant is used only when KIN D is ck_list. */ |
143 | conversion **list; |
144 | } u; |
145 | /* The function candidate corresponding to this conversion |
146 | sequence. This field is only used if KIND is ck_user. */ |
147 | struct z_candidate *cand; |
148 | }; |
149 | |
150 | #define CONVERSION_RANK(NODE) \ |
151 | ((NODE)->bad_p ? cr_bad \ |
152 | : (NODE)->ellipsis_p ? cr_ellipsis \ |
153 | : (NODE)->user_conv_p ? cr_user \ |
154 | : (NODE)->rank) |
155 | |
156 | #define BAD_CONVERSION_RANK(NODE) \ |
157 | ((NODE)->ellipsis_p ? cr_ellipsis \ |
158 | : (NODE)->user_conv_p ? cr_user \ |
159 | : (NODE)->rank) |
160 | |
161 | static struct obstack conversion_obstack; |
162 | static bool conversion_obstack_initialized; |
163 | struct rejection_reason; |
164 | |
165 | static struct z_candidate * tourney (struct z_candidate *, tsubst_flags_t); |
166 | static int equal_functions (tree, tree); |
167 | static int joust (struct z_candidate *, struct z_candidate *, bool, |
168 | tsubst_flags_t); |
169 | static int compare_ics (conversion *, conversion *); |
170 | static void maybe_warn_class_memaccess (location_t, tree, |
171 | const vec<tree, va_gc> *); |
172 | static tree build_over_call (struct z_candidate *, int, tsubst_flags_t); |
173 | static tree convert_like (conversion *, tree, tsubst_flags_t); |
174 | static tree convert_like_with_context (conversion *, tree, tree, int, |
175 | tsubst_flags_t); |
176 | static void op_error (const op_location_t &, enum tree_code, enum tree_code, |
177 | tree, tree, tree, bool); |
178 | static struct z_candidate *build_user_type_conversion_1 (tree, tree, int, |
179 | tsubst_flags_t); |
180 | static void print_z_candidate (location_t, const char *, struct z_candidate *); |
181 | static void print_z_candidates (location_t, struct z_candidate *, |
182 | tristate = tristate::unknown ()); |
183 | static tree build_this (tree); |
184 | static struct z_candidate *splice_viable (struct z_candidate *, bool, bool *); |
185 | static bool any_strictly_viable (struct z_candidate *); |
186 | static struct z_candidate *add_template_candidate |
187 | (struct z_candidate **, tree, tree, tree, tree, const vec<tree, va_gc> *, |
188 | tree, tree, tree, int, unification_kind_t, bool, tsubst_flags_t); |
189 | static struct z_candidate *add_template_candidate_real |
190 | (struct z_candidate **, tree, tree, tree, tree, const vec<tree, va_gc> *, |
191 | tree, tree, tree, int, tree, unification_kind_t, bool, tsubst_flags_t); |
192 | static bool is_complete (tree); |
193 | static struct z_candidate *add_conv_candidate |
194 | (struct z_candidate **, tree, tree, const vec<tree, va_gc> *, tree, |
195 | tree, tsubst_flags_t); |
196 | static struct z_candidate *add_function_candidate |
197 | (struct z_candidate **, tree, tree, tree, const vec<tree, va_gc> *, tree, |
198 | tree, int, conversion**, bool, tsubst_flags_t); |
199 | static conversion *implicit_conversion (tree, tree, tree, bool, int, |
200 | tsubst_flags_t); |
201 | static conversion *reference_binding (tree, tree, tree, bool, int, |
202 | tsubst_flags_t); |
203 | static conversion *build_conv (conversion_kind, tree, conversion *); |
204 | static conversion *build_list_conv (tree, tree, int, tsubst_flags_t); |
205 | static conversion *next_conversion (conversion *); |
206 | static bool is_subseq (conversion *, conversion *); |
207 | static conversion *maybe_handle_ref_bind (conversion **); |
208 | static void maybe_handle_implicit_object (conversion **); |
209 | static struct z_candidate *add_candidate |
210 | (struct z_candidate **, tree, tree, const vec<tree, va_gc> *, size_t, |
211 | conversion **, tree, tree, int, struct rejection_reason *, int); |
212 | static tree source_type (conversion *); |
213 | static void add_warning (struct z_candidate *, struct z_candidate *); |
214 | static conversion *direct_reference_binding (tree, conversion *); |
215 | static bool promoted_arithmetic_type_p (tree); |
216 | static conversion *conditional_conversion (tree, tree, tsubst_flags_t); |
217 | static char *name_as_c_string (tree, tree, bool *); |
218 | static tree prep_operand (tree); |
219 | static void add_candidates (tree, tree, const vec<tree, va_gc> *, tree, tree, |
220 | bool, tree, tree, int, struct z_candidate **, |
221 | tsubst_flags_t); |
222 | static conversion *merge_conversion_sequences (conversion *, conversion *); |
223 | static tree build_temp (tree, tree, int, diagnostic_t *, tsubst_flags_t); |
224 | static conversion *build_identity_conv (tree, tree); |
225 | static inline bool conv_binds_to_array_of_unknown_bound (conversion *); |
226 | static bool conv_is_prvalue (conversion *); |
227 | static tree prevent_lifetime_extension (tree); |
228 | |
229 | /* Returns nonzero iff the destructor name specified in NAME matches BASETYPE. |
230 | NAME can take many forms... */ |
231 | |
232 | bool |
233 | check_dtor_name (tree basetype, tree name) |
234 | { |
235 | /* Just accept something we've already complained about. */ |
236 | if (name == error_mark_node) |
237 | return true; |
238 | |
239 | if (TREE_CODE (name) == TYPE_DECL) |
240 | name = TREE_TYPE (name); |
241 | else if (TYPE_P (name)) |
242 | /* OK */; |
243 | else if (identifier_p (t: name)) |
244 | { |
245 | if ((MAYBE_CLASS_TYPE_P (basetype) |
246 | || TREE_CODE (basetype) == ENUMERAL_TYPE) |
247 | && name == constructor_name (basetype)) |
248 | return true; |
249 | |
250 | /* Otherwise lookup the name, it could be an unrelated typedef |
251 | of the correct type. */ |
252 | name = lookup_name (name, want: LOOK_want::TYPE); |
253 | if (!name) |
254 | return false; |
255 | name = TREE_TYPE (name); |
256 | if (name == error_mark_node) |
257 | return false; |
258 | } |
259 | else |
260 | { |
261 | /* In the case of: |
262 | |
263 | template <class T> struct S { ~S(); }; |
264 | int i; |
265 | i.~S(); |
266 | |
267 | NAME will be a class template. */ |
268 | gcc_assert (DECL_CLASS_TEMPLATE_P (name)); |
269 | return false; |
270 | } |
271 | |
272 | return same_type_p (TYPE_MAIN_VARIANT (basetype), TYPE_MAIN_VARIANT (name)); |
273 | } |
274 | |
275 | /* We want the address of a function or method. We avoid creating a |
276 | pointer-to-member function. */ |
277 | |
278 | tree |
279 | build_addr_func (tree function, tsubst_flags_t complain) |
280 | { |
281 | tree type = TREE_TYPE (function); |
282 | |
283 | /* We have to do these by hand to avoid real pointer to member |
284 | functions. */ |
285 | if (TREE_CODE (type) == METHOD_TYPE) |
286 | { |
287 | if (TREE_CODE (function) == OFFSET_REF) |
288 | { |
289 | tree object = build_address (TREE_OPERAND (function, 0)); |
290 | return get_member_function_from_ptrfunc (&object, |
291 | TREE_OPERAND (function, 1), |
292 | complain); |
293 | } |
294 | function = build_address (function); |
295 | } |
296 | else if (TREE_CODE (function) == FUNCTION_DECL |
297 | && DECL_IMMEDIATE_FUNCTION_P (function)) |
298 | function = build_address (function); |
299 | else |
300 | function = decay_conversion (function, complain, /*reject_builtin=*/false); |
301 | |
302 | return function; |
303 | } |
304 | |
305 | /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or |
306 | POINTER_TYPE to those. Note, pointer to member function types |
307 | (TYPE_PTRMEMFUNC_P) must be handled by our callers. There are |
308 | two variants. build_call_a is the primitive taking an array of |
309 | arguments, while build_call_n is a wrapper that handles varargs. */ |
310 | |
311 | tree |
312 | build_call_n (tree function, int n, ...) |
313 | { |
314 | if (n == 0) |
315 | return build_call_a (function, 0, NULL); |
316 | else |
317 | { |
318 | tree *argarray = XALLOCAVEC (tree, n); |
319 | va_list ap; |
320 | int i; |
321 | |
322 | va_start (ap, n); |
323 | for (i = 0; i < n; i++) |
324 | argarray[i] = va_arg (ap, tree); |
325 | va_end (ap); |
326 | return build_call_a (function, n, argarray); |
327 | } |
328 | } |
329 | |
330 | /* Update various flags in cfun and the call itself based on what is being |
331 | called. Split out of build_call_a so that bot_manip can use it too. */ |
332 | |
333 | void |
334 | set_flags_from_callee (tree call) |
335 | { |
336 | /* Handle both CALL_EXPRs and AGGR_INIT_EXPRs. */ |
337 | tree decl = cp_get_callee_fndecl_nofold (call); |
338 | |
339 | /* We check both the decl and the type; a function may be known not to |
340 | throw without being declared throw(). */ |
341 | bool nothrow = decl && TREE_NOTHROW (decl); |
342 | tree callee = cp_get_callee (call); |
343 | if (callee) |
344 | nothrow |= TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (callee))); |
345 | else if (TREE_CODE (call) == CALL_EXPR |
346 | && internal_fn_flags (CALL_EXPR_IFN (call)) & ECF_NOTHROW) |
347 | nothrow = true; |
348 | |
349 | if (cfun && cp_function_chain && !cp_unevaluated_operand) |
350 | { |
351 | if (!nothrow && at_function_scope_p ()) |
352 | cp_function_chain->can_throw = 1; |
353 | |
354 | if (decl && TREE_THIS_VOLATILE (decl)) |
355 | current_function_returns_abnormally = 1; |
356 | } |
357 | |
358 | TREE_NOTHROW (call) = nothrow; |
359 | } |
360 | |
361 | tree |
362 | build_call_a (tree function, int n, tree *argarray) |
363 | { |
364 | tree decl; |
365 | tree result_type; |
366 | tree fntype; |
367 | int i; |
368 | |
369 | function = build_addr_func (function, complain: tf_warning_or_error); |
370 | |
371 | gcc_assert (TYPE_PTR_P (TREE_TYPE (function))); |
372 | fntype = TREE_TYPE (TREE_TYPE (function)); |
373 | gcc_assert (FUNC_OR_METHOD_TYPE_P (fntype)); |
374 | result_type = TREE_TYPE (fntype); |
375 | /* An rvalue has no cv-qualifiers. */ |
376 | if (SCALAR_TYPE_P (result_type) || VOID_TYPE_P (result_type)) |
377 | result_type = cv_unqualified (result_type); |
378 | |
379 | function = build_call_array_loc (input_location, |
380 | result_type, function, n, argarray); |
381 | set_flags_from_callee (function); |
382 | |
383 | decl = get_callee_fndecl (function); |
384 | |
385 | if (decl && !TREE_USED (decl)) |
386 | { |
387 | /* We invoke build_call directly for several library |
388 | functions. These may have been declared normally if |
389 | we're building libgcc, so we can't just check |
390 | DECL_ARTIFICIAL. */ |
391 | gcc_assert (DECL_ARTIFICIAL (decl) |
392 | || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)), |
393 | "__" , 2)); |
394 | mark_used (decl); |
395 | } |
396 | |
397 | require_complete_eh_spec_types (fntype, decl); |
398 | |
399 | TREE_HAS_CONSTRUCTOR (function) = (decl && DECL_CONSTRUCTOR_P (decl)); |
400 | |
401 | /* Don't pass empty class objects by value. This is useful |
402 | for tags in STL, which are used to control overload resolution. |
403 | We don't need to handle other cases of copying empty classes. */ |
404 | if (!decl || !fndecl_built_in_p (node: decl)) |
405 | for (i = 0; i < n; i++) |
406 | { |
407 | tree arg = CALL_EXPR_ARG (function, i); |
408 | if (is_empty_class (TREE_TYPE (arg)) |
409 | && simple_empty_class_p (TREE_TYPE (arg), arg, INIT_EXPR)) |
410 | { |
411 | while (TREE_CODE (arg) == TARGET_EXPR) |
412 | /* We're disconnecting the initializer from its target, |
413 | don't create a temporary. */ |
414 | arg = TARGET_EXPR_INITIAL (arg); |
415 | tree t = build0 (EMPTY_CLASS_EXPR, TREE_TYPE (arg)); |
416 | arg = build2 (COMPOUND_EXPR, TREE_TYPE (t), arg, t); |
417 | CALL_EXPR_ARG (function, i) = arg; |
418 | } |
419 | } |
420 | |
421 | return function; |
422 | } |
423 | |
424 | /* New overloading code. */ |
425 | |
426 | struct z_candidate; |
427 | |
428 | struct candidate_warning { |
429 | z_candidate *loser; |
430 | candidate_warning *next; |
431 | }; |
432 | |
433 | /* Information for providing diagnostics about why overloading failed. */ |
434 | |
435 | enum rejection_reason_code { |
436 | rr_none, |
437 | rr_arity, |
438 | rr_explicit_conversion, |
439 | rr_template_conversion, |
440 | rr_arg_conversion, |
441 | rr_bad_arg_conversion, |
442 | rr_template_unification, |
443 | rr_invalid_copy, |
444 | rr_inherited_ctor, |
445 | rr_constraint_failure, |
446 | rr_ignored, |
447 | }; |
448 | |
449 | struct conversion_info { |
450 | /* The index of the argument, 0-based. */ |
451 | int n_arg; |
452 | /* The actual argument or its type. */ |
453 | tree from; |
454 | /* The type of the parameter. */ |
455 | tree to_type; |
456 | /* The location of the argument. */ |
457 | location_t loc; |
458 | }; |
459 | |
460 | struct rejection_reason { |
461 | enum rejection_reason_code code; |
462 | union { |
463 | /* Information about an arity mismatch. */ |
464 | struct { |
465 | /* The expected number of arguments. */ |
466 | int expected; |
467 | /* The actual number of arguments in the call. */ |
468 | int actual; |
469 | /* Whether EXPECTED should be treated as a lower bound. */ |
470 | bool least_p; |
471 | } arity; |
472 | /* Information about an argument conversion mismatch. */ |
473 | struct conversion_info conversion; |
474 | /* Same, but for bad argument conversions. */ |
475 | struct conversion_info bad_conversion; |
476 | /* Information about template unification failures. These are the |
477 | parameters passed to fn_type_unification. */ |
478 | struct { |
479 | tree tmpl; |
480 | tree explicit_targs; |
481 | int num_targs; |
482 | const tree *args; |
483 | unsigned int nargs; |
484 | tree return_type; |
485 | unification_kind_t strict; |
486 | int flags; |
487 | } template_unification; |
488 | /* Information about template instantiation failures. These are the |
489 | parameters passed to instantiate_template. */ |
490 | struct { |
491 | tree tmpl; |
492 | tree targs; |
493 | } template_instantiation; |
494 | } u; |
495 | }; |
496 | |
497 | struct z_candidate { |
498 | /* The FUNCTION_DECL that will be called if this candidate is |
499 | selected by overload resolution. */ |
500 | tree fn; |
501 | /* If not NULL_TREE, the first argument to use when calling this |
502 | function. */ |
503 | tree first_arg; |
504 | /* The rest of the arguments to use when calling this function. If |
505 | there are no further arguments this may be NULL or it may be an |
506 | empty vector. */ |
507 | const vec<tree, va_gc> *args; |
508 | /* The implicit conversion sequences for each of the arguments to |
509 | FN. */ |
510 | conversion **convs; |
511 | /* The number of implicit conversion sequences. */ |
512 | size_t num_convs; |
513 | /* If FN is a user-defined conversion, the standard conversion |
514 | sequence from the type returned by FN to the desired destination |
515 | type. */ |
516 | conversion *second_conv; |
517 | struct rejection_reason *reason; |
518 | /* If FN is a member function, the binfo indicating the path used to |
519 | qualify the name of FN at the call site. This path is used to |
520 | determine whether or not FN is accessible if it is selected by |
521 | overload resolution. The DECL_CONTEXT of FN will always be a |
522 | (possibly improper) base of this binfo. */ |
523 | tree access_path; |
524 | /* If FN is a non-static member function, the binfo indicating the |
525 | subobject to which the `this' pointer should be converted if FN |
526 | is selected by overload resolution. The type pointed to by |
527 | the `this' pointer must correspond to the most derived class |
528 | indicated by the CONVERSION_PATH. */ |
529 | tree conversion_path; |
530 | tree template_decl; |
531 | tree explicit_targs; |
532 | candidate_warning *warnings; |
533 | z_candidate *next; |
534 | int viable; |
535 | |
536 | /* The flags active in add_candidate. */ |
537 | int flags; |
538 | |
539 | bool rewritten () const { return (flags & LOOKUP_REWRITTEN); } |
540 | bool reversed () const { return (flags & LOOKUP_REVERSED); } |
541 | }; |
542 | |
543 | /* Returns true iff T is a null pointer constant in the sense of |
544 | [conv.ptr]. */ |
545 | |
546 | bool |
547 | null_ptr_cst_p (tree t) |
548 | { |
549 | tree type = TREE_TYPE (t); |
550 | |
551 | /* [conv.ptr] |
552 | |
553 | A null pointer constant is an integer literal ([lex.icon]) with value |
554 | zero or a prvalue of type std::nullptr_t. */ |
555 | if (NULLPTR_TYPE_P (type)) |
556 | return true; |
557 | |
558 | if (cxx_dialect >= cxx11) |
559 | { |
560 | STRIP_ANY_LOCATION_WRAPPER (t); |
561 | |
562 | /* Core issue 903 says only literal 0 is a null pointer constant. */ |
563 | if (TREE_CODE (t) == INTEGER_CST |
564 | && !TREE_OVERFLOW (t) |
565 | && TREE_CODE (type) == INTEGER_TYPE |
566 | && integer_zerop (t) |
567 | && !char_type_p (type)) |
568 | return true; |
569 | } |
570 | else if (CP_INTEGRAL_TYPE_P (type)) |
571 | { |
572 | t = fold_non_dependent_expr (t, tf_none); |
573 | STRIP_NOPS (t); |
574 | if (integer_zerop (t) && !TREE_OVERFLOW (t)) |
575 | return true; |
576 | } |
577 | |
578 | return false; |
579 | } |
580 | |
581 | /* Returns true iff T is a null member pointer value (4.11). */ |
582 | |
583 | bool |
584 | null_member_pointer_value_p (tree t) |
585 | { |
586 | tree type = TREE_TYPE (t); |
587 | if (!type) |
588 | return false; |
589 | else if (TYPE_PTRMEMFUNC_P (type)) |
590 | return (TREE_CODE (t) == CONSTRUCTOR |
591 | && CONSTRUCTOR_NELTS (t) |
592 | && integer_zerop (CONSTRUCTOR_ELT (t, 0)->value)); |
593 | else if (TYPE_PTRDATAMEM_P (type)) |
594 | return integer_all_onesp (t); |
595 | else |
596 | return false; |
597 | } |
598 | |
599 | /* Returns nonzero if PARMLIST consists of only default parms, |
600 | ellipsis, and/or undeduced parameter packs. */ |
601 | |
602 | bool |
603 | sufficient_parms_p (const_tree parmlist) |
604 | { |
605 | for (; parmlist && parmlist != void_list_node; |
606 | parmlist = TREE_CHAIN (parmlist)) |
607 | if (!TREE_PURPOSE (parmlist) |
608 | && !PACK_EXPANSION_P (TREE_VALUE (parmlist))) |
609 | return false; |
610 | return true; |
611 | } |
612 | |
613 | /* Allocate N bytes of memory from the conversion obstack. The memory |
614 | is zeroed before being returned. */ |
615 | |
616 | static void * |
617 | conversion_obstack_alloc (size_t n) |
618 | { |
619 | void *p; |
620 | if (!conversion_obstack_initialized) |
621 | { |
622 | gcc_obstack_init (&conversion_obstack); |
623 | conversion_obstack_initialized = true; |
624 | } |
625 | p = obstack_alloc (&conversion_obstack, n); |
626 | memset (s: p, c: 0, n: n); |
627 | return p; |
628 | } |
629 | |
630 | /* RAII class to discard anything added to conversion_obstack. */ |
631 | |
632 | struct conversion_obstack_sentinel |
633 | { |
634 | void *p; |
635 | conversion_obstack_sentinel (): p (conversion_obstack_alloc (n: 0)) {} |
636 | ~conversion_obstack_sentinel () { obstack_free (&conversion_obstack, p); } |
637 | }; |
638 | |
639 | /* Allocate rejection reasons. */ |
640 | |
641 | static struct rejection_reason * |
642 | alloc_rejection (enum rejection_reason_code code) |
643 | { |
644 | struct rejection_reason *p; |
645 | p = (struct rejection_reason *) conversion_obstack_alloc (n: sizeof *p); |
646 | p->code = code; |
647 | return p; |
648 | } |
649 | |
650 | static struct rejection_reason * |
651 | arity_rejection (tree first_arg, int expected, int actual, bool least_p = false) |
652 | { |
653 | struct rejection_reason *r = alloc_rejection (code: rr_arity); |
654 | int adjust = first_arg != NULL_TREE; |
655 | r->u.arity.expected = expected - adjust; |
656 | r->u.arity.actual = actual - adjust; |
657 | r->u.arity.least_p = least_p; |
658 | return r; |
659 | } |
660 | |
661 | static struct rejection_reason * |
662 | arg_conversion_rejection (tree first_arg, int n_arg, tree from, tree to, |
663 | location_t loc) |
664 | { |
665 | struct rejection_reason *r = alloc_rejection (code: rr_arg_conversion); |
666 | int adjust = first_arg != NULL_TREE; |
667 | r->u.conversion.n_arg = n_arg - adjust; |
668 | r->u.conversion.from = from; |
669 | r->u.conversion.to_type = to; |
670 | r->u.conversion.loc = loc; |
671 | return r; |
672 | } |
673 | |
674 | static struct rejection_reason * |
675 | bad_arg_conversion_rejection (tree first_arg, int n_arg, tree from, tree to, |
676 | location_t loc) |
677 | { |
678 | struct rejection_reason *r = alloc_rejection (code: rr_bad_arg_conversion); |
679 | int adjust = first_arg != NULL_TREE; |
680 | r->u.bad_conversion.n_arg = n_arg - adjust; |
681 | r->u.bad_conversion.from = from; |
682 | r->u.bad_conversion.to_type = to; |
683 | r->u.bad_conversion.loc = loc; |
684 | return r; |
685 | } |
686 | |
687 | static struct rejection_reason * |
688 | explicit_conversion_rejection (tree from, tree to) |
689 | { |
690 | struct rejection_reason *r = alloc_rejection (code: rr_explicit_conversion); |
691 | r->u.conversion.n_arg = 0; |
692 | r->u.conversion.from = from; |
693 | r->u.conversion.to_type = to; |
694 | r->u.conversion.loc = UNKNOWN_LOCATION; |
695 | return r; |
696 | } |
697 | |
698 | static struct rejection_reason * |
699 | template_conversion_rejection (tree from, tree to) |
700 | { |
701 | struct rejection_reason *r = alloc_rejection (code: rr_template_conversion); |
702 | r->u.conversion.n_arg = 0; |
703 | r->u.conversion.from = from; |
704 | r->u.conversion.to_type = to; |
705 | r->u.conversion.loc = UNKNOWN_LOCATION; |
706 | return r; |
707 | } |
708 | |
709 | static struct rejection_reason * |
710 | template_unification_rejection (tree tmpl, tree explicit_targs, tree targs, |
711 | const tree *args, unsigned int nargs, |
712 | tree return_type, unification_kind_t strict, |
713 | int flags) |
714 | { |
715 | size_t args_n_bytes = sizeof (*args) * nargs; |
716 | tree *args1 = (tree *) conversion_obstack_alloc (n: args_n_bytes); |
717 | struct rejection_reason *r = alloc_rejection (code: rr_template_unification); |
718 | r->u.template_unification.tmpl = tmpl; |
719 | r->u.template_unification.explicit_targs = explicit_targs; |
720 | r->u.template_unification.num_targs = TREE_VEC_LENGTH (targs); |
721 | /* Copy args to our own storage. */ |
722 | memcpy (dest: args1, src: args, n: args_n_bytes); |
723 | r->u.template_unification.args = args1; |
724 | r->u.template_unification.nargs = nargs; |
725 | r->u.template_unification.return_type = return_type; |
726 | r->u.template_unification.strict = strict; |
727 | r->u.template_unification.flags = flags; |
728 | return r; |
729 | } |
730 | |
731 | static struct rejection_reason * |
732 | template_unification_error_rejection (void) |
733 | { |
734 | return alloc_rejection (code: rr_template_unification); |
735 | } |
736 | |
737 | static struct rejection_reason * |
738 | invalid_copy_with_fn_template_rejection (void) |
739 | { |
740 | struct rejection_reason *r = alloc_rejection (code: rr_invalid_copy); |
741 | return r; |
742 | } |
743 | |
744 | static struct rejection_reason * |
745 | inherited_ctor_rejection (void) |
746 | { |
747 | struct rejection_reason *r = alloc_rejection (code: rr_inherited_ctor); |
748 | return r; |
749 | } |
750 | |
751 | /* Build a constraint failure record. */ |
752 | |
753 | static struct rejection_reason * |
754 | constraint_failure (void) |
755 | { |
756 | struct rejection_reason *r = alloc_rejection (code: rr_constraint_failure); |
757 | return r; |
758 | } |
759 | |
760 | /* Dynamically allocate a conversion. */ |
761 | |
762 | static conversion * |
763 | alloc_conversion (conversion_kind kind) |
764 | { |
765 | conversion *c; |
766 | c = (conversion *) conversion_obstack_alloc (n: sizeof (conversion)); |
767 | c->kind = kind; |
768 | return c; |
769 | } |
770 | |
771 | /* Make sure that all memory on the conversion obstack has been |
772 | freed. */ |
773 | |
774 | void |
775 | validate_conversion_obstack (void) |
776 | { |
777 | if (conversion_obstack_initialized) |
778 | gcc_assert ((obstack_next_free (&conversion_obstack) |
779 | == obstack_base (&conversion_obstack))); |
780 | } |
781 | |
782 | /* Dynamically allocate an array of N conversions. */ |
783 | |
784 | static conversion ** |
785 | alloc_conversions (size_t n) |
786 | { |
787 | return (conversion **) conversion_obstack_alloc (n: n * sizeof (conversion *)); |
788 | } |
789 | |
790 | /* True iff the active member of conversion::u for code CODE is NEXT. */ |
791 | |
792 | static inline bool |
793 | has_next (conversion_kind code) |
794 | { |
795 | return !(code == ck_identity |
796 | || code == ck_ambig |
797 | || code == ck_list |
798 | || code == ck_aggr |
799 | || code == ck_deferred_bad); |
800 | } |
801 | |
802 | static conversion * |
803 | build_conv (conversion_kind code, tree type, conversion *from) |
804 | { |
805 | conversion *t; |
806 | conversion_rank rank = CONVERSION_RANK (from); |
807 | |
808 | /* Only call this function for conversions that use u.next. */ |
809 | gcc_assert (from == NULL || has_next (code)); |
810 | |
811 | /* Note that the caller is responsible for filling in t->cand for |
812 | user-defined conversions. */ |
813 | t = alloc_conversion (kind: code); |
814 | t->type = type; |
815 | t->u.next = from; |
816 | |
817 | switch (code) |
818 | { |
819 | case ck_ptr: |
820 | case ck_pmem: |
821 | case ck_base: |
822 | case ck_std: |
823 | if (rank < cr_std) |
824 | rank = cr_std; |
825 | break; |
826 | |
827 | case ck_qual: |
828 | case ck_fnptr: |
829 | if (rank < cr_exact) |
830 | rank = cr_exact; |
831 | break; |
832 | |
833 | default: |
834 | break; |
835 | } |
836 | t->rank = rank; |
837 | t->user_conv_p = (code == ck_user || from->user_conv_p); |
838 | t->bad_p = from->bad_p; |
839 | t->base_p = false; |
840 | return t; |
841 | } |
842 | |
843 | /* Represent a conversion from CTOR, a braced-init-list, to TYPE, a |
844 | specialization of std::initializer_list<T>, if such a conversion is |
845 | possible. */ |
846 | |
847 | static conversion * |
848 | build_list_conv (tree type, tree ctor, int flags, tsubst_flags_t complain) |
849 | { |
850 | tree elttype = TREE_VEC_ELT (CLASSTYPE_TI_ARGS (type), 0); |
851 | unsigned len = CONSTRUCTOR_NELTS (ctor); |
852 | conversion **subconvs = alloc_conversions (n: len); |
853 | conversion *t; |
854 | unsigned i; |
855 | tree val; |
856 | |
857 | /* Within a list-initialization we can have more user-defined |
858 | conversions. */ |
859 | flags &= ~LOOKUP_NO_CONVERSION; |
860 | /* But no narrowing conversions. */ |
861 | flags |= LOOKUP_NO_NARROWING; |
862 | |
863 | /* Can't make an array of these types. */ |
864 | if (TYPE_REF_P (elttype) |
865 | || TREE_CODE (elttype) == FUNCTION_TYPE |
866 | || VOID_TYPE_P (elttype)) |
867 | return NULL; |
868 | |
869 | FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), i, val) |
870 | { |
871 | if (TREE_CODE (val) == RAW_DATA_CST) |
872 | { |
873 | tree elt |
874 | = build_int_cst (TREE_TYPE (val), RAW_DATA_UCHAR_ELT (val, 0)); |
875 | conversion *sub |
876 | = implicit_conversion (elttype, TREE_TYPE (val), elt, |
877 | false, flags, complain); |
878 | conversion *next; |
879 | if (sub == NULL) |
880 | return NULL; |
881 | /* For conversion to initializer_list<unsigned char> or |
882 | initializer_list<char> or initializer_list<signed char> |
883 | we can optimize and keep RAW_DATA_CST with adjusted |
884 | type if we report narrowing errors if needed. |
885 | Use just one subconversion for that case. */ |
886 | if (sub->kind == ck_std |
887 | && sub->type |
888 | && (TREE_CODE (sub->type) == INTEGER_TYPE |
889 | || is_byte_access_type (sub->type)) |
890 | && TYPE_PRECISION (sub->type) == CHAR_BIT |
891 | && (next = next_conversion (sub)) |
892 | && next->kind == ck_identity) |
893 | { |
894 | subconvs[i] = sub; |
895 | continue; |
896 | } |
897 | /* Otherwise. build separate subconv for each RAW_DATA_CST |
898 | byte. Wrap those into an artificial ck_list which convert_like |
899 | will then handle. */ |
900 | conversion **subsubconvs = alloc_conversions (RAW_DATA_LENGTH (val)); |
901 | unsigned int j; |
902 | subsubconvs[0] = sub; |
903 | for (j = 1; j < (unsigned) RAW_DATA_LENGTH (val); ++j) |
904 | { |
905 | elt = build_int_cst (TREE_TYPE (val), |
906 | RAW_DATA_UCHAR_ELT (val, j)); |
907 | sub = implicit_conversion (elttype, TREE_TYPE (val), elt, |
908 | false, flags, complain); |
909 | if (sub == NULL) |
910 | return NULL; |
911 | subsubconvs[j] = sub; |
912 | } |
913 | |
914 | t = alloc_conversion (kind: ck_list); |
915 | t->type = type; |
916 | t->u.list = subsubconvs; |
917 | t->rank = cr_exact; |
918 | for (j = 0; j < (unsigned) RAW_DATA_LENGTH (val); ++j) |
919 | { |
920 | sub = subsubconvs[j]; |
921 | if (sub->rank > t->rank) |
922 | t->rank = sub->rank; |
923 | if (sub->user_conv_p) |
924 | t->user_conv_p = true; |
925 | if (sub->bad_p) |
926 | t->bad_p = true; |
927 | } |
928 | subconvs[i] = t; |
929 | continue; |
930 | } |
931 | |
932 | conversion *sub |
933 | = implicit_conversion (elttype, TREE_TYPE (val), val, |
934 | false, flags, complain); |
935 | if (sub == NULL) |
936 | return NULL; |
937 | |
938 | subconvs[i] = sub; |
939 | } |
940 | |
941 | t = alloc_conversion (kind: ck_list); |
942 | t->type = type; |
943 | t->u.list = subconvs; |
944 | t->rank = cr_exact; |
945 | |
946 | for (i = 0; i < len; ++i) |
947 | { |
948 | conversion *sub = subconvs[i]; |
949 | if (sub->rank > t->rank) |
950 | t->rank = sub->rank; |
951 | if (sub->user_conv_p) |
952 | t->user_conv_p = true; |
953 | if (sub->bad_p) |
954 | t->bad_p = true; |
955 | } |
956 | |
957 | return t; |
958 | } |
959 | |
960 | /* Return the next conversion of the conversion chain (if applicable), |
961 | or NULL otherwise. Please use this function instead of directly |
962 | accessing fields of struct conversion. */ |
963 | |
964 | static conversion * |
965 | next_conversion (conversion *conv) |
966 | { |
967 | if (conv == NULL |
968 | || !has_next (code: conv->kind)) |
969 | return NULL; |
970 | return conv->u.next; |
971 | } |
972 | |
973 | /* Strip to the first ck_user, ck_ambig, ck_list, ck_aggr or ck_identity |
974 | encountered. */ |
975 | |
976 | static conversion * |
977 | strip_standard_conversion (conversion *conv) |
978 | { |
979 | while (conv |
980 | && conv->kind != ck_user |
981 | && has_next (code: conv->kind)) |
982 | conv = next_conversion (conv); |
983 | return conv; |
984 | } |
985 | |
986 | /* Subroutine of build_aggr_conv: check whether FROM is a valid aggregate |
987 | initializer for array type ATYPE. */ |
988 | |
989 | static bool |
990 | can_convert_array (tree atype, tree from, int flags, tsubst_flags_t complain) |
991 | { |
992 | tree elttype = TREE_TYPE (atype); |
993 | unsigned i; |
994 | |
995 | if (TREE_CODE (from) == CONSTRUCTOR) |
996 | { |
997 | for (i = 0; i < CONSTRUCTOR_NELTS (from); ++i) |
998 | { |
999 | tree val = CONSTRUCTOR_ELT (from, i)->value; |
1000 | bool ok; |
1001 | if (TREE_CODE (elttype) == ARRAY_TYPE) |
1002 | ok = can_convert_array (atype: elttype, from: val, flags, complain); |
1003 | else |
1004 | ok = can_convert_arg (elttype, TREE_TYPE (val), val, flags, |
1005 | complain); |
1006 | if (!ok) |
1007 | return false; |
1008 | } |
1009 | return true; |
1010 | } |
1011 | |
1012 | if (char_type_p (TYPE_MAIN_VARIANT (elttype)) |
1013 | && TREE_CODE (tree_strip_any_location_wrapper (from)) == STRING_CST) |
1014 | return array_string_literal_compatible_p (atype, from); |
1015 | |
1016 | /* No other valid way to aggregate initialize an array. */ |
1017 | return false; |
1018 | } |
1019 | |
1020 | /* Helper for build_aggr_conv. Return true if FIELD is in PSET, or if |
1021 | FIELD has ANON_AGGR_TYPE_P and any initializable field in there recursively |
1022 | is in PSET. */ |
1023 | |
1024 | static bool |
1025 | field_in_pset (hash_set<tree, true> &pset, tree field) |
1026 | { |
1027 | if (pset.contains (k: field)) |
1028 | return true; |
1029 | if (ANON_AGGR_TYPE_P (TREE_TYPE (field))) |
1030 | for (field = TYPE_FIELDS (TREE_TYPE (field)); |
1031 | field; field = DECL_CHAIN (field)) |
1032 | { |
1033 | field = next_aggregate_field (field); |
1034 | if (field == NULL_TREE) |
1035 | break; |
1036 | if (field_in_pset (pset, field)) |
1037 | return true; |
1038 | } |
1039 | return false; |
1040 | } |
1041 | |
1042 | /* Represent a conversion from CTOR, a braced-init-list, to TYPE, an |
1043 | aggregate class, if such a conversion is possible. */ |
1044 | |
1045 | static conversion * |
1046 | build_aggr_conv (tree type, tree ctor, int flags, tsubst_flags_t complain) |
1047 | { |
1048 | unsigned HOST_WIDE_INT i = 0; |
1049 | conversion *c; |
1050 | tree field = next_aggregate_field (TYPE_FIELDS (type)); |
1051 | tree empty_ctor = NULL_TREE; |
1052 | hash_set<tree, true> pset; |
1053 | |
1054 | /* We already called reshape_init in implicit_conversion, but it might not |
1055 | have done anything in the case of parenthesized aggr init. */ |
1056 | |
1057 | /* The conversions within the init-list aren't affected by the enclosing |
1058 | context; they're always simple copy-initialization. */ |
1059 | flags = LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING; |
1060 | |
1061 | /* For designated initializers, verify that each initializer is convertible |
1062 | to corresponding TREE_TYPE (ce->index) and mark those FIELD_DECLs as |
1063 | visited. In the following loop then ignore already visited |
1064 | FIELD_DECLs. */ |
1065 | tree idx, val; |
1066 | FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), i, idx, val) |
1067 | { |
1068 | if (!idx) |
1069 | break; |
1070 | |
1071 | gcc_checking_assert (TREE_CODE (idx) == FIELD_DECL); |
1072 | |
1073 | tree ftype = TREE_TYPE (idx); |
1074 | bool ok; |
1075 | |
1076 | if (TREE_CODE (ftype) == ARRAY_TYPE) |
1077 | ok = can_convert_array (atype: ftype, from: val, flags, complain); |
1078 | else |
1079 | ok = can_convert_arg (ftype, TREE_TYPE (val), val, flags, |
1080 | complain); |
1081 | |
1082 | if (!ok) |
1083 | return NULL; |
1084 | |
1085 | /* For unions, there should be just one initializer. */ |
1086 | if (TREE_CODE (type) == UNION_TYPE) |
1087 | { |
1088 | field = NULL_TREE; |
1089 | i = 1; |
1090 | break; |
1091 | } |
1092 | pset.add (k: idx); |
1093 | } |
1094 | |
1095 | for (; field; field = next_aggregate_field (DECL_CHAIN (field))) |
1096 | { |
1097 | tree ftype = TREE_TYPE (field); |
1098 | bool ok; |
1099 | |
1100 | if (!pset.is_empty () && field_in_pset (pset, field)) |
1101 | continue; |
1102 | if (i < CONSTRUCTOR_NELTS (ctor)) |
1103 | { |
1104 | constructor_elt *ce = CONSTRUCTOR_ELT (ctor, i); |
1105 | gcc_checking_assert (!ce->index); |
1106 | val = ce->value; |
1107 | ++i; |
1108 | } |
1109 | else if (DECL_INITIAL (field)) |
1110 | val = get_nsdmi (field, /*ctor*/false, complain); |
1111 | else if (TYPE_REF_P (ftype)) |
1112 | /* Value-initialization of reference is ill-formed. */ |
1113 | return NULL; |
1114 | else |
1115 | { |
1116 | if (empty_ctor == NULL_TREE) |
1117 | empty_ctor = build_constructor (init_list_type_node, NULL); |
1118 | val = empty_ctor; |
1119 | } |
1120 | |
1121 | if (TREE_CODE (ftype) == ARRAY_TYPE) |
1122 | ok = can_convert_array (atype: ftype, from: val, flags, complain); |
1123 | else |
1124 | ok = can_convert_arg (ftype, TREE_TYPE (val), val, flags, |
1125 | complain); |
1126 | |
1127 | if (!ok) |
1128 | return NULL; |
1129 | |
1130 | if (TREE_CODE (type) == UNION_TYPE) |
1131 | break; |
1132 | } |
1133 | |
1134 | if (i < CONSTRUCTOR_NELTS (ctor)) |
1135 | return NULL; |
1136 | |
1137 | c = alloc_conversion (kind: ck_aggr); |
1138 | c->type = type; |
1139 | c->rank = cr_exact; |
1140 | c->user_conv_p = true; |
1141 | c->check_narrowing = true; |
1142 | c->u.expr = ctor; |
1143 | return c; |
1144 | } |
1145 | |
1146 | /* Represent a conversion from CTOR, a braced-init-list, to TYPE, an |
1147 | array type, if such a conversion is possible. */ |
1148 | |
1149 | static conversion * |
1150 | build_array_conv (tree type, tree ctor, int flags, tsubst_flags_t complain) |
1151 | { |
1152 | conversion *c; |
1153 | unsigned HOST_WIDE_INT len = CONSTRUCTOR_NELTS (ctor); |
1154 | tree elttype = TREE_TYPE (type); |
1155 | bool bad = false; |
1156 | bool user = false; |
1157 | enum conversion_rank rank = cr_exact; |
1158 | |
1159 | /* We might need to propagate the size from the element to the array. */ |
1160 | complete_type (type); |
1161 | |
1162 | if (TYPE_DOMAIN (type) |
1163 | && !variably_modified_type_p (TYPE_DOMAIN (type), NULL_TREE)) |
1164 | { |
1165 | unsigned HOST_WIDE_INT alen = tree_to_uhwi (array_type_nelts_top (type)); |
1166 | if (alen < len) |
1167 | return NULL; |
1168 | } |
1169 | |
1170 | flags = LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING; |
1171 | |
1172 | for (auto &e: CONSTRUCTOR_ELTS (ctor)) |
1173 | { |
1174 | conversion *sub |
1175 | = implicit_conversion (elttype, TREE_TYPE (e.value), e.value, |
1176 | false, flags, complain); |
1177 | if (sub == NULL) |
1178 | return NULL; |
1179 | |
1180 | if (sub->rank > rank) |
1181 | rank = sub->rank; |
1182 | if (sub->user_conv_p) |
1183 | user = true; |
1184 | if (sub->bad_p) |
1185 | bad = true; |
1186 | } |
1187 | |
1188 | c = alloc_conversion (kind: ck_aggr); |
1189 | c->type = type; |
1190 | c->rank = rank; |
1191 | c->user_conv_p = user; |
1192 | c->bad_p = bad; |
1193 | c->u.expr = ctor; |
1194 | return c; |
1195 | } |
1196 | |
1197 | /* Represent a conversion from CTOR, a braced-init-list, to TYPE, a |
1198 | complex type, if such a conversion is possible. */ |
1199 | |
1200 | static conversion * |
1201 | build_complex_conv (tree type, tree ctor, int flags, |
1202 | tsubst_flags_t complain) |
1203 | { |
1204 | conversion *c; |
1205 | unsigned HOST_WIDE_INT len = CONSTRUCTOR_NELTS (ctor); |
1206 | tree elttype = TREE_TYPE (type); |
1207 | bool bad = false; |
1208 | bool user = false; |
1209 | enum conversion_rank rank = cr_exact; |
1210 | |
1211 | if (len != 2) |
1212 | return NULL; |
1213 | |
1214 | flags = LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING; |
1215 | |
1216 | for (auto &e: CONSTRUCTOR_ELTS (ctor)) |
1217 | { |
1218 | conversion *sub |
1219 | = implicit_conversion (elttype, TREE_TYPE (e.value), e.value, |
1220 | false, flags, complain); |
1221 | if (sub == NULL) |
1222 | return NULL; |
1223 | |
1224 | if (sub->rank > rank) |
1225 | rank = sub->rank; |
1226 | if (sub->user_conv_p) |
1227 | user = true; |
1228 | if (sub->bad_p) |
1229 | bad = true; |
1230 | } |
1231 | |
1232 | c = alloc_conversion (kind: ck_aggr); |
1233 | c->type = type; |
1234 | c->rank = rank; |
1235 | c->user_conv_p = user; |
1236 | c->bad_p = bad; |
1237 | c->u.expr = ctor; |
1238 | return c; |
1239 | } |
1240 | |
1241 | /* Build a representation of the identity conversion from EXPR to |
1242 | itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */ |
1243 | |
1244 | static conversion * |
1245 | build_identity_conv (tree type, tree expr) |
1246 | { |
1247 | conversion *c; |
1248 | |
1249 | c = alloc_conversion (kind: ck_identity); |
1250 | c->type = type; |
1251 | c->u.expr = expr; |
1252 | |
1253 | return c; |
1254 | } |
1255 | |
1256 | /* Converting from EXPR to TYPE was ambiguous in the sense that there |
1257 | were multiple user-defined conversions to accomplish the job. |
1258 | Build a conversion that indicates that ambiguity. */ |
1259 | |
1260 | static conversion * |
1261 | build_ambiguous_conv (tree type, tree expr) |
1262 | { |
1263 | conversion *c; |
1264 | |
1265 | c = alloc_conversion (kind: ck_ambig); |
1266 | c->type = type; |
1267 | c->u.expr = expr; |
1268 | |
1269 | return c; |
1270 | } |
1271 | |
1272 | tree |
1273 | strip_top_quals (tree t) |
1274 | { |
1275 | if (TREE_CODE (t) == ARRAY_TYPE) |
1276 | return t; |
1277 | return cp_build_qualified_type (t, 0); |
1278 | } |
1279 | |
1280 | /* Returns the standard conversion path (see [conv]) from type FROM to type |
1281 | TO, if any. For proper handling of null pointer constants, you must |
1282 | also pass the expression EXPR to convert from. If C_CAST_P is true, |
1283 | this conversion is coming from a C-style cast. */ |
1284 | |
1285 | static conversion * |
1286 | standard_conversion (tree to, tree from, tree expr, bool c_cast_p, |
1287 | int flags, tsubst_flags_t complain) |
1288 | { |
1289 | enum tree_code fcode, tcode; |
1290 | conversion *conv; |
1291 | bool fromref = false; |
1292 | tree qualified_to; |
1293 | |
1294 | to = non_reference (to); |
1295 | if (TYPE_REF_P (from)) |
1296 | { |
1297 | fromref = true; |
1298 | from = TREE_TYPE (from); |
1299 | } |
1300 | qualified_to = to; |
1301 | to = strip_top_quals (t: to); |
1302 | from = strip_top_quals (t: from); |
1303 | |
1304 | if (expr && type_unknown_p (expr)) |
1305 | { |
1306 | if (TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to)) |
1307 | { |
1308 | tsubst_flags_t tflags = tf_conv; |
1309 | expr = instantiate_type (to, expr, tflags); |
1310 | if (expr == error_mark_node) |
1311 | return NULL; |
1312 | from = TREE_TYPE (expr); |
1313 | } |
1314 | else if (TREE_CODE (to) == BOOLEAN_TYPE) |
1315 | { |
1316 | /* Necessary for eg, TEMPLATE_ID_EXPRs (c++/50961). */ |
1317 | expr = resolve_nondeduced_context (expr, complain); |
1318 | from = TREE_TYPE (expr); |
1319 | } |
1320 | } |
1321 | |
1322 | fcode = TREE_CODE (from); |
1323 | tcode = TREE_CODE (to); |
1324 | |
1325 | conv = build_identity_conv (type: from, expr); |
1326 | if (fcode == FUNCTION_TYPE || fcode == ARRAY_TYPE) |
1327 | { |
1328 | from = type_decays_to (from); |
1329 | fcode = TREE_CODE (from); |
1330 | /* Tell convert_like that we're using the address. */ |
1331 | conv->rvaluedness_matches_p = true; |
1332 | conv = build_conv (code: ck_lvalue, type: from, from: conv); |
1333 | } |
1334 | /* Wrapping a ck_rvalue around a class prvalue (as a result of using |
1335 | obvalue_p) seems odd, since it's already a prvalue, but that's how we |
1336 | express the copy constructor call required by copy-initialization. */ |
1337 | else if (fromref || (expr && obvalue_p (expr))) |
1338 | { |
1339 | if (expr) |
1340 | { |
1341 | tree bitfield_type; |
1342 | bitfield_type = is_bitfield_expr_with_lowered_type (expr); |
1343 | if (bitfield_type) |
1344 | { |
1345 | from = strip_top_quals (t: bitfield_type); |
1346 | fcode = TREE_CODE (from); |
1347 | } |
1348 | } |
1349 | conv = build_conv (code: ck_rvalue, type: from, from: conv); |
1350 | /* If we're performing copy-initialization, remember to skip |
1351 | explicit constructors. */ |
1352 | if (flags & LOOKUP_ONLYCONVERTING) |
1353 | conv->copy_init_p = true; |
1354 | } |
1355 | |
1356 | /* Allow conversion between `__complex__' data types. */ |
1357 | if (tcode == COMPLEX_TYPE && fcode == COMPLEX_TYPE) |
1358 | { |
1359 | /* The standard conversion sequence to convert FROM to TO is |
1360 | the standard conversion sequence to perform componentwise |
1361 | conversion. */ |
1362 | conversion *part_conv = standard_conversion |
1363 | (TREE_TYPE (to), TREE_TYPE (from), NULL_TREE, c_cast_p, flags, |
1364 | complain); |
1365 | |
1366 | if (!part_conv) |
1367 | conv = NULL; |
1368 | else if (part_conv->kind == ck_identity) |
1369 | /* Leave conv alone. */; |
1370 | else |
1371 | { |
1372 | conv = build_conv (code: part_conv->kind, type: to, from: conv); |
1373 | conv->rank = part_conv->rank; |
1374 | } |
1375 | |
1376 | return conv; |
1377 | } |
1378 | |
1379 | if (same_type_p (from, to)) |
1380 | { |
1381 | if (CLASS_TYPE_P (to) && conv->kind == ck_rvalue) |
1382 | conv->type = qualified_to; |
1383 | else if (from != to) |
1384 | /* Use TO in order to not lose TO in diagnostics. */ |
1385 | conv->type = to; |
1386 | return conv; |
1387 | } |
1388 | |
1389 | /* [conv.ptr] |
1390 | A null pointer constant can be converted to a pointer type; ... A |
1391 | null pointer constant of integral type can be converted to an |
1392 | rvalue of type std::nullptr_t. */ |
1393 | if ((tcode == POINTER_TYPE || TYPE_PTRMEM_P (to) |
1394 | || NULLPTR_TYPE_P (to)) |
1395 | && ((expr && null_ptr_cst_p (t: expr)) |
1396 | || NULLPTR_TYPE_P (from))) |
1397 | conv = build_conv (code: ck_std, type: to, from: conv); |
1398 | else if ((tcode == INTEGER_TYPE && fcode == POINTER_TYPE) |
1399 | || (tcode == POINTER_TYPE && fcode == INTEGER_TYPE)) |
1400 | { |
1401 | /* For backwards brain damage compatibility, allow interconversion of |
1402 | pointers and integers with a pedwarn. */ |
1403 | conv = build_conv (code: ck_std, type: to, from: conv); |
1404 | conv->bad_p = true; |
1405 | } |
1406 | else if (UNSCOPED_ENUM_P (to) && fcode == INTEGER_TYPE) |
1407 | { |
1408 | /* For backwards brain damage compatibility, allow interconversion of |
1409 | enums and integers with a pedwarn. */ |
1410 | conv = build_conv (code: ck_std, type: to, from: conv); |
1411 | conv->bad_p = true; |
1412 | } |
1413 | else if ((tcode == POINTER_TYPE && fcode == POINTER_TYPE) |
1414 | || (TYPE_PTRDATAMEM_P (to) && TYPE_PTRDATAMEM_P (from))) |
1415 | { |
1416 | tree to_pointee; |
1417 | tree from_pointee; |
1418 | |
1419 | if (tcode == POINTER_TYPE) |
1420 | { |
1421 | to_pointee = TREE_TYPE (to); |
1422 | from_pointee = TREE_TYPE (from); |
1423 | |
1424 | /* Since this is the target of a pointer, it can't have function |
1425 | qualifiers, so any TYPE_QUALS must be for attributes const or |
1426 | noreturn. Strip them. */ |
1427 | if (TREE_CODE (to_pointee) == FUNCTION_TYPE |
1428 | && TYPE_QUALS (to_pointee)) |
1429 | to_pointee = build_qualified_type (to_pointee, TYPE_UNQUALIFIED); |
1430 | if (TREE_CODE (from_pointee) == FUNCTION_TYPE |
1431 | && TYPE_QUALS (from_pointee)) |
1432 | from_pointee = build_qualified_type (from_pointee, TYPE_UNQUALIFIED); |
1433 | } |
1434 | else |
1435 | { |
1436 | to_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (to); |
1437 | from_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (from); |
1438 | } |
1439 | |
1440 | if (tcode == POINTER_TYPE |
1441 | && same_type_ignoring_top_level_qualifiers_p (from_pointee, |
1442 | to_pointee)) |
1443 | ; |
1444 | else if (VOID_TYPE_P (to_pointee) |
1445 | && !TYPE_PTRDATAMEM_P (from) |
1446 | && TREE_CODE (from_pointee) != FUNCTION_TYPE) |
1447 | { |
1448 | tree nfrom = TREE_TYPE (from); |
1449 | /* Don't try to apply restrict to void. */ |
1450 | int quals = cp_type_quals (nfrom) & ~TYPE_QUAL_RESTRICT; |
1451 | from_pointee = cp_build_qualified_type (void_type_node, quals); |
1452 | from = build_pointer_type (from_pointee); |
1453 | conv = build_conv (code: ck_ptr, type: from, from: conv); |
1454 | } |
1455 | else if (TYPE_PTRDATAMEM_P (from)) |
1456 | { |
1457 | tree fbase = TYPE_PTRMEM_CLASS_TYPE (from); |
1458 | tree tbase = TYPE_PTRMEM_CLASS_TYPE (to); |
1459 | |
1460 | if (same_type_p (fbase, tbase)) |
1461 | /* No base conversion needed. */; |
1462 | else if (DERIVED_FROM_P (fbase, tbase) |
1463 | && (same_type_ignoring_top_level_qualifiers_p |
1464 | (from_pointee, to_pointee))) |
1465 | { |
1466 | from = build_ptrmem_type (tbase, from_pointee); |
1467 | conv = build_conv (code: ck_pmem, type: from, from: conv); |
1468 | } |
1469 | else |
1470 | return NULL; |
1471 | } |
1472 | else if (CLASS_TYPE_P (from_pointee) |
1473 | && CLASS_TYPE_P (to_pointee) |
1474 | /* [conv.ptr] |
1475 | |
1476 | An rvalue of type "pointer to cv D," where D is a |
1477 | class type, can be converted to an rvalue of type |
1478 | "pointer to cv B," where B is a base class (clause |
1479 | _class.derived_) of D. If B is an inaccessible |
1480 | (clause _class.access_) or ambiguous |
1481 | (_class.member.lookup_) base class of D, a program |
1482 | that necessitates this conversion is ill-formed. |
1483 | Therefore, we use DERIVED_FROM_P, and do not check |
1484 | access or uniqueness. */ |
1485 | && DERIVED_FROM_P (to_pointee, from_pointee)) |
1486 | { |
1487 | from_pointee |
1488 | = cp_build_qualified_type (to_pointee, |
1489 | cp_type_quals (from_pointee)); |
1490 | from = build_pointer_type (from_pointee); |
1491 | conv = build_conv (code: ck_ptr, type: from, from: conv); |
1492 | conv->base_p = true; |
1493 | } |
1494 | |
1495 | if (same_type_p (from, to)) |
1496 | /* OK */; |
1497 | else if (c_cast_p && comp_ptr_ttypes_const (to, from, bounds_either)) |
1498 | /* In a C-style cast, we ignore CV-qualification because we |
1499 | are allowed to perform a static_cast followed by a |
1500 | const_cast. */ |
1501 | conv = build_conv (code: ck_qual, type: to, from: conv); |
1502 | else if (!c_cast_p && comp_ptr_ttypes (to_pointee, from_pointee)) |
1503 | conv = build_conv (code: ck_qual, type: to, from: conv); |
1504 | else if (expr && string_conv_p (to, expr, 0)) |
1505 | /* converting from string constant to char *. */ |
1506 | conv = build_conv (code: ck_qual, type: to, from: conv); |
1507 | else if (fnptr_conv_p (to, from)) |
1508 | conv = build_conv (code: ck_fnptr, type: to, from: conv); |
1509 | /* Allow conversions among compatible ObjC pointer types (base |
1510 | conversions have been already handled above). */ |
1511 | else if (c_dialect_objc () |
1512 | && objc_compare_types (to, from, -4, NULL_TREE)) |
1513 | conv = build_conv (code: ck_ptr, type: to, from: conv); |
1514 | else if (ptr_reasonably_similar (to_pointee, from_pointee)) |
1515 | { |
1516 | conv = build_conv (code: ck_ptr, type: to, from: conv); |
1517 | conv->bad_p = true; |
1518 | } |
1519 | else |
1520 | return NULL; |
1521 | |
1522 | from = to; |
1523 | } |
1524 | else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from)) |
1525 | { |
1526 | tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from)); |
1527 | tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to)); |
1528 | tree fbase = class_of_this_parm (fntype: fromfn); |
1529 | tree tbase = class_of_this_parm (fntype: tofn); |
1530 | |
1531 | /* If FBASE and TBASE are equivalent but incomplete, DERIVED_FROM_P |
1532 | yields false. But a pointer to member of incomplete class is OK. */ |
1533 | if (!same_type_p (fbase, tbase) && !DERIVED_FROM_P (fbase, tbase)) |
1534 | return NULL; |
1535 | |
1536 | tree fstat = static_fn_type (fromfn); |
1537 | tree tstat = static_fn_type (tofn); |
1538 | if (same_type_p (tstat, fstat) |
1539 | || fnptr_conv_p (tstat, fstat)) |
1540 | /* OK */; |
1541 | else |
1542 | return NULL; |
1543 | |
1544 | if (!same_type_p (fbase, tbase)) |
1545 | { |
1546 | from = build_memfn_type (fstat, |
1547 | tbase, |
1548 | cp_type_quals (tbase), |
1549 | type_memfn_rqual (tofn)); |
1550 | from = build_ptrmemfunc_type (build_pointer_type (from)); |
1551 | conv = build_conv (code: ck_pmem, type: from, from: conv); |
1552 | conv->base_p = true; |
1553 | } |
1554 | if (fnptr_conv_p (tstat, fstat)) |
1555 | conv = build_conv (code: ck_fnptr, type: to, from: conv); |
1556 | } |
1557 | else if (tcode == BOOLEAN_TYPE) |
1558 | { |
1559 | /* [conv.bool] |
1560 | |
1561 | A prvalue of arithmetic, unscoped enumeration, pointer, or pointer |
1562 | to member type can be converted to a prvalue of type bool. ... |
1563 | For direct-initialization (8.5 [dcl.init]), a prvalue of type |
1564 | std::nullptr_t can be converted to a prvalue of type bool; */ |
1565 | if (ARITHMETIC_TYPE_P (from) |
1566 | || UNSCOPED_ENUM_P (from) |
1567 | || fcode == POINTER_TYPE |
1568 | || TYPE_PTRMEM_P (from) |
1569 | || NULLPTR_TYPE_P (from)) |
1570 | { |
1571 | conv = build_conv (code: ck_std, type: to, from: conv); |
1572 | if (fcode == POINTER_TYPE |
1573 | || TYPE_PTRDATAMEM_P (from) |
1574 | || (TYPE_PTRMEMFUNC_P (from) |
1575 | && conv->rank < cr_pbool) |
1576 | || NULLPTR_TYPE_P (from)) |
1577 | conv->rank = cr_pbool; |
1578 | if (NULLPTR_TYPE_P (from) && (flags & LOOKUP_ONLYCONVERTING)) |
1579 | conv->bad_p = true; |
1580 | if (flags & LOOKUP_NO_NARROWING) |
1581 | conv->check_narrowing = true; |
1582 | return conv; |
1583 | } |
1584 | |
1585 | return NULL; |
1586 | } |
1587 | /* We don't check for ENUMERAL_TYPE here because there are no standard |
1588 | conversions to enum type. */ |
1589 | /* As an extension, allow conversion to complex type. */ |
1590 | else if (ARITHMETIC_TYPE_P (to)) |
1591 | { |
1592 | if (! (INTEGRAL_CODE_P (fcode) |
1593 | || (fcode == REAL_TYPE && !(flags & LOOKUP_NO_NON_INTEGRAL))) |
1594 | || SCOPED_ENUM_P (from)) |
1595 | return NULL; |
1596 | |
1597 | /* If we're parsing an enum with no fixed underlying type, we're |
1598 | dealing with an incomplete type, which renders the conversion |
1599 | ill-formed. */ |
1600 | if (!COMPLETE_TYPE_P (from)) |
1601 | return NULL; |
1602 | |
1603 | conv = build_conv (code: ck_std, type: to, from: conv); |
1604 | |
1605 | tree underlying_type = NULL_TREE; |
1606 | if (TREE_CODE (from) == ENUMERAL_TYPE |
1607 | && ENUM_FIXED_UNDERLYING_TYPE_P (from)) |
1608 | underlying_type = ENUM_UNDERLYING_TYPE (from); |
1609 | |
1610 | /* Give this a better rank if it's a promotion. |
1611 | |
1612 | To handle CWG 1601, also bump the rank if we are converting |
1613 | an enumeration with a fixed underlying type to the underlying |
1614 | type. */ |
1615 | if ((same_type_p (to, type_promotes_to (from)) |
1616 | || (underlying_type && same_type_p (to, underlying_type))) |
1617 | && next_conversion (conv)->rank <= cr_promotion) |
1618 | conv->rank = cr_promotion; |
1619 | |
1620 | /* A prvalue of floating-point type can be converted to a prvalue of |
1621 | another floating-point type with a greater or equal conversion |
1622 | rank ([conv.rank]). A prvalue of standard floating-point type can |
1623 | be converted to a prvalue of another standard floating-point type. |
1624 | For backwards compatibility with handling __float128 and other |
1625 | non-standard floating point types, allow all implicit floating |
1626 | point conversions if neither type is extended floating-point |
1627 | type and if at least one of them is, fail if they have unordered |
1628 | conversion rank or from has higher conversion rank. */ |
1629 | if (fcode == REAL_TYPE |
1630 | && tcode == REAL_TYPE |
1631 | && (extended_float_type_p (type: from) |
1632 | || extended_float_type_p (type: to)) |
1633 | && cp_compare_floating_point_conversion_ranks (from, to) >= 2) |
1634 | conv->bad_p = true; |
1635 | } |
1636 | else if (fcode == VECTOR_TYPE && tcode == VECTOR_TYPE |
1637 | && vector_types_convertible_p (t1: from, t2: to, emit_lax_note: false)) |
1638 | return build_conv (code: ck_std, type: to, from: conv); |
1639 | else if (MAYBE_CLASS_TYPE_P (to) && MAYBE_CLASS_TYPE_P (from) |
1640 | && is_properly_derived_from (from, to)) |
1641 | { |
1642 | if (conv->kind == ck_rvalue) |
1643 | conv = next_conversion (conv); |
1644 | conv = build_conv (code: ck_base, type: to, from: conv); |
1645 | /* The derived-to-base conversion indicates the initialization |
1646 | of a parameter with base type from an object of a derived |
1647 | type. A temporary object is created to hold the result of |
1648 | the conversion unless we're binding directly to a reference. */ |
1649 | conv->need_temporary_p = !(flags & LOOKUP_NO_TEMP_BIND); |
1650 | /* If we're performing copy-initialization, remember to skip |
1651 | explicit constructors. */ |
1652 | if (flags & LOOKUP_ONLYCONVERTING) |
1653 | conv->copy_init_p = true; |
1654 | } |
1655 | else |
1656 | return NULL; |
1657 | |
1658 | if (flags & LOOKUP_NO_NARROWING) |
1659 | conv->check_narrowing = true; |
1660 | |
1661 | return conv; |
1662 | } |
1663 | |
1664 | /* Returns nonzero if T1 is reference-related to T2. |
1665 | |
1666 | This is considered when a reference to T1 is initialized by a T2. */ |
1667 | |
1668 | bool |
1669 | reference_related_p (tree t1, tree t2) |
1670 | { |
1671 | if (t1 == error_mark_node || t2 == error_mark_node) |
1672 | return false; |
1673 | |
1674 | t1 = TYPE_MAIN_VARIANT (t1); |
1675 | t2 = TYPE_MAIN_VARIANT (t2); |
1676 | |
1677 | /* [dcl.init.ref] |
1678 | |
1679 | Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related |
1680 | to "cv2 T2" if T1 is similar to T2, or T1 is a base class of T2. */ |
1681 | return (similar_type_p (t1, t2) |
1682 | || (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2) |
1683 | && DERIVED_FROM_P (t1, t2))); |
1684 | } |
1685 | |
1686 | /* Returns nonzero if T1 is reference-compatible with T2. */ |
1687 | |
1688 | bool |
1689 | reference_compatible_p (tree t1, tree t2) |
1690 | { |
1691 | /* [dcl.init.ref] |
1692 | |
1693 | "cv1 T1" is reference compatible with "cv2 T2" if |
1694 | a prvalue of type "pointer to cv2 T2" can be converted to the type |
1695 | "pointer to cv1 T1" via a standard conversion sequence. */ |
1696 | tree ptype1 = build_pointer_type (t1); |
1697 | tree ptype2 = build_pointer_type (t2); |
1698 | conversion *conv = standard_conversion (to: ptype1, from: ptype2, NULL_TREE, |
1699 | /*c_cast_p=*/false, flags: 0, complain: tf_none); |
1700 | if (!conv || conv->bad_p) |
1701 | return false; |
1702 | return true; |
1703 | } |
1704 | |
1705 | /* Return true if converting FROM to TO would involve a qualification |
1706 | conversion. */ |
1707 | |
1708 | static bool |
1709 | involves_qualification_conversion_p (tree to, tree from) |
1710 | { |
1711 | /* If we're not convering a pointer to another one, we won't get |
1712 | a qualification conversion. */ |
1713 | if (!((TYPE_PTR_P (to) && TYPE_PTR_P (from)) |
1714 | || (TYPE_PTRDATAMEM_P (to) && TYPE_PTRDATAMEM_P (from)))) |
1715 | return false; |
1716 | |
1717 | conversion *conv = standard_conversion (to, from, NULL_TREE, |
1718 | /*c_cast_p=*/false, flags: 0, complain: tf_none); |
1719 | for (conversion *t = conv; t; t = next_conversion (conv: t)) |
1720 | if (t->kind == ck_qual) |
1721 | return true; |
1722 | |
1723 | return false; |
1724 | } |
1725 | |
1726 | /* A reference of the indicated TYPE is being bound directly to the |
1727 | expression represented by the implicit conversion sequence CONV. |
1728 | Return a conversion sequence for this binding. */ |
1729 | |
1730 | static conversion * |
1731 | direct_reference_binding (tree type, conversion *conv) |
1732 | { |
1733 | tree t; |
1734 | |
1735 | gcc_assert (TYPE_REF_P (type)); |
1736 | gcc_assert (!TYPE_REF_P (conv->type)); |
1737 | |
1738 | t = TREE_TYPE (type); |
1739 | |
1740 | if (conv->kind == ck_identity) |
1741 | /* Mark the identity conv as to not decay to rvalue. */ |
1742 | conv->rvaluedness_matches_p = true; |
1743 | |
1744 | /* [over.ics.rank] |
1745 | |
1746 | When a parameter of reference type binds directly |
1747 | (_dcl.init.ref_) to an argument expression, the implicit |
1748 | conversion sequence is the identity conversion, unless the |
1749 | argument expression has a type that is a derived class of the |
1750 | parameter type, in which case the implicit conversion sequence is |
1751 | a derived-to-base Conversion. |
1752 | |
1753 | If the parameter binds directly to the result of applying a |
1754 | conversion function to the argument expression, the implicit |
1755 | conversion sequence is a user-defined conversion sequence |
1756 | (_over.ics.user_), with the second standard conversion sequence |
1757 | either an identity conversion or, if the conversion function |
1758 | returns an entity of a type that is a derived class of the |
1759 | parameter type, a derived-to-base conversion. */ |
1760 | if (is_properly_derived_from (conv->type, t)) |
1761 | { |
1762 | /* Represent the derived-to-base conversion. */ |
1763 | conv = build_conv (code: ck_base, type: t, from: conv); |
1764 | /* We will actually be binding to the base-class subobject in |
1765 | the derived class, so we mark this conversion appropriately. |
1766 | That way, convert_like knows not to generate a temporary. */ |
1767 | conv->need_temporary_p = false; |
1768 | } |
1769 | else if (involves_qualification_conversion_p (to: t, from: conv->type)) |
1770 | /* Represent the qualification conversion. After DR 2352 |
1771 | #1 and #2 were indistinguishable conversion sequences: |
1772 | |
1773 | void f(int*); // #1 |
1774 | void f(const int* const &); // #2 |
1775 | void g(int* p) { f(p); } |
1776 | |
1777 | because the types "int *" and "const int *const" are |
1778 | reference-related and we were binding both directly and they |
1779 | had the same rank. To break it up, we add a ck_qual under the |
1780 | ck_ref_bind so that conversion sequence ranking chooses #1. |
1781 | |
1782 | We strip_top_quals here which is also what standard_conversion |
1783 | does. Failure to do so would confuse comp_cv_qual_signature |
1784 | into thinking that in |
1785 | |
1786 | void f(const int * const &); // #1 |
1787 | void f(const int *); // #2 |
1788 | int *x; |
1789 | f(x); |
1790 | |
1791 | #2 is a better match than #1 even though they're ambiguous (97296). */ |
1792 | conv = build_conv (code: ck_qual, type: strip_top_quals (t), from: conv); |
1793 | |
1794 | return build_conv (code: ck_ref_bind, type, from: conv); |
1795 | } |
1796 | |
1797 | /* Returns the conversion path from type FROM to reference type TO for |
1798 | purposes of reference binding. For lvalue binding, either pass a |
1799 | reference type to FROM or an lvalue expression to EXPR. If the |
1800 | reference will be bound to a temporary, NEED_TEMPORARY_P is set for |
1801 | the conversion returned. If C_CAST_P is true, this |
1802 | conversion is coming from a C-style cast. */ |
1803 | |
1804 | static conversion * |
1805 | reference_binding (tree rto, tree rfrom, tree expr, bool c_cast_p, int flags, |
1806 | tsubst_flags_t complain) |
1807 | { |
1808 | conversion *conv = NULL; |
1809 | conversion *bad_direct_conv = nullptr; |
1810 | tree to = TREE_TYPE (rto); |
1811 | tree from = rfrom; |
1812 | tree tfrom; |
1813 | bool related_p; |
1814 | bool compatible_p; |
1815 | cp_lvalue_kind gl_kind; |
1816 | bool is_lvalue; |
1817 | |
1818 | if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr)) |
1819 | { |
1820 | expr = instantiate_type (to, expr, tf_none); |
1821 | if (expr == error_mark_node) |
1822 | return NULL; |
1823 | from = TREE_TYPE (expr); |
1824 | } |
1825 | |
1826 | bool copy_list_init = false; |
1827 | bool single_list_conv = false; |
1828 | if (expr && BRACE_ENCLOSED_INITIALIZER_P (expr)) |
1829 | { |
1830 | maybe_warn_cpp0x (str: CPP0X_INITIALIZER_LISTS); |
1831 | /* DR 1288: Otherwise, if the initializer list has a single element |
1832 | of type E and ... [T's] referenced type is reference-related to E, |
1833 | the object or reference is initialized from that element... |
1834 | |
1835 | ??? With P0388R4, we should bind 't' directly to U{}: |
1836 | using U = A[2]; |
1837 | A (&&t)[] = {U{}}; |
1838 | because A[] and A[2] are reference-related. But we don't do it |
1839 | because grok_reference_init has deduced the array size (to 1), and |
1840 | A[1] and A[2] aren't reference-related. */ |
1841 | if (CONSTRUCTOR_NELTS (expr) == 1 |
1842 | && !CONSTRUCTOR_IS_DESIGNATED_INIT (expr)) |
1843 | { |
1844 | tree elt = CONSTRUCTOR_ELT (expr, 0)->value; |
1845 | if (error_operand_p (t: elt)) |
1846 | return NULL; |
1847 | tree etype = TREE_TYPE (elt); |
1848 | if (reference_related_p (t1: to, t2: etype)) |
1849 | { |
1850 | expr = elt; |
1851 | from = etype; |
1852 | goto skip; |
1853 | } |
1854 | else if (CLASS_TYPE_P (etype) && TYPE_HAS_CONVERSION (etype)) |
1855 | /* CWG1996: jason's proposed drafting adds "or initializing T from E |
1856 | would bind directly". We check that in the direct binding with |
1857 | conversion code below. */ |
1858 | single_list_conv = true; |
1859 | } |
1860 | /* Otherwise, if T is a reference type, a prvalue temporary of the type |
1861 | referenced by T is copy-list-initialized, and the reference is bound |
1862 | to that temporary. */ |
1863 | copy_list_init = true; |
1864 | skip:; |
1865 | } |
1866 | |
1867 | if (TYPE_REF_P (from)) |
1868 | { |
1869 | from = TREE_TYPE (from); |
1870 | if (!TYPE_REF_IS_RVALUE (rfrom) |
1871 | || TREE_CODE (from) == FUNCTION_TYPE) |
1872 | gl_kind = clk_ordinary; |
1873 | else |
1874 | gl_kind = clk_rvalueref; |
1875 | } |
1876 | else if (expr) |
1877 | gl_kind = lvalue_kind (expr); |
1878 | else if (CLASS_TYPE_P (from) |
1879 | || TREE_CODE (from) == ARRAY_TYPE) |
1880 | gl_kind = clk_class; |
1881 | else |
1882 | gl_kind = clk_none; |
1883 | |
1884 | /* Don't allow a class prvalue when LOOKUP_NO_TEMP_BIND. */ |
1885 | if ((flags & LOOKUP_NO_TEMP_BIND) |
1886 | && (gl_kind & clk_class)) |
1887 | gl_kind = clk_none; |
1888 | |
1889 | /* Same mask as real_lvalue_p. */ |
1890 | is_lvalue = gl_kind && !(gl_kind & (clk_rvalueref|clk_class)); |
1891 | |
1892 | tfrom = from; |
1893 | if ((gl_kind & clk_bitfield) != 0) |
1894 | tfrom = unlowered_expr_type (expr); |
1895 | |
1896 | /* Figure out whether or not the types are reference-related and |
1897 | reference compatible. We have to do this after stripping |
1898 | references from FROM. */ |
1899 | related_p = reference_related_p (t1: to, t2: tfrom); |
1900 | /* If this is a C cast, first convert to an appropriately qualified |
1901 | type, so that we can later do a const_cast to the desired type. */ |
1902 | if (related_p && c_cast_p |
1903 | && !at_least_as_qualified_p (to, tfrom)) |
1904 | to = cp_build_qualified_type (to, cp_type_quals (tfrom)); |
1905 | compatible_p = reference_compatible_p (t1: to, t2: tfrom); |
1906 | |
1907 | /* Directly bind reference when target expression's type is compatible with |
1908 | the reference and expression is an lvalue. In DR391, the wording in |
1909 | [8.5.3/5 dcl.init.ref] is changed to also require direct bindings for |
1910 | const and rvalue references to rvalues of compatible class type. |
1911 | We should also do direct bindings for non-class xvalues. */ |
1912 | if ((related_p || compatible_p) && gl_kind) |
1913 | { |
1914 | /* [dcl.init.ref] |
1915 | |
1916 | If the initializer expression |
1917 | |
1918 | -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1" |
1919 | is reference-compatible with "cv2 T2," |
1920 | |
1921 | the reference is bound directly to the initializer expression |
1922 | lvalue. |
1923 | |
1924 | [...] |
1925 | If the initializer expression is an rvalue, with T2 a class type, |
1926 | and "cv1 T1" is reference-compatible with "cv2 T2", the reference |
1927 | is bound to the object represented by the rvalue or to a sub-object |
1928 | within that object. */ |
1929 | |
1930 | conv = build_identity_conv (type: tfrom, expr); |
1931 | conv = direct_reference_binding (type: rto, conv); |
1932 | |
1933 | if (TYPE_REF_P (rfrom)) |
1934 | /* Handle rvalue reference to function properly. */ |
1935 | conv->rvaluedness_matches_p |
1936 | = (TYPE_REF_IS_RVALUE (rto) == TYPE_REF_IS_RVALUE (rfrom)); |
1937 | else |
1938 | conv->rvaluedness_matches_p |
1939 | = (TYPE_REF_IS_RVALUE (rto) == !is_lvalue); |
1940 | |
1941 | if ((gl_kind & clk_bitfield) != 0 |
1942 | || ((gl_kind & clk_packed) != 0 && !TYPE_PACKED (to))) |
1943 | /* For the purposes of overload resolution, we ignore the fact |
1944 | this expression is a bitfield or packed field. (In particular, |
1945 | [over.ics.ref] says specifically that a function with a |
1946 | non-const reference parameter is viable even if the |
1947 | argument is a bitfield.) |
1948 | |
1949 | However, when we actually call the function we must create |
1950 | a temporary to which to bind the reference. If the |
1951 | reference is volatile, or isn't const, then we cannot make |
1952 | a temporary, so we just issue an error when the conversion |
1953 | actually occurs. */ |
1954 | conv->need_temporary_p = true; |
1955 | |
1956 | /* Don't allow binding of lvalues (other than function lvalues) to |
1957 | rvalue references. */ |
1958 | if (is_lvalue && TYPE_REF_IS_RVALUE (rto) |
1959 | && TREE_CODE (to) != FUNCTION_TYPE) |
1960 | conv->bad_p = true; |
1961 | |
1962 | /* Nor the reverse. */ |
1963 | if (!is_lvalue && !TYPE_REF_IS_RVALUE (rto) |
1964 | /* Unless it's really a C++20 lvalue being treated as an xvalue. |
1965 | But in C++23, such an expression is just an xvalue, not a special |
1966 | lvalue, so the binding is once again ill-formed. */ |
1967 | && !(cxx_dialect <= cxx20 |
1968 | && (gl_kind & clk_implicit_rval)) |
1969 | && (!CP_TYPE_CONST_NON_VOLATILE_P (to) |
1970 | || (flags & LOOKUP_NO_RVAL_BIND)) |
1971 | && TREE_CODE (to) != FUNCTION_TYPE) |
1972 | conv->bad_p = true; |
1973 | |
1974 | if (!compatible_p) |
1975 | conv->bad_p = true; |
1976 | |
1977 | return conv; |
1978 | } |
1979 | /* [class.conv.fct] A conversion function is never used to convert a |
1980 | (possibly cv-qualified) object to the (possibly cv-qualified) same |
1981 | object type (or a reference to it), to a (possibly cv-qualified) base |
1982 | class of that type (or a reference to it).... */ |
1983 | else if (!related_p |
1984 | && !(flags & LOOKUP_NO_CONVERSION) |
1985 | && (CLASS_TYPE_P (from) || single_list_conv)) |
1986 | { |
1987 | tree rexpr = expr; |
1988 | if (single_list_conv) |
1989 | rexpr = CONSTRUCTOR_ELT (expr, 0)->value; |
1990 | |
1991 | /* [dcl.init.ref] |
1992 | |
1993 | If the initializer expression |
1994 | |
1995 | -- has a class type (i.e., T2 is a class type) can be |
1996 | implicitly converted to an lvalue of type "cv3 T3," where |
1997 | "cv1 T1" is reference-compatible with "cv3 T3". (this |
1998 | conversion is selected by enumerating the applicable |
1999 | conversion functions (_over.match.ref_) and choosing the |
2000 | best one through overload resolution. (_over.match_). |
2001 | |
2002 | the reference is bound to the lvalue result of the conversion |
2003 | in the second case. */ |
2004 | z_candidate *cand = build_user_type_conversion_1 (rto, rexpr, flags, |
2005 | complain); |
2006 | if (cand) |
2007 | { |
2008 | if (!cand->second_conv->bad_p) |
2009 | return cand->second_conv; |
2010 | |
2011 | /* Direct reference binding wasn't successful and yielded a bad |
2012 | conversion. Proceed with trying to go through a temporary |
2013 | instead, and if that also fails then we'll return this bad |
2014 | conversion rather than no conversion for sake of better |
2015 | diagnostics. */ |
2016 | bad_direct_conv = cand->second_conv; |
2017 | } |
2018 | } |
2019 | |
2020 | /* From this point on, we conceptually need temporaries, even if we |
2021 | elide them. Only the cases above are "direct bindings". */ |
2022 | if (flags & LOOKUP_NO_TEMP_BIND) |
2023 | return bad_direct_conv ? bad_direct_conv : nullptr; |
2024 | |
2025 | /* [over.ics.rank] |
2026 | |
2027 | When a parameter of reference type is not bound directly to an |
2028 | argument expression, the conversion sequence is the one required |
2029 | to convert the argument expression to the underlying type of the |
2030 | reference according to _over.best.ics_. Conceptually, this |
2031 | conversion sequence corresponds to copy-initializing a temporary |
2032 | of the underlying type with the argument expression. Any |
2033 | difference in top-level cv-qualification is subsumed by the |
2034 | initialization itself and does not constitute a conversion. */ |
2035 | |
2036 | bool maybe_valid_p = true; |
2037 | |
2038 | /* [dcl.init.ref] |
2039 | |
2040 | Otherwise, the reference shall be an lvalue reference to a |
2041 | non-volatile const type, or the reference shall be an rvalue |
2042 | reference. */ |
2043 | if (!CP_TYPE_CONST_NON_VOLATILE_P (to) && !TYPE_REF_IS_RVALUE (rto)) |
2044 | maybe_valid_p = false; |
2045 | |
2046 | /* [dcl.init.ref] |
2047 | |
2048 | Otherwise, a temporary of type "cv1 T1" is created and |
2049 | initialized from the initializer expression using the rules for a |
2050 | non-reference copy initialization. If T1 is reference-related to |
2051 | T2, cv1 must be the same cv-qualification as, or greater |
2052 | cv-qualification than, cv2; otherwise, the program is ill-formed. */ |
2053 | if (related_p && !at_least_as_qualified_p (to, from)) |
2054 | maybe_valid_p = false; |
2055 | |
2056 | /* We try below to treat an invalid reference binding as a bad conversion |
2057 | to improve diagnostics, but doing so may cause otherwise unnecessary |
2058 | instantiations that can lead to a hard error. So during the first pass |
2059 | of overload resolution wherein we shortcut bad conversions, instead just |
2060 | produce a special conversion indicating a second pass is necessary if |
2061 | there's no strictly viable candidate. */ |
2062 | if (!maybe_valid_p && (flags & LOOKUP_SHORTCUT_BAD_CONVS)) |
2063 | { |
2064 | if (bad_direct_conv) |
2065 | return bad_direct_conv; |
2066 | |
2067 | conv = alloc_conversion (kind: ck_deferred_bad); |
2068 | conv->bad_p = true; |
2069 | return conv; |
2070 | } |
2071 | |
2072 | /* We're generating a temporary now, but don't bind any more in the |
2073 | conversion (specifically, don't slice the temporary returned by a |
2074 | conversion operator). */ |
2075 | flags |= LOOKUP_NO_TEMP_BIND; |
2076 | |
2077 | /* Core issue 899: When [copy-]initializing a temporary to be bound |
2078 | to the first parameter of a copy constructor (12.8) called with |
2079 | a single argument in the context of direct-initialization, |
2080 | explicit conversion functions are also considered. |
2081 | |
2082 | So don't set LOOKUP_ONLYCONVERTING in that case. */ |
2083 | if (!(flags & LOOKUP_COPY_PARM)) |
2084 | flags |= LOOKUP_ONLYCONVERTING; |
2085 | |
2086 | if (!conv) |
2087 | conv = implicit_conversion (to, from, expr, c_cast_p, |
2088 | flags, complain); |
2089 | if (!conv) |
2090 | return bad_direct_conv ? bad_direct_conv : nullptr; |
2091 | |
2092 | if (conv->user_conv_p) |
2093 | { |
2094 | if (copy_list_init) |
2095 | /* Remember this was copy-list-initialization. */ |
2096 | conv->need_temporary_p = true; |
2097 | |
2098 | /* If initializing the temporary used a conversion function, |
2099 | recalculate the second conversion sequence. */ |
2100 | for (conversion *t = conv; t; t = next_conversion (conv: t)) |
2101 | if (t->kind == ck_user |
2102 | && c_cast_p && !maybe_valid_p) |
2103 | { |
2104 | if (complain & tf_warning) |
2105 | warning (OPT_Wcast_user_defined, |
2106 | "casting %qT to %qT does not use %qD" , |
2107 | from, rto, t->cand->fn); |
2108 | /* Don't let recalculation try to make this valid. */ |
2109 | break; |
2110 | } |
2111 | else if (t->kind == ck_user |
2112 | && DECL_CONV_FN_P (t->cand->fn)) |
2113 | { |
2114 | tree ftype = TREE_TYPE (TREE_TYPE (t->cand->fn)); |
2115 | /* A prvalue of non-class type is cv-unqualified. */ |
2116 | if (!TYPE_REF_P (ftype) && !CLASS_TYPE_P (ftype)) |
2117 | ftype = cv_unqualified (ftype); |
2118 | int sflags = (flags|LOOKUP_NO_CONVERSION)&~LOOKUP_NO_TEMP_BIND; |
2119 | conversion *new_second |
2120 | = reference_binding (rto, rfrom: ftype, NULL_TREE, c_cast_p, |
2121 | flags: sflags, complain); |
2122 | if (!new_second) |
2123 | return bad_direct_conv ? bad_direct_conv : nullptr; |
2124 | conv = merge_conversion_sequences (t, new_second); |
2125 | gcc_assert (maybe_valid_p || conv->bad_p); |
2126 | return conv; |
2127 | } |
2128 | } |
2129 | |
2130 | conv = build_conv (code: ck_ref_bind, type: rto, from: conv); |
2131 | /* This reference binding, unlike those above, requires the |
2132 | creation of a temporary. */ |
2133 | conv->need_temporary_p = true; |
2134 | conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto); |
2135 | conv->bad_p |= !maybe_valid_p; |
2136 | |
2137 | return conv; |
2138 | } |
2139 | |
2140 | /* Returns the implicit conversion sequence (see [over.ics]) from type |
2141 | FROM to type TO. The optional expression EXPR may affect the |
2142 | conversion. FLAGS are the usual overloading flags. If C_CAST_P is |
2143 | true, this conversion is coming from a C-style cast. */ |
2144 | |
2145 | static conversion * |
2146 | implicit_conversion (tree to, tree from, tree expr, bool c_cast_p, |
2147 | int flags, tsubst_flags_t complain) |
2148 | { |
2149 | conversion *conv; |
2150 | |
2151 | if (from == error_mark_node || to == error_mark_node |
2152 | || expr == error_mark_node) |
2153 | return NULL; |
2154 | |
2155 | /* Other flags only apply to the primary function in overload |
2156 | resolution, or after we've chosen one. */ |
2157 | flags &= (LOOKUP_ONLYCONVERTING|LOOKUP_NO_CONVERSION|LOOKUP_COPY_PARM |
2158 | |LOOKUP_NO_TEMP_BIND|LOOKUP_NO_RVAL_BIND|LOOKUP_NO_NARROWING |
2159 | |LOOKUP_PROTECT|LOOKUP_NO_NON_INTEGRAL|LOOKUP_SHORTCUT_BAD_CONVS); |
2160 | |
2161 | /* FIXME: actually we don't want warnings either, but we can't just |
2162 | have 'complain &= ~(tf_warning|tf_error)' because it would cause |
2163 | the regression of, eg, g++.old-deja/g++.benjamin/16077.C. |
2164 | We really ought not to issue that warning until we've committed |
2165 | to that conversion. */ |
2166 | complain &= ~tf_error; |
2167 | |
2168 | /* Call reshape_init early to remove redundant braces. */ |
2169 | if (expr && BRACE_ENCLOSED_INITIALIZER_P (expr) && CLASS_TYPE_P (to)) |
2170 | { |
2171 | to = complete_type (to); |
2172 | if (!COMPLETE_TYPE_P (to)) |
2173 | return nullptr; |
2174 | if (!CLASSTYPE_NON_AGGREGATE (to)) |
2175 | { |
2176 | expr = reshape_init (to, expr, complain); |
2177 | if (expr == error_mark_node) |
2178 | return nullptr; |
2179 | from = TREE_TYPE (expr); |
2180 | } |
2181 | } |
2182 | |
2183 | /* An argument should have gone through convert_from_reference. */ |
2184 | gcc_checking_assert (!expr || !TYPE_REF_P (from)); |
2185 | |
2186 | if (TYPE_REF_P (to)) |
2187 | conv = reference_binding (rto: to, rfrom: from, expr, c_cast_p, flags, complain); |
2188 | else |
2189 | conv = standard_conversion (to, from, expr, c_cast_p, flags, complain); |
2190 | |
2191 | if (conv) |
2192 | return conv; |
2193 | |
2194 | if (expr && BRACE_ENCLOSED_INITIALIZER_P (expr)) |
2195 | { |
2196 | if (is_std_init_list (to) && !CONSTRUCTOR_IS_DESIGNATED_INIT (expr)) |
2197 | return build_list_conv (type: to, ctor: expr, flags, complain); |
2198 | |
2199 | /* As an extension, allow list-initialization of _Complex. */ |
2200 | if (TREE_CODE (to) == COMPLEX_TYPE |
2201 | && !CONSTRUCTOR_IS_DESIGNATED_INIT (expr)) |
2202 | { |
2203 | conv = build_complex_conv (type: to, ctor: expr, flags, complain); |
2204 | if (conv) |
2205 | return conv; |
2206 | } |
2207 | |
2208 | /* Allow conversion from an initializer-list with one element to a |
2209 | scalar type. */ |
2210 | if (SCALAR_TYPE_P (to)) |
2211 | { |
2212 | int nelts = CONSTRUCTOR_NELTS (expr); |
2213 | tree elt; |
2214 | |
2215 | if (nelts == 0) |
2216 | elt = build_value_init (to, tf_none); |
2217 | else if (nelts == 1 && !CONSTRUCTOR_IS_DESIGNATED_INIT (expr)) |
2218 | elt = CONSTRUCTOR_ELT (expr, 0)->value; |
2219 | else |
2220 | elt = error_mark_node; |
2221 | |
2222 | conv = implicit_conversion (to, TREE_TYPE (elt), expr: elt, |
2223 | c_cast_p, flags, complain); |
2224 | if (conv) |
2225 | { |
2226 | conv->check_narrowing = true; |
2227 | if (BRACE_ENCLOSED_INITIALIZER_P (elt)) |
2228 | /* Too many levels of braces, i.e. '{{1}}'. */ |
2229 | conv->bad_p = true; |
2230 | return conv; |
2231 | } |
2232 | } |
2233 | else if (TREE_CODE (to) == ARRAY_TYPE) |
2234 | return build_array_conv (type: to, ctor: expr, flags, complain); |
2235 | } |
2236 | |
2237 | if (expr != NULL_TREE |
2238 | && (MAYBE_CLASS_TYPE_P (from) |
2239 | || MAYBE_CLASS_TYPE_P (to)) |
2240 | && (flags & LOOKUP_NO_CONVERSION) == 0) |
2241 | { |
2242 | struct z_candidate *cand; |
2243 | |
2244 | if (CLASS_TYPE_P (to) |
2245 | && BRACE_ENCLOSED_INITIALIZER_P (expr) |
2246 | && !CLASSTYPE_NON_AGGREGATE (complete_type (to))) |
2247 | return build_aggr_conv (type: to, ctor: expr, flags, complain); |
2248 | |
2249 | cand = build_user_type_conversion_1 (to, expr, flags, complain); |
2250 | if (cand) |
2251 | { |
2252 | if (BRACE_ENCLOSED_INITIALIZER_P (expr) |
2253 | && CONSTRUCTOR_NELTS (expr) == 1 |
2254 | && !CONSTRUCTOR_IS_DESIGNATED_INIT (expr) |
2255 | && !is_list_ctor (cand->fn)) |
2256 | { |
2257 | /* "If C is not an initializer-list constructor and the |
2258 | initializer list has a single element of type cv U, where U is |
2259 | X or a class derived from X, the implicit conversion sequence |
2260 | has Exact Match rank if U is X, or Conversion rank if U is |
2261 | derived from X." */ |
2262 | tree elt = CONSTRUCTOR_ELT (expr, 0)->value; |
2263 | tree elttype = TREE_TYPE (elt); |
2264 | if (reference_related_p (t1: to, t2: elttype)) |
2265 | return implicit_conversion (to, from: elttype, expr: elt, |
2266 | c_cast_p, flags, complain); |
2267 | } |
2268 | conv = cand->second_conv; |
2269 | } |
2270 | |
2271 | /* We used to try to bind a reference to a temporary here, but that |
2272 | is now handled after the recursive call to this function at the end |
2273 | of reference_binding. */ |
2274 | return conv; |
2275 | } |
2276 | |
2277 | return NULL; |
2278 | } |
2279 | |
2280 | /* Like implicit_conversion, but return NULL if the conversion is bad. |
2281 | |
2282 | This is not static so that check_non_deducible_conversion can call it within |
2283 | add_template_candidate_real as part of overload resolution; it should not be |
2284 | called outside of overload resolution. */ |
2285 | |
2286 | conversion * |
2287 | good_conversion (tree to, tree from, tree expr, |
2288 | int flags, tsubst_flags_t complain) |
2289 | { |
2290 | conversion *c = implicit_conversion (to, from, expr, /*cast*/c_cast_p: false, |
2291 | flags, complain); |
2292 | if (c && c->bad_p) |
2293 | c = NULL; |
2294 | return c; |
2295 | } |
2296 | |
2297 | /* Add a new entry to the list of candidates. Used by the add_*_candidate |
2298 | functions. ARGS will not be changed until a single candidate is |
2299 | selected. */ |
2300 | |
2301 | static struct z_candidate * |
2302 | add_candidate (struct z_candidate **candidates, |
2303 | tree fn, tree first_arg, const vec<tree, va_gc> *args, |
2304 | size_t num_convs, conversion **convs, |
2305 | tree access_path, tree conversion_path, |
2306 | int viable, struct rejection_reason *reason, |
2307 | int flags) |
2308 | { |
2309 | struct z_candidate *cand = (struct z_candidate *) |
2310 | conversion_obstack_alloc (n: sizeof (struct z_candidate)); |
2311 | |
2312 | cand->fn = fn; |
2313 | cand->first_arg = first_arg; |
2314 | cand->args = args; |
2315 | cand->convs = convs; |
2316 | cand->num_convs = num_convs; |
2317 | cand->access_path = access_path; |
2318 | cand->conversion_path = conversion_path; |
2319 | cand->viable = viable; |
2320 | cand->reason = reason; |
2321 | cand->next = *candidates; |
2322 | cand->flags = flags; |
2323 | *candidates = cand; |
2324 | |
2325 | if (convs && cand->reversed ()) |
2326 | /* Swap the conversions for comparison in joust; we'll swap them back |
2327 | before build_over_call. */ |
2328 | std::swap (a&: convs[0], b&: convs[1]); |
2329 | |
2330 | return cand; |
2331 | } |
2332 | |
2333 | /* FN is a function from the overload set that we outright didn't even |
2334 | consider (for some reason); add it to the list as an non-viable "ignored" |
2335 | candidate. */ |
2336 | |
2337 | static z_candidate * |
2338 | add_ignored_candidate (z_candidate **candidates, tree fn) |
2339 | { |
2340 | /* No need to dynamically allocate these. */ |
2341 | static const rejection_reason reason_ignored = { .code: rr_ignored, .u: {} }; |
2342 | |
2343 | struct z_candidate *cand = (struct z_candidate *) |
2344 | conversion_obstack_alloc (n: sizeof (struct z_candidate)); |
2345 | |
2346 | cand->fn = fn; |
2347 | cand->reason = const_cast<rejection_reason *> (&reason_ignored); |
2348 | cand->next = *candidates; |
2349 | *candidates = cand; |
2350 | |
2351 | return cand; |
2352 | } |
2353 | |
2354 | /* True iff CAND is a candidate added by add_ignored_candidate. */ |
2355 | |
2356 | static bool |
2357 | ignored_candidate_p (const z_candidate *cand) |
2358 | { |
2359 | return cand->reason && cand->reason->code == rr_ignored; |
2360 | } |
2361 | |
2362 | /* Return the number of remaining arguments in the parameter list |
2363 | beginning with ARG. */ |
2364 | |
2365 | int |
2366 | remaining_arguments (tree arg) |
2367 | { |
2368 | int n; |
2369 | |
2370 | for (n = 0; arg != NULL_TREE && arg != void_list_node; |
2371 | arg = TREE_CHAIN (arg)) |
2372 | n++; |
2373 | |
2374 | return n; |
2375 | } |
2376 | |
2377 | /* [over.match.copy]: When initializing a temporary object (12.2) to be bound |
2378 | to the first parameter of a constructor where the parameter is of type |
2379 | "reference to possibly cv-qualified T" and the constructor is called with a |
2380 | single argument in the context of direct-initialization of an object of type |
2381 | "cv2 T", explicit conversion functions are also considered. |
2382 | |
2383 | So set LOOKUP_COPY_PARM to let reference_binding know that |
2384 | it's being called in that context. */ |
2385 | |
2386 | int |
2387 | conv_flags (int i, int nargs, tree fn, tree arg, int flags) |
2388 | { |
2389 | int lflags = flags; |
2390 | tree t; |
2391 | if (i == 0 && nargs == 1 && DECL_CONSTRUCTOR_P (fn) |
2392 | && (t = FUNCTION_FIRST_USER_PARMTYPE (fn)) |
2393 | && (same_type_ignoring_top_level_qualifiers_p |
2394 | (non_reference (TREE_VALUE (t)), DECL_CONTEXT (fn)))) |
2395 | { |
2396 | if (!(flags & LOOKUP_ONLYCONVERTING)) |
2397 | lflags |= LOOKUP_COPY_PARM; |
2398 | if ((flags & LOOKUP_LIST_INIT_CTOR) |
2399 | && BRACE_ENCLOSED_INITIALIZER_P (arg)) |
2400 | lflags |= LOOKUP_NO_CONVERSION; |
2401 | } |
2402 | else |
2403 | lflags |= LOOKUP_ONLYCONVERTING; |
2404 | |
2405 | return lflags; |
2406 | } |
2407 | |
2408 | /* Build an appropriate 'this' conversion for the method FN and class |
2409 | type CTYPE from the value ARG (having type ARGTYPE) to the type PARMTYPE. |
2410 | This function modifies PARMTYPE, ARGTYPE and ARG. */ |
2411 | |
2412 | static conversion * |
2413 | build_this_conversion (tree fn, tree ctype, |
2414 | tree& parmtype, tree& argtype, tree& arg, |
2415 | int flags, tsubst_flags_t complain) |
2416 | { |
2417 | gcc_assert (DECL_IOBJ_MEMBER_FUNCTION_P (fn) |
2418 | && !DECL_CONSTRUCTOR_P (fn)); |
2419 | |
2420 | /* The type of the implicit object parameter ('this') for |
2421 | overload resolution is not always the same as for the |
2422 | function itself; conversion functions are considered to |
2423 | be members of the class being converted, and functions |
2424 | introduced by a using-declaration are considered to be |
2425 | members of the class that uses them. |
2426 | |
2427 | Since build_over_call ignores the ICS for the `this' |
2428 | parameter, we can just change the parm type. */ |
2429 | parmtype = cp_build_qualified_type (ctype, |
2430 | cp_type_quals (TREE_TYPE (parmtype))); |
2431 | bool this_p = true; |
2432 | if (FUNCTION_REF_QUALIFIED (TREE_TYPE (fn))) |
2433 | { |
2434 | /* If the function has a ref-qualifier, the implicit |
2435 | object parameter has reference type. */ |
2436 | bool rv = FUNCTION_RVALUE_QUALIFIED (TREE_TYPE (fn)); |
2437 | parmtype = cp_build_reference_type (parmtype, rv); |
2438 | /* The special handling of 'this' conversions in compare_ics |
2439 | does not apply if there is a ref-qualifier. */ |
2440 | this_p = false; |
2441 | } |
2442 | else |
2443 | { |
2444 | parmtype = build_pointer_type (parmtype); |
2445 | /* We don't use build_this here because we don't want to |
2446 | capture the object argument until we've chosen a |
2447 | non-static member function. */ |
2448 | arg = build_address (arg); |
2449 | argtype = lvalue_type (arg); |
2450 | } |
2451 | flags |= LOOKUP_ONLYCONVERTING; |
2452 | conversion *t = implicit_conversion (to: parmtype, from: argtype, expr: arg, |
2453 | /*c_cast_p=*/false, flags, complain); |
2454 | t->this_p = this_p; |
2455 | return t; |
2456 | } |
2457 | |
2458 | /* Create an overload candidate for the function or method FN called |
2459 | with the argument list FIRST_ARG/ARGS and add it to CANDIDATES. |
2460 | FLAGS is passed on to implicit_conversion. |
2461 | |
2462 | This does not change ARGS. |
2463 | |
2464 | CTYPE, if non-NULL, is the type we want to pretend this function |
2465 | comes from for purposes of overload resolution. |
2466 | |
2467 | SHORTCUT_BAD_CONVS controls how we handle "bad" argument conversions. |
2468 | If true, we stop computing conversions upon seeing the first bad |
2469 | conversion. This is used by add_candidates to avoid computing |
2470 | more conversions than necessary in the presence of a strictly viable |
2471 | candidate, while preserving the defacto behavior of overload resolution |
2472 | when it turns out there are only non-strictly viable candidates. */ |
2473 | |
2474 | static struct z_candidate * |
2475 | add_function_candidate (struct z_candidate **candidates, |
2476 | tree fn, tree ctype, tree first_arg, |
2477 | const vec<tree, va_gc> *args, tree access_path, |
2478 | tree conversion_path, int flags, |
2479 | conversion **convs, |
2480 | bool shortcut_bad_convs, |
2481 | tsubst_flags_t complain) |
2482 | { |
2483 | tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn)); |
2484 | int i, len; |
2485 | tree parmnode; |
2486 | tree orig_first_arg = first_arg; |
2487 | int skip; |
2488 | int viable = 1; |
2489 | struct rejection_reason *reason = NULL; |
2490 | |
2491 | /* The `this', `in_chrg' and VTT arguments to constructors are not |
2492 | considered in overload resolution. */ |
2493 | if (DECL_CONSTRUCTOR_P (fn)) |
2494 | { |
2495 | if (ctor_omit_inherited_parms (fn)) |
2496 | /* Bring back parameters omitted from an inherited ctor. */ |
2497 | parmlist = FUNCTION_FIRST_USER_PARMTYPE (DECL_ORIGIN (fn)); |
2498 | else |
2499 | parmlist = skip_artificial_parms_for (fn, parmlist); |
2500 | skip = num_artificial_parms_for (fn); |
2501 | if (skip > 0 && first_arg != NULL_TREE) |
2502 | { |
2503 | --skip; |
2504 | first_arg = NULL_TREE; |
2505 | } |
2506 | } |
2507 | else |
2508 | skip = 0; |
2509 | |
2510 | len = vec_safe_length (v: args) - skip + (first_arg != NULL_TREE ? 1 : 0); |
2511 | if (!convs) |
2512 | convs = alloc_conversions (n: len); |
2513 | |
2514 | /* 13.3.2 - Viable functions [over.match.viable] |
2515 | First, to be a viable function, a candidate function shall have enough |
2516 | parameters to agree in number with the arguments in the list. |
2517 | |
2518 | We need to check this first; otherwise, checking the ICSes might cause |
2519 | us to produce an ill-formed template instantiation. */ |
2520 | |
2521 | parmnode = parmlist; |
2522 | for (i = 0; i < len; ++i) |
2523 | { |
2524 | if (parmnode == NULL_TREE || parmnode == void_list_node) |
2525 | break; |
2526 | parmnode = TREE_CHAIN (parmnode); |
2527 | } |
2528 | |
2529 | if ((i < len && parmnode) |
2530 | || !sufficient_parms_p (parmlist: parmnode)) |
2531 | { |
2532 | int remaining = remaining_arguments (arg: parmnode); |
2533 | viable = 0; |
2534 | reason = arity_rejection (first_arg, expected: i + remaining, actual: len); |
2535 | } |
2536 | |
2537 | /* An inherited constructor (12.6.3 [class.inhctor.init]) that has a first |
2538 | parameter of type "reference to cv C" (including such a constructor |
2539 | instantiated from a template) is excluded from the set of candidate |
2540 | functions when used to construct an object of type D with an argument list |
2541 | containing a single argument if C is reference-related to D. */ |
2542 | if (viable && len == 1 && parmlist && DECL_CONSTRUCTOR_P (fn) |
2543 | && flag_new_inheriting_ctors |
2544 | && DECL_INHERITED_CTOR (fn)) |
2545 | { |
2546 | tree ptype = non_reference (TREE_VALUE (parmlist)); |
2547 | tree dtype = DECL_CONTEXT (fn); |
2548 | tree btype = DECL_INHERITED_CTOR_BASE (fn); |
2549 | if (reference_related_p (t1: ptype, t2: dtype) |
2550 | && reference_related_p (t1: btype, t2: ptype)) |
2551 | { |
2552 | viable = false; |
2553 | reason = inherited_ctor_rejection (); |
2554 | } |
2555 | } |
2556 | |
2557 | /* Second, for a function to be viable, its constraints must be |
2558 | satisfied. */ |
2559 | if (flag_concepts && viable && !constraints_satisfied_p (fn)) |
2560 | { |
2561 | reason = constraint_failure (); |
2562 | viable = false; |
2563 | } |
2564 | |
2565 | /* When looking for a function from a subobject from an implicit |
2566 | copy/move constructor/operator=, don't consider anything that takes (a |
2567 | reference to) an unrelated type. See c++/44909 and core 1092. */ |
2568 | if (viable && parmlist && (flags & LOOKUP_DEFAULTED)) |
2569 | { |
2570 | if (DECL_CONSTRUCTOR_P (fn)) |
2571 | i = 1; |
2572 | else if (DECL_ASSIGNMENT_OPERATOR_P (fn) |
2573 | && DECL_OVERLOADED_OPERATOR_IS (fn, NOP_EXPR)) |
2574 | i = 2; |
2575 | else |
2576 | i = 0; |
2577 | if (i && len == i) |
2578 | { |
2579 | parmnode = chain_index (i-1, parmlist); |
2580 | if (!reference_related_p (t1: non_reference (TREE_VALUE (parmnode)), |
2581 | t2: ctype)) |
2582 | viable = 0; |
2583 | } |
2584 | |
2585 | /* This only applies at the top level. */ |
2586 | flags &= ~LOOKUP_DEFAULTED; |
2587 | } |
2588 | |
2589 | if (! viable) |
2590 | goto out; |
2591 | |
2592 | if (shortcut_bad_convs) |
2593 | flags |= LOOKUP_SHORTCUT_BAD_CONVS; |
2594 | else |
2595 | flags &= ~LOOKUP_SHORTCUT_BAD_CONVS; |
2596 | |
2597 | /* Third, for F to be a viable function, there shall exist for each |
2598 | argument an implicit conversion sequence that converts that argument |
2599 | to the corresponding parameter of F. */ |
2600 | |
2601 | parmnode = parmlist; |
2602 | |
2603 | for (i = 0; i < len; ++i) |
2604 | { |
2605 | tree argtype, to_type; |
2606 | tree arg; |
2607 | |
2608 | if (parmnode == void_list_node) |
2609 | break; |
2610 | |
2611 | if (convs[i]) |
2612 | { |
2613 | /* Already set during deduction. */ |
2614 | parmnode = TREE_CHAIN (parmnode); |
2615 | continue; |
2616 | } |
2617 | |
2618 | if (i == 0 && first_arg != NULL_TREE) |
2619 | arg = first_arg; |
2620 | else |
2621 | arg = CONST_CAST_TREE ( |
2622 | (*args)[i + skip - (first_arg != NULL_TREE ? 1 : 0)]); |
2623 | argtype = lvalue_type (arg); |
2624 | |
2625 | conversion *t; |
2626 | if (parmnode) |
2627 | { |
2628 | tree parmtype = TREE_VALUE (parmnode); |
2629 | if (i == 0 |
2630 | && DECL_IOBJ_MEMBER_FUNCTION_P (fn) |
2631 | && !DECL_CONSTRUCTOR_P (fn)) |
2632 | t = build_this_conversion (fn, ctype, parmtype, argtype, arg, |
2633 | flags, complain); |
2634 | else |
2635 | { |
2636 | int lflags = conv_flags (i, nargs: len-skip, fn, arg, flags); |
2637 | t = implicit_conversion (to: parmtype, from: argtype, expr: arg, |
2638 | /*c_cast_p=*/false, flags: lflags, complain); |
2639 | } |
2640 | to_type = parmtype; |
2641 | parmnode = TREE_CHAIN (parmnode); |
2642 | } |
2643 | else |
2644 | { |
2645 | t = build_identity_conv (type: argtype, expr: arg); |
2646 | t->ellipsis_p = true; |
2647 | to_type = argtype; |
2648 | } |
2649 | |
2650 | convs[i] = t; |
2651 | if (! t) |
2652 | { |
2653 | viable = 0; |
2654 | reason = arg_conversion_rejection (first_arg, n_arg: i, from: argtype, to: to_type, |
2655 | EXPR_LOCATION (arg)); |
2656 | break; |
2657 | } |
2658 | |
2659 | if (t->bad_p) |
2660 | { |
2661 | viable = -1; |
2662 | reason = bad_arg_conversion_rejection (first_arg, n_arg: i, from: arg, to: to_type, |
2663 | EXPR_LOCATION (arg)); |
2664 | if (shortcut_bad_convs) |
2665 | break; |
2666 | } |
2667 | } |
2668 | |
2669 | out: |
2670 | return add_candidate (candidates, fn, first_arg: orig_first_arg, args, num_convs: len, convs, |
2671 | access_path, conversion_path, viable, reason, flags); |
2672 | } |
2673 | |
2674 | /* Create an overload candidate for the conversion function FN which will |
2675 | be invoked for expression OBJ, producing a pointer-to-function which |
2676 | will in turn be called with the argument list FIRST_ARG/ARGLIST, |
2677 | and add it to CANDIDATES. This does not change ARGLIST. FLAGS is |
2678 | passed on to implicit_conversion. |
2679 | |
2680 | Actually, we don't really care about FN; we care about the type it |
2681 | converts to. There may be multiple conversion functions that will |
2682 | convert to that type, and we rely on build_user_type_conversion_1 to |
2683 | choose the best one; so when we create our candidate, we record the type |
2684 | instead of the function. */ |
2685 | |
2686 | static struct z_candidate * |
2687 | add_conv_candidate (struct z_candidate **candidates, tree fn, tree obj, |
2688 | const vec<tree, va_gc> *arglist, |
2689 | tree access_path, tree conversion_path, |
2690 | tsubst_flags_t complain) |
2691 | { |
2692 | tree totype = TREE_TYPE (TREE_TYPE (fn)); |
2693 | int i, len, viable, flags; |
2694 | tree parmlist, parmnode; |
2695 | conversion **convs; |
2696 | struct rejection_reason *reason; |
2697 | |
2698 | for (parmlist = totype; TREE_CODE (parmlist) != FUNCTION_TYPE; ) |
2699 | parmlist = TREE_TYPE (parmlist); |
2700 | parmlist = TYPE_ARG_TYPES (parmlist); |
2701 | |
2702 | len = vec_safe_length (v: arglist) + 1; |
2703 | convs = alloc_conversions (n: len); |
2704 | parmnode = parmlist; |
2705 | viable = 1; |
2706 | flags = LOOKUP_IMPLICIT; |
2707 | reason = NULL; |
2708 | |
2709 | /* Don't bother looking up the same type twice. */ |
2710 | if (*candidates && (*candidates)->fn == totype) |
2711 | return NULL; |
2712 | |
2713 | if (!constraints_satisfied_p (fn)) |
2714 | { |
2715 | reason = constraint_failure (); |
2716 | viable = 0; |
2717 | return add_candidate (candidates, fn, first_arg: obj, args: arglist, num_convs: len, convs, |
2718 | access_path, conversion_path, viable, reason, flags); |
2719 | } |
2720 | |
2721 | for (i = 0; i < len; ++i) |
2722 | { |
2723 | tree arg, argtype, convert_type = NULL_TREE; |
2724 | conversion *t; |
2725 | |
2726 | if (i == 0) |
2727 | arg = obj; |
2728 | else |
2729 | arg = (*arglist)[i - 1]; |
2730 | argtype = lvalue_type (arg); |
2731 | |
2732 | if (i == 0) |
2733 | { |
2734 | t = build_identity_conv (type: argtype, NULL_TREE); |
2735 | t = build_conv (code: ck_user, type: totype, from: t); |
2736 | /* Leave the 'cand' field null; we'll figure out the conversion in |
2737 | convert_like if this candidate is chosen. */ |
2738 | convert_type = totype; |
2739 | } |
2740 | else if (parmnode == void_list_node) |
2741 | break; |
2742 | else if (parmnode) |
2743 | { |
2744 | t = implicit_conversion (TREE_VALUE (parmnode), from: argtype, expr: arg, |
2745 | /*c_cast_p=*/false, flags, complain); |
2746 | convert_type = TREE_VALUE (parmnode); |
2747 | } |
2748 | else |
2749 | { |
2750 | t = build_identity_conv (type: argtype, expr: arg); |
2751 | t->ellipsis_p = true; |
2752 | convert_type = argtype; |
2753 | } |
2754 | |
2755 | convs[i] = t; |
2756 | if (! t) |
2757 | break; |
2758 | |
2759 | if (t->bad_p) |
2760 | { |
2761 | viable = -1; |
2762 | reason = bad_arg_conversion_rejection (NULL_TREE, n_arg: i, from: arg, to: convert_type, |
2763 | EXPR_LOCATION (arg)); |
2764 | } |
2765 | |
2766 | if (i == 0) |
2767 | continue; |
2768 | |
2769 | if (parmnode) |
2770 | parmnode = TREE_CHAIN (parmnode); |
2771 | } |
2772 | |
2773 | if (i < len |
2774 | || ! sufficient_parms_p (parmlist: parmnode)) |
2775 | { |
2776 | int remaining = remaining_arguments (arg: parmnode); |
2777 | viable = 0; |
2778 | reason = arity_rejection (NULL_TREE, expected: i + remaining, actual: len); |
2779 | } |
2780 | |
2781 | return add_candidate (candidates, fn: totype, first_arg: obj, args: arglist, num_convs: len, convs, |
2782 | access_path, conversion_path, viable, reason, flags); |
2783 | } |
2784 | |
2785 | static void |
2786 | build_builtin_candidate (struct z_candidate **candidates, tree fnname, |
2787 | tree type1, tree type2, const vec<tree,va_gc> &args, |
2788 | tree *argtypes, int flags, tsubst_flags_t complain) |
2789 | { |
2790 | conversion *t; |
2791 | conversion **convs; |
2792 | size_t num_convs; |
2793 | int viable = 1; |
2794 | tree types[2]; |
2795 | struct rejection_reason *reason = NULL; |
2796 | |
2797 | types[0] = type1; |
2798 | types[1] = type2; |
2799 | |
2800 | num_convs = args.length (); |
2801 | convs = alloc_conversions (n: num_convs); |
2802 | |
2803 | /* TRUTH_*_EXPR do "contextual conversion to bool", which means explicit |
2804 | conversion ops are allowed. We handle that here by just checking for |
2805 | boolean_type_node because other operators don't ask for it. COND_EXPR |
2806 | also does contextual conversion to bool for the first operand, but we |
2807 | handle that in build_conditional_expr, and type1 here is operand 2. */ |
2808 | if (type1 != boolean_type_node) |
2809 | flags |= LOOKUP_ONLYCONVERTING; |
2810 | |
2811 | for (unsigned i = 0; i < 2 && i < num_convs; ++i) |
2812 | { |
2813 | t = implicit_conversion (to: types[i], from: argtypes[i], expr: args[i], |
2814 | /*c_cast_p=*/false, flags, complain); |
2815 | if (! t) |
2816 | { |
2817 | viable = 0; |
2818 | /* We need something for printing the candidate. */ |
2819 | t = build_identity_conv (type: types[i], NULL_TREE); |
2820 | reason = arg_conversion_rejection (NULL_TREE, n_arg: i, from: argtypes[i], |
2821 | to: types[i], EXPR_LOCATION (args[i])); |
2822 | } |
2823 | else if (t->bad_p) |
2824 | { |
2825 | viable = 0; |
2826 | reason = bad_arg_conversion_rejection (NULL_TREE, n_arg: i, from: args[i], |
2827 | to: types[i], |
2828 | EXPR_LOCATION (args[i])); |
2829 | } |
2830 | convs[i] = t; |
2831 | } |
2832 | |
2833 | /* For COND_EXPR we rearranged the arguments; undo that now. */ |
2834 | if (num_convs == 3) |
2835 | { |
2836 | convs[2] = convs[1]; |
2837 | convs[1] = convs[0]; |
2838 | t = implicit_conversion (boolean_type_node, from: argtypes[2], expr: args[2], |
2839 | /*c_cast_p=*/false, flags, |
2840 | complain); |
2841 | if (t) |
2842 | convs[0] = t; |
2843 | else |
2844 | { |
2845 | viable = 0; |
2846 | reason = arg_conversion_rejection (NULL_TREE, n_arg: 0, from: argtypes[2], |
2847 | boolean_type_node, |
2848 | EXPR_LOCATION (args[2])); |
2849 | } |
2850 | } |
2851 | |
2852 | add_candidate (candidates, fn: fnname, /*first_arg=*/NULL_TREE, /*args=*/NULL, |
2853 | num_convs, convs, |
2854 | /*access_path=*/NULL_TREE, |
2855 | /*conversion_path=*/NULL_TREE, |
2856 | viable, reason, flags); |
2857 | } |
2858 | |
2859 | static bool |
2860 | is_complete (tree t) |
2861 | { |
2862 | return COMPLETE_TYPE_P (complete_type (t)); |
2863 | } |
2864 | |
2865 | /* Returns nonzero if TYPE is a promoted arithmetic type. */ |
2866 | |
2867 | static bool |
2868 | promoted_arithmetic_type_p (tree type) |
2869 | { |
2870 | /* [over.built] |
2871 | |
2872 | In this section, the term promoted integral type is used to refer |
2873 | to those integral types which are preserved by integral promotion |
2874 | (including e.g. int and long but excluding e.g. char). |
2875 | Similarly, the term promoted arithmetic type refers to promoted |
2876 | integral types plus floating types. */ |
2877 | return ((CP_INTEGRAL_TYPE_P (type) |
2878 | && same_type_p (type_promotes_to (type), type)) |
2879 | || SCALAR_FLOAT_TYPE_P (type)); |
2880 | } |
2881 | |
2882 | /* Create any builtin operator overload candidates for the operator in |
2883 | question given the converted operand types TYPE1 and TYPE2. The other |
2884 | args are passed through from add_builtin_candidates to |
2885 | build_builtin_candidate. |
2886 | |
2887 | TYPE1 and TYPE2 may not be permissible, and we must filter them. |
2888 | If CODE is requires candidates operands of the same type of the kind |
2889 | of which TYPE1 and TYPE2 are, we add both candidates |
2890 | CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */ |
2891 | |
2892 | static void |
2893 | add_builtin_candidate (struct z_candidate **candidates, enum tree_code code, |
2894 | enum tree_code code2, tree fnname, tree type1, |
2895 | tree type2, vec<tree,va_gc> &args, tree *argtypes, |
2896 | int flags, tsubst_flags_t complain) |
2897 | { |
2898 | switch (code) |
2899 | { |
2900 | case POSTINCREMENT_EXPR: |
2901 | case POSTDECREMENT_EXPR: |
2902 | args[1] = integer_zero_node; |
2903 | type2 = integer_type_node; |
2904 | break; |
2905 | default: |
2906 | break; |
2907 | } |
2908 | |
2909 | switch (code) |
2910 | { |
2911 | |
2912 | /* 4 For every pair (T, VQ), where T is an arithmetic type other than bool, |
2913 | and VQ is either volatile or empty, there exist candidate operator |
2914 | functions of the form |
2915 | VQ T& operator++(VQ T&); |
2916 | T operator++(VQ T&, int); |
2917 | 5 For every pair (T, VQ), where T is an arithmetic type other than bool, |
2918 | and VQ is either volatile or empty, there exist candidate operator |
2919 | functions of the form |
2920 | VQ T& operator--(VQ T&); |
2921 | T operator--(VQ T&, int); |
2922 | 6 For every pair (T, VQ), where T is a cv-qualified or cv-unqualified object |
2923 | type, and VQ is either volatile or empty, there exist candidate operator |
2924 | functions of the form |
2925 | T*VQ& operator++(T*VQ&); |
2926 | T*VQ& operator--(T*VQ&); |
2927 | T* operator++(T*VQ&, int); |
2928 | T* operator--(T*VQ&, int); */ |
2929 | |
2930 | case POSTDECREMENT_EXPR: |
2931 | case PREDECREMENT_EXPR: |
2932 | if (TREE_CODE (type1) == BOOLEAN_TYPE) |
2933 | return; |
2934 | /* FALLTHRU */ |
2935 | case POSTINCREMENT_EXPR: |
2936 | case PREINCREMENT_EXPR: |
2937 | /* P0002R1, Remove deprecated operator++(bool) added "other than bool" |
2938 | to p4. */ |
2939 | if (TREE_CODE (type1) == BOOLEAN_TYPE && cxx_dialect >= cxx17) |
2940 | return; |
2941 | if (ARITHMETIC_TYPE_P (type1) || TYPE_PTROB_P (type1)) |
2942 | { |
2943 | type1 = build_reference_type (type1); |
2944 | break; |
2945 | } |
2946 | return; |
2947 | |
2948 | /* 7 For every cv-qualified or cv-unqualified object type T, there |
2949 | exist candidate operator functions of the form |
2950 | |
2951 | T& operator*(T*); |
2952 | |
2953 | |
2954 | 8 For every function type T that does not have cv-qualifiers or |
2955 | a ref-qualifier, there exist candidate operator functions of the form |
2956 | T& operator*(T*); */ |
2957 | |
2958 | case INDIRECT_REF: |
2959 | if (TYPE_PTR_P (type1) |
2960 | && (TYPE_PTROB_P (type1) |
2961 | || TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)) |
2962 | break; |
2963 | return; |
2964 | |
2965 | /* 9 For every type T, there exist candidate operator functions of the form |
2966 | T* operator+(T*); |
2967 | |
2968 | 10 For every floating-point or promoted integral type T, there exist |
2969 | candidate operator functions of the form |
2970 | T operator+(T); |
2971 | T operator-(T); */ |
2972 | |
2973 | case UNARY_PLUS_EXPR: /* unary + */ |
2974 | if (TYPE_PTR_P (type1)) |
2975 | break; |
2976 | /* FALLTHRU */ |
2977 | case NEGATE_EXPR: |
2978 | if (ARITHMETIC_TYPE_P (type1)) |
2979 | break; |
2980 | return; |
2981 | |
2982 | /* 11 For every promoted integral type T, there exist candidate operator |
2983 | functions of the form |
2984 | T operator~(T); */ |
2985 | |
2986 | case BIT_NOT_EXPR: |
2987 | if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type1)) |
2988 | break; |
2989 | return; |
2990 | |
2991 | /* 12 For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, C1 |
2992 | is the same type as C2 or is a derived class of C2, and T is an object |
2993 | type or a function type there exist candidate operator functions of the |
2994 | form |
2995 | CV12 T& operator->*(CV1 C1*, CV2 T C2::*); |
2996 | where CV12 is the union of CV1 and CV2. */ |
2997 | |
2998 | case MEMBER_REF: |
2999 | if (TYPE_PTR_P (type1) && TYPE_PTRMEM_P (type2)) |
3000 | { |
3001 | tree c1 = TREE_TYPE (type1); |
3002 | tree c2 = TYPE_PTRMEM_CLASS_TYPE (type2); |
3003 | |
3004 | if (CLASS_TYPE_P (c1) && DERIVED_FROM_P (c2, c1) |
3005 | && (TYPE_PTRMEMFUNC_P (type2) |
3006 | || is_complete (TYPE_PTRMEM_POINTED_TO_TYPE (type2)))) |
3007 | break; |
3008 | } |
3009 | return; |
3010 | |
3011 | /* 13 For every pair of types L and R, where each of L and R is a floating-point |
3012 | or promoted integral type, there exist candidate operator functions of the |
3013 | form |
3014 | LR operator*(L, R); |
3015 | LR operator/(L, R); |
3016 | LR operator+(L, R); |
3017 | LR operator-(L, R); |
3018 | bool operator<(L, R); |
3019 | bool operator>(L, R); |
3020 | bool operator<=(L, R); |
3021 | bool operator>=(L, R); |
3022 | bool operator==(L, R); |
3023 | bool operator!=(L, R); |
3024 | where LR is the result of the usual arithmetic conversions between |
3025 | types L and R. |
3026 | |
3027 | 14 For every integral type T there exists a candidate operator function of |
3028 | the form |
3029 | |
3030 | std::strong_ordering operator<=>(T, T); |
3031 | |
3032 | 15 For every pair of floating-point types L and R, there exists a candidate |
3033 | operator function of the form |
3034 | |
3035 | std::partial_ordering operator<=>(L, R); |
3036 | |
3037 | 16 For every cv-qualified or cv-unqualified object type T there exist |
3038 | candidate operator functions of the form |
3039 | T* operator+(T*, std::ptrdiff_t); |
3040 | T& operator[](T*, std::ptrdiff_t); |
3041 | T* operator-(T*, std::ptrdiff_t); |
3042 | T* operator+(std::ptrdiff_t, T*); |
3043 | T& operator[](std::ptrdiff_t, T*); |
3044 | |
3045 | 17 For every T, where T is a pointer to object type, there exist candidate |
3046 | operator functions of the form |
3047 | std::ptrdiff_t operator-(T, T); |
3048 | |
3049 | 18 For every T, where T is an enumeration type or a pointer type, there |
3050 | exist candidate operator functions of the form |
3051 | bool operator<(T, T); |
3052 | bool operator>(T, T); |
3053 | bool operator<=(T, T); |
3054 | bool operator>=(T, T); |
3055 | bool operator==(T, T); |
3056 | bool operator!=(T, T); |
3057 | R operator<=>(T, T); |
3058 | |
3059 | where R is the result type specified in [expr.spaceship]. |
3060 | |
3061 | 19 For every T, where T is a pointer-to-member type or std::nullptr_t, |
3062 | there exist candidate operator functions of the form |
3063 | bool operator==(T, T); |
3064 | bool operator!=(T, T); */ |
3065 | |
3066 | case MINUS_EXPR: |
3067 | if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2)) |
3068 | break; |
3069 | if (TYPE_PTROB_P (type1) |
3070 | && INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type2)) |
3071 | { |
3072 | type2 = ptrdiff_type_node; |
3073 | break; |
3074 | } |
3075 | /* FALLTHRU */ |
3076 | case MULT_EXPR: |
3077 | case TRUNC_DIV_EXPR: |
3078 | if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2)) |
3079 | break; |
3080 | return; |
3081 | |
3082 | /* This isn't exactly what's specified above for operator<=>, but it's |
3083 | close enough. In particular, we don't care about the return type |
3084 | specified above; it doesn't participate in overload resolution and it |
3085 | doesn't affect the semantics of the built-in operator. */ |
3086 | case SPACESHIP_EXPR: |
3087 | case EQ_EXPR: |
3088 | case NE_EXPR: |
3089 | if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2)) |
3090 | || (TYPE_PTRDATAMEM_P (type1) && TYPE_PTRDATAMEM_P (type2))) |
3091 | break; |
3092 | if (NULLPTR_TYPE_P (type1) && NULLPTR_TYPE_P (type2)) |
3093 | break; |
3094 | if (TYPE_PTRMEM_P (type1) && null_ptr_cst_p (t: args[1])) |
3095 | { |
3096 | type2 = type1; |
3097 | break; |
3098 | } |
3099 | if (TYPE_PTRMEM_P (type2) && null_ptr_cst_p (t: args[0])) |
3100 | { |
3101 | type1 = type2; |
3102 | break; |
3103 | } |
3104 | /* Fall through. */ |
3105 | case LT_EXPR: |
3106 | case GT_EXPR: |
3107 | case LE_EXPR: |
3108 | case GE_EXPR: |
3109 | case MAX_EXPR: |
3110 | case MIN_EXPR: |
3111 | if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2)) |
3112 | break; |
3113 | if (TYPE_PTR_P (type1) && TYPE_PTR_P (type2)) |
3114 | break; |
3115 | if (TREE_CODE (type1) == ENUMERAL_TYPE |
3116 | && TREE_CODE (type2) == ENUMERAL_TYPE) |
3117 | break; |
3118 | if (TYPE_PTR_P (type1) |
3119 | && null_ptr_cst_p (t: args[1])) |
3120 | { |
3121 | type2 = type1; |
3122 | break; |
3123 | } |
3124 | if (null_ptr_cst_p (t: args[0]) |
3125 | && TYPE_PTR_P (type2)) |
3126 | { |
3127 | type1 = type2; |
3128 | break; |
3129 | } |
3130 | return; |
3131 | |
3132 | case PLUS_EXPR: |
3133 | if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2)) |
3134 | break; |
3135 | /* FALLTHRU */ |
3136 | case ARRAY_REF: |
3137 | if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type1) && TYPE_PTROB_P (type2)) |
3138 | { |
3139 | type1 = ptrdiff_type_node; |
3140 | break; |
3141 | } |
3142 | if (TYPE_PTROB_P (type1) && INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type2)) |
3143 | { |
3144 | type2 = ptrdiff_type_node; |
3145 | break; |
3146 | } |
3147 | return; |
3148 | |
3149 | /* 18For every pair of promoted integral types L and R, there exist candi- |
3150 | date operator functions of the form |
3151 | LR operator%(L, R); |
3152 | LR operator&(L, R); |
3153 | LR operator^(L, R); |
3154 | LR operator|(L, R); |
3155 | L operator<<(L, R); |
3156 | L operator>>(L, R); |
3157 | where LR is the result of the usual arithmetic conversions between |
3158 | types L and R. */ |
3159 | |
3160 | case TRUNC_MOD_EXPR: |
3161 | case BIT_AND_EXPR: |
3162 | case BIT_IOR_EXPR: |
3163 | case BIT_XOR_EXPR: |
3164 | case LSHIFT_EXPR: |
3165 | case RSHIFT_EXPR: |
3166 | if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type1) && INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type2)) |
3167 | break; |
3168 | return; |
3169 | |
3170 | /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration |
3171 | type, VQ is either volatile or empty, and R is a promoted arithmetic |
3172 | type, there exist candidate operator functions of the form |
3173 | VQ L& operator=(VQ L&, R); |
3174 | VQ L& operator*=(VQ L&, R); |
3175 | VQ L& operator/=(VQ L&, R); |
3176 | VQ L& operator+=(VQ L&, R); |
3177 | VQ L& operator-=(VQ L&, R); |
3178 | |
3179 | 20For every pair T, VQ), where T is any type and VQ is either volatile |
3180 | or empty, there exist candidate operator functions of the form |
3181 | T*VQ& operator=(T*VQ&, T*); |
3182 | |
3183 | 21For every pair T, VQ), where T is a pointer to member type and VQ is |
3184 | either volatile or empty, there exist candidate operator functions of |
3185 | the form |
3186 | VQ T& operator=(VQ T&, T); |
3187 | |
3188 | 22For every triple T, VQ, I), where T is a cv-qualified or cv- |
3189 | unqualified complete object type, VQ is either volatile or empty, and |
3190 | I is a promoted integral type, there exist candidate operator func- |
3191 | tions of the form |
3192 | T*VQ& operator+=(T*VQ&, I); |
3193 | T*VQ& operator-=(T*VQ&, I); |
3194 | |
3195 | 23For every triple L, VQ, R), where L is an integral or enumeration |
3196 | type, VQ is either volatile or empty, and R is a promoted integral |
3197 | type, there exist candidate operator functions of the form |
3198 | |
3199 | VQ L& operator%=(VQ L&, R); |
3200 | VQ L& operator<<=(VQ L&, R); |
3201 | VQ L& operator>>=(VQ L&, R); |
3202 | VQ L& operator&=(VQ L&, R); |
3203 | VQ L& operator^=(VQ L&, R); |
3204 | VQ L& operator|=(VQ L&, R); */ |
3205 | |
3206 | case MODIFY_EXPR: |
3207 | switch (code2) |
3208 | { |
3209 | case PLUS_EXPR: |
3210 | case MINUS_EXPR: |
3211 | if (TYPE_PTROB_P (type1) && INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type2)) |
3212 | { |
3213 | type2 = ptrdiff_type_node; |
3214 | break; |
3215 | } |
3216 | /* FALLTHRU */ |
3217 | case MULT_EXPR: |
3218 | case TRUNC_DIV_EXPR: |
3219 | if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2)) |
3220 | break; |
3221 | return; |
3222 | |
3223 | case TRUNC_MOD_EXPR: |
3224 | case BIT_AND_EXPR: |
3225 | case BIT_IOR_EXPR: |
3226 | case BIT_XOR_EXPR: |
3227 | case LSHIFT_EXPR: |
3228 | case RSHIFT_EXPR: |
3229 | if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type1) && INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type2)) |
3230 | break; |
3231 | return; |
3232 | |
3233 | case NOP_EXPR: |
3234 | if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2)) |
3235 | break; |
3236 | if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2)) |
3237 | || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2)) |
3238 | || (TYPE_PTRDATAMEM_P (type1) && TYPE_PTRDATAMEM_P (type2)) |
3239 | || ((TYPE_PTRMEMFUNC_P (type1) |
3240 | || TYPE_PTR_P (type1)) |
3241 | && null_ptr_cst_p (t: args[1]))) |
3242 | { |
3243 | type2 = type1; |
3244 | break; |
3245 | } |
3246 | return; |
3247 | |
3248 | default: |
3249 | gcc_unreachable (); |
3250 | } |
3251 | type1 = build_reference_type (type1); |
3252 | break; |
3253 | |
3254 | case COND_EXPR: |
3255 | /* [over.built] |
3256 | |
3257 | For every pair of promoted arithmetic types L and R, there |
3258 | exist candidate operator functions of the form |
3259 | |
3260 | LR operator?(bool, L, R); |
3261 | |
3262 | where LR is the result of the usual arithmetic conversions |
3263 | between types L and R. |
3264 | |
3265 | For every type T, where T is a pointer or pointer-to-member |
3266 | type, there exist candidate operator functions of the form T |
3267 | operator?(bool, T, T); */ |
3268 | |
3269 | if (promoted_arithmetic_type_p (type: type1) |
3270 | && promoted_arithmetic_type_p (type: type2)) |
3271 | /* That's OK. */ |
3272 | break; |
3273 | |
3274 | /* Otherwise, the types should be pointers. */ |
3275 | if (!((TYPE_PTR_OR_PTRMEM_P (type1) || null_ptr_cst_p (t: args[0])) |
3276 | && (TYPE_PTR_OR_PTRMEM_P (type2) || null_ptr_cst_p (t: args[1])))) |
3277 | return; |
3278 | |
3279 | /* We don't check that the two types are the same; the logic |
3280 | below will actually create two candidates; one in which both |
3281 | parameter types are TYPE1, and one in which both parameter |
3282 | types are TYPE2. */ |
3283 | break; |
3284 | |
3285 | case REALPART_EXPR: |
3286 | case IMAGPART_EXPR: |
3287 | if (ARITHMETIC_TYPE_P (type1)) |
3288 | break; |
3289 | return; |
3290 | |
3291 | default: |
3292 | gcc_unreachable (); |
3293 | } |
3294 | |
3295 | /* Make sure we don't create builtin candidates with dependent types. */ |
3296 | bool u1 = uses_template_parms (type1); |
3297 | bool u2 = type2 ? uses_template_parms (type2) : false; |
3298 | if (u1 || u2) |
3299 | { |
3300 | /* Try to recover if one of the types is non-dependent. But if |
3301 | there's only one type, there's nothing we can do. */ |
3302 | if (!type2) |
3303 | return; |
3304 | /* And we lose if both are dependent. */ |
3305 | if (u1 && u2) |
3306 | return; |
3307 | /* Or if they have different forms. */ |
3308 | if (TREE_CODE (type1) != TREE_CODE (type2)) |
3309 | return; |
3310 | |
3311 | if (u1 && !u2) |
3312 | type1 = type2; |
3313 | else if (u2 && !u1) |
3314 | type2 = type1; |
3315 | } |
3316 | |
3317 | /* If we're dealing with two pointer types or two enumeral types, |
3318 | we need candidates for both of them. */ |
3319 | if (type2 && !same_type_p (type1, type2) |
3320 | && TREE_CODE (type1) == TREE_CODE (type2) |
3321 | && (TYPE_REF_P (type1) |
3322 | || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2)) |
3323 | || (TYPE_PTRDATAMEM_P (type1) && TYPE_PTRDATAMEM_P (type2)) |
3324 | || TYPE_PTRMEMFUNC_P (type1) |
3325 | || MAYBE_CLASS_TYPE_P (type1) |
3326 | || TREE_CODE (type1) == ENUMERAL_TYPE)) |
3327 | { |
3328 | if (TYPE_PTR_OR_PTRMEM_P (type1)) |
3329 | { |
3330 | tree cptype = composite_pointer_type (input_location, |
3331 | type1, type2, |
3332 | error_mark_node, |
3333 | error_mark_node, |
3334 | CPO_CONVERSION, |
3335 | tf_none); |
3336 | if (cptype != error_mark_node) |
3337 | { |
3338 | build_builtin_candidate |
3339 | (candidates, fnname, type1: cptype, type2: cptype, args, argtypes, |
3340 | flags, complain); |
3341 | return; |
3342 | } |
3343 | } |
3344 | |
3345 | build_builtin_candidate |
3346 | (candidates, fnname, type1, type2: type1, args, argtypes, flags, complain); |
3347 | build_builtin_candidate |
3348 | (candidates, fnname, type1: type2, type2, args, argtypes, flags, complain); |
3349 | return; |
3350 | } |
3351 | |
3352 | build_builtin_candidate |
3353 | (candidates, fnname, type1, type2, args, argtypes, flags, complain); |
3354 | } |
3355 | |
3356 | tree |
3357 | type_decays_to (tree type) |
3358 | { |
3359 | if (TREE_CODE (type) == ARRAY_TYPE) |
3360 | return build_pointer_type (TREE_TYPE (type)); |
3361 | if (TREE_CODE (type) == FUNCTION_TYPE) |
3362 | return build_pointer_type (type); |
3363 | return type; |
3364 | } |
3365 | |
3366 | /* There are three conditions of builtin candidates: |
3367 | |
3368 | 1) bool-taking candidates. These are the same regardless of the input. |
3369 | 2) pointer-pair taking candidates. These are generated for each type |
3370 | one of the input types converts to. |
3371 | 3) arithmetic candidates. According to the standard, we should generate |
3372 | all of these, but I'm trying not to... |
3373 | |
3374 | Here we generate a superset of the possible candidates for this particular |
3375 | case. That is a subset of the full set the standard defines, plus some |
3376 | other cases which the standard disallows. add_builtin_candidate will |
3377 | filter out the invalid set. */ |
3378 | |
3379 | static void |
3380 | add_builtin_candidates (struct z_candidate **candidates, enum tree_code code, |
3381 | enum tree_code code2, tree fnname, |
3382 | vec<tree, va_gc> *argv, |
3383 | int flags, tsubst_flags_t complain) |
3384 | { |
3385 | int ref1; |
3386 | int enum_p = 0; |
3387 | tree type, argtypes[3], t; |
3388 | /* TYPES[i] is the set of possible builtin-operator parameter types |
3389 | we will consider for the Ith argument. */ |
3390 | vec<tree, va_gc> *types[2]; |
3391 | unsigned ix; |
3392 | vec<tree, va_gc> &args = *argv; |
3393 | unsigned len = args.length (); |
3394 | |
3395 | for (unsigned i = 0; i < len; ++i) |
3396 | { |
3397 | if (args[i]) |
3398 | argtypes[i] = unlowered_expr_type (args[i]); |
3399 | else |
3400 | argtypes[i] = NULL_TREE; |
3401 | } |
3402 | |
3403 | switch (code) |
3404 | { |
3405 | /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type, |
3406 | and VQ is either volatile or empty, there exist candidate operator |
3407 | functions of the form |
3408 | VQ T& operator++(VQ T&); */ |
3409 | |
3410 | case POSTINCREMENT_EXPR: |
3411 | case PREINCREMENT_EXPR: |
3412 | case POSTDECREMENT_EXPR: |
3413 | case PREDECREMENT_EXPR: |
3414 | case MODIFY_EXPR: |
3415 | ref1 = 1; |
3416 | break; |
3417 | |
3418 | /* 24There also exist candidate operator functions of the form |
3419 | bool operator!(bool); |
3420 | bool operator&&(bool, bool); |
3421 | bool operator||(bool, bool); */ |
3422 | |
3423 | case TRUTH_NOT_EXPR: |
3424 | build_builtin_candidate |
3425 | (candidates, fnname, boolean_type_node, |
3426 | NULL_TREE, args, argtypes, flags, complain); |
3427 | return; |
3428 | |
3429 | case TRUTH_ORIF_EXPR: |
3430 | case TRUTH_ANDIF_EXPR: |
3431 | build_builtin_candidate |
3432 | (candidates, fnname, boolean_type_node, |
3433 | boolean_type_node, args, argtypes, flags, complain); |
3434 | return; |
3435 | |
3436 | case ADDR_EXPR: |
3437 | case COMPOUND_EXPR: |
3438 | case COMPONENT_REF: |
3439 | case CO_AWAIT_EXPR: |
3440 | return; |
3441 | |
3442 | case COND_EXPR: |
3443 | case EQ_EXPR: |
3444 | case NE_EXPR: |
3445 | case LT_EXPR: |
3446 | case LE_EXPR: |
3447 | case GT_EXPR: |
3448 | case GE_EXPR: |
3449 | case SPACESHIP_EXPR: |
3450 | enum_p = 1; |
3451 | /* Fall through. */ |
3452 | |
3453 | default: |
3454 | ref1 = 0; |
3455 | } |
3456 | |
3457 | types[0] = make_tree_vector (); |
3458 | types[1] = make_tree_vector (); |
3459 | |
3460 | if (len == 3) |
3461 | len = 2; |
3462 | for (unsigned i = 0; i < len; ++i) |
3463 | { |
3464 | if (MAYBE_CLASS_TYPE_P (argtypes[i])) |
3465 | { |
3466 | tree convs; |
3467 | |
3468 | if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR) |
3469 | return; |
3470 | |
3471 | convs = lookup_conversions (argtypes[i]); |
3472 | |
3473 | if (code == COND_EXPR) |
3474 | { |
3475 | if (lvalue_p (args[i])) |
3476 | vec_safe_push (v&: types[i], obj: build_reference_type (argtypes[i])); |
3477 | |
3478 | vec_safe_push (v&: types[i], TYPE_MAIN_VARIANT (argtypes[i])); |
3479 | } |
3480 | |
3481 | else if (! convs) |
3482 | return; |
3483 | |
3484 | for (; convs; convs = TREE_CHAIN (convs)) |
3485 | { |
3486 | type = TREE_TYPE (convs); |
3487 | |
3488 | if (i == 0 && ref1 |
3489 | && (!TYPE_REF_P (type) |
3490 | || CP_TYPE_CONST_P (TREE_TYPE (type)))) |
3491 | continue; |
3492 | |
3493 | if (code == COND_EXPR && TYPE_REF_P (type)) |
3494 | vec_safe_push (v&: types[i], obj: type); |
3495 | |
3496 | type = non_reference (type); |
3497 | if (i != 0 || ! ref1) |
3498 | { |
3499 | type = cv_unqualified (type_decays_to (type)); |
3500 | if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE) |
3501 | vec_safe_push (v&: types[i], obj: type); |
3502 | if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type)) |
3503 | type = type_promotes_to (type); |
3504 | } |
3505 | |
3506 | if (! vec_member (type, types[i])) |
3507 | vec_safe_push (v&: types[i], obj: type); |
3508 | } |
3509 | } |
3510 | else |
3511 | { |
3512 | if (code == COND_EXPR && lvalue_p (args[i])) |
3513 | vec_safe_push (v&: types[i], obj: build_reference_type (argtypes[i])); |
3514 | type = non_reference (argtypes[i]); |
3515 | if (i != 0 || ! ref1) |
3516 | { |
3517 | type = cv_unqualified (type_decays_to (type)); |
3518 | if (enum_p && UNSCOPED_ENUM_P (type)) |
3519 | vec_safe_push (v&: types[i], obj: type); |
3520 | if (INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (type)) |
3521 | type = type_promotes_to (type); |
3522 | } |
3523 | vec_safe_push (v&: types[i], obj: type); |
3524 | } |
3525 | } |
3526 | |
3527 | /* Run through the possible parameter types of both arguments, |
3528 | creating candidates with those parameter types. */ |
3529 | FOR_EACH_VEC_ELT_REVERSE (*(types[0]), ix, t) |
3530 | { |
3531 | unsigned jx; |
3532 | tree u; |
3533 | |
3534 | if (!types[1]->is_empty ()) |
3535 | FOR_EACH_VEC_ELT_REVERSE (*(types[1]), jx, u) |
3536 | add_builtin_candidate |
3537 | (candidates, code, code2, fnname, type1: t, |
3538 | type2: u, args, argtypes, flags, complain); |
3539 | else |
3540 | add_builtin_candidate |
3541 | (candidates, code, code2, fnname, type1: t, |
3542 | NULL_TREE, args, argtypes, flags, complain); |
3543 | } |
3544 | |
3545 | release_tree_vector (types[0]); |
3546 | release_tree_vector (types[1]); |
3547 | } |
3548 | |
3549 | |
3550 | /* If TMPL can be successfully instantiated as indicated by |
3551 | EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES. |
3552 | |
3553 | TMPL is the template. EXPLICIT_TARGS are any explicit template |
3554 | arguments. ARGLIST is the arguments provided at the call-site. |
3555 | This does not change ARGLIST. The RETURN_TYPE is the desired type |
3556 | for conversion operators. If OBJ is NULL_TREE, FLAGS and CTYPE are |
3557 | as for add_function_candidate. If an OBJ is supplied, FLAGS and |
3558 | CTYPE are ignored, and OBJ is as for add_conv_candidate. |
3559 | |
3560 | SHORTCUT_BAD_CONVS is as in add_function_candidate. */ |
3561 | |
3562 | static struct z_candidate* |
3563 | add_template_candidate_real (struct z_candidate **candidates, tree tmpl, |
3564 | tree ctype, tree explicit_targs, tree first_arg, |
3565 | const vec<tree, va_gc> *arglist, tree return_type, |
3566 | tree access_path, tree conversion_path, |
3567 | int flags, tree obj, unification_kind_t strict, |
3568 | bool shortcut_bad_convs, tsubst_flags_t complain) |
3569 | { |
3570 | int ntparms = DECL_NTPARMS (tmpl); |
3571 | tree targs = make_tree_vec (ntparms); |
3572 | unsigned int len = vec_safe_length (v: arglist); |
3573 | unsigned int nargs = (first_arg == NULL_TREE ? 0 : 1) + len; |
3574 | unsigned int skip_without_in_chrg = 0; |
3575 | tree first_arg_without_in_chrg = first_arg; |
3576 | tree *args_without_in_chrg; |
3577 | unsigned int nargs_without_in_chrg; |
3578 | unsigned int ia, ix; |
3579 | tree arg; |
3580 | struct z_candidate *cand; |
3581 | tree fn; |
3582 | struct rejection_reason *reason = NULL; |
3583 | int errs; |
3584 | conversion **convs = NULL; |
3585 | |
3586 | /* We don't do deduction on the in-charge parameter, the VTT |
3587 | parameter or 'this'. */ |
3588 | if (DECL_IOBJ_MEMBER_FUNCTION_P (tmpl)) |
3589 | { |
3590 | if (first_arg_without_in_chrg != NULL_TREE) |
3591 | first_arg_without_in_chrg = NULL_TREE; |
3592 | else if (return_type && strict == DEDUCE_CALL) |
3593 | /* We're deducing for a call to the result of a template conversion |
3594 | function, so the args don't contain 'this'; leave them alone. */; |
3595 | else |
3596 | ++skip_without_in_chrg; |
3597 | } |
3598 | |
3599 | if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl) |
3600 | || DECL_BASE_CONSTRUCTOR_P (tmpl)) |
3601 | && CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl))) |
3602 | { |
3603 | if (first_arg_without_in_chrg != NULL_TREE) |
3604 | first_arg_without_in_chrg = NULL_TREE; |
3605 | else |
3606 | ++skip_without_in_chrg; |
3607 | } |
3608 | |
3609 | if (len < skip_without_in_chrg) |
3610 | return add_ignored_candidate (candidates, fn: tmpl); |
3611 | |
3612 | if (DECL_CONSTRUCTOR_P (tmpl) && nargs == 2 |
3613 | && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (first_arg), |
3614 | TREE_TYPE ((*arglist)[0]))) |
3615 | { |
3616 | /* 12.8/6 says, "A declaration of a constructor for a class X is |
3617 | ill-formed if its first parameter is of type (optionally cv-qualified) |
3618 | X and either there are no other parameters or else all other |
3619 | parameters have default arguments. A member function template is never |
3620 | instantiated to produce such a constructor signature." |
3621 | |
3622 | So if we're trying to copy an object of the containing class, don't |
3623 | consider a template constructor that has a first parameter type that |
3624 | is just a template parameter, as we would deduce a signature that we |
3625 | would then reject in the code below. */ |
3626 | if (tree firstparm = FUNCTION_FIRST_USER_PARMTYPE (tmpl)) |
3627 | { |
3628 | firstparm = TREE_VALUE (firstparm); |
3629 | if (PACK_EXPANSION_P (firstparm)) |
3630 | firstparm = PACK_EXPANSION_PATTERN (firstparm); |
3631 | if (TREE_CODE (firstparm) == TEMPLATE_TYPE_PARM) |
3632 | { |
3633 | gcc_assert (!explicit_targs); |
3634 | reason = invalid_copy_with_fn_template_rejection (); |
3635 | goto fail; |
3636 | } |
3637 | } |
3638 | } |
3639 | |
3640 | nargs_without_in_chrg = ((first_arg_without_in_chrg != NULL_TREE ? 1 : 0) |
3641 | + (len - skip_without_in_chrg)); |
3642 | args_without_in_chrg = XALLOCAVEC (tree, nargs_without_in_chrg); |
3643 | ia = 0; |
3644 | if (first_arg_without_in_chrg != NULL_TREE) |
3645 | { |
3646 | args_without_in_chrg[ia] = first_arg_without_in_chrg; |
3647 | ++ia; |
3648 | } |
3649 | for (ix = skip_without_in_chrg; |
3650 | vec_safe_iterate (v: arglist, ix, ptr: &arg); |
3651 | ++ix) |
3652 | { |
3653 | args_without_in_chrg[ia] = arg; |
3654 | ++ia; |
3655 | } |
3656 | gcc_assert (ia == nargs_without_in_chrg); |
3657 | |
3658 | if (!obj) |
3659 | { |
3660 | /* Check that there's no obvious arity mismatch before proceeding with |
3661 | deduction. This avoids substituting explicit template arguments |
3662 | into the template or e.g. derived-to-base parm/arg unification |
3663 | (which could result in an error outside the immediate context) when |
3664 | the resulting candidate would be unviable anyway. */ |
3665 | int min_arity = 0, max_arity = 0; |
3666 | tree parms = TYPE_ARG_TYPES (TREE_TYPE (tmpl)); |
3667 | parms = skip_artificial_parms_for (tmpl, parms); |
3668 | for (; parms != void_list_node; parms = TREE_CHAIN (parms)) |
3669 | { |
3670 | if (!parms || PACK_EXPANSION_P (TREE_VALUE (parms))) |
3671 | { |
3672 | max_arity = -1; |
3673 | break; |
3674 | } |
3675 | if (TREE_PURPOSE (parms)) |
3676 | /* A parameter with a default argument. */ |
3677 | ++max_arity; |
3678 | else |
3679 | ++min_arity, ++max_arity; |
3680 | } |
3681 | if (ia < (unsigned)min_arity) |
3682 | { |
3683 | /* Too few arguments. */ |
3684 | reason = arity_rejection (NULL_TREE, expected: min_arity, actual: ia, |
3685 | /*least_p=*/(max_arity == -1)); |
3686 | goto fail; |
3687 | } |
3688 | else if (max_arity != -1 && ia > (unsigned)max_arity) |
3689 | { |
3690 | /* Too many arguments. */ |
3691 | reason = arity_rejection (NULL_TREE, expected: max_arity, actual: ia); |
3692 | goto fail; |
3693 | } |
3694 | |
3695 | convs = alloc_conversions (n: nargs); |
3696 | |
3697 | if (shortcut_bad_convs |
3698 | && DECL_IOBJ_MEMBER_FUNCTION_P (tmpl) |
3699 | && !DECL_CONSTRUCTOR_P (tmpl)) |
3700 | { |
3701 | /* Check the 'this' conversion before proceeding with deduction. |
3702 | This is effectively an extension of the DR 1391 resolution |
3703 | that we perform in check_non_deducible_conversions, though it's |
3704 | convenient to do this extra check here instead of there. */ |
3705 | tree parmtype = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (tmpl))); |
3706 | tree argtype = lvalue_type (first_arg); |
3707 | tree arg = first_arg; |
3708 | conversion *t = build_this_conversion (fn: tmpl, ctype, |
3709 | parmtype, argtype, arg, |
3710 | flags, complain); |
3711 | convs[0] = t; |
3712 | if (t->bad_p) |
3713 | { |
3714 | reason = bad_arg_conversion_rejection (first_arg, n_arg: 0, |
3715 | from: arg, to: parmtype, |
3716 | EXPR_LOCATION (arg)); |
3717 | goto fail; |
3718 | } |
3719 | } |
3720 | } |
3721 | |
3722 | errs = errorcount+sorrycount; |
3723 | fn = fn_type_unification (tmpl, explicit_targs, targs, |
3724 | args_without_in_chrg, |
3725 | nargs_without_in_chrg, |
3726 | return_type, strict, flags, convs, |
3727 | false, complain & tf_decltype); |
3728 | |
3729 | if (fn == error_mark_node) |
3730 | { |
3731 | /* Don't repeat unification later if it already resulted in errors. */ |
3732 | if (errorcount+sorrycount == errs) |
3733 | reason = template_unification_rejection (tmpl, explicit_targs, |
3734 | targs, args: args_without_in_chrg, |
3735 | nargs: nargs_without_in_chrg, |
3736 | return_type, strict, flags); |
3737 | else |
3738 | reason = template_unification_error_rejection (); |
3739 | goto fail; |
3740 | } |
3741 | |
3742 | /* Now the explicit specifier might have been deduced; check if this |
3743 | declaration is explicit. If it is and we're ignoring non-converting |
3744 | constructors, don't add this function to the set of candidates. */ |
3745 | if (((flags & (LOOKUP_ONLYCONVERTING|LOOKUP_LIST_INIT_CTOR)) |
3746 | == LOOKUP_ONLYCONVERTING) |
3747 | && DECL_NONCONVERTING_P (fn)) |
3748 | return add_ignored_candidate (candidates, fn); |
3749 | |
3750 | if (DECL_CONSTRUCTOR_P (fn) && nargs == 2) |
3751 | { |
3752 | tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (fn); |
3753 | if (arg_types && same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types)), |
3754 | ctype)) |
3755 | { |
3756 | /* We're trying to produce a constructor with a prohibited signature, |
3757 | as discussed above; handle here any cases we didn't catch then, |
3758 | such as X(X<T>). */ |
3759 | reason = invalid_copy_with_fn_template_rejection (); |
3760 | goto fail; |
3761 | } |
3762 | } |
3763 | |
3764 | if (obj != NULL_TREE) |
3765 | /* Aha, this is a conversion function. */ |
3766 | cand = add_conv_candidate (candidates, fn, obj, arglist, |
3767 | access_path, conversion_path, complain); |
3768 | else |
3769 | cand = add_function_candidate (candidates, fn, ctype, |
3770 | first_arg, args: arglist, access_path, |
3771 | conversion_path, flags, convs, |
3772 | shortcut_bad_convs, complain); |
3773 | if (DECL_TI_TEMPLATE (fn) != tmpl) |
3774 | /* This situation can occur if a member template of a template |
3775 | class is specialized. Then, instantiate_template might return |
3776 | an instantiation of the specialization, in which case the |
3777 | DECL_TI_TEMPLATE field will point at the original |
3778 | specialization. For example: |
3779 | |
3780 | template <class T> struct S { template <class U> void f(U); |
3781 | template <> void f(int) {}; }; |
3782 | S<double> sd; |
3783 | sd.f(3); |
3784 | |
3785 | Here, TMPL will be template <class U> S<double>::f(U). |
3786 | And, instantiate template will give us the specialization |
3787 | template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field |
3788 | for this will point at template <class T> template <> S<T>::f(int), |
3789 | so that we can find the definition. For the purposes of |
3790 | overload resolution, however, we want the original TMPL. */ |
3791 | cand->template_decl = build_template_info (tmpl, targs); |
3792 | else |
3793 | cand->template_decl = DECL_TEMPLATE_INFO (fn); |
3794 | cand->explicit_targs = explicit_targs; |
3795 | |
3796 | return cand; |
3797 | fail: |
3798 | int viable = (reason->code == rr_bad_arg_conversion ? -1 : 0); |
3799 | return add_candidate (candidates, fn: tmpl, first_arg, args: arglist, num_convs: nargs, convs, |
3800 | access_path, conversion_path, viable, reason, flags); |
3801 | } |
3802 | |
3803 | |
3804 | static struct z_candidate * |
3805 | add_template_candidate (struct z_candidate **candidates, tree tmpl, tree ctype, |
3806 | tree explicit_targs, tree first_arg, |
3807 | const vec<tree, va_gc> *arglist, tree return_type, |
3808 | tree access_path, tree conversion_path, int flags, |
3809 | unification_kind_t strict, bool shortcut_bad_convs, |
3810 | tsubst_flags_t complain) |
3811 | { |
3812 | return |
3813 | add_template_candidate_real (candidates, tmpl, ctype, |
3814 | explicit_targs, first_arg, arglist, |
3815 | return_type, access_path, conversion_path, |
3816 | flags, NULL_TREE, strict, shortcut_bad_convs, |
3817 | complain); |
3818 | } |
3819 | |
3820 | /* Create an overload candidate for the conversion function template TMPL, |
3821 | returning RETURN_TYPE, which will be invoked for expression OBJ to produce a |
3822 | pointer-to-function which will in turn be called with the argument list |
3823 | ARGLIST, and add it to CANDIDATES. This does not change ARGLIST. FLAGS is |
3824 | passed on to implicit_conversion. */ |
3825 | |
3826 | static struct z_candidate * |
3827 | add_template_conv_candidate (struct z_candidate **candidates, tree tmpl, |
3828 | tree obj, |
3829 | const vec<tree, va_gc> *arglist, |
3830 | tree return_type, tree access_path, |
3831 | tree conversion_path, tsubst_flags_t complain) |
3832 | { |
3833 | return |
3834 | add_template_candidate_real (candidates, tmpl, NULL_TREE, NULL_TREE, |
3835 | NULL_TREE, arglist, return_type, access_path, |
3836 | conversion_path, flags: 0, obj, strict: DEDUCE_CALL, |
3837 | /*shortcut_bad_convs=*/false, complain); |
3838 | } |
3839 | |
3840 | /* The CANDS are the set of candidates that were considered for |
3841 | overload resolution. Sort CANDS so that the strictly viable |
3842 | candidates appear first, followed by non-strictly viable candidates, |
3843 | followed by non-viable candidates. Returns the first candidate |
3844 | in this sorted list. If any of the candidates were viable, set |
3845 | *ANY_VIABLE_P to true. STRICT_P is true if a candidate should be |
3846 | considered viable only if it is strictly viable when setting |
3847 | *ANY_VIABLE_P. */ |
3848 | |
3849 | static struct z_candidate* |
3850 | splice_viable (struct z_candidate *cands, |
3851 | bool strict_p, |
3852 | bool *any_viable_p) |
3853 | { |
3854 | z_candidate *strictly_viable = nullptr; |
3855 | z_candidate **strictly_viable_tail = &strictly_viable; |
3856 | |
3857 | z_candidate *non_strictly_viable = nullptr; |
3858 | z_candidate **non_strictly_viable_tail = &non_strictly_viable; |
3859 | |
3860 | z_candidate *non_viable = nullptr; |
3861 | z_candidate **non_viable_tail = &non_viable; |
3862 | |
3863 | z_candidate *non_viable_ignored = nullptr; |
3864 | z_candidate **non_viable_ignored_tail = &non_viable_ignored; |
3865 | |
3866 | /* Be strict inside templates, since build_over_call won't actually |
3867 | do the conversions to get pedwarns. */ |
3868 | if (processing_template_decl) |
3869 | strict_p = true; |
3870 | |
3871 | for (z_candidate *cand = cands; cand; cand = cand->next) |
3872 | { |
3873 | if (!strict_p |
3874 | && (cand->viable == 1 || TREE_CODE (cand->fn) == TEMPLATE_DECL)) |
3875 | /* Be strict in the presence of a viable candidate. Also if |
3876 | there are template candidates, so that we get deduction errors |
3877 | for them instead of silently preferring a bad conversion. */ |
3878 | strict_p = true; |
3879 | |
3880 | /* Move this candidate to the appropriate list according to |
3881 | its viability. */ |
3882 | auto& tail = (cand->viable == 1 ? strictly_viable_tail |
3883 | : cand->viable == -1 ? non_strictly_viable_tail |
3884 | : ignored_candidate_p (cand) ? non_viable_ignored_tail |
3885 | : non_viable_tail); |
3886 | *tail = cand; |
3887 | tail = &cand->next; |
3888 | } |
3889 | |
3890 | *any_viable_p = (strictly_viable != nullptr |
3891 | || (!strict_p && non_strictly_viable != nullptr)); |
3892 | |
3893 | /* Combine the lists. */ |
3894 | *non_viable_ignored_tail = nullptr; |
3895 | *non_viable_tail = non_viable_ignored; |
3896 | *non_strictly_viable_tail = non_viable; |
3897 | *strictly_viable_tail = non_strictly_viable; |
3898 | |
3899 | return strictly_viable; |
3900 | } |
3901 | |
3902 | static bool |
3903 | any_strictly_viable (struct z_candidate *cands) |
3904 | { |
3905 | for (; cands; cands = cands->next) |
3906 | if (cands->viable == 1) |
3907 | return true; |
3908 | return false; |
3909 | } |
3910 | |
3911 | /* OBJ is being used in an expression like "OBJ.f (...)". In other |
3912 | words, it is about to become the "this" pointer for a member |
3913 | function call. Take the address of the object. */ |
3914 | |
3915 | static tree |
3916 | build_this (tree obj) |
3917 | { |
3918 | /* In a template, we are only concerned about the type of the |
3919 | expression, so we can take a shortcut. */ |
3920 | if (processing_template_decl) |
3921 | return build_address (obj); |
3922 | |
3923 | return cp_build_addr_expr (obj, tf_warning_or_error); |
3924 | } |
3925 | |
3926 | /* Returns true iff functions are equivalent. Equivalent functions are |
3927 | not '==' only if one is a function-local extern function or if |
3928 | both are extern "C". */ |
3929 | |
3930 | static inline int |
3931 | equal_functions (tree fn1, tree fn2) |
3932 | { |
3933 | if (TREE_CODE (fn1) != TREE_CODE (fn2)) |
3934 | return 0; |
3935 | if (TREE_CODE (fn1) == TEMPLATE_DECL) |
3936 | return fn1 == fn2; |
3937 | if (DECL_LOCAL_DECL_P (fn1) || DECL_LOCAL_DECL_P (fn2) |
3938 | || DECL_EXTERN_C_FUNCTION_P (fn1)) |
3939 | return decls_match (fn1, fn2); |
3940 | return fn1 == fn2; |
3941 | } |
3942 | |
3943 | /* Print information about a candidate FN being rejected due to INFO. */ |
3944 | |
3945 | static void |
3946 | print_conversion_rejection (location_t loc, struct conversion_info *info, |
3947 | tree fn) |
3948 | { |
3949 | tree from = info->from; |
3950 | if (!TYPE_P (from)) |
3951 | from = lvalue_type (from); |
3952 | if (info->n_arg == -1) |
3953 | { |
3954 | /* Conversion of implicit `this' argument failed. */ |
3955 | if (!TYPE_P (info->from)) |
3956 | /* A bad conversion for 'this' must be discarding cv-quals. */ |
3957 | inform (loc, "passing %qT as %<this%> " |
3958 | "argument discards qualifiers" , |
3959 | from); |
3960 | else |
3961 | inform (loc, "no known conversion for implicit " |
3962 | "%<this%> parameter from %qH to %qI" , |
3963 | from, info->to_type); |
3964 | } |
3965 | else if (!TYPE_P (info->from)) |
3966 | { |
3967 | if (info->n_arg >= 0) |
3968 | inform (loc, "conversion of argument %d would be ill-formed:" , |
3969 | info->n_arg + 1); |
3970 | iloc_sentinel ils = loc; |
3971 | perform_implicit_conversion (info->to_type, info->from, |
3972 | tf_warning_or_error); |
3973 | } |
3974 | else if (info->n_arg == -2) |
3975 | /* Conversion of conversion function return value failed. */ |
3976 | inform (loc, "no known conversion from %qH to %qI" , |
3977 | from, info->to_type); |
3978 | else |
3979 | { |
3980 | if (TREE_CODE (fn) == FUNCTION_DECL) |
3981 | loc = get_fndecl_argument_location (fn, info->n_arg); |
3982 | inform (loc, "no known conversion for argument %d from %qH to %qI" , |
3983 | info->n_arg + 1, from, info->to_type); |
3984 | } |
3985 | } |
3986 | |
3987 | /* Print information about a candidate with WANT parameters and we found |
3988 | HAVE. */ |
3989 | |
3990 | static void |
3991 | print_arity_information (location_t loc, unsigned int have, unsigned int want, |
3992 | bool least_p) |
3993 | { |
3994 | if (least_p) |
3995 | inform_n (loc, want, |
3996 | "candidate expects at least %d argument, %d provided" , |
3997 | "candidate expects at least %d arguments, %d provided" , |
3998 | want, have); |
3999 | else |
4000 | inform_n (loc, want, |
4001 | "candidate expects %d argument, %d provided" , |
4002 | "candidate expects %d arguments, %d provided" , |
4003 | want, have); |
4004 | } |
4005 | |
4006 | /* Print information about one overload candidate CANDIDATE. MSGSTR |
4007 | is the text to print before the candidate itself. |
4008 | |
4009 | NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected |
4010 | to have been run through gettext by the caller. This wart makes |
4011 | life simpler in print_z_candidates and for the translators. */ |
4012 | |
4013 | static void |
4014 | print_z_candidate (location_t loc, const char *msgstr, |
4015 | struct z_candidate *candidate) |
4016 | { |
4017 | const char *msg = (msgstr == NULL |
4018 | ? "" |
4019 | : ACONCAT ((_(msgstr), " " , NULL))); |
4020 | tree fn = candidate->fn; |
4021 | if (flag_new_inheriting_ctors) |
4022 | fn = strip_inheriting_ctors (fn); |
4023 | location_t cloc = location_of (fn); |
4024 | |
4025 | if (identifier_p (t: fn)) |
4026 | { |
4027 | cloc = loc; |
4028 | if (candidate->num_convs == 3) |
4029 | inform (cloc, "%s%<%D(%T, %T, %T)%> (built-in)" , msg, fn, |
4030 | candidate->convs[0]->type, |
4031 | candidate->convs[1]->type, |
4032 | candidate->convs[2]->type); |
4033 | else if (candidate->num_convs == 2) |
4034 | inform (cloc, "%s%<%D(%T, %T)%> (built-in)" , msg, fn, |
4035 | candidate->convs[0]->type, |
4036 | candidate->convs[1]->type); |
4037 | else |
4038 | inform (cloc, "%s%<%D(%T)%> (built-in)" , msg, fn, |
4039 | candidate->convs[0]->type); |
4040 | } |
4041 | else if (TYPE_P (fn)) |
4042 | inform (cloc, "%s%qT (conversion)" , msg, fn); |
4043 | else if (candidate->viable == -1) |
4044 | inform (cloc, "%s%#qD (near match)" , msg, fn); |
4045 | else if (ignored_candidate_p (cand: candidate)) |
4046 | inform (cloc, "%s%#qD (ignored)" , msg, fn); |
4047 | else if (DECL_DELETED_FN (fn)) |
4048 | inform (cloc, "%s%#qD (deleted)" , msg, fn); |
4049 | else if (candidate->reversed ()) |
4050 | inform (cloc, "%s%#qD (reversed)" , msg, fn); |
4051 | else if (candidate->rewritten ()) |
4052 | inform (cloc, "%s%#qD (rewritten)" , msg, fn); |
4053 | else |
4054 | inform (cloc, "%s%#qD" , msg, fn); |
4055 | if (fn != candidate->fn) |
4056 | { |
4057 | cloc = location_of (candidate->fn); |
4058 | inform (cloc, "inherited here" ); |
4059 | } |
4060 | /* Give the user some information about why this candidate failed. */ |
4061 | if (candidate->reason != NULL) |
4062 | { |
4063 | auto_diagnostic_nesting_level sentinel; |
4064 | struct rejection_reason *r = candidate->reason; |
4065 | |
4066 | switch (r->code) |
4067 | { |
4068 | case rr_arity: |
4069 | print_arity_information (loc: cloc, have: r->u.arity.actual, |
4070 | want: r->u.arity.expected, |
4071 | least_p: r->u.arity.least_p); |
4072 | break; |
4073 | case rr_arg_conversion: |
4074 | print_conversion_rejection (loc: cloc, info: &r->u.conversion, fn); |
4075 | break; |
4076 | case rr_bad_arg_conversion: |
4077 | print_conversion_rejection (loc: cloc, info: &r->u.bad_conversion, fn); |
4078 | break; |
4079 | case rr_explicit_conversion: |
4080 | inform (cloc, "return type %qT of explicit conversion function " |
4081 | "cannot be converted to %qT with a qualification " |
4082 | "conversion" , r->u.conversion.from, |
4083 | r->u.conversion.to_type); |
4084 | break; |
4085 | case rr_template_conversion: |
4086 | inform (cloc, "conversion from return type %qT of template " |
4087 | "conversion function specialization to %qT is not an " |
4088 | "exact match" , r->u.conversion.from, |
4089 | r->u.conversion.to_type); |
4090 | break; |
4091 | case rr_template_unification: |
4092 | /* We use template_unification_error_rejection if unification caused |
4093 | actual non-SFINAE errors, in which case we don't need to repeat |
4094 | them here. */ |
4095 | if (r->u.template_unification.tmpl == NULL_TREE) |
4096 | { |
4097 | inform (cloc, "substitution of deduced template arguments " |
4098 | "resulted in errors seen above" ); |
4099 | break; |
4100 | } |
4101 | /* Re-run template unification with diagnostics. */ |
4102 | inform (cloc, "template argument deduction/substitution failed:" ); |
4103 | { |
4104 | auto_diagnostic_nesting_level sentinel; |
4105 | fn_type_unification (r->u.template_unification.tmpl, |
4106 | r->u.template_unification.explicit_targs, |
4107 | (make_tree_vec |
4108 | (r->u.template_unification.num_targs)), |
4109 | r->u.template_unification.args, |
4110 | r->u.template_unification.nargs, |
4111 | r->u.template_unification.return_type, |
4112 | r->u.template_unification.strict, |
4113 | r->u.template_unification.flags, |
4114 | NULL, true, false); |
4115 | } |
4116 | break; |
4117 | case rr_invalid_copy: |
4118 | inform (cloc, |
4119 | "a constructor taking a single argument of its own " |
4120 | "class type is invalid" ); |
4121 | break; |
4122 | case rr_constraint_failure: |
4123 | { |
4124 | auto_diagnostic_nesting_level sentinel; |
4125 | diagnose_constraints (cloc, fn, NULL_TREE); |
4126 | } |
4127 | break; |
4128 | case rr_inherited_ctor: |
4129 | inform (cloc, "an inherited constructor is not a candidate for " |
4130 | "initialization from an expression of the same or derived " |
4131 | "type" ); |
4132 | break; |
4133 | case rr_ignored: |
4134 | break; |
4135 | case rr_none: |
4136 | default: |
4137 | /* This candidate didn't have any issues or we failed to |
4138 | handle a particular code. Either way... */ |
4139 | gcc_unreachable (); |
4140 | } |
4141 | } |
4142 | } |
4143 | |
4144 | /* Print information about each overload candidate in CANDIDATES, |
4145 | which is assumed to have gone through splice_viable and tourney |
4146 | (if splice_viable succeeded). */ |
4147 | |
4148 | static void |
4149 | print_z_candidates (location_t loc, struct z_candidate *candidates, |
4150 | tristate only_viable_p /* = tristate::unknown () */) |
4151 | { |
4152 | struct z_candidate *cand1; |
4153 | struct z_candidate **cand2; |
4154 | |
4155 | if (!candidates) |
4156 | return; |
4157 | |
4158 | /* Remove non-viable deleted candidates. */ |
4159 | cand1 = candidates; |
4160 | for (cand2 = &cand1; *cand2; ) |
4161 | { |
4162 | if (TREE_CODE ((*cand2)->fn) == FUNCTION_DECL |
4163 | && !(*cand2)->viable |
4164 | && DECL_DELETED_FN ((*cand2)->fn)) |
4165 | *cand2 = (*cand2)->next; |
4166 | else |
4167 | cand2 = &(*cand2)->next; |
4168 | } |
4169 | /* ...if there are any non-deleted ones. */ |
4170 | if (cand1) |
4171 | candidates = cand1; |
4172 | |
4173 | /* There may be duplicates in the set of candidates. We put off |
4174 | checking this condition as long as possible, since we have no way |
4175 | to eliminate duplicates from a set of functions in less than n^2 |
4176 | time. Now we are about to emit an error message, so it is more |
4177 | permissible to go slowly. */ |
4178 | for (cand1 = candidates; cand1; cand1 = cand1->next) |
4179 | { |
4180 | tree fn = cand1->fn; |
4181 | /* Skip builtin candidates and conversion functions. */ |
4182 | if (!DECL_P (fn)) |
4183 | continue; |
4184 | cand2 = &cand1->next; |
4185 | while (*cand2) |
4186 | { |
4187 | if (DECL_P ((*cand2)->fn) |
4188 | && equal_functions (fn1: fn, fn2: (*cand2)->fn)) |
4189 | *cand2 = (*cand2)->next; |
4190 | else |
4191 | cand2 = &(*cand2)->next; |
4192 | } |
4193 | } |
4194 | |
4195 | /* Unless otherwise specified, if there's a (strictly) viable candidate |
4196 | then we assume we're being called as part of diagnosing ambiguity, in |
4197 | which case we want to print only viable candidates since non-viable |
4198 | candidates couldn't have contributed to the ambiguity. */ |
4199 | if (only_viable_p.is_unknown ()) |
4200 | only_viable_p = candidates->viable == 1; |
4201 | |
4202 | auto_diagnostic_nesting_level sentinel; |
4203 | |
4204 | int num_candidates = 0; |
4205 | for (auto iter = candidates; iter; iter = iter->next) |
4206 | ++num_candidates; |
4207 | |
4208 | inform_n (loc, |
4209 | num_candidates, "there is %i candidate" , "there are %i candidates" , |
4210 | num_candidates); |
4211 | auto_diagnostic_nesting_level sentinel2; |
4212 | |
4213 | int candidate_idx = 0; |
4214 | for (; candidates; candidates = candidates->next) |
4215 | { |
4216 | if (only_viable_p.is_true () && candidates->viable != 1) |
4217 | break; |
4218 | if (ignored_candidate_p (cand: candidates) && !flag_diagnostics_all_candidates) |
4219 | { |
4220 | inform (loc, "some candidates omitted; " |
4221 | "use %<-fdiagnostics-all-candidates%> to display them" ); |
4222 | break; |
4223 | } |
4224 | pretty_printer pp; |
4225 | pp_printf (&pp, N_("candidate %i:" ), candidate_idx + 1); |
4226 | const char *const msgstr = pp_formatted_text (&pp); |
4227 | print_z_candidate (loc, msgstr, candidate: candidates); |
4228 | ++candidate_idx; |
4229 | } |
4230 | } |
4231 | |
4232 | /* USER_SEQ is a user-defined conversion sequence, beginning with a |
4233 | USER_CONV. STD_SEQ is the standard conversion sequence applied to |
4234 | the result of the conversion function to convert it to the final |
4235 | desired type. Merge the two sequences into a single sequence, |
4236 | and return the merged sequence. */ |
4237 | |
4238 | static conversion * |
4239 | merge_conversion_sequences (conversion *user_seq, conversion *std_seq) |
4240 | { |
4241 | conversion **t; |
4242 | bool bad = user_seq->bad_p; |
4243 | |
4244 | gcc_assert (user_seq->kind == ck_user); |
4245 | |
4246 | /* Find the end of the second conversion sequence. */ |
4247 | for (t = &std_seq; (*t)->kind != ck_identity; t = &((*t)->u.next)) |
4248 | { |
4249 | /* The entire sequence is a user-conversion sequence. */ |
4250 | (*t)->user_conv_p = true; |
4251 | if (bad) |
4252 | (*t)->bad_p = true; |
4253 | } |
4254 | |
4255 | if ((*t)->rvaluedness_matches_p) |
4256 | /* We're binding a reference directly to the result of the conversion. |
4257 | build_user_type_conversion_1 stripped the REFERENCE_TYPE from the return |
4258 | type, but we want it back. */ |
4259 | user_seq->type = TREE_TYPE (TREE_TYPE (user_seq->cand->fn)); |
4260 | |
4261 | /* Replace the identity conversion with the user conversion |
4262 | sequence. */ |
4263 | *t = user_seq; |
4264 | |
4265 | return std_seq; |
4266 | } |
4267 | |
4268 | /* Handle overload resolution for initializing an object of class type from |
4269 | an initializer list. First we look for a suitable constructor that |
4270 | takes a std::initializer_list; if we don't find one, we then look for a |
4271 | non-list constructor. |
4272 | |
4273 | Parameters are as for add_candidates, except that the arguments are in |
4274 | the form of a CONSTRUCTOR (the initializer list) rather than a vector, and |
4275 | the RETURN_TYPE parameter is replaced by TOTYPE, the desired type. */ |
4276 | |
4277 | static void |
4278 | add_list_candidates (tree fns, tree first_arg, |
4279 | const vec<tree, va_gc> *args, tree totype, |
4280 | tree explicit_targs, bool template_only, |
4281 | tree conversion_path, tree access_path, |
4282 | int flags, |
4283 | struct z_candidate **candidates, |
4284 | tsubst_flags_t complain) |
4285 | { |
4286 | gcc_assert (*candidates == NULL); |
4287 | |
4288 | /* We're looking for a ctor for list-initialization. */ |
4289 | flags |= LOOKUP_LIST_INIT_CTOR; |
4290 | /* And we don't allow narrowing conversions. We also use this flag to |
4291 | avoid the copy constructor call for copy-list-initialization. */ |
4292 | flags |= LOOKUP_NO_NARROWING; |
4293 | |
4294 | unsigned nart = num_artificial_parms_for (OVL_FIRST (fns)) - 1; |
4295 | tree init_list = (*args)[nart]; |
4296 | |
4297 | /* Always use the default constructor if the list is empty (DR 990). */ |
4298 | if (CONSTRUCTOR_NELTS (init_list) == 0 |
4299 | && TYPE_HAS_DEFAULT_CONSTRUCTOR (totype)) |
4300 | ; |
4301 | else if (CONSTRUCTOR_IS_DESIGNATED_INIT (init_list) |
4302 | && !CP_AGGREGATE_TYPE_P (totype)) |
4303 | { |
4304 | if (complain & tf_error) |
4305 | error ("designated initializers cannot be used with a " |
4306 | "non-aggregate type %qT" , totype); |
4307 | return; |
4308 | } |
4309 | /* If the class has a list ctor, try passing the list as a single |
4310 | argument first, but only consider list ctors. */ |
4311 | else if (TYPE_HAS_LIST_CTOR (totype)) |
4312 | { |
4313 | flags |= LOOKUP_LIST_ONLY; |
4314 | add_candidates (fns, first_arg, args, NULL_TREE, |
4315 | explicit_targs, template_only, conversion_path, |
4316 | access_path, flags, candidates, complain); |
4317 | if (any_strictly_viable (cands: *candidates)) |
4318 | return; |
4319 | } |
4320 | |
4321 | /* Expand the CONSTRUCTOR into a new argument vec. */ |
4322 | vec<tree, va_gc> *new_args; |
4323 | vec_alloc (v&: new_args, nelems: nart + CONSTRUCTOR_NELTS (init_list)); |
4324 | for (unsigned i = 0; i < nart; ++i) |
4325 | new_args->quick_push (obj: (*args)[i]); |
4326 | new_args = append_ctor_to_tree_vector (new_args, init_list); |
4327 | |
4328 | /* We aren't looking for list-ctors anymore. */ |
4329 | flags &= ~LOOKUP_LIST_ONLY; |
4330 | /* We allow more user-defined conversions within an init-list. */ |
4331 | flags &= ~LOOKUP_NO_CONVERSION; |
4332 | |
4333 | add_candidates (fns, first_arg, new_args, NULL_TREE, |
4334 | explicit_targs, template_only, conversion_path, |
4335 | access_path, flags, candidates, complain); |
4336 | } |
4337 | |
4338 | /* Given C(std::initializer_list<A>), return A. */ |
4339 | |
4340 | static tree |
4341 | list_ctor_element_type (tree fn) |
4342 | { |
4343 | gcc_checking_assert (is_list_ctor (fn)); |
4344 | |
4345 | tree parm = FUNCTION_FIRST_USER_PARMTYPE (fn); |
4346 | parm = non_reference (TREE_VALUE (parm)); |
4347 | return TREE_VEC_ELT (CLASSTYPE_TI_ARGS (parm), 0); |
4348 | } |
4349 | |
4350 | /* If EXPR is a braced-init-list where the elements all decay to the same type, |
4351 | return that type. */ |
4352 | |
4353 | static tree |
4354 | braced_init_element_type (tree expr) |
4355 | { |
4356 | if (TREE_CODE (expr) == CONSTRUCTOR |
4357 | && TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE) |
4358 | return TREE_TYPE (TREE_TYPE (expr)); |
4359 | if (!BRACE_ENCLOSED_INITIALIZER_P (expr)) |
4360 | return NULL_TREE; |
4361 | |
4362 | tree elttype = NULL_TREE; |
4363 | for (constructor_elt &e: CONSTRUCTOR_ELTS (expr)) |
4364 | { |
4365 | tree type = TREE_TYPE (e.value); |
4366 | type = type_decays_to (type); |
4367 | if (!elttype) |
4368 | elttype = type; |
4369 | else if (!same_type_p (type, elttype)) |
4370 | return NULL_TREE; |
4371 | } |
4372 | return elttype; |
4373 | } |
4374 | |
4375 | /* True iff EXPR contains any temporaries with non-trivial destruction. |
4376 | |
4377 | ??? Also ignore classes with non-trivial but no-op destruction other than |
4378 | std::allocator? */ |
4379 | |
4380 | static bool |
4381 | has_non_trivial_temporaries (tree expr) |
4382 | { |
4383 | auto_vec<tree*> temps; |
4384 | cp_walk_tree_without_duplicates (&expr, find_temps_r, &temps); |
4385 | for (tree *p : temps) |
4386 | { |
4387 | tree t = TREE_TYPE (*p); |
4388 | if (!TYPE_HAS_TRIVIAL_DESTRUCTOR (t) |
4389 | && !is_std_allocator (t)) |
4390 | return true; |
4391 | } |
4392 | return false; |
4393 | } |
4394 | |
4395 | /* Return number of initialized elements in CTOR. */ |
4396 | |
4397 | unsigned HOST_WIDE_INT |
4398 | count_ctor_elements (tree ctor) |
4399 | { |
4400 | unsigned HOST_WIDE_INT len = 0; |
4401 | for (constructor_elt &e: CONSTRUCTOR_ELTS (ctor)) |
4402 | if (TREE_CODE (e.value) == RAW_DATA_CST) |
4403 | len += RAW_DATA_LENGTH (e.value); |
4404 | else |
4405 | ++len; |
4406 | return len; |
4407 | } |
4408 | |
4409 | /* We're initializing an array of ELTTYPE from INIT. If it seems useful, |
4410 | return INIT as an array (of its own type) so the caller can initialize the |
4411 | target array in a loop. */ |
4412 | |
4413 | static tree |
4414 | maybe_init_list_as_array (tree elttype, tree init) |
4415 | { |
4416 | /* Only do this if the array can go in rodata but not once converted. */ |
4417 | if (!TYPE_NON_AGGREGATE_CLASS (elttype)) |
4418 | return NULL_TREE; |
4419 | tree init_elttype = braced_init_element_type (expr: init); |
4420 | if (!init_elttype || !SCALAR_TYPE_P (init_elttype) || !TREE_CONSTANT (init)) |
4421 | return NULL_TREE; |
4422 | |
4423 | /* Check with a stub expression to weed out special cases, and check whether |
4424 | we call the same function for direct-init as copy-list-init. */ |
4425 | conversion_obstack_sentinel cos; |
4426 | init_elttype = cp_build_qualified_type (init_elttype, TYPE_QUAL_CONST); |
4427 | tree arg = build_stub_object (init_elttype); |
4428 | conversion *c = implicit_conversion (to: elttype, from: init_elttype, expr: arg, c_cast_p: false, |
4429 | LOOKUP_NORMAL, complain: tf_none); |
4430 | if (c && c->kind == ck_rvalue) |
4431 | c = next_conversion (conv: c); |
4432 | if (!c || c->kind != ck_user) |
4433 | return NULL_TREE; |
4434 | /* Check that we actually can perform the conversion. */ |
4435 | if (convert_like (c, arg, tf_none) == error_mark_node) |
4436 | /* Let the normal code give the error. */ |
4437 | return NULL_TREE; |
4438 | |
4439 | /* A glvalue initializer might be significant to a reference constructor |
4440 | or conversion operator. */ |
4441 | if (!DECL_CONSTRUCTOR_P (c->cand->fn) |
4442 | || (TYPE_REF_P (TREE_VALUE |
4443 | (FUNCTION_FIRST_USER_PARMTYPE (c->cand->fn))))) |
4444 | for (auto &ce : CONSTRUCTOR_ELTS (init)) |
4445 | if (non_mergeable_glvalue_p (ce.value)) |
4446 | return NULL_TREE; |
4447 | |
4448 | tree first = CONSTRUCTOR_ELT (init, 0)->value; |
4449 | conversion *fc = implicit_conversion (to: elttype, from: init_elttype, expr: first, c_cast_p: false, |
4450 | LOOKUP_IMPLICIT|LOOKUP_NO_NARROWING, |
4451 | complain: tf_none); |
4452 | if (fc && fc->kind == ck_rvalue) |
4453 | fc = next_conversion (conv: fc); |
4454 | if (!fc || fc->kind != ck_user || fc->cand->fn != c->cand->fn) |
4455 | return NULL_TREE; |
4456 | first = convert_like (fc, first, tf_none); |
4457 | if (first == error_mark_node) |
4458 | /* Let the normal code give the error. */ |
4459 | return NULL_TREE; |
4460 | |
4461 | /* Don't do this if the conversion would be constant. */ |
4462 | first = maybe_constant_init (first); |
4463 | if (TREE_CONSTANT (first)) |
4464 | return NULL_TREE; |
4465 | |
4466 | /* We can't do this if the conversion creates temporaries that need |
4467 | to live until the whole array is initialized. */ |
4468 | if (has_non_trivial_temporaries (expr: first)) |
4469 | return NULL_TREE; |
4470 | |
4471 | /* We can't do this if copying from the initializer_list would be |
4472 | ill-formed. */ |
4473 | tree copy_argtypes = make_tree_vec (1); |
4474 | TREE_VEC_ELT (copy_argtypes, 0) |
4475 | = cp_build_qualified_type (elttype, TYPE_QUAL_CONST); |
4476 | if (!is_xible (INIT_EXPR, elttype, copy_argtypes)) |
4477 | return NULL_TREE; |
4478 | |
4479 | unsigned HOST_WIDE_INT len = count_ctor_elements (ctor: init); |
4480 | tree arr = build_array_of_n_type (init_elttype, len); |
4481 | arr = finish_compound_literal (arr, init, tf_none); |
4482 | DECL_MERGEABLE (TARGET_EXPR_SLOT (arr)) = true; |
4483 | return arr; |
4484 | } |
4485 | |
4486 | /* If we were going to call e.g. vector(initializer_list<string>) starting |
4487 | with a list of string-literals (which is inefficient, see PR105838), |
4488 | instead build an array of const char* and pass it to the range constructor. |
4489 | But only do this for standard library types, where we can assume the |
4490 | transformation makes sense. |
4491 | |
4492 | Really the container classes should have initializer_list<U> constructors to |
4493 | get the same effect more simply; this is working around that lack. */ |
4494 | |
4495 | static tree |
4496 | maybe_init_list_as_range (tree fn, tree expr) |
4497 | { |
4498 | if (!processing_template_decl |
4499 | && BRACE_ENCLOSED_INITIALIZER_P (expr) |
4500 | && is_list_ctor (fn) |
4501 | && decl_in_std_namespace_p (fn)) |
4502 | { |
4503 | tree to = list_ctor_element_type (fn); |
4504 | if (tree init = maybe_init_list_as_array (elttype: to, init: expr)) |
4505 | { |
4506 | tree begin = decay_conversion (TARGET_EXPR_SLOT (init), tf_none); |
4507 | tree nelts = array_type_nelts_top (TREE_TYPE (init)); |
4508 | tree end = cp_build_binary_op (input_location, PLUS_EXPR, begin, |
4509 | nelts, tf_none); |
4510 | begin = cp_build_compound_expr (init, begin, tf_none); |
4511 | return build_constructor_va (init_list_type_node, 2, |
4512 | NULL_TREE, begin, NULL_TREE, end); |
4513 | } |
4514 | } |
4515 | |
4516 | return NULL_TREE; |
4517 | } |
4518 | |
4519 | /* Returns the best overload candidate to perform the requested |
4520 | conversion. This function is used for three the overloading situations |
4521 | described in [over.match.copy], [over.match.conv], and [over.match.ref]. |
4522 | If TOTYPE is a REFERENCE_TYPE, we're trying to find a direct binding as |
4523 | per [dcl.init.ref], so we ignore temporary bindings. */ |
4524 | |
4525 | static struct z_candidate * |
4526 | build_user_type_conversion_1 (tree totype, tree expr, int flags, |
4527 | tsubst_flags_t complain) |
4528 | { |
4529 | struct z_candidate *candidates, *cand; |
4530 | tree fromtype; |
4531 | tree ctors = NULL_TREE; |
4532 | tree conv_fns = NULL_TREE; |
4533 | conversion *conv = NULL; |
4534 | tree first_arg = NULL_TREE; |
4535 | vec<tree, va_gc> *args = NULL; |
4536 | bool any_viable_p; |
4537 | int convflags; |
4538 | |
4539 | if (!expr) |
4540 | return NULL; |
4541 | |
4542 | fromtype = TREE_TYPE (expr); |
4543 | |
4544 | /* We represent conversion within a hierarchy using RVALUE_CONV and |
4545 | BASE_CONV, as specified by [over.best.ics]; these become plain |
4546 | constructor calls, as specified in [dcl.init]. */ |
4547 | gcc_assert (!MAYBE_CLASS_TYPE_P (fromtype) || !MAYBE_CLASS_TYPE_P (totype) |
4548 | || !DERIVED_FROM_P (totype, fromtype)); |
4549 | |
4550 | if (CLASS_TYPE_P (totype)) |
4551 | /* Use lookup_fnfields_slot instead of lookup_fnfields to avoid |
4552 | creating a garbage BASELINK; constructors can't be inherited. */ |
4553 | ctors = get_class_binding (totype, complete_ctor_identifier); |
4554 | |
4555 | tree to_nonref = non_reference (totype); |
4556 | if (MAYBE_CLASS_TYPE_P (fromtype)) |
4557 | { |
4558 | if (same_type_ignoring_top_level_qualifiers_p (to_nonref, fromtype) || |
4559 | (CLASS_TYPE_P (to_nonref) && CLASS_TYPE_P (fromtype) |
4560 | && DERIVED_FROM_P (to_nonref, fromtype))) |
4561 | { |
4562 | /* [class.conv.fct] A conversion function is never used to |
4563 | convert a (possibly cv-qualified) object to the (possibly |
4564 | cv-qualified) same object type (or a reference to it), to a |
4565 | (possibly cv-qualified) base class of that type (or a |
4566 | reference to it)... */ |
4567 | } |
4568 | else |
4569 | conv_fns = lookup_conversions (fromtype); |
4570 | } |
4571 | |
4572 | candidates = 0; |
4573 | flags |= LOOKUP_NO_CONVERSION; |
4574 | if (BRACE_ENCLOSED_INITIALIZER_P (expr)) |
4575 | flags |= LOOKUP_NO_NARROWING; |
4576 | /* Prevent add_candidates from treating a non-strictly viable candidate |
4577 | as unviable. */ |
4578 | complain |= tf_conv; |
4579 | |
4580 | /* It's OK to bind a temporary for converting constructor arguments, but |
4581 | not in converting the return value of a conversion operator. */ |
4582 | convflags = ((flags & LOOKUP_NO_TEMP_BIND) | LOOKUP_NO_CONVERSION |
4583 | | (flags & LOOKUP_NO_NARROWING)); |
4584 | flags &= ~LOOKUP_NO_TEMP_BIND; |
4585 | |
4586 | if (ctors) |
4587 | { |
4588 | int ctorflags = flags; |
4589 | |
4590 | first_arg = build_dummy_object (totype); |
4591 | |
4592 | /* We should never try to call the abstract or base constructor |
4593 | from here. */ |
4594 | gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_FIRST (ctors)) |
4595 | && !DECL_HAS_VTT_PARM_P (OVL_FIRST (ctors))); |
4596 | |
4597 | args = make_tree_vector_single (expr); |
4598 | if (BRACE_ENCLOSED_INITIALIZER_P (expr)) |
4599 | { |
4600 | /* List-initialization. */ |
4601 | add_list_candidates (fns: ctors, first_arg, args, totype, NULL_TREE, |
4602 | template_only: false, TYPE_BINFO (totype), TYPE_BINFO (totype), |
4603 | flags: ctorflags, candidates: &candidates, complain); |
4604 | } |
4605 | else |
4606 | { |
4607 | add_candidates (ctors, first_arg, args, NULL_TREE, NULL_TREE, false, |
4608 | TYPE_BINFO (totype), TYPE_BINFO (totype), |
4609 | ctorflags, &candidates, complain); |
4610 | } |
4611 | |
4612 | for (cand = candidates; cand; cand = cand->next) |
4613 | { |
4614 | cand->second_conv = build_identity_conv (type: totype, NULL_TREE); |
4615 | |
4616 | /* If totype isn't a reference, and LOOKUP_ONLYCONVERTING is |
4617 | set, then this is copy-initialization. In that case, "The |
4618 | result of the call is then used to direct-initialize the |
4619 | object that is the destination of the copy-initialization." |
4620 | [dcl.init] |
4621 | |
4622 | We represent this in the conversion sequence with an |
4623 | rvalue conversion, which means a constructor call. */ |
4624 | if (!TYPE_REF_P (totype) |
4625 | && cxx_dialect < cxx17 |
4626 | && (flags & LOOKUP_ONLYCONVERTING) |
4627 | && !(convflags & LOOKUP_NO_TEMP_BIND)) |
4628 | cand->second_conv |
4629 | = build_conv (code: ck_rvalue, type: totype, from: cand->second_conv); |
4630 | } |
4631 | } |
4632 | |
4633 | if (conv_fns) |
4634 | { |
4635 | if (BRACE_ENCLOSED_INITIALIZER_P (expr)) |
4636 | first_arg = CONSTRUCTOR_ELT (expr, 0)->value; |
4637 | else |
4638 | first_arg = expr; |
4639 | } |
4640 | |
4641 | for (; conv_fns; conv_fns = TREE_CHAIN (conv_fns)) |
4642 | { |
4643 | tree conversion_path = TREE_PURPOSE (conv_fns); |
4644 | struct z_candidate *old_candidates; |
4645 | |
4646 | /* If LOOKUP_NO_CONVERSION, don't consider a conversion function that |
4647 | would need an addional user-defined conversion, i.e. if the return |
4648 | type differs in class-ness from the desired type. So we avoid |
4649 | considering operator bool when calling a copy constructor. |
4650 | |
4651 | This optimization avoids the failure in PR97600, and is allowed by |
4652 | [temp.inst]/9: "If the function selected by overload resolution can be |
4653 | determined without instantiating a class template definition, it is |
4654 | unspecified whether that instantiation actually takes place." */ |
4655 | tree convtype = non_reference (TREE_TYPE (conv_fns)); |
4656 | if ((flags & LOOKUP_NO_CONVERSION) |
4657 | && !WILDCARD_TYPE_P (convtype) |
4658 | && (CLASS_TYPE_P (to_nonref) |
4659 | != CLASS_TYPE_P (convtype))) |
4660 | continue; |
4661 | |
4662 | /* If we are called to convert to a reference type, we are trying to |
4663 | find a direct binding, so don't even consider temporaries. If |
4664 | we don't find a direct binding, the caller will try again to |
4665 | look for a temporary binding. */ |
4666 | if (TYPE_REF_P (totype)) |
4667 | convflags |= LOOKUP_NO_TEMP_BIND; |
4668 | |
4669 | old_candidates = candidates; |
4670 | add_candidates (TREE_VALUE (conv_fns), first_arg, NULL, totype, |
4671 | NULL_TREE, false, |
4672 | conversion_path, TYPE_BINFO (fromtype), |
4673 | flags, &candidates, complain); |
4674 | |
4675 | for (cand = candidates; cand != old_candidates; cand = cand->next) |
4676 | { |
4677 | if (cand->viable == 0) |
4678 | /* Already rejected, don't change to -1. */ |
4679 | continue; |
4680 | |
4681 | tree rettype = TREE_TYPE (TREE_TYPE (cand->fn)); |
4682 | conversion *ics |
4683 | = implicit_conversion (to: totype, |
4684 | from: rettype, |
4685 | expr: 0, |
4686 | /*c_cast_p=*/false, flags: convflags, |
4687 | complain); |
4688 | |
4689 | /* If LOOKUP_NO_TEMP_BIND isn't set, then this is |
4690 | copy-initialization. In that case, "The result of the |
4691 | call is then used to direct-initialize the object that is |
4692 | the destination of the copy-initialization." [dcl.init] |
4693 | |
4694 | We represent this in the conversion sequence with an |
4695 | rvalue conversion, which means a constructor call. But |
4696 | don't add a second rvalue conversion if there's already |
4697 | one there. Which there really shouldn't be, but it's |
4698 | harmless since we'd add it here anyway. */ |
4699 | if (ics && MAYBE_CLASS_TYPE_P (totype) && ics->kind != ck_rvalue |
4700 | && !(convflags & LOOKUP_NO_TEMP_BIND)) |
4701 | ics = build_conv (code: ck_rvalue, type: totype, from: ics); |
4702 | |
4703 | cand->second_conv = ics; |
4704 | |
4705 | if (!ics) |
4706 | { |
4707 | cand->viable = 0; |
4708 | cand->reason = arg_conversion_rejection (NULL_TREE, n_arg: -2, |
4709 | from: rettype, to: totype, |
4710 | EXPR_LOCATION (expr)); |
4711 | } |
4712 | else if (TYPE_REF_P (totype) && !ics->rvaluedness_matches_p |
4713 | /* Limit this to non-templates for now (PR90546). */ |
4714 | && !cand->template_decl |
4715 | && TREE_CODE (TREE_TYPE (totype)) != FUNCTION_TYPE) |
4716 | { |
4717 | /* If we are called to convert to a reference type, we are trying |
4718 | to find a direct binding per [over.match.ref], so rvaluedness |
4719 | must match for non-functions. */ |
4720 | cand->viable = 0; |
4721 | } |
4722 | else if (DECL_NONCONVERTING_P (cand->fn) |
4723 | && ics->rank > cr_exact) |
4724 | { |
4725 | /* 13.3.1.5: For direct-initialization, those explicit |
4726 | conversion functions that are not hidden within S and |
4727 | yield type T or a type that can be converted to type T |
4728 | with a qualification conversion (4.4) are also candidate |
4729 | functions. */ |
4730 | /* 13.3.1.6 doesn't have a parallel restriction, but it should; |
4731 | I've raised this issue with the committee. --jason 9/2011 */ |
4732 | cand->viable = -1; |
4733 | cand->reason = explicit_conversion_rejection (from: rettype, to: totype); |
4734 | } |
4735 | else if (cand->viable == 1 && ics->bad_p) |
4736 | { |
4737 | cand->viable = -1; |
4738 | cand->reason |
4739 | = bad_arg_conversion_rejection (NULL_TREE, n_arg: -2, |
4740 | from: rettype, to: totype, |
4741 | EXPR_LOCATION (expr)); |
4742 | } |
4743 | else if (primary_template_specialization_p (cand->fn) |
4744 | && ics->rank > cr_exact) |
4745 | { |
4746 | /* 13.3.3.1.2: If the user-defined conversion is specified by |
4747 | a specialization of a conversion function template, the |
4748 | second standard conversion sequence shall have exact match |
4749 | rank. */ |
4750 | cand->viable = -1; |
4751 | cand->reason = template_conversion_rejection (from: rettype, to: totype); |
4752 | } |
4753 | } |
4754 | } |
4755 | |
4756 | candidates = splice_viable (cands: candidates, strict_p: false, any_viable_p: &any_viable_p); |
4757 | if (!any_viable_p) |
4758 | { |
4759 | if (args) |
4760 | release_tree_vector (args); |
4761 | return NULL; |
4762 | } |
4763 | |
4764 | cand = tourney (candidates, complain); |
4765 | if (cand == NULL) |
4766 | { |
4767 | if (complain & tf_error) |
4768 | { |
4769 | auto_diagnostic_group d; |
4770 | error_at (cp_expr_loc_or_input_loc (t: expr), |
4771 | "conversion from %qH to %qI is ambiguous" , |
4772 | fromtype, totype); |
4773 | print_z_candidates (loc: location_of (expr), candidates); |
4774 | } |
4775 | |
4776 | cand = candidates; /* any one will do */ |
4777 | cand->second_conv = build_ambiguous_conv (type: totype, expr); |
4778 | cand->second_conv->user_conv_p = true; |
4779 | if (!any_strictly_viable (cands: candidates)) |
4780 | cand->second_conv->bad_p = true; |
4781 | if (flags & LOOKUP_ONLYCONVERTING) |
4782 | cand->second_conv->need_temporary_p = true; |
4783 | /* If there are viable candidates, don't set ICS_BAD_FLAG; an |
4784 | ambiguous conversion is no worse than another user-defined |
4785 | conversion. */ |
4786 | |
4787 | return cand; |
4788 | } |
4789 | |
4790 | /* Maybe pass { } as iterators instead of an initializer_list. */ |
4791 | if (tree iters = maybe_init_list_as_range (fn: cand->fn, expr)) |
4792 | if (z_candidate *cand2 |
4793 | = build_user_type_conversion_1 (totype, expr: iters, flags, complain: tf_none)) |
4794 | if (cand2->viable == 1 && !is_list_ctor (cand2->fn)) |
4795 | { |
4796 | cand = cand2; |
4797 | expr = iters; |
4798 | } |
4799 | |
4800 | tree convtype; |
4801 | if (!DECL_CONSTRUCTOR_P (cand->fn)) |
4802 | convtype = non_reference (TREE_TYPE (TREE_TYPE (cand->fn))); |
4803 | else if (cand->second_conv->kind == ck_rvalue) |
4804 | /* DR 5: [in the first step of copy-initialization]...if the function |
4805 | is a constructor, the call initializes a temporary of the |
4806 | cv-unqualified version of the destination type. */ |
4807 | convtype = cv_unqualified (totype); |
4808 | else |
4809 | convtype = totype; |
4810 | /* Build the user conversion sequence. */ |
4811 | conv = build_conv |
4812 | (code: ck_user, |
4813 | type: convtype, |
4814 | from: build_identity_conv (TREE_TYPE (expr), expr)); |
4815 | conv->cand = cand; |
4816 | if (cand->viable == -1) |
4817 | conv->bad_p = true; |
4818 | |
4819 | /* Remember that this was a list-initialization. */ |
4820 | if (flags & LOOKUP_NO_NARROWING) |
4821 | conv->check_narrowing = true; |
4822 | |
4823 | /* Combine it with the second conversion sequence. */ |
4824 | cand->second_conv = merge_conversion_sequences (user_seq: conv, |
4825 | std_seq: cand->second_conv); |
4826 | |
4827 | return cand; |
4828 | } |
4829 | |
4830 | /* Wrapper for above. */ |
4831 | |
4832 | tree |
4833 | build_user_type_conversion (tree totype, tree expr, int flags, |
4834 | tsubst_flags_t complain) |
4835 | { |
4836 | struct z_candidate *cand; |
4837 | tree ret; |
4838 | |
4839 | auto_cond_timevar tv (TV_OVERLOAD); |
4840 | |
4841 | conversion_obstack_sentinel cos; |
4842 | |
4843 | cand = build_user_type_conversion_1 (totype, expr, flags, complain); |
4844 | |
4845 | if (cand) |
4846 | { |
4847 | if (cand->second_conv->kind == ck_ambig) |
4848 | ret = error_mark_node; |
4849 | else |
4850 | { |
4851 | expr = convert_like (cand->second_conv, expr, complain); |
4852 | ret = convert_from_reference (expr); |
4853 | } |
4854 | } |
4855 | else |
4856 | ret = NULL_TREE; |
4857 | |
4858 | return ret; |
4859 | } |
4860 | |
4861 | /* Give a helpful diagnostic when implicit_conversion fails. */ |
4862 | |
4863 | static void |
4864 | implicit_conversion_error (location_t loc, tree type, tree expr) |
4865 | { |
4866 | tsubst_flags_t complain = tf_warning_or_error; |
4867 | |
4868 | /* If expr has unknown type, then it is an overloaded function. |
4869 | Call instantiate_type to get good error messages. */ |
4870 | if (TREE_TYPE (expr) == unknown_type_node) |
4871 | instantiate_type (type, expr, complain); |
4872 | else if (invalid_nonstatic_memfn_p (loc, expr, complain)) |
4873 | /* We gave an error. */; |
4874 | else if (BRACE_ENCLOSED_INITIALIZER_P (expr) |
4875 | && CONSTRUCTOR_IS_DESIGNATED_INIT (expr) |
4876 | && !CP_AGGREGATE_TYPE_P (type)) |
4877 | error_at (loc, "designated initializers cannot be used with a " |
4878 | "non-aggregate type %qT" , type); |
4879 | else |
4880 | { |
4881 | range_label_for_type_mismatch label (TREE_TYPE (expr), type); |
4882 | gcc_rich_location rich_loc (loc, &label, |
4883 | highlight_colors::percent_h); |
4884 | error_at (&rich_loc, "could not convert %qE from %qH to %qI" , |
4885 | expr, TREE_TYPE (expr), type); |
4886 | } |
4887 | } |
4888 | |
4889 | /* Worker for build_converted_constant_expr. */ |
4890 | |
4891 | static tree |
4892 | build_converted_constant_expr_internal (tree type, tree expr, |
4893 | int flags, tsubst_flags_t complain) |
4894 | { |
4895 | conversion *conv; |
4896 | tree t; |
4897 | location_t loc = cp_expr_loc_or_input_loc (t: expr); |
4898 | |
4899 | if (error_operand_p (t: expr)) |
4900 | return error_mark_node; |
4901 | |
4902 | conversion_obstack_sentinel cos; |
4903 | |
4904 | conv = implicit_conversion (to: type, TREE_TYPE (expr), expr, |
4905 | /*c_cast_p=*/false, flags, complain); |
4906 | |
4907 | /* A converted constant expression of type T is an expression, implicitly |
4908 | converted to type T, where the converted expression is a constant |
4909 | expression and the implicit conversion sequence contains only |
4910 | |
4911 | * user-defined conversions, |
4912 | * lvalue-to-rvalue conversions (7.1), |
4913 | * array-to-pointer conversions (7.2), |
4914 | * function-to-pointer conversions (7.3), |
4915 | * qualification conversions (7.5), |
4916 | * integral promotions (7.6), |
4917 | * integral conversions (7.8) other than narrowing conversions (11.6.4), |
4918 | * null pointer conversions (7.11) from std::nullptr_t, |
4919 | * null member pointer conversions (7.12) from std::nullptr_t, and |
4920 | * function pointer conversions (7.13), |
4921 | |
4922 | and where the reference binding (if any) binds directly. */ |
4923 | |
4924 | for (conversion *c = conv; |
4925 | c && c->kind != ck_identity; |
4926 | c = next_conversion (conv: c)) |
4927 | { |
4928 | switch (c->kind) |
4929 | { |
4930 | /* A conversion function is OK. If it isn't constexpr, we'll |
4931 | complain later that the argument isn't constant. */ |
4932 | case ck_user: |
4933 | /* List-initialization is OK. */ |
4934 | case ck_aggr: |
4935 | /* The lvalue-to-rvalue conversion is OK. */ |
4936 | case ck_rvalue: |
4937 | /* Array-to-pointer and function-to-pointer. */ |
4938 | case ck_lvalue: |
4939 | /* Function pointer conversions. */ |
4940 | case ck_fnptr: |
4941 | /* Qualification conversions. */ |
4942 | case ck_qual: |
4943 | break; |
4944 | |
4945 | case ck_ref_bind: |
4946 | if (c->need_temporary_p) |
4947 | { |
4948 | if (complain & tf_error) |
4949 | error_at (loc, "initializing %qH with %qI in converted " |
4950 | "constant expression does not bind directly" , |
4951 | type, next_conversion (conv: c)->type); |
4952 | conv = NULL; |
4953 | } |
4954 | break; |
4955 | |
4956 | case ck_base: |
4957 | case ck_pmem: |
4958 | case ck_ptr: |
4959 | case ck_std: |
4960 | t = next_conversion (conv: c)->type; |
4961 | if (INTEGRAL_OR_ENUMERATION_TYPE_P (t) |
4962 | && INTEGRAL_OR_ENUMERATION_TYPE_P (type)) |
4963 | /* Integral promotion or conversion. */ |
4964 | break; |
4965 | if (NULLPTR_TYPE_P (t)) |
4966 | /* Conversion from nullptr to pointer or pointer-to-member. */ |
4967 | break; |
4968 | |
4969 | if (complain & tf_error) |
4970 | error_at (loc, "conversion from %qH to %qI in a " |
4971 | "converted constant expression" , t, type); |
4972 | /* fall through. */ |
4973 | |
4974 | default: |
4975 | conv = NULL; |
4976 | break; |
4977 | } |
4978 | } |
4979 | |
4980 | /* Avoid confusing convert_nontype_argument by introducing |
4981 | a redundant conversion to the same reference type. */ |
4982 | if (conv && conv->kind == ck_ref_bind |
4983 | && REFERENCE_REF_P (expr)) |
4984 | { |
4985 | tree ref = TREE_OPERAND (expr, 0); |
4986 | if (same_type_p (type, TREE_TYPE (ref))) |
4987 | return ref; |
4988 | } |
4989 | |
4990 | if (conv) |
4991 | { |
4992 | /* Don't copy a class in a template. */ |
4993 | if (CLASS_TYPE_P (type) && conv->kind == ck_rvalue |
4994 | && processing_template_decl) |
4995 | conv = next_conversion (conv); |
4996 | |
4997 | /* Issuing conversion warnings for value-dependent expressions is |
4998 | likely too noisy. */ |
4999 | warning_sentinel w (warn_conversion); |
5000 | conv->check_narrowing = true; |
5001 | conv->check_narrowing_const_only = true; |
5002 | expr = convert_like (conv, expr, complain); |
5003 | } |
5004 | else |
5005 | { |
5006 | if (complain & tf_error) |
5007 | implicit_conversion_error (loc, type, expr); |
5008 | expr = error_mark_node; |
5009 | } |
5010 | |
5011 | return expr; |
5012 | } |
5013 | |
5014 | /* Subroutine of convert_nontype_argument. |
5015 | |
5016 | EXPR is an expression used in a context that requires a converted |
5017 | constant-expression, such as a template non-type parameter. Do any |
5018 | necessary conversions (that are permitted for converted |
5019 | constant-expressions) to convert it to the desired type. |
5020 | |
5021 | This function doesn't consider explicit conversion functions. If |
5022 | you mean to use "a contextually converted constant expression of type |
5023 | bool", use build_converted_constant_bool_expr. |
5024 | |
5025 | If conversion is successful, returns the converted expression; |
5026 | otherwise, returns error_mark_node. */ |
5027 | |
5028 | tree |
5029 | build_converted_constant_expr (tree type, tree expr, tsubst_flags_t complain) |
5030 | { |
5031 | return build_converted_constant_expr_internal (type, expr, LOOKUP_IMPLICIT, |
5032 | complain); |
5033 | } |
5034 | |
5035 | /* Used to create "a contextually converted constant expression of type |
5036 | bool". This differs from build_converted_constant_expr in that it |
5037 | also considers explicit conversion functions. */ |
5038 | |
5039 | tree |
5040 | build_converted_constant_bool_expr (tree expr, tsubst_flags_t complain) |
5041 | { |
5042 | return build_converted_constant_expr_internal (boolean_type_node, expr, |
5043 | LOOKUP_NORMAL, complain); |
5044 | } |
5045 | |
5046 | /* Do any initial processing on the arguments to a function call. */ |
5047 | |
5048 | vec<tree, va_gc> * |
5049 | resolve_args (vec<tree, va_gc> *args, tsubst_flags_t complain) |
5050 | { |
5051 | unsigned int ix; |
5052 | tree arg; |
5053 | |
5054 | FOR_EACH_VEC_SAFE_ELT (args, ix, arg) |
5055 | { |
5056 | if (error_operand_p (t: arg)) |
5057 | return NULL; |
5058 | else if (VOID_TYPE_P (TREE_TYPE (arg))) |
5059 | { |
5060 | if (complain & tf_error) |
5061 | error_at (cp_expr_loc_or_input_loc (t: arg), |
5062 | "invalid use of void expression" ); |
5063 | return NULL; |
5064 | } |
5065 | else if (invalid_nonstatic_memfn_p (EXPR_LOCATION (arg), arg, complain)) |
5066 | return NULL; |
5067 | |
5068 | /* Force auto deduction now. Omit tf_warning to avoid redundant |
5069 | deprecated warning on deprecated-14.C. */ |
5070 | if (!mark_single_function (arg, complain & ~tf_warning)) |
5071 | return NULL; |
5072 | } |
5073 | return args; |
5074 | } |
5075 | |
5076 | /* Perform overload resolution on FN, which is called with the ARGS. |
5077 | |
5078 | Return the candidate function selected by overload resolution, or |
5079 | NULL if the event that overload resolution failed. In the case |
5080 | that overload resolution fails, *CANDIDATES will be the set of |
5081 | candidates considered, and ANY_VIABLE_P will be set to true or |
5082 | false to indicate whether or not any of the candidates were |
5083 | viable. |
5084 | |
5085 | The ARGS should already have gone through RESOLVE_ARGS before this |
5086 | function is called. */ |
5087 | |
5088 | static struct z_candidate * |
5089 | perform_overload_resolution (tree fn, |
5090 | const vec<tree, va_gc> *args, |
5091 | struct z_candidate **candidates, |
5092 | bool *any_viable_p, tsubst_flags_t complain) |
5093 | { |
5094 | struct z_candidate *cand; |
5095 | tree explicit_targs; |
5096 | int template_only; |
5097 | |
5098 | auto_cond_timevar tv (TV_OVERLOAD); |
5099 | |
5100 | explicit_targs = NULL_TREE; |
5101 | template_only = 0; |
5102 | |
5103 | *candidates = NULL; |
5104 | *any_viable_p = true; |
5105 | |
5106 | /* Check FN. */ |
5107 | gcc_assert (OVL_P (fn) || TREE_CODE (fn) == TEMPLATE_ID_EXPR); |
5108 | |
5109 | if (TREE_CODE (fn) == TEMPLATE_ID_EXPR) |
5110 | { |
5111 | explicit_targs = TREE_OPERAND (fn, 1); |
5112 | fn = TREE_OPERAND (fn, 0); |
5113 | template_only = 1; |
5114 | } |
5115 | |
5116 | /* Add the various candidate functions. */ |
5117 | add_candidates (fn, NULL_TREE, args, NULL_TREE, |
5118 | explicit_targs, template_only, |
5119 | /*conversion_path=*/NULL_TREE, |
5120 | /*access_path=*/NULL_TREE, |
5121 | LOOKUP_NORMAL, |
5122 | candidates, complain); |
5123 | |
5124 | *candidates = splice_viable (cands: *candidates, strict_p: false, any_viable_p); |
5125 | if (*any_viable_p) |
5126 | cand = tourney (*candidates, complain); |
5127 | else |
5128 | cand = NULL; |
5129 | |
5130 | return cand; |
5131 | } |
5132 | |
5133 | /* Print an error message about being unable to build a call to FN with |
5134 | ARGS. ANY_VIABLE_P indicates whether any candidate functions could |
5135 | be located; CANDIDATES is a possibly empty list of such |
5136 | functions. */ |
5137 | |
5138 | static void |
5139 | print_error_for_call_failure (tree fn, const vec<tree, va_gc> *args, |
5140 | struct z_candidate *candidates) |
5141 | { |
5142 | tree targs = NULL_TREE; |
5143 | if (TREE_CODE (fn) == TEMPLATE_ID_EXPR) |
5144 | { |
5145 | targs = TREE_OPERAND (fn, 1); |
5146 | fn = TREE_OPERAND (fn, 0); |
5147 | } |
5148 | tree name = OVL_NAME (fn); |
5149 | location_t loc = location_of (name); |
5150 | if (targs) |
5151 | name = lookup_template_function (name, targs); |
5152 | |
5153 | auto_diagnostic_group d; |
5154 | if (!any_strictly_viable (cands: candidates)) |
5155 | error_at (loc, "no matching function for call to %<%D(%A)%>" , |
5156 | name, build_tree_list_vec (args)); |
5157 | else |
5158 | error_at (loc, "call of overloaded %<%D(%A)%> is ambiguous" , |
5159 | name, build_tree_list_vec (args)); |
5160 | if (candidates) |
5161 | print_z_candidates (loc, candidates); |
5162 | } |
5163 | |
5164 | /* Perform overload resolution on the set of deduction guides DGUIDES |
5165 | using ARGS. Returns the selected deduction guide, or error_mark_node |
5166 | if overload resolution fails. */ |
5167 | |
5168 | tree |
5169 | perform_dguide_overload_resolution (tree dguides, const vec<tree, va_gc> *args, |
5170 | tsubst_flags_t complain) |
5171 | { |
5172 | z_candidate *candidates; |
5173 | bool any_viable_p; |
5174 | tree result; |
5175 | |
5176 | gcc_assert (deduction_guide_p (OVL_FIRST (dguides))); |
5177 | |
5178 | conversion_obstack_sentinel cos; |
5179 | |
5180 | z_candidate *cand = perform_overload_resolution (fn: dguides, args, candidates: &candidates, |
5181 | any_viable_p: &any_viable_p, complain); |
5182 | if (!cand) |
5183 | { |
5184 | if (complain & tf_error) |
5185 | print_error_for_call_failure (fn: dguides, args, candidates); |
5186 | result = error_mark_node; |
5187 | } |
5188 | else |
5189 | result = cand->fn; |
5190 | |
5191 | return result; |
5192 | } |
5193 | |
5194 | /* Return an expression for a call to FN (a namespace-scope function, |
5195 | or a static member function) with the ARGS. This may change |
5196 | ARGS. */ |
5197 | |
5198 | tree |
5199 | build_new_function_call (tree fn, vec<tree, va_gc> **args, |
5200 | tsubst_flags_t complain) |
5201 | { |
5202 | struct z_candidate *candidates, *cand; |
5203 | bool any_viable_p; |
5204 | tree result; |
5205 | |
5206 | if (args != NULL && *args != NULL) |
5207 | { |
5208 | *args = resolve_args (args: *args, complain); |
5209 | if (*args == NULL) |
5210 | return error_mark_node; |
5211 | } |
5212 | |
5213 | if (flag_tm) |
5214 | tm_malloc_replacement (fn); |
5215 | |
5216 | conversion_obstack_sentinel cos; |
5217 | |
5218 | cand = perform_overload_resolution (fn, args: *args, candidates: &candidates, any_viable_p: &any_viable_p, |
5219 | complain); |
5220 | |
5221 | if (!cand) |
5222 | { |
5223 | if (complain & tf_error) |
5224 | { |
5225 | // If there is a single (non-viable) function candidate, |
5226 | // let the error be diagnosed by cp_build_function_call_vec. |
5227 | if (!any_viable_p && candidates && ! candidates->next |
5228 | && TREE_CODE (candidates->fn) == FUNCTION_DECL |
5229 | /* A template-id callee consisting of a single (ignored) |
5230 | non-template candidate needs to be diagnosed the |
5231 | ordinary way. */ |
5232 | && (TREE_CODE (fn) != TEMPLATE_ID_EXPR |
5233 | || candidates->template_decl)) |
5234 | return cp_build_function_call_vec (candidates->fn, args, complain); |
5235 | |
5236 | // Otherwise, emit notes for non-viable candidates. |
5237 | print_error_for_call_failure (fn, args: *args, candidates); |
5238 | } |
5239 | result = error_mark_node; |
5240 | } |
5241 | else |
5242 | { |
5243 | result = build_over_call (cand, LOOKUP_NORMAL, complain); |
5244 | } |
5245 | |
5246 | if (flag_coroutines |
5247 | && result |
5248 | && TREE_CODE (result) == CALL_EXPR |
5249 | && DECL_BUILT_IN_CLASS (TREE_OPERAND (CALL_EXPR_FN (result), 0)) |
5250 | == BUILT_IN_NORMAL) |
5251 | result = coro_validate_builtin_call (result); |
5252 | |
5253 | return result; |
5254 | } |
5255 | |
5256 | /* Build a call to a global operator new. FNNAME is the name of the |
5257 | operator (either "operator new" or "operator new[]") and ARGS are |
5258 | the arguments provided. This may change ARGS. *SIZE points to the |
5259 | total number of bytes required by the allocation, and is updated if |
5260 | that is changed here. *COOKIE_SIZE is non-NULL if a cookie should |
5261 | be used. If this function determines that no cookie should be |
5262 | used, after all, *COOKIE_SIZE is set to NULL_TREE. If SIZE_CHECK |
5263 | is not NULL_TREE, it is evaluated before calculating the final |
5264 | array size, and if it fails, the array size is replaced with |
5265 | (size_t)-1 (usually triggering a std::bad_alloc exception). If FN |
5266 | is non-NULL, it will be set, upon return, to the allocation |
5267 | function called. */ |
5268 | |
5269 | tree |
5270 | build_operator_new_call (tree fnname, vec<tree, va_gc> **args, |
5271 | tree *size, tree *cookie_size, |
5272 | tree align_arg, tree size_check, |
5273 | tree *fn, tsubst_flags_t complain) |
5274 | { |
5275 | tree original_size = *size; |
5276 | tree fns; |
5277 | struct z_candidate *candidates; |
5278 | struct z_candidate *cand = NULL; |
5279 | bool any_viable_p; |
5280 | |
5281 | if (fn) |
5282 | *fn = NULL_TREE; |
5283 | /* Set to (size_t)-1 if the size check fails. */ |
5284 | if (size_check != NULL_TREE) |
5285 | { |
5286 | tree errval = TYPE_MAX_VALUE (sizetype); |
5287 | if (cxx_dialect >= cxx11 && flag_exceptions) |
5288 | errval = throw_bad_array_new_length (); |
5289 | *size = fold_build3 (COND_EXPR, sizetype, size_check, |
5290 | original_size, errval); |
5291 | } |
5292 | vec_safe_insert (v&: *args, ix: 0, obj: *size); |
5293 | *args = resolve_args (args: *args, complain); |
5294 | if (*args == NULL) |
5295 | return error_mark_node; |
5296 | |
5297 | conversion_obstack_sentinel cos; |
5298 | |
5299 | /* Based on: |
5300 | |
5301 | [expr.new] |
5302 | |
5303 | If this lookup fails to find the name, or if the allocated type |
5304 | is not a class type, the allocation function's name is looked |
5305 | up in the global scope. |
5306 | |
5307 | we disregard block-scope declarations of "operator new". */ |
5308 | fns = lookup_qualified_name (global_namespace, name: fnname); |
5309 | |
5310 | if (align_arg) |
5311 | { |
5312 | vec<tree, va_gc>* align_args |
5313 | = vec_copy_and_insert (*args, align_arg, 1); |
5314 | cand = perform_overload_resolution (fn: fns, args: align_args, candidates: &candidates, |
5315 | any_viable_p: &any_viable_p, complain: tf_none); |
5316 | if (cand) |
5317 | *args = align_args; |
5318 | /* If no aligned allocation function matches, try again without the |
5319 | alignment. */ |
5320 | } |
5321 | |
5322 | /* Figure out what function is being called. */ |
5323 | if (!cand) |
5324 | cand = perform_overload_resolution (fn: fns, args: *args, candidates: &candidates, any_viable_p: &any_viable_p, |
5325 | complain); |
5326 | |
5327 | /* If no suitable function could be found, issue an error message |
5328 | and give up. */ |
5329 | if (!cand) |
5330 | { |
5331 | if (complain & tf_error) |
5332 | print_error_for_call_failure (fn: fns, args: *args, candidates); |
5333 | return error_mark_node; |
5334 | } |
5335 | |
5336 | /* If a cookie is required, add some extra space. Whether |
5337 | or not a cookie is required cannot be determined until |
5338 | after we know which function was called. */ |
5339 | if (*cookie_size) |
5340 | { |
5341 | bool use_cookie = true; |
5342 | tree arg_types; |
5343 | |
5344 | arg_types = TYPE_ARG_TYPES (TREE_TYPE (cand->fn)); |
5345 | /* Skip the size_t parameter. */ |
5346 | arg_types = TREE_CHAIN (arg_types); |
5347 | /* Check the remaining parameters (if any). */ |
5348 | if (arg_types |
5349 | && TREE_CHAIN (arg_types) == void_list_node |
5350 | && same_type_p (TREE_VALUE (arg_types), |
5351 | ptr_type_node)) |
5352 | use_cookie = false; |
5353 | /* If we need a cookie, adjust the number of bytes allocated. */ |
5354 | if (use_cookie) |
5355 | { |
5356 | /* Update the total size. */ |
5357 | *size = size_binop (PLUS_EXPR, original_size, *cookie_size); |
5358 | if (size_check) |
5359 | { |
5360 | /* Set to (size_t)-1 if the size check fails. */ |
5361 | gcc_assert (size_check != NULL_TREE); |
5362 | *size = fold_build3 (COND_EXPR, sizetype, size_check, |
5363 | *size, TYPE_MAX_VALUE (sizetype)); |
5364 | } |
5365 | /* Update the argument list to reflect the adjusted size. */ |
5366 | (**args)[0] = *size; |
5367 | } |
5368 | else |
5369 | *cookie_size = NULL_TREE; |
5370 | } |
5371 | |
5372 | /* Tell our caller which function we decided to call. */ |
5373 | if (fn) |
5374 | *fn = cand->fn; |
5375 | |
5376 | /* Build the CALL_EXPR. */ |
5377 | tree ret = build_over_call (cand, LOOKUP_NORMAL, complain); |
5378 | |
5379 | /* Set this flag for all callers of this function. In addition to |
5380 | new-expressions, this is called for allocating coroutine state; treat |
5381 | that as an implicit new-expression. */ |
5382 | tree call = extract_call_expr (ret); |
5383 | if (TREE_CODE (call) == CALL_EXPR) |
5384 | CALL_FROM_NEW_OR_DELETE_P (call) = 1; |
5385 | |
5386 | return ret; |
5387 | } |
5388 | |
5389 | /* Evaluate side-effects from OBJ before evaluating call |
5390 | to FN in RESULT expression. |
5391 | This is for expressions of the form `obj->fn(...)' |
5392 | where `fn' turns out to be a static member function and |
5393 | `obj' needs to be evaluated. `fn' could be also static operator[] |
5394 | or static operator(), in which cases the source expression |
5395 | would be `obj[...]' or `obj(...)'. */ |
5396 | |
5397 | tree |
5398 | keep_unused_object_arg (tree result, tree obj, tree fn) |
5399 | { |
5400 | if (result == NULL_TREE |
5401 | || result == error_mark_node |
5402 | || DECL_OBJECT_MEMBER_FUNCTION_P (fn) |
5403 | || !TREE_SIDE_EFFECTS (obj)) |
5404 | return result; |
5405 | |
5406 | /* But avoid the implicit lvalue-rvalue conversion when `obj' is |
5407 | volatile. */ |
5408 | tree a = obj; |
5409 | if (TREE_THIS_VOLATILE (a)) |
5410 | a = build_this (obj: a); |
5411 | if (TREE_SIDE_EFFECTS (a)) |
5412 | return cp_build_compound_expr (a, result, tf_error); |
5413 | return result; |
5414 | } |
5415 | |
5416 | /* Build a new call to operator(). This may change ARGS. */ |
5417 | |
5418 | tree |
5419 | build_op_call (tree obj, vec<tree, va_gc> **args, tsubst_flags_t complain) |
5420 | { |
5421 | struct z_candidate *candidates = 0, *cand; |
5422 | tree fns, convs, first_mem_arg = NULL_TREE; |
5423 | bool any_viable_p; |
5424 | tree result = NULL_TREE; |
5425 | |
5426 | auto_cond_timevar tv (TV_OVERLOAD); |
5427 | |
5428 | obj = mark_lvalue_use (obj); |
5429 | |
5430 | if (error_operand_p (t: obj)) |
5431 | return error_mark_node; |
5432 | |
5433 | tree type = TREE_TYPE (obj); |
5434 | |
5435 | obj = prep_operand (obj); |
5436 | |
5437 | if (TYPE_PTRMEMFUNC_P (type)) |
5438 | { |
5439 | if (complain & tf_error) |
5440 | /* It's no good looking for an overloaded operator() on a |
5441 | pointer-to-member-function. */ |
5442 | error ("pointer-to-member function %qE cannot be called without " |
5443 | "an object; consider using %<.*%> or %<->*%>" , obj); |
5444 | return error_mark_node; |
5445 | } |
5446 | |
5447 | if (TYPE_BINFO (type)) |
5448 | { |
5449 | fns = lookup_fnfields (TYPE_BINFO (type), call_op_identifier, 1, complain); |
5450 | if (fns == error_mark_node) |
5451 | return error_mark_node; |
5452 | } |
5453 | else |
5454 | fns = NULL_TREE; |
5455 | |
5456 | if (args != NULL && *args != NULL) |
5457 | { |
5458 | *args = resolve_args (args: *args, complain); |
5459 | if (*args == NULL) |
5460 | return error_mark_node; |
5461 | } |
5462 | |
5463 | conversion_obstack_sentinel cos; |
5464 | |
5465 | if (fns) |
5466 | { |
5467 | first_mem_arg = obj; |
5468 | |
5469 | add_candidates (BASELINK_FUNCTIONS (fns), |
5470 | first_mem_arg, *args, NULL_TREE, |
5471 | NULL_TREE, false, |
5472 | BASELINK_BINFO (fns), BASELINK_ACCESS_BINFO (fns), |
5473 | LOOKUP_NORMAL, &candidates, complain); |
5474 | } |
5475 | |
5476 | bool any_call_ops = candidates != nullptr; |
5477 | |
5478 | convs = lookup_conversions (type); |
5479 | |
5480 | for (; convs; convs = TREE_CHAIN (convs)) |
5481 | { |
5482 | tree totype = TREE_TYPE (convs); |
5483 | |
5484 | if (TYPE_PTRFN_P (totype) |
5485 | || TYPE_REFFN_P (totype) |
5486 | || (TYPE_REF_P (totype) |
5487 | && TYPE_PTRFN_P (TREE_TYPE (totype)))) |
5488 | for (tree fn : ovl_range (TREE_VALUE (convs))) |
5489 | { |
5490 | if (DECL_NONCONVERTING_P (fn)) |
5491 | continue; |
5492 | |
5493 | if (TREE_CODE (fn) == TEMPLATE_DECL) |
5494 | { |
5495 | /* Making this work broke PR 71117 and 85118, so until the |
5496 | committee resolves core issue 2189, let's disable this |
5497 | candidate if there are any call operators. */ |
5498 | if (any_call_ops) |
5499 | continue; |
5500 | |
5501 | add_template_conv_candidate |
5502 | (candidates: &candidates, tmpl: fn, obj, arglist: *args, return_type: totype, |
5503 | /*access_path=*/NULL_TREE, |
5504 | /*conversion_path=*/NULL_TREE, complain); |
5505 | } |
5506 | else |
5507 | add_conv_candidate (candidates: &candidates, fn, obj, |
5508 | arglist: *args, /*conversion_path=*/NULL_TREE, |
5509 | /*access_path=*/NULL_TREE, complain); |
5510 | } |
5511 | } |
5512 | |
5513 | /* Be strict here because if we choose a bad conversion candidate, the |
5514 | errors we get won't mention the call context. */ |
5515 | candidates = splice_viable (cands: candidates, strict_p: true, any_viable_p: &any_viable_p); |
5516 | if (!any_viable_p) |
5517 | { |
5518 | if (complain & tf_error) |
5519 | { |
5520 | auto_diagnostic_group d; |
5521 | error ("no match for call to %<(%T) (%A)%>" , TREE_TYPE (obj), |
5522 | build_tree_list_vec (*args)); |
5523 | print_z_candidates (loc: location_of (TREE_TYPE (obj)), candidates); |
5524 | } |
5525 | result = error_mark_node; |
5526 | } |
5527 | else |
5528 | { |
5529 | cand = tourney (candidates, complain); |
5530 | if (cand == 0) |
5531 | { |
5532 | if (complain & tf_error) |
5533 | { |
5534 | auto_diagnostic_group d; |
5535 | error ("call of %<(%T) (%A)%> is ambiguous" , |
5536 | TREE_TYPE (obj), build_tree_list_vec (*args)); |
5537 | print_z_candidates (loc: location_of (TREE_TYPE (obj)), candidates); |
5538 | } |
5539 | result = error_mark_node; |
5540 | } |
5541 | else if (TREE_CODE (cand->fn) == FUNCTION_DECL |
5542 | && DECL_OVERLOADED_OPERATOR_P (cand->fn) |
5543 | && DECL_OVERLOADED_OPERATOR_IS (cand->fn, CALL_EXPR)) |
5544 | { |
5545 | result = build_over_call (cand, LOOKUP_NORMAL, complain); |
5546 | /* In an expression of the form `a()' where cand->fn |
5547 | which is operator() turns out to be a static member function, |
5548 | `a' is none-the-less evaluated. */ |
5549 | result = keep_unused_object_arg (result, obj, fn: cand->fn); |
5550 | } |
5551 | else |
5552 | { |
5553 | if (TREE_CODE (cand->fn) == FUNCTION_DECL) |
5554 | obj = convert_like_with_context (cand->convs[0], obj, cand->fn, |
5555 | -1, complain); |
5556 | else |
5557 | { |
5558 | gcc_checking_assert (TYPE_P (cand->fn)); |
5559 | obj = convert_like (cand->convs[0], obj, complain); |
5560 | } |
5561 | obj = convert_from_reference (obj); |
5562 | result = cp_build_function_call_vec (obj, args, complain); |
5563 | } |
5564 | } |
5565 | |
5566 | return result; |
5567 | } |
5568 | |
5569 | /* Subroutine for preparing format strings suitable for the error |
5570 | function. It concatenates a prefix (controlled by MATCH), ERRMSG, |
5571 | and SUFFIX. */ |
5572 | |
5573 | static const char * |
5574 | concat_op_error_string (bool match, const char *errmsg, const char *suffix) |
5575 | { |
5576 | return concat (match |
5577 | ? G_("ambiguous overload for " ) |
5578 | : G_("no match for " ), |
5579 | errmsg, suffix, nullptr); |
5580 | } |
5581 | |
5582 | /* Called by op_error to prepare format strings suitable for the error |
5583 | function. It concatenates a prefix (controlled by MATCH), ERRMSG, |
5584 | and a suffix (controlled by NTYPES). */ |
5585 | |
5586 | static const char * |
5587 | op_error_string (const char *errmsg, int ntypes, bool match) |
5588 | { |
5589 | const char *suffix; |
5590 | if (ntypes == 3) |
5591 | suffix = G_(" (operand types are %qT, %qT, and %qT)" ); |
5592 | else if (ntypes == 2) |
5593 | suffix = G_(" (operand types are %qT and %qT)" ); |
5594 | else |
5595 | suffix = G_(" (operand type is %qT)" ); |
5596 | return concat_op_error_string (match, errmsg, suffix); |
5597 | } |
5598 | |
5599 | /* Similar to op_error_string, but a special-case for binary ops that |
5600 | use %e for the args, rather than %qT. */ |
5601 | |
5602 | static const char * |
5603 | binop_error_string (const char *errmsg, bool match) |
5604 | { |
5605 | return concat_op_error_string (match, errmsg, |
5606 | G_(" (operand types are %e and %e)" )); |
5607 | } |
5608 | |
5609 | static void |
5610 | op_error (const op_location_t &loc, |
5611 | enum tree_code code, enum tree_code code2, |
5612 | tree arg1, tree arg2, tree arg3, bool match) |
5613 | { |
5614 | bool assop = code == MODIFY_EXPR; |
5615 | const char *opname = OVL_OP_INFO (assop, assop ? code2 : code)->name; |
5616 | |
5617 | switch (code) |
5618 | { |
5619 | case COND_EXPR: |
5620 | if (flag_diagnostics_show_caret) |
5621 | error_at (loc, op_error_string (G_("ternary %<operator?:%>" ), |
5622 | ntypes: 3, match), |
5623 | TREE_TYPE (arg1), TREE_TYPE (arg2), TREE_TYPE (arg3)); |
5624 | else |
5625 | error_at (loc, op_error_string (G_("ternary %<operator?:%> " |
5626 | "in %<%E ? %E : %E%>" ), ntypes: 3, match), |
5627 | arg1, arg2, arg3, |
5628 | TREE_TYPE (arg1), TREE_TYPE (arg2), TREE_TYPE (arg3)); |
5629 | break; |
5630 | |
5631 | case POSTINCREMENT_EXPR: |
5632 | case POSTDECREMENT_EXPR: |
5633 | if (flag_diagnostics_show_caret) |
5634 | error_at (loc, op_error_string (G_("%<operator%s%>" ), ntypes: 1, match), |
5635 | opname, TREE_TYPE (arg1)); |
5636 | else |
5637 | error_at (loc, op_error_string (G_("%<operator%s%> in %<%E%s%>" ), |
5638 | ntypes: 1, match), |
5639 | opname, arg1, opname, TREE_TYPE (arg1)); |
5640 | break; |
5641 | |
5642 | case ARRAY_REF: |
5643 | if (flag_diagnostics_show_caret) |
5644 | error_at (loc, op_error_string (G_("%<operator[]%>" ), ntypes: 2, match), |
5645 | TREE_TYPE (arg1), TREE_TYPE (arg2)); |
5646 | else |
5647 | error_at (loc, op_error_string (G_("%<operator[]%> in %<%E[%E]%>" ), |
5648 | ntypes: 2, match), |
5649 | arg1, arg2, TREE_TYPE (arg1), TREE_TYPE (arg2)); |
5650 | break; |
5651 | |
5652 | case REALPART_EXPR: |
5653 | case IMAGPART_EXPR: |
5654 | if (flag_diagnostics_show_caret) |
5655 | error_at (loc, op_error_string (G_("%qs" ), ntypes: 1, match), |
5656 | opname, TREE_TYPE (arg1)); |
5657 | else |
5658 | error_at (loc, op_error_string (G_("%qs in %<%s %E%>" ), ntypes: 1, match), |
5659 | opname, opname, arg1, TREE_TYPE (arg1)); |
5660 | break; |
5661 | |
5662 | case CO_AWAIT_EXPR: |
5663 | if (flag_diagnostics_show_caret) |
5664 | error_at (loc, op_error_string (G_("%<operator %s%>" ), ntypes: 1, match), |
5665 | opname, TREE_TYPE (arg1)); |
5666 | else |
5667 | error_at (loc, op_error_string (G_("%<operator %s%> in %<%s%E%>" ), |
5668 | ntypes: 1, match), |
5669 | opname, opname, arg1, TREE_TYPE (arg1)); |
5670 | break; |
5671 | |
5672 | default: |
5673 | if (arg2) |
5674 | if (flag_diagnostics_show_caret) |
5675 | { |
5676 | binary_op_rich_location richloc (loc, arg1, arg2, true); |
5677 | pp_markup::element_quoted_type element_0 |
5678 | (TREE_TYPE (arg1), highlight_colors::lhs); |
5679 | pp_markup::element_quoted_type element_1 |
5680 | (TREE_TYPE (arg2), highlight_colors::rhs); |
5681 | error_at (&richloc, |
5682 | binop_error_string (G_("%<operator%s%>" ), match), |
5683 | opname, &element_0, &element_1); |
5684 | } |
5685 | else |
5686 | error_at (loc, op_error_string (G_("%<operator%s%> in %<%E %s %E%>" ), |
5687 | ntypes: 2, match), |
5688 | opname, arg1, opname, arg2, |
5689 | TREE_TYPE (arg1), TREE_TYPE (arg2)); |
5690 | else |
5691 | if (flag_diagnostics_show_caret) |
5692 | error_at (loc, op_error_string (G_("%<operator%s%>" ), ntypes: 1, match), |
5693 | opname, TREE_TYPE (arg1)); |
5694 | else |
5695 | error_at (loc, op_error_string (G_("%<operator%s%> in %<%s%E%>" ), |
5696 | ntypes: 1, match), |
5697 | opname, opname, arg1, TREE_TYPE (arg1)); |
5698 | break; |
5699 | } |
5700 | } |
5701 | |
5702 | /* Return the implicit conversion sequence that could be used to |
5703 | convert E1 to E2 in [expr.cond]. */ |
5704 | |
5705 | static conversion * |
5706 | conditional_conversion (tree e1, tree e2, tsubst_flags_t complain) |
5707 | { |
5708 | tree t1 = non_reference (TREE_TYPE (e1)); |
5709 | tree t2 = non_reference (TREE_TYPE (e2)); |
5710 | conversion *conv; |
5711 | bool good_base; |
5712 | |
5713 | /* [expr.cond] |
5714 | |
5715 | If E2 is an lvalue: E1 can be converted to match E2 if E1 can be |
5716 | implicitly converted (clause _conv_) to the type "lvalue reference to |
5717 | T2", subject to the constraint that in the conversion the |
5718 | reference must bind directly (_dcl.init.ref_) to an lvalue. |
5719 | |
5720 | If E2 is an xvalue: E1 can be converted to match E2 if E1 can be |
5721 | implicitly converted to the type "rvalue reference to T2", subject to |
5722 | the constraint that the reference must bind directly. */ |
5723 | if (glvalue_p (e2)) |
5724 | { |
5725 | tree rtype = cp_build_reference_type (t2, !lvalue_p (e2)); |
5726 | conv = implicit_conversion (to: rtype, |
5727 | from: t1, |
5728 | expr: e1, |
5729 | /*c_cast_p=*/false, |
5730 | LOOKUP_NO_TEMP_BIND|LOOKUP_NO_RVAL_BIND |
5731 | |LOOKUP_ONLYCONVERTING, |
5732 | complain); |
5733 | if (conv && !conv->bad_p) |
5734 | return conv; |
5735 | } |
5736 | |
5737 | /* If E2 is a prvalue or if neither of the conversions above can be done |
5738 | and at least one of the operands has (possibly cv-qualified) class |
5739 | type: */ |
5740 | if (!CLASS_TYPE_P (t1) && !CLASS_TYPE_P (t2)) |
5741 | return NULL; |
5742 | |
5743 | /* [expr.cond] |
5744 | |
5745 | If E1 and E2 have class type, and the underlying class types are |
5746 | the same or one is a base class of the other: E1 can be converted |
5747 | to match E2 if the class of T2 is the same type as, or a base |
5748 | class of, the class of T1, and the cv-qualification of T2 is the |
5749 | same cv-qualification as, or a greater cv-qualification than, the |
5750 | cv-qualification of T1. If the conversion is applied, E1 is |
5751 | changed to an rvalue of type T2 that still refers to the original |
5752 | source class object (or the appropriate subobject thereof). */ |
5753 | if (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2) |
5754 | && ((good_base = DERIVED_FROM_P (t2, t1)) || DERIVED_FROM_P (t1, t2))) |
5755 | { |
5756 | if (good_base && at_least_as_qualified_p (t2, t1)) |
5757 | { |
5758 | conv = build_identity_conv (type: t1, expr: e1); |
5759 | if (!same_type_p (TYPE_MAIN_VARIANT (t1), |
5760 | TYPE_MAIN_VARIANT (t2))) |
5761 | conv = build_conv (code: ck_base, type: t2, from: conv); |
5762 | else |
5763 | conv = build_conv (code: ck_rvalue, type: t2, from: conv); |
5764 | return conv; |
5765 | } |
5766 | else |
5767 | return NULL; |
5768 | } |
5769 | else |
5770 | /* [expr.cond] |
5771 | |
5772 | Otherwise: E1 can be converted to match E2 if E1 can be implicitly |
5773 | converted to the type that expression E2 would have if E2 were |
5774 | converted to an rvalue (or the type it has, if E2 is an rvalue). */ |
5775 | return implicit_conversion (to: t2, from: t1, expr: e1, /*c_cast_p=*/false, |
5776 | LOOKUP_IMPLICIT, complain); |
5777 | } |
5778 | |
5779 | /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three |
5780 | arguments to the conditional expression. */ |
5781 | |
5782 | tree |
5783 | build_conditional_expr (const op_location_t &loc, |
5784 | tree arg1, tree arg2, tree arg3, |
5785 | tsubst_flags_t complain) |
5786 | { |
5787 | tree arg2_type; |
5788 | tree arg3_type; |
5789 | tree result = NULL_TREE; |
5790 | tree result_type = NULL_TREE; |
5791 | tree semantic_result_type = NULL_TREE; |
5792 | bool is_glvalue = true; |
5793 | struct z_candidate *candidates = 0; |
5794 | struct z_candidate *cand; |
5795 | tree orig_arg2, orig_arg3; |
5796 | |
5797 | auto_cond_timevar tv (TV_OVERLOAD); |
5798 | |
5799 | /* As a G++ extension, the second argument to the conditional can be |
5800 | omitted. (So that `a ? : c' is roughly equivalent to `a ? a : |
5801 | c'.) If the second operand is omitted, make sure it is |
5802 | calculated only once. */ |
5803 | if (!arg2) |
5804 | { |
5805 | if (complain & tf_error) |
5806 | pedwarn (loc, OPT_Wpedantic, |
5807 | "ISO C++ forbids omitting the middle term of " |
5808 | "a %<?:%> expression" ); |
5809 | |
5810 | if ((complain & tf_warning) && !truth_value_p (TREE_CODE (arg1))) |
5811 | warn_for_omitted_condop (loc, arg1); |
5812 | |
5813 | /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */ |
5814 | if (glvalue_p (arg1)) |
5815 | { |
5816 | arg1 = cp_stabilize_reference (arg1); |
5817 | arg2 = arg1 = prevent_lifetime_extension (arg1); |
5818 | } |
5819 | else if (TREE_CODE (arg1) == TARGET_EXPR) |
5820 | /* arg1 can't be a prvalue result of the conditional |
5821 | expression, since it needs to be materialized for the |
5822 | conversion to bool, so treat it as an xvalue in arg2. */ |
5823 | arg2 = move (TARGET_EXPR_SLOT (arg1)); |
5824 | else if (TREE_CODE (arg1) == EXCESS_PRECISION_EXPR) |
5825 | arg2 = arg1 = build1 (EXCESS_PRECISION_EXPR, TREE_TYPE (arg1), |
5826 | cp_save_expr (TREE_OPERAND (arg1, 0))); |
5827 | else |
5828 | arg2 = arg1 = cp_save_expr (arg1); |
5829 | } |
5830 | |
5831 | /* If something has already gone wrong, just pass that fact up the |
5832 | tree. */ |
5833 | if (error_operand_p (t: arg1) |
5834 | || error_operand_p (t: arg2) |
5835 | || error_operand_p (t: arg3)) |
5836 | return error_mark_node; |
5837 | |
5838 | conversion_obstack_sentinel cos; |
5839 | |
5840 | orig_arg2 = arg2; |
5841 | orig_arg3 = arg3; |
5842 | |
5843 | if (gnu_vector_type_p (TREE_TYPE (arg1)) |
5844 | && VECTOR_INTEGER_TYPE_P (TREE_TYPE (arg1))) |
5845 | { |
5846 | tree arg1_type = TREE_TYPE (arg1); |
5847 | |
5848 | /* If arg1 is another cond_expr choosing between -1 and 0, |
5849 | then we can use its comparison. It may help to avoid |
5850 | additional comparison, produce more accurate diagnostics |
5851 | and enables folding. */ |
5852 | if (TREE_CODE (arg1) == VEC_COND_EXPR |
5853 | && integer_minus_onep (TREE_OPERAND (arg1, 1)) |
5854 | && integer_zerop (TREE_OPERAND (arg1, 2))) |
5855 | arg1 = TREE_OPERAND (arg1, 0); |
5856 | |
5857 | arg1 = force_rvalue (arg1, complain); |
5858 | arg2 = force_rvalue (arg2, complain); |
5859 | arg3 = force_rvalue (arg3, complain); |
5860 | |
5861 | /* force_rvalue can return error_mark on valid arguments. */ |
5862 | if (error_operand_p (t: arg1) |
5863 | || error_operand_p (t: arg2) |
5864 | || error_operand_p (t: arg3)) |
5865 | return error_mark_node; |
5866 | |
5867 | arg2_type = TREE_TYPE (arg2); |
5868 | arg3_type = TREE_TYPE (arg3); |
5869 | |
5870 | if (!VECTOR_TYPE_P (arg2_type) |
5871 | && !VECTOR_TYPE_P (arg3_type)) |
5872 | { |
5873 | /* Rely on the error messages of the scalar version. */ |
5874 | tree scal = build_conditional_expr (loc, integer_one_node, |
5875 | arg2: orig_arg2, arg3: orig_arg3, complain); |
5876 | if (scal == error_mark_node) |
5877 | return error_mark_node; |
5878 | tree stype = TREE_TYPE (scal); |
5879 | tree ctype = TREE_TYPE (arg1_type); |
5880 | if (TYPE_SIZE (stype) != TYPE_SIZE (ctype) |
5881 | || (!INTEGRAL_TYPE_P (stype) && !SCALAR_FLOAT_TYPE_P (stype))) |
5882 | { |
5883 | if (complain & tf_error) |
5884 | error_at (loc, "inferred scalar type %qT is not an integer or " |
5885 | "floating-point type of the same size as %qT" , stype, |
5886 | COMPARISON_CLASS_P (arg1) |
5887 | ? TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg1, 0))) |
5888 | : ctype); |
5889 | return error_mark_node; |
5890 | } |
5891 | |
5892 | tree vtype = build_opaque_vector_type (stype, |
5893 | TYPE_VECTOR_SUBPARTS (node: arg1_type)); |
5894 | /* We could pass complain & tf_warning to unsafe_conversion_p, |
5895 | but the warnings (like Wsign-conversion) have already been |
5896 | given by the scalar build_conditional_expr_1. We still check |
5897 | unsafe_conversion_p to forbid truncating long long -> float. */ |
5898 | if (unsafe_conversion_p (stype, arg2, NULL_TREE, false)) |
5899 | { |
5900 | if (complain & tf_error) |
5901 | error_at (loc, "conversion of scalar %qH to vector %qI " |
5902 | "involves truncation" , arg2_type, vtype); |
5903 | return error_mark_node; |
5904 | } |
5905 | if (unsafe_conversion_p (stype, arg3, NULL_TREE, false)) |
5906 | { |
5907 | if (complain & tf_error) |
5908 | error_at (loc, "conversion of scalar %qH to vector %qI " |
5909 | "involves truncation" , arg3_type, vtype); |
5910 | return error_mark_node; |
5911 | } |
5912 | |
5913 | arg2 = cp_convert (stype, arg2, complain); |
5914 | arg2 = save_expr (arg2); |
5915 | arg2 = build_vector_from_val (vtype, arg2); |
5916 | arg2_type = vtype; |
5917 | arg3 = cp_convert (stype, arg3, complain); |
5918 | arg3 = save_expr (arg3); |
5919 | arg3 = build_vector_from_val (vtype, arg3); |
5920 | arg3_type = vtype; |
5921 | } |
5922 | |
5923 | if ((gnu_vector_type_p (type: arg2_type) && !VECTOR_TYPE_P (arg3_type)) |
5924 | || (gnu_vector_type_p (type: arg3_type) && !VECTOR_TYPE_P (arg2_type))) |
5925 | { |
5926 | enum stv_conv convert_flag = |
5927 | scalar_to_vector (loc, code: VEC_COND_EXPR, op0: arg2, op1: arg3, |
5928 | complain & tf_error); |
5929 | |
5930 | switch (convert_flag) |
5931 | { |
5932 | case stv_error: |
5933 | return error_mark_node; |
5934 | case stv_firstarg: |
5935 | { |
5936 | arg2 = save_expr (arg2); |
5937 | arg2 = convert (TREE_TYPE (arg3_type), arg2); |
5938 | arg2 = build_vector_from_val (arg3_type, arg2); |
5939 | arg2_type = TREE_TYPE (arg2); |
5940 | break; |
5941 | } |
5942 | case stv_secondarg: |
5943 | { |
5944 | arg3 = save_expr (arg3); |
5945 | arg3 = convert (TREE_TYPE (arg2_type), arg3); |
5946 | arg3 = build_vector_from_val (arg2_type, arg3); |
5947 | arg3_type = TREE_TYPE (arg3); |
5948 | break; |
5949 | } |
5950 | default: |
5951 | break; |
5952 | } |
5953 | } |
5954 | |
5955 | if (!gnu_vector_type_p (type: arg2_type) |
5956 | || !gnu_vector_type_p (type: arg3_type) |
5957 | || !same_type_p (arg2_type, arg3_type) |
5958 | || maybe_ne (a: TYPE_VECTOR_SUBPARTS (node: arg1_type), |
5959 | b: TYPE_VECTOR_SUBPARTS (node: arg2_type)) |
5960 | || TYPE_SIZE (arg1_type) != TYPE_SIZE (arg2_type)) |
5961 | { |
5962 | if (complain & tf_error) |
5963 | error_at (loc, |
5964 | "incompatible vector types in conditional expression: " |
5965 | "%qT, %qT and %qT" , TREE_TYPE (arg1), |
5966 | TREE_TYPE (orig_arg2), TREE_TYPE (orig_arg3)); |
5967 | return error_mark_node; |
5968 | } |
5969 | |
5970 | if (!COMPARISON_CLASS_P (arg1)) |
5971 | { |
5972 | tree cmp_type = truth_type_for (arg1_type); |
5973 | arg1 = build2 (NE_EXPR, cmp_type, arg1, build_zero_cst (arg1_type)); |
5974 | } |
5975 | return build3_loc (loc, code: VEC_COND_EXPR, type: arg2_type, arg0: arg1, arg1: arg2, arg2: arg3); |
5976 | } |
5977 | |
5978 | /* [expr.cond] |
5979 | |
5980 | The first expression is implicitly converted to bool (clause |
5981 | _conv_). */ |
5982 | arg1 = perform_implicit_conversion_flags (boolean_type_node, arg1, complain, |
5983 | LOOKUP_NORMAL); |
5984 | if (error_operand_p (t: arg1)) |
5985 | return error_mark_node; |
5986 | |
5987 | arg2_type = unlowered_expr_type (arg2); |
5988 | arg3_type = unlowered_expr_type (arg3); |
5989 | |
5990 | if ((TREE_CODE (arg2) == EXCESS_PRECISION_EXPR |
5991 | || TREE_CODE (arg3) == EXCESS_PRECISION_EXPR) |
5992 | && (TREE_CODE (arg2_type) == INTEGER_TYPE |
5993 | || SCALAR_FLOAT_TYPE_P (arg2_type) |
5994 | || TREE_CODE (arg2_type) == COMPLEX_TYPE) |
5995 | && (TREE_CODE (arg3_type) == INTEGER_TYPE |
5996 | || SCALAR_FLOAT_TYPE_P (arg3_type) |
5997 | || TREE_CODE (arg3_type) == COMPLEX_TYPE)) |
5998 | { |
5999 | semantic_result_type |
6000 | = type_after_usual_arithmetic_conversions (arg2_type, arg3_type); |
6001 | if (semantic_result_type == error_mark_node) |
6002 | { |
6003 | tree t1 = arg2_type; |
6004 | tree t2 = arg3_type; |
6005 | if (TREE_CODE (t1) == COMPLEX_TYPE) |
6006 | t1 = TREE_TYPE (t1); |
6007 | if (TREE_CODE (t2) == COMPLEX_TYPE) |
6008 | t2 = TREE_TYPE (t2); |
6009 | gcc_checking_assert (SCALAR_FLOAT_TYPE_P (t1) |
6010 | && SCALAR_FLOAT_TYPE_P (t2) |
6011 | && (extended_float_type_p (t1) |
6012 | || extended_float_type_p (t2)) |
6013 | && cp_compare_floating_point_conversion_ranks |
6014 | (t1, t2) == 3); |
6015 | if (complain & tf_error) |
6016 | error_at (loc, "operands to %<?:%> of types %qT and %qT " |
6017 | "have unordered conversion rank" , |
6018 | arg2_type, arg3_type); |
6019 | return error_mark_node; |
6020 | } |
6021 | if (TREE_CODE (arg2) == EXCESS_PRECISION_EXPR) |
6022 | { |
6023 | arg2 = TREE_OPERAND (arg2, 0); |
6024 | arg2_type = TREE_TYPE (arg2); |
6025 | } |
6026 | if (TREE_CODE (arg3) == EXCESS_PRECISION_EXPR) |
6027 | { |
6028 | arg3 = TREE_OPERAND (arg3, 0); |
6029 | arg3_type = TREE_TYPE (arg3); |
6030 | } |
6031 | } |
6032 | |
6033 | /* [expr.cond] |
6034 | |
6035 | If either the second or the third operand has type (possibly |
6036 | cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_), |
6037 | array-to-pointer (_conv.array_), and function-to-pointer |
6038 | (_conv.func_) standard conversions are performed on the second |
6039 | and third operands. */ |
6040 | if (VOID_TYPE_P (arg2_type) || VOID_TYPE_P (arg3_type)) |
6041 | { |
6042 | /* 'void' won't help in resolving an overloaded expression on the |
6043 | other side, so require it to resolve by itself. */ |
6044 | if (arg2_type == unknown_type_node) |
6045 | { |
6046 | arg2 = resolve_nondeduced_context_or_error (arg2, complain); |
6047 | arg2_type = TREE_TYPE (arg2); |
6048 | } |
6049 | if (arg3_type == unknown_type_node) |
6050 | { |
6051 | arg3 = resolve_nondeduced_context_or_error (arg3, complain); |
6052 | arg3_type = TREE_TYPE (arg3); |
6053 | } |
6054 | |
6055 | /* [expr.cond] |
6056 | |
6057 | One of the following shall hold: |
6058 | |
6059 | --The second or the third operand (but not both) is a |
6060 | throw-expression (_except.throw_); the result is of the type |
6061 | and value category of the other. |
6062 | |
6063 | --Both the second and the third operands have type void; the |
6064 | result is of type void and is a prvalue. */ |
6065 | if (TREE_CODE (arg2) == THROW_EXPR |
6066 | && TREE_CODE (arg3) != THROW_EXPR) |
6067 | { |
6068 | result_type = arg3_type; |
6069 | is_glvalue = glvalue_p (arg3); |
6070 | } |
6071 | else if (TREE_CODE (arg2) != THROW_EXPR |
6072 | && TREE_CODE (arg3) == THROW_EXPR) |
6073 | { |
6074 | result_type = arg2_type; |
6075 | is_glvalue = glvalue_p (arg2); |
6076 | } |
6077 | else if (VOID_TYPE_P (arg2_type) && VOID_TYPE_P (arg3_type)) |
6078 | { |
6079 | result_type = void_type_node; |
6080 | is_glvalue = false; |
6081 | } |
6082 | else |
6083 | { |
6084 | if (complain & tf_error) |
6085 | { |
6086 | if (VOID_TYPE_P (arg2_type)) |
6087 | error_at (cp_expr_loc_or_loc (t: arg3, or_loc: loc), |
6088 | "second operand to the conditional operator " |
6089 | "is of type %<void%>, but the third operand is " |
6090 | "neither a throw-expression nor of type %<void%>" ); |
6091 | else |
6092 | error_at (cp_expr_loc_or_loc (t: arg2, or_loc: loc), |
6093 | "third operand to the conditional operator " |
6094 | "is of type %<void%>, but the second operand is " |
6095 | "neither a throw-expression nor of type %<void%>" ); |
6096 | } |
6097 | return error_mark_node; |
6098 | } |
6099 | |
6100 | goto valid_operands; |
6101 | } |
6102 | /* [expr.cond] |
6103 | |
6104 | Otherwise, if the second and third operand have different types, |
6105 | and either has (possibly cv-qualified) class type, or if both are |
6106 | glvalues of the same value category and the same type except for |
6107 | cv-qualification, an attempt is made to convert each of those operands |
6108 | to the type of the other. */ |
6109 | else if (!same_type_p (arg2_type, arg3_type) |
6110 | && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type) |
6111 | || (same_type_ignoring_top_level_qualifiers_p (arg2_type, |
6112 | arg3_type) |
6113 | && glvalue_p (arg2) && glvalue_p (arg3) |
6114 | && lvalue_p (arg2) == lvalue_p (arg3)))) |
6115 | { |
6116 | conversion *conv2; |
6117 | conversion *conv3; |
6118 | bool converted = false; |
6119 | |
6120 | conv2 = conditional_conversion (e1: arg2, e2: arg3, complain); |
6121 | conv3 = conditional_conversion (e1: arg3, e2: arg2, complain); |
6122 | |
6123 | /* [expr.cond] |
6124 | |
6125 | If both can be converted, or one can be converted but the |
6126 | conversion is ambiguous, the program is ill-formed. If |
6127 | neither can be converted, the operands are left unchanged and |
6128 | further checking is performed as described below. If exactly |
6129 | one conversion is possible, that conversion is applied to the |
6130 | chosen operand and the converted operand is used in place of |
6131 | the original operand for the remainder of this section. */ |
6132 | if ((conv2 && !conv2->bad_p |
6133 | && conv3 && !conv3->bad_p) |
6134 | || (conv2 && conv2->kind == ck_ambig) |
6135 | || (conv3 && conv3->kind == ck_ambig)) |
6136 | { |
6137 | if (complain & tf_error) |
6138 | { |
6139 | error_at (loc, "operands to %<?:%> have different types " |
6140 | "%qT and %qT" , |
6141 | arg2_type, arg3_type); |
6142 | if (conv2 && !conv2->bad_p && conv3 && !conv3->bad_p) |
6143 | inform (loc, " and each type can be converted to the other" ); |
6144 | else if (conv2 && conv2->kind == ck_ambig) |
6145 | convert_like (conv2, arg2, complain); |
6146 | else |
6147 | convert_like (conv3, arg3, complain); |
6148 | } |
6149 | result = error_mark_node; |
6150 | } |
6151 | else if (conv2 && !conv2->bad_p) |
6152 | { |
6153 | arg2 = convert_like (conv2, arg2, complain); |
6154 | arg2 = convert_from_reference (arg2); |
6155 | arg2_type = TREE_TYPE (arg2); |
6156 | /* Even if CONV2 is a valid conversion, the result of the |
6157 | conversion may be invalid. For example, if ARG3 has type |
6158 | "volatile X", and X does not have a copy constructor |
6159 | accepting a "volatile X&", then even if ARG2 can be |
6160 | converted to X, the conversion will fail. */ |
6161 | if (error_operand_p (t: arg2)) |
6162 | result = error_mark_node; |
6163 | converted = true; |
6164 | } |
6165 | else if (conv3 && !conv3->bad_p) |
6166 | { |
6167 | arg3 = convert_like (conv3, arg3, complain); |
6168 | arg3 = convert_from_reference (arg3); |
6169 | arg3_type = TREE_TYPE (arg3); |
6170 | if (error_operand_p (t: arg3)) |
6171 | result = error_mark_node; |
6172 | converted = true; |
6173 | } |
6174 | |
6175 | if (result) |
6176 | return result; |
6177 | |
6178 | /* If, after the conversion, both operands have class type, |
6179 | treat the cv-qualification of both operands as if it were the |
6180 | union of the cv-qualification of the operands. |
6181 | |
6182 | The standard is not clear about what to do in this |
6183 | circumstance. For example, if the first operand has type |
6184 | "const X" and the second operand has a user-defined |
6185 | conversion to "volatile X", what is the type of the second |
6186 | operand after this step? Making it be "const X" (matching |
6187 | the first operand) seems wrong, as that discards the |
6188 | qualification without actually performing a copy. Leaving it |
6189 | as "volatile X" seems wrong as that will result in the |
6190 | conditional expression failing altogether, even though, |
6191 | according to this step, the one operand could be converted to |
6192 | the type of the other. */ |
6193 | if (converted |
6194 | && CLASS_TYPE_P (arg2_type) |
6195 | && cp_type_quals (arg2_type) != cp_type_quals (arg3_type)) |
6196 | arg2_type = arg3_type = |
6197 | cp_build_qualified_type (arg2_type, |
6198 | cp_type_quals (arg2_type) |
6199 | | cp_type_quals (arg3_type)); |
6200 | } |
6201 | |
6202 | /* [expr.cond] |
6203 | |
6204 | If the second and third operands are glvalues of the same value |
6205 | category and have the same type, the result is of that type and |
6206 | value category. */ |
6207 | if (((lvalue_p (arg2) && lvalue_p (arg3)) |
6208 | || (xvalue_p (arg2) && xvalue_p (arg3))) |
6209 | && same_type_p (arg2_type, arg3_type)) |
6210 | { |
6211 | result_type = arg2_type; |
6212 | goto valid_operands; |
6213 | } |
6214 | |
6215 | /* [expr.cond] |
6216 | |
6217 | Otherwise, the result is an rvalue. If the second and third |
6218 | operand do not have the same type, and either has (possibly |
6219 | cv-qualified) class type, overload resolution is used to |
6220 | determine the conversions (if any) to be applied to the operands |
6221 | (_over.match.oper_, _over.built_). */ |
6222 | is_glvalue = false; |
6223 | if (!same_type_p (arg2_type, arg3_type) |
6224 | && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type))) |
6225 | { |
6226 | releasing_vec args; |
6227 | conversion *conv; |
6228 | bool any_viable_p; |
6229 | |
6230 | /* Rearrange the arguments so that add_builtin_candidate only has |
6231 | to know about two args. In build_builtin_candidate, the |
6232 | arguments are unscrambled. */ |
6233 | args->quick_push (obj: arg2); |
6234 | args->quick_push (obj: arg3); |
6235 | args->quick_push (obj: arg1); |
6236 | add_builtin_candidates (candidates: &candidates, |
6237 | code: COND_EXPR, |
6238 | code2: NOP_EXPR, |
6239 | fnname: ovl_op_identifier (isass: false, code: COND_EXPR), |
6240 | argv: args, |
6241 | LOOKUP_NORMAL, complain); |
6242 | |
6243 | /* [expr.cond] |
6244 | |
6245 | If the overload resolution fails, the program is |
6246 | ill-formed. */ |
6247 | candidates = splice_viable (cands: candidates, strict_p: false, any_viable_p: &any_viable_p); |
6248 | if (!any_viable_p) |
6249 | { |
6250 | if (complain & tf_error) |
6251 | error_at (loc, "operands to %<?:%> have different types %qT and %qT" , |
6252 | arg2_type, arg3_type); |
6253 | return error_mark_node; |
6254 | } |
6255 | cand = tourney (candidates, complain); |
6256 | if (!cand) |
6257 | { |
6258 | if (complain & tf_error) |
6259 | { |
6260 | auto_diagnostic_group d; |
6261 | op_error (loc, code: COND_EXPR, code2: NOP_EXPR, arg1, arg2, arg3, match: false); |
6262 | print_z_candidates (loc, candidates); |
6263 | } |
6264 | return error_mark_node; |
6265 | } |
6266 | |
6267 | /* [expr.cond] |
6268 | |
6269 | Otherwise, the conversions thus determined are applied, and |
6270 | the converted operands are used in place of the original |
6271 | operands for the remainder of this section. */ |
6272 | conv = cand->convs[0]; |
6273 | arg1 = convert_like (conv, arg1, complain); |
6274 | conv = cand->convs[1]; |
6275 | arg2 = convert_like (conv, arg2, complain); |
6276 | arg2_type = TREE_TYPE (arg2); |
6277 | conv = cand->convs[2]; |
6278 | arg3 = convert_like (conv, arg3, complain); |
6279 | arg3_type = TREE_TYPE (arg3); |
6280 | } |
6281 | |
6282 | /* [expr.cond] |
6283 | |
6284 | Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_), |
6285 | and function-to-pointer (_conv.func_) standard conversions are |
6286 | performed on the second and third operands. |
6287 | |
6288 | We need to force the lvalue-to-rvalue conversion here for class types, |
6289 | so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues |
6290 | that isn't wrapped with a TARGET_EXPR plays havoc with exception |
6291 | regions. */ |
6292 | |
6293 | arg2 = force_rvalue (arg2, complain); |
6294 | if (!CLASS_TYPE_P (arg2_type)) |
6295 | arg2_type = TREE_TYPE (arg2); |
6296 | |
6297 | arg3 = force_rvalue (arg3, complain); |
6298 | if (!CLASS_TYPE_P (arg3_type)) |
6299 | arg3_type = TREE_TYPE (arg3); |
6300 | |
6301 | if (arg2 == error_mark_node || arg3 == error_mark_node) |
6302 | return error_mark_node; |
6303 | |
6304 | /* [expr.cond] |
6305 | |
6306 | After those conversions, one of the following shall hold: |
6307 | |
6308 | --The second and third operands have the same type; the result is of |
6309 | that type. */ |
6310 | if (same_type_p (arg2_type, arg3_type)) |
6311 | result_type = arg2_type; |
6312 | /* [expr.cond] |
6313 | |
6314 | --The second and third operands have arithmetic or enumeration |
6315 | type; the usual arithmetic conversions are performed to bring |
6316 | them to a common type, and the result is of that type. */ |
6317 | else if ((ARITHMETIC_TYPE_P (arg2_type) |
6318 | || UNSCOPED_ENUM_P (arg2_type)) |
6319 | && (ARITHMETIC_TYPE_P (arg3_type) |
6320 | || UNSCOPED_ENUM_P (arg3_type))) |
6321 | { |
6322 | /* A conditional expression between a floating-point |
6323 | type and an integer type should convert the integer type to |
6324 | the evaluation format of the floating-point type, with |
6325 | possible excess precision. */ |
6326 | tree eptype2 = arg2_type; |
6327 | tree eptype3 = arg3_type; |
6328 | tree eptype; |
6329 | if (ANY_INTEGRAL_TYPE_P (arg2_type) |
6330 | && (eptype = excess_precision_type (arg3_type)) != NULL_TREE) |
6331 | { |
6332 | eptype3 = eptype; |
6333 | if (!semantic_result_type) |
6334 | semantic_result_type |
6335 | = type_after_usual_arithmetic_conversions (arg2_type, arg3_type); |
6336 | } |
6337 | else if (ANY_INTEGRAL_TYPE_P (arg3_type) |
6338 | && (eptype = excess_precision_type (arg2_type)) != NULL_TREE) |
6339 | { |
6340 | eptype2 = eptype; |
6341 | if (!semantic_result_type) |
6342 | semantic_result_type |
6343 | = type_after_usual_arithmetic_conversions (arg2_type, arg3_type); |
6344 | } |
6345 | result_type = type_after_usual_arithmetic_conversions (eptype2, |
6346 | eptype3); |
6347 | if (result_type == error_mark_node) |
6348 | { |
6349 | tree t1 = eptype2; |
6350 | tree t2 = eptype3; |
6351 | if (TREE_CODE (t1) == COMPLEX_TYPE) |
6352 | t1 = TREE_TYPE (t1); |
6353 | if (TREE_CODE (t2) == COMPLEX_TYPE) |
6354 | t2 = TREE_TYPE (t2); |
6355 | gcc_checking_assert (SCALAR_FLOAT_TYPE_P (t1) |
6356 | && SCALAR_FLOAT_TYPE_P (t2) |
6357 | && (extended_float_type_p (t1) |
6358 | || extended_float_type_p (t2)) |
6359 | && cp_compare_floating_point_conversion_ranks |
6360 | (t1, t2) == 3); |
6361 | if (complain & tf_error) |
6362 | error_at (loc, "operands to %<?:%> of types %qT and %qT " |
6363 | "have unordered conversion rank" , |
6364 | eptype2, eptype3); |
6365 | return error_mark_node; |
6366 | } |
6367 | if (semantic_result_type == error_mark_node) |
6368 | { |
6369 | tree t1 = arg2_type; |
6370 | tree t2 = arg3_type; |
6371 | if (TREE_CODE (t1) == COMPLEX_TYPE) |
6372 | t1 = TREE_TYPE (t1); |
6373 | if (TREE_CODE (t2) == COMPLEX_TYPE) |
6374 | t2 = TREE_TYPE (t2); |
6375 | gcc_checking_assert (SCALAR_FLOAT_TYPE_P (t1) |
6376 | && SCALAR_FLOAT_TYPE_P (t2) |
6377 | && (extended_float_type_p (t1) |
6378 | || extended_float_type_p (t2)) |
6379 | && cp_compare_floating_point_conversion_ranks |
6380 | (t1, t2) == 3); |
6381 | if (complain & tf_error) |
6382 | error_at (loc, "operands to %<?:%> of types %qT and %qT " |
6383 | "have unordered conversion rank" , |
6384 | arg2_type, arg3_type); |
6385 | return error_mark_node; |
6386 | } |
6387 | |
6388 | if (complain & tf_warning) |
6389 | do_warn_double_promotion (result_type, arg2_type, arg3_type, |
6390 | "implicit conversion from %qH to %qI to " |
6391 | "match other result of conditional" , |
6392 | loc); |
6393 | |
6394 | if (TREE_CODE (arg2_type) == ENUMERAL_TYPE |
6395 | && TREE_CODE (arg3_type) == ENUMERAL_TYPE) |
6396 | { |
6397 | tree stripped_orig_arg2 = tree_strip_any_location_wrapper (exp: orig_arg2); |
6398 | tree stripped_orig_arg3 = tree_strip_any_location_wrapper (exp: orig_arg3); |
6399 | if (TREE_CODE (stripped_orig_arg2) == CONST_DECL |
6400 | && TREE_CODE (stripped_orig_arg3) == CONST_DECL |
6401 | && (DECL_CONTEXT (stripped_orig_arg2) |
6402 | == DECL_CONTEXT (stripped_orig_arg3))) |
6403 | /* Two enumerators from the same enumeration can have different |
6404 | types when the enumeration is still being defined. */; |
6405 | else if (complain & (cxx_dialect >= cxx26 |
6406 | ? tf_warning_or_error : tf_warning)) |
6407 | emit_diagnostic (cxx_dialect >= cxx26 ? DK_PEDWARN : DK_WARNING, |
6408 | loc, OPT_Wenum_compare, "enumerated mismatch " |
6409 | "in conditional expression: %qT vs %qT" , |
6410 | arg2_type, arg3_type); |
6411 | else if (cxx_dialect >= cxx26) |
6412 | return error_mark_node; |
6413 | } |
6414 | else if ((((complain & (cxx_dialect >= cxx26 |
6415 | ? tf_warning_or_error : tf_warning)) |
6416 | && warn_deprecated_enum_float_conv) |
6417 | || (cxx_dialect >= cxx26 |
6418 | && (complain & tf_warning_or_error) == 0)) |
6419 | && ((TREE_CODE (arg2_type) == ENUMERAL_TYPE |
6420 | && SCALAR_FLOAT_TYPE_P (arg3_type)) |
6421 | || (SCALAR_FLOAT_TYPE_P (arg2_type) |
6422 | && TREE_CODE (arg3_type) == ENUMERAL_TYPE))) |
6423 | { |
6424 | if (cxx_dialect >= cxx26 && (complain & tf_warning_or_error) == 0) |
6425 | return error_mark_node; |
6426 | if (cxx_dialect >= cxx26 && TREE_CODE (arg2_type) == ENUMERAL_TYPE) |
6427 | pedwarn (loc, OPT_Wdeprecated_enum_float_conversion, |
6428 | "conditional expression between enumeration type " |
6429 | "%qT and floating-point type %qT" , arg2_type, arg3_type); |
6430 | else if (cxx_dialect >= cxx26) |
6431 | pedwarn (loc, OPT_Wdeprecated_enum_float_conversion, |
6432 | "conditional expression between floating-point type " |
6433 | "%qT and enumeration type %qT" , arg2_type, arg3_type); |
6434 | else if (TREE_CODE (arg2_type) == ENUMERAL_TYPE) |
6435 | warning_at (loc, OPT_Wdeprecated_enum_float_conversion, |
6436 | "conditional expression between enumeration type " |
6437 | "%qT and floating-point type %qT is deprecated" , |
6438 | arg2_type, arg3_type); |
6439 | else |
6440 | warning_at (loc, OPT_Wdeprecated_enum_float_conversion, |
6441 | "conditional expression between floating-point " |
6442 | "type %qT and enumeration type %qT is deprecated" , |
6443 | arg2_type, arg3_type); |
6444 | } |
6445 | else if ((extra_warnings || warn_enum_conversion) |
6446 | && ((TREE_CODE (arg2_type) == ENUMERAL_TYPE |
6447 | && !same_type_p (arg3_type, type_promotes_to (arg2_type))) |
6448 | || (TREE_CODE (arg3_type) == ENUMERAL_TYPE |
6449 | && !same_type_p (arg2_type, |
6450 | type_promotes_to (arg3_type))))) |
6451 | { |
6452 | if (complain & tf_warning) |
6453 | { |
6454 | enum opt_code opt = (warn_enum_conversion |
6455 | ? OPT_Wenum_conversion |
6456 | : OPT_Wextra); |
6457 | warning_at (loc, opt, "enumerated and " |
6458 | "non-enumerated type in conditional expression" ); |
6459 | } |
6460 | } |
6461 | |
6462 | arg2 = perform_implicit_conversion (result_type, arg2, complain); |
6463 | arg3 = perform_implicit_conversion (result_type, arg3, complain); |
6464 | } |
6465 | /* [expr.cond] |
6466 | |
6467 | --The second and third operands have pointer type, or one has |
6468 | pointer type and the other is a null pointer constant; pointer |
6469 | conversions (_conv.ptr_) and qualification conversions |
6470 | (_conv.qual_) are performed to bring them to their composite |
6471 | pointer type (_expr.rel_). The result is of the composite |
6472 | pointer type. |
6473 | |
6474 | --The second and third operands have pointer to member type, or |
6475 | one has pointer to member type and the other is a null pointer |
6476 | constant; pointer to member conversions (_conv.mem_) and |
6477 | qualification conversions (_conv.qual_) are performed to bring |
6478 | them to a common type, whose cv-qualification shall match the |
6479 | cv-qualification of either the second or the third operand. |
6480 | The result is of the common type. */ |
6481 | else if ((null_ptr_cst_p (t: arg2) |
6482 | && TYPE_PTR_OR_PTRMEM_P (arg3_type)) |
6483 | || (null_ptr_cst_p (t: arg3) |
6484 | && TYPE_PTR_OR_PTRMEM_P (arg2_type)) |
6485 | || (TYPE_PTR_P (arg2_type) && TYPE_PTR_P (arg3_type)) |
6486 | || (TYPE_PTRDATAMEM_P (arg2_type) && TYPE_PTRDATAMEM_P (arg3_type)) |
6487 | || (TYPE_PTRMEMFUNC_P (arg2_type) && TYPE_PTRMEMFUNC_P (arg3_type))) |
6488 | { |
6489 | result_type = composite_pointer_type (loc, |
6490 | arg2_type, arg3_type, arg2, |
6491 | arg3, CPO_CONDITIONAL_EXPR, |
6492 | complain); |
6493 | if (result_type == error_mark_node) |
6494 | return error_mark_node; |
6495 | arg2 = perform_implicit_conversion (result_type, arg2, complain); |
6496 | arg3 = perform_implicit_conversion (result_type, arg3, complain); |
6497 | } |
6498 | |
6499 | if (!result_type) |
6500 | { |
6501 | if (complain & tf_error) |
6502 | error_at (loc, "operands to %<?:%> have different types %qT and %qT" , |
6503 | arg2_type, arg3_type); |
6504 | return error_mark_node; |
6505 | } |
6506 | |
6507 | if (arg2 == error_mark_node || arg3 == error_mark_node) |
6508 | return error_mark_node; |
6509 | |
6510 | valid_operands: |
6511 | if (processing_template_decl && is_glvalue) |
6512 | { |
6513 | /* Let lvalue_kind know this was a glvalue. */ |
6514 | tree arg = (result_type == arg2_type ? arg2 : arg3); |
6515 | result_type = cp_build_reference_type (result_type, xvalue_p (arg)); |
6516 | } |
6517 | |
6518 | result = build3_loc (loc, code: COND_EXPR, type: result_type, arg0: arg1, arg1: arg2, arg2: arg3); |
6519 | |
6520 | /* If the ARG2 and ARG3 are the same and don't have side-effects, |
6521 | warn here, because the COND_EXPR will be turned into ARG2. */ |
6522 | if (warn_duplicated_branches |
6523 | && (complain & tf_warning) |
6524 | && (arg2 == arg3 || operand_equal_p (arg2, arg3, |
6525 | flags: OEP_ADDRESS_OF_SAME_FIELD))) |
6526 | warning_at (EXPR_LOCATION (result), OPT_Wduplicated_branches, |
6527 | "this condition has identical branches" ); |
6528 | |
6529 | /* We can't use result_type below, as fold might have returned a |
6530 | throw_expr. */ |
6531 | |
6532 | if (!is_glvalue) |
6533 | { |
6534 | /* Expand both sides into the same slot, hopefully the target of |
6535 | the ?: expression. We used to check for TARGET_EXPRs here, |
6536 | but now we sometimes wrap them in NOP_EXPRs so the test would |
6537 | fail. */ |
6538 | if (CLASS_TYPE_P (TREE_TYPE (result))) |
6539 | { |
6540 | result = get_target_expr (result, complain); |
6541 | /* Tell gimplify_modify_expr_rhs not to strip this in |
6542 | assignment context: we want both arms to initialize |
6543 | the same temporary. */ |
6544 | TARGET_EXPR_NO_ELIDE (result) = true; |
6545 | } |
6546 | /* If this expression is an rvalue, but might be mistaken for an |
6547 | lvalue, we must add a NON_LVALUE_EXPR. */ |
6548 | result = rvalue (result); |
6549 | if (semantic_result_type) |
6550 | result = build1 (EXCESS_PRECISION_EXPR, semantic_result_type, |
6551 | result); |
6552 | } |
6553 | else |
6554 | { |
6555 | result = force_paren_expr (result); |
6556 | gcc_assert (semantic_result_type == NULL_TREE); |
6557 | } |
6558 | |
6559 | return result; |
6560 | } |
6561 | |
6562 | /* OPERAND is an operand to an expression. Perform necessary steps |
6563 | required before using it. If OPERAND is NULL_TREE, NULL_TREE is |
6564 | returned. */ |
6565 | |
6566 | static tree |
6567 | prep_operand (tree operand) |
6568 | { |
6569 | if (operand) |
6570 | { |
6571 | if (CLASS_TYPE_P (TREE_TYPE (operand)) |
6572 | && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand))) |
6573 | /* Make sure the template type is instantiated now. */ |
6574 | instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand))); |
6575 | } |
6576 | |
6577 | return operand; |
6578 | } |
6579 | |
6580 | /* True iff CONV represents a conversion sequence which no other can be better |
6581 | than under [over.ics.rank]: in other words, a "conversion" to the exact same |
6582 | type (including binding to a reference to the same type). This is stronger |
6583 | than the standard's "identity" category, which also includes reference |
6584 | bindings that add cv-qualifiers or change rvalueness. */ |
6585 | |
6586 | static bool |
6587 | perfect_conversion_p (conversion *conv) |
6588 | { |
6589 | if (CONVERSION_RANK (conv) != cr_identity) |
6590 | return false; |
6591 | if (conv->kind == ck_ref_bind) |
6592 | { |
6593 | if (!conv->rvaluedness_matches_p) |
6594 | return false; |
6595 | if (!same_type_p (TREE_TYPE (conv->type), |
6596 | next_conversion (conv)->type)) |
6597 | return false; |
6598 | } |
6599 | if (conv->check_narrowing) |
6600 | /* Brace elision is imperfect. */ |
6601 | return false; |
6602 | return true; |
6603 | } |
6604 | |
6605 | /* True if CAND represents a perfect match, i.e. all perfect conversions, so no |
6606 | other candidate can be a better match. Since the template/non-template |
6607 | tiebreaker comes immediately after the conversion comparison in |
6608 | [over.match.best], a perfect non-template candidate is better than all |
6609 | templates. */ |
6610 | |
6611 | static bool |
6612 | perfect_candidate_p (z_candidate *cand) |
6613 | { |
6614 | if (cand->viable < 1) |
6615 | return false; |
6616 | /* CWG1402 makes an implicitly deleted move op worse than other |
6617 | candidates. */ |
6618 | if (DECL_DELETED_FN (cand->fn) && DECL_DEFAULTED_FN (cand->fn) |
6619 | && move_fn_p (cand->fn)) |
6620 | return false; |
6621 | int len = cand->num_convs; |
6622 | for (int i = 0; i < len; ++i) |
6623 | if (!perfect_conversion_p (conv: cand->convs[i])) |
6624 | return false; |
6625 | if (conversion *conv = cand->second_conv) |
6626 | if (!perfect_conversion_p (conv)) |
6627 | return false; |
6628 | return true; |
6629 | } |
6630 | |
6631 | /* True iff one of CAND's argument conversions is missing. */ |
6632 | |
6633 | static bool |
6634 | missing_conversion_p (const z_candidate *cand) |
6635 | { |
6636 | for (unsigned i = 0; i < cand->num_convs; ++i) |
6637 | { |
6638 | conversion *conv = cand->convs[i]; |
6639 | if (!conv) |
6640 | return true; |
6641 | if (conv->kind == ck_deferred_bad) |
6642 | { |
6643 | /* We don't know whether this conversion is outright invalid or |
6644 | just bad, so conservatively assume it's missing. */ |
6645 | gcc_checking_assert (conv->bad_p); |
6646 | return true; |
6647 | } |
6648 | } |
6649 | return false; |
6650 | } |
6651 | |
6652 | /* Add each of the viable functions in FNS (a FUNCTION_DECL or |
6653 | OVERLOAD) to the CANDIDATES, returning an updated list of |
6654 | CANDIDATES. The ARGS are the arguments provided to the call; |
6655 | if FIRST_ARG is non-null it is the implicit object argument, |
6656 | otherwise the first element of ARGS is used if needed. The |
6657 | EXPLICIT_TARGS are explicit template arguments provided. |
6658 | TEMPLATE_ONLY is true if only template functions should be |
6659 | considered. CONVERSION_PATH, ACCESS_PATH, and FLAGS are as for |
6660 | add_function_candidate. */ |
6661 | |
6662 | static void |
6663 | add_candidates (tree fns, tree first_arg, const vec<tree, va_gc> *args, |
6664 | tree return_type, |
6665 | tree explicit_targs, bool template_only, |
6666 | tree conversion_path, tree access_path, |
6667 | int flags, |
6668 | struct z_candidate **candidates, |
6669 | tsubst_flags_t complain) |
6670 | { |
6671 | tree ctype; |
6672 | const vec<tree, va_gc> *non_static_args; |
6673 | bool check_list_ctor = false; |
6674 | bool check_converting = false; |
6675 | unification_kind_t strict; |
6676 | tree ne_context = NULL_TREE; |
6677 | tree ne_fns = NULL_TREE; |
6678 | |
6679 | if (!fns) |
6680 | return; |
6681 | |
6682 | /* Precalculate special handling of constructors and conversion ops. */ |
6683 | tree fn = OVL_FIRST (fns); |
6684 | if (DECL_CONV_FN_P (fn)) |
6685 | { |
6686 | check_list_ctor = false; |
6687 | check_converting = (flags & LOOKUP_ONLYCONVERTING) != 0; |
6688 | if (flags & LOOKUP_NO_CONVERSION) |
6689 | /* We're doing return_type(x). */ |
6690 | strict = DEDUCE_CONV; |
6691 | else |
6692 | /* We're doing x.operator return_type(). */ |
6693 | strict = DEDUCE_EXACT; |
6694 | /* [over.match.funcs] For conversion functions, the function |
6695 | is considered to be a member of the class of the implicit |
6696 | object argument for the purpose of defining the type of |
6697 | the implicit object parameter. */ |
6698 | ctype = TYPE_MAIN_VARIANT (TREE_TYPE (first_arg)); |
6699 | } |
6700 | else |
6701 | { |
6702 | if (DECL_CONSTRUCTOR_P (fn)) |
6703 | { |
6704 | check_list_ctor = (flags & LOOKUP_LIST_ONLY) != 0; |
6705 | /* For list-initialization we consider explicit constructors |
6706 | and complain if one is chosen. */ |
6707 | check_converting |
6708 | = ((flags & (LOOKUP_ONLYCONVERTING|LOOKUP_LIST_INIT_CTOR)) |
6709 | == LOOKUP_ONLYCONVERTING); |
6710 | } |
6711 | strict = DEDUCE_CALL; |
6712 | ctype = conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE; |
6713 | } |
6714 | |
6715 | /* P2468: Check if operator== is a rewrite target with first operand |
6716 | (*args)[0]; for now just do the lookups. */ |
6717 | if ((flags & (LOOKUP_REWRITTEN | LOOKUP_REVERSED)) |
6718 | && DECL_OVERLOADED_OPERATOR_IS (fn, EQ_EXPR)) |
6719 | { |
6720 | tree ne_name = ovl_op_identifier (isass: false, code: NE_EXPR); |
6721 | if (DECL_CLASS_SCOPE_P (fn)) |
6722 | { |
6723 | ne_context = DECL_CONTEXT (fn); |
6724 | ne_fns = lookup_fnfields (TREE_TYPE ((*args)[0]), ne_name, |
6725 | 1, tf_none); |
6726 | if (ne_fns == error_mark_node || ne_fns == NULL_TREE) |
6727 | ne_fns = NULL_TREE; |
6728 | else |
6729 | ne_fns = BASELINK_FUNCTIONS (ne_fns); |
6730 | } |
6731 | else |
6732 | { |
6733 | ne_context = decl_namespace_context (fn); |
6734 | ne_fns = lookup_qualified_name (scope: ne_context, name: ne_name, |
6735 | LOOK_want::NORMAL, |
6736 | /*complain*/false); |
6737 | if (ne_fns == error_mark_node |
6738 | || !is_overloaded_fn (ne_fns)) |
6739 | ne_fns = NULL_TREE; |
6740 | } |
6741 | } |
6742 | |
6743 | if (first_arg) |
6744 | non_static_args = args; |
6745 | else |
6746 | /* Delay creating the implicit this parameter until it is needed. */ |
6747 | non_static_args = NULL; |
6748 | |
6749 | bool seen_strictly_viable = any_strictly_viable (cands: *candidates); |
6750 | /* If there's a non-template perfect match, we don't need to consider |
6751 | templates. So check non-templates first. This optimization is only |
6752 | really needed for the defaulted copy constructor of tuple and the like |
6753 | (96926), but it seems like we might as well enable it more generally. */ |
6754 | bool seen_perfect = false; |
6755 | enum { templates, non_templates, either } which = either; |
6756 | if (template_only) |
6757 | which = templates; |
6758 | else /*if (flags & LOOKUP_DEFAULTED)*/ |
6759 | which = non_templates; |
6760 | |
6761 | /* Template candidates that we'll potentially ignore if the |
6762 | perfect candidate optimization succeeds. */ |
6763 | z_candidate *ignored_template_cands = nullptr; |
6764 | |
6765 | /* During overload resolution, we first consider each function under the |
6766 | assumption that we'll eventually find a strictly viable candidate. |
6767 | This allows us to circumvent our defacto behavior when checking |
6768 | argument conversions and shortcut consideration of the candidate |
6769 | upon encountering the first bad conversion. If this assumption |
6770 | turns out to be false, and all candidates end up being non-strictly |
6771 | viable, then we reconsider such candidates under the defacto behavior. |
6772 | This trick is important for pruning member function overloads according |
6773 | to their const/ref-qualifiers (since all 'this' conversions are at |
6774 | worst bad) without breaking -fpermissive. */ |
6775 | z_candidate *bad_cands = nullptr; |
6776 | bool shortcut_bad_convs = true; |
6777 | |
6778 | again: |
6779 | for (tree fn : lkp_range (fns)) |
6780 | { |
6781 | if (which == templates && TREE_CODE (fn) != TEMPLATE_DECL) |
6782 | { |
6783 | if (template_only) |
6784 | add_ignored_candidate (candidates, fn); |
6785 | continue; |
6786 | } |
6787 | if (which == non_templates && TREE_CODE (fn) == TEMPLATE_DECL) |
6788 | { |
6789 | add_ignored_candidate (candidates: &ignored_template_cands, fn); |
6790 | continue; |
6791 | } |
6792 | if ((check_converting && DECL_NONCONVERTING_P (fn)) |
6793 | || (check_list_ctor && !is_list_ctor (fn))) |
6794 | { |
6795 | add_ignored_candidate (candidates, fn); |
6796 | continue; |
6797 | } |
6798 | |
6799 | tree fn_first_arg = NULL_TREE; |
6800 | const vec<tree, va_gc> *fn_args = args; |
6801 | |
6802 | if (DECL_OBJECT_MEMBER_FUNCTION_P (fn)) |
6803 | { |
6804 | /* Figure out where the object arg comes from. If this |
6805 | function is a non-static member and we didn't get an |
6806 | implicit object argument, move it out of args. */ |
6807 | if (first_arg == NULL_TREE) |
6808 | { |
6809 | unsigned int ix; |
6810 | tree arg; |
6811 | vec<tree, va_gc> *tempvec; |
6812 | vec_alloc (v&: tempvec, nelems: args->length () - 1); |
6813 | for (ix = 1; args->iterate (ix, ptr: &arg); ++ix) |
6814 | tempvec->quick_push (obj: arg); |
6815 | non_static_args = tempvec; |
6816 | first_arg = (*args)[0]; |
6817 | } |
6818 | |
6819 | fn_first_arg = first_arg; |
6820 | fn_args = non_static_args; |
6821 | } |
6822 | |
6823 | /* Don't bother reversing an operator with two identical parameters. */ |
6824 | else if (vec_safe_length (v: args) == 2 && (flags & LOOKUP_REVERSED)) |
6825 | { |
6826 | tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn)); |
6827 | if (same_type_p (TREE_VALUE (parmlist), |
6828 | TREE_VALUE (TREE_CHAIN (parmlist)))) |
6829 | continue; |
6830 | } |
6831 | |
6832 | /* When considering reversed operator==, if there's a corresponding |
6833 | operator!= in the same scope, it's not a rewrite target. */ |
6834 | if (ne_context) |
6835 | { |
6836 | if (TREE_CODE (ne_context) == NAMESPACE_DECL) |
6837 | { |
6838 | /* With argument-dependent lookup, fns can span multiple |
6839 | namespaces; make sure we look in the fn's namespace for a |
6840 | corresponding operator!=. */ |
6841 | tree fn_ns = decl_namespace_context (fn); |
6842 | if (fn_ns != ne_context) |
6843 | { |
6844 | ne_context = fn_ns; |
6845 | tree ne_name = ovl_op_identifier (isass: false, code: NE_EXPR); |
6846 | ne_fns = lookup_qualified_name (scope: ne_context, name: ne_name, |
6847 | LOOK_want::NORMAL, |
6848 | /*complain*/false); |
6849 | if (ne_fns == error_mark_node |
6850 | || !is_overloaded_fn (ne_fns)) |
6851 | ne_fns = NULL_TREE; |
6852 | } |
6853 | } |
6854 | bool found = false; |
6855 | for (lkp_iterator ne (ne_fns); !found && ne; ++ne) |
6856 | if (0 && !ne.using_p () |
6857 | && DECL_NAMESPACE_SCOPE_P (fn) |
6858 | && DECL_CONTEXT (*ne) != DECL_CONTEXT (fn)) |
6859 | /* ??? This kludge excludes inline namespace members for the H |
6860 | test in spaceship-eq15.C, but I don't see why we would want |
6861 | that behavior. Asked Core 2022-11-04. Disabling for now. */; |
6862 | else if (fns_correspond (fn, *ne)) |
6863 | { |
6864 | found = true; |
6865 | break; |
6866 | } |
6867 | if (found) |
6868 | continue; |
6869 | } |
6870 | |
6871 | if (TREE_CODE (fn) == TEMPLATE_DECL) |
6872 | add_template_candidate (candidates, |
6873 | tmpl: fn, |
6874 | ctype, |
6875 | explicit_targs, |
6876 | first_arg: fn_first_arg, |
6877 | arglist: fn_args, |
6878 | return_type, |
6879 | access_path, |
6880 | conversion_path, |
6881 | flags, |
6882 | strict, |
6883 | shortcut_bad_convs, |
6884 | complain); |
6885 | else |
6886 | { |
6887 | add_function_candidate (candidates, |
6888 | fn, |
6889 | ctype, |
6890 | first_arg: fn_first_arg, |
6891 | args: fn_args, |
6892 | access_path, |
6893 | conversion_path, |
6894 | flags, |
6895 | NULL, |
6896 | shortcut_bad_convs, |
6897 | complain); |
6898 | if (perfect_candidate_p (cand: *candidates)) |
6899 | seen_perfect = true; |
6900 | } |
6901 | |
6902 | z_candidate *cand = *candidates; |
6903 | if (cand->viable == 1) |
6904 | seen_strictly_viable = true; |
6905 | |
6906 | if (cand->viable == -1 |
6907 | && shortcut_bad_convs |
6908 | && (missing_conversion_p (cand) |
6909 | || TREE_CODE (cand->fn) == TEMPLATE_DECL)) |
6910 | { |
6911 | /* This candidate has been tentatively marked non-strictly viable, |
6912 | and we didn't compute all argument conversions for it (having |
6913 | stopped at the first bad conversion). Move it to BAD_CANDS to |
6914 | to fully reconsider later if we don't find any strictly viable |
6915 | candidates. */ |
6916 | if (complain & (tf_error | tf_conv)) |
6917 | { |
6918 | *candidates = cand->next; |
6919 | cand->next = bad_cands; |
6920 | bad_cands = cand; |
6921 | } |
6922 | else |
6923 | /* But if we're in a SFINAE context, just mark this candidate as |
6924 | unviable outright and avoid potentially reconsidering it. |
6925 | This is safe to do because in a SFINAE context, performing a bad |
6926 | conversion is always an error (even with -fpermissive), so a |
6927 | non-strictly viable candidate is effectively unviable anyway. */ |
6928 | cand->viable = 0; |
6929 | } |
6930 | } |
6931 | if (which == non_templates && !seen_perfect) |
6932 | { |
6933 | which = templates; |
6934 | ignored_template_cands = nullptr; |
6935 | goto again; |
6936 | } |
6937 | else if (which == templates |
6938 | && !seen_strictly_viable |
6939 | && shortcut_bad_convs |
6940 | && bad_cands) |
6941 | { |
6942 | /* None of the candidates are strictly viable, so consider again those |
6943 | functions in BAD_CANDS, this time without shortcutting bad conversions |
6944 | so that all their argument conversions are computed. */ |
6945 | which = either; |
6946 | fns = NULL_TREE; |
6947 | for (z_candidate *cand = bad_cands; cand; cand = cand->next) |
6948 | { |
6949 | tree fn = cand->fn; |
6950 | if (tree ti = cand->template_decl) |
6951 | fn = TI_TEMPLATE (ti); |
6952 | fns = ovl_make (fn, next: fns); |
6953 | } |
6954 | shortcut_bad_convs = false; |
6955 | bad_cands = nullptr; |
6956 | goto again; |
6957 | } |
6958 | |
6959 | if (complain & tf_error) |
6960 | { |
6961 | /* Remember any omitted candidates; we may want to print all candidates |
6962 | as part of overload resolution failure diagnostics. */ |
6963 | for (z_candidate *omitted_cands : { ignored_template_cands, bad_cands }) |
6964 | { |
6965 | z_candidate **omitted_cands_tail = &omitted_cands; |
6966 | while (*omitted_cands_tail) |
6967 | omitted_cands_tail = &(*omitted_cands_tail)->next; |
6968 | *omitted_cands_tail = *candidates; |
6969 | *candidates = omitted_cands; |
6970 | } |
6971 | } |
6972 | } |
6973 | |
6974 | /* Returns 1 if P0145R2 says that the LHS of operator CODE is evaluated first, |
6975 | -1 if the RHS is evaluated first, or 0 if the order is unspecified. */ |
6976 | |
6977 | static int |
6978 | op_is_ordered (tree_code code) |
6979 | { |
6980 | switch (code) |
6981 | { |
6982 | // 5. b @= a |
6983 | case MODIFY_EXPR: |
6984 | return (flag_strong_eval_order > 1 ? -1 : 0); |
6985 | |
6986 | // 6. a[b] |
6987 | case ARRAY_REF: |
6988 | return (flag_strong_eval_order > 1 ? 1 : 0); |
6989 | |
6990 | // 1. a.b |
6991 | // Not overloadable (yet). |
6992 | // 2. a->b |
6993 | // Only one argument. |
6994 | // 3. a->*b |
6995 | case MEMBER_REF: |
6996 | // 7. a << b |
6997 | case LSHIFT_EXPR: |
6998 | // 8. a >> b |
6999 | case RSHIFT_EXPR: |
7000 | // a && b |
7001 | // Predates P0145R3. |
7002 | case TRUTH_ANDIF_EXPR: |
7003 | // a || b |
7004 | // Predates P0145R3. |
7005 | case TRUTH_ORIF_EXPR: |
7006 | // a , b |
7007 | // Predates P0145R3. |
7008 | case COMPOUND_EXPR: |
7009 | return (flag_strong_eval_order ? 1 : 0); |
7010 | |
7011 | default: |
7012 | return 0; |
7013 | } |
7014 | } |
7015 | |
7016 | /* Subroutine of build_new_op: Add to CANDIDATES all candidates for the |
7017 | operator indicated by CODE/CODE2. This function calls itself recursively to |
7018 | handle C++20 rewritten comparison operator candidates. Returns NULL_TREE |
7019 | upon success, and error_mark_node if something went wrong that prevented |
7020 | us from performing overload resolution (e.g. ambiguous member name lookup). |
7021 | |
7022 | LOOKUPS, if non-NULL, is the set of pertinent namespace-scope operator |
7023 | overloads to consider. This parameter is used when instantiating a |
7024 | dependent operator expression and has the same structure as |
7025 | DEPENDENT_OPERATOR_TYPE_SAVED_LOOKUPS. */ |
7026 | |
7027 | static tree |
7028 | add_operator_candidates (z_candidate **candidates, |
7029 | tree_code code, tree_code code2, |
7030 | vec<tree, va_gc> *arglist, tree lookups, |
7031 | int flags, tsubst_flags_t complain) |
7032 | { |
7033 | z_candidate *start_candidates = *candidates; |
7034 | bool ismodop = code2 != ERROR_MARK; |
7035 | tree fnname = ovl_op_identifier (isass: ismodop, code: ismodop ? code2 : code); |
7036 | |
7037 | /* LOOKUP_REWRITTEN is set when we're looking for the == or <=> operator to |
7038 | rewrite from, and also when we're looking for the e.g. < operator to use |
7039 | on the result of <=>. In the latter case, we don't want the flag set in |
7040 | the candidate, we just want to suppress looking for rewrites. */ |
7041 | bool rewritten = (flags & LOOKUP_REWRITTEN); |
7042 | if (rewritten && code != EQ_EXPR && code != SPACESHIP_EXPR) |
7043 | flags &= ~LOOKUP_REWRITTEN; |
7044 | |
7045 | bool memonly = false; |
7046 | switch (code) |
7047 | { |
7048 | /* =, ->, [], () must be non-static member functions. */ |
7049 | case MODIFY_EXPR: |
7050 | if (code2 != NOP_EXPR) |
7051 | break; |
7052 | /* FALLTHRU */ |
7053 | case COMPONENT_REF: |
7054 | case ARRAY_REF: |
7055 | memonly = true; |
7056 | break; |
7057 | |
7058 | default: |
7059 | break; |
7060 | } |
7061 | |
7062 | /* Add namespace-scope operators to the list of functions to |
7063 | consider. */ |
7064 | if (!memonly) |
7065 | { |
7066 | tree fns; |
7067 | if (!lookups) |
7068 | fns = lookup_name (fnname, LOOK_where::BLOCK_NAMESPACE); |
7069 | /* If LOOKUPS is non-NULL, then we're instantiating a dependent operator |
7070 | expression, and LOOKUPS is the result of stage 1 name lookup. */ |
7071 | else if (tree found = purpose_member (fnname, lookups)) |
7072 | fns = TREE_VALUE (found); |
7073 | else |
7074 | fns = NULL_TREE; |
7075 | fns = lookup_arg_dependent (fnname, fns, arglist); |
7076 | add_candidates (fns, NULL_TREE, args: arglist, NULL_TREE, |
7077 | NULL_TREE, template_only: false, NULL_TREE, NULL_TREE, |
7078 | flags, candidates, complain); |
7079 | } |
7080 | |
7081 | /* Add class-member operators to the candidate set. */ |
7082 | tree arg1_type = TREE_TYPE ((*arglist)[0]); |
7083 | unsigned nargs = arglist->length () > 1 ? 2 : 1; |
7084 | tree arg2_type = nargs > 1 ? TREE_TYPE ((*arglist)[1]) : NULL_TREE; |
7085 | if (CLASS_TYPE_P (arg1_type)) |
7086 | { |
7087 | tree fns = lookup_fnfields (arg1_type, fnname, 1, complain); |
7088 | if (fns == error_mark_node) |
7089 | return error_mark_node; |
7090 | if (fns) |
7091 | { |
7092 | if (code == ARRAY_REF) |
7093 | { |
7094 | vec<tree,va_gc> *restlist = make_tree_vector (); |
7095 | for (unsigned i = 1; i < nargs; ++i) |
7096 | vec_safe_push (v&: restlist, obj: (*arglist)[i]); |
7097 | z_candidate *save_cand = *candidates; |
7098 | add_candidates (BASELINK_FUNCTIONS (fns), |
7099 | first_arg: (*arglist)[0], args: restlist, NULL_TREE, |
7100 | NULL_TREE, template_only: false, |
7101 | BASELINK_BINFO (fns), |
7102 | BASELINK_ACCESS_BINFO (fns), |
7103 | flags, candidates, complain); |
7104 | /* Release the vec if we didn't add a candidate that uses it. */ |
7105 | for (z_candidate *c = *candidates; c != save_cand; c = c->next) |
7106 | if (c->args == restlist) |
7107 | { |
7108 | restlist = NULL; |
7109 | break; |
7110 | } |
7111 | release_tree_vector (restlist); |
7112 | } |
7113 | else |
7114 | add_candidates (BASELINK_FUNCTIONS (fns), |
7115 | NULL_TREE, args: arglist, NULL_TREE, |
7116 | NULL_TREE, template_only: false, |
7117 | BASELINK_BINFO (fns), |
7118 | BASELINK_ACCESS_BINFO (fns), |
7119 | flags, candidates, complain); |
7120 | } |
7121 | } |
7122 | /* Per [over.match.oper]3.2, if no operand has a class type, then |
7123 | only non-member functions that have type T1 or reference to |
7124 | cv-qualified-opt T1 for the first argument, if the first argument |
7125 | has an enumeration type, or T2 or reference to cv-qualified-opt |
7126 | T2 for the second argument, if the second argument has an |
7127 | enumeration type. Filter out those that don't match. */ |
7128 | else if (! arg2_type || ! CLASS_TYPE_P (arg2_type)) |
7129 | { |
7130 | struct z_candidate **candp, **next; |
7131 | |
7132 | for (candp = candidates; *candp != start_candidates; candp = next) |
7133 | { |
7134 | unsigned i; |
7135 | z_candidate *cand = *candp; |
7136 | next = &cand->next; |
7137 | |
7138 | tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (cand->fn)); |
7139 | |
7140 | for (i = 0; i < nargs; ++i) |
7141 | { |
7142 | tree parmtype = TREE_VALUE (parmlist); |
7143 | tree argtype = unlowered_expr_type ((*arglist)[i]); |
7144 | |
7145 | if (TYPE_REF_P (parmtype)) |
7146 | parmtype = TREE_TYPE (parmtype); |
7147 | if (TREE_CODE (argtype) == ENUMERAL_TYPE |
7148 | && (same_type_ignoring_top_level_qualifiers_p |
7149 | (argtype, parmtype))) |
7150 | break; |
7151 | |
7152 | parmlist = TREE_CHAIN (parmlist); |
7153 | } |
7154 | |
7155 | /* No argument has an appropriate type, so remove this |
7156 | candidate function from the list. */ |
7157 | if (i == nargs) |
7158 | { |
7159 | *candp = cand->next; |
7160 | next = candp; |
7161 | } |
7162 | } |
7163 | } |
7164 | |
7165 | if (!rewritten) |
7166 | { |
7167 | /* The standard says to rewrite built-in candidates, too, |
7168 | but there's no point. */ |
7169 | add_builtin_candidates (candidates, code, code2, fnname, argv: arglist, |
7170 | flags, complain); |
7171 | |
7172 | /* Maybe add C++20 rewritten comparison candidates. */ |
7173 | tree_code rewrite_code = ERROR_MARK; |
7174 | if (cxx_dialect >= cxx20 |
7175 | && nargs == 2 |
7176 | && (OVERLOAD_TYPE_P (arg1_type) || OVERLOAD_TYPE_P (arg2_type))) |
7177 | switch (code) |
7178 | { |
7179 | case LT_EXPR: |
7180 | case LE_EXPR: |
7181 | case GT_EXPR: |
7182 | case GE_EXPR: |
7183 | case SPACESHIP_EXPR: |
7184 | rewrite_code = SPACESHIP_EXPR; |
7185 | break; |
7186 | |
7187 | case NE_EXPR: |
7188 | case EQ_EXPR: |
7189 | rewrite_code = EQ_EXPR; |
7190 | break; |
7191 | |
7192 | default:; |
7193 | } |
7194 | |
7195 | if (rewrite_code) |
7196 | { |
7197 | tree r; |
7198 | flags |= LOOKUP_REWRITTEN; |
7199 | if (rewrite_code != code) |
7200 | { |
7201 | /* Add rewritten candidates in same order. */ |
7202 | r = add_operator_candidates (candidates, code: rewrite_code, code2: ERROR_MARK, |
7203 | arglist, lookups, flags, complain); |
7204 | if (r == error_mark_node) |
7205 | return error_mark_node; |
7206 | } |
7207 | |
7208 | z_candidate *save_cand = *candidates; |
7209 | |
7210 | /* Add rewritten candidates in reverse order. */ |
7211 | flags |= LOOKUP_REVERSED; |
7212 | vec<tree,va_gc> *revlist = make_tree_vector (); |
7213 | revlist->quick_push (obj: (*arglist)[1]); |
7214 | revlist->quick_push (obj: (*arglist)[0]); |
7215 | r = add_operator_candidates (candidates, code: rewrite_code, code2: ERROR_MARK, |
7216 | arglist: revlist, lookups, flags, complain); |
7217 | if (r == error_mark_node) |
7218 | return error_mark_node; |
7219 | |
7220 | /* Release the vec if we didn't add a candidate that uses it. */ |
7221 | for (z_candidate *c = *candidates; c != save_cand; c = c->next) |
7222 | if (c->args == revlist) |
7223 | { |
7224 | revlist = NULL; |
7225 | break; |
7226 | } |
7227 | release_tree_vector (revlist); |
7228 | } |
7229 | } |
7230 | |
7231 | return NULL_TREE; |
7232 | } |
7233 | |
7234 | tree |
7235 | build_new_op (const op_location_t &loc, enum tree_code code, int flags, |
7236 | tree arg1, tree arg2, tree arg3, tree lookups, |
7237 | tree *overload, tsubst_flags_t complain) |
7238 | { |
7239 | struct z_candidate *candidates = 0, *cand; |
7240 | releasing_vec arglist; |
7241 | tree result = NULL_TREE; |
7242 | bool result_valid_p = false; |
7243 | enum tree_code code2 = ERROR_MARK; |
7244 | enum tree_code code_orig_arg1 = ERROR_MARK; |
7245 | enum tree_code code_orig_arg2 = ERROR_MARK; |
7246 | bool strict_p; |
7247 | bool any_viable_p; |
7248 | |
7249 | auto_cond_timevar tv (TV_OVERLOAD); |
7250 | |
7251 | if (error_operand_p (t: arg1) |
7252 | || error_operand_p (t: arg2) |
7253 | || error_operand_p (t: arg3)) |
7254 | return error_mark_node; |
7255 | |
7256 | conversion_obstack_sentinel cos; |
7257 | |
7258 | bool ismodop = code == MODIFY_EXPR; |
7259 | if (ismodop) |
7260 | { |
7261 | code2 = TREE_CODE (arg3); |
7262 | arg3 = NULL_TREE; |
7263 | } |
7264 | |
7265 | tree arg1_type = unlowered_expr_type (arg1); |
7266 | tree arg2_type = arg2 ? unlowered_expr_type (arg2) : NULL_TREE; |
7267 | |
7268 | arg1 = prep_operand (operand: arg1); |
7269 | |
7270 | switch (code) |
7271 | { |
7272 | case NEW_EXPR: |
7273 | case VEC_NEW_EXPR: |
7274 | case VEC_DELETE_EXPR: |
7275 | case DELETE_EXPR: |
7276 | /* Use build_operator_new_call and build_op_delete_call instead. */ |
7277 | gcc_unreachable (); |
7278 | |
7279 | case CALL_EXPR: |
7280 | /* Use build_op_call instead. */ |
7281 | gcc_unreachable (); |
7282 | |
7283 | case TRUTH_ORIF_EXPR: |
7284 | case TRUTH_ANDIF_EXPR: |
7285 | case TRUTH_AND_EXPR: |
7286 | case TRUTH_OR_EXPR: |
7287 | /* These are saved for the sake of warn_logical_operator. */ |
7288 | code_orig_arg1 = TREE_CODE (arg1); |
7289 | code_orig_arg2 = TREE_CODE (arg2); |
7290 | break; |
7291 | case GT_EXPR: |
7292 | case LT_EXPR: |
7293 | case GE_EXPR: |
7294 | case LE_EXPR: |
7295 | case EQ_EXPR: |
7296 | case NE_EXPR: |
7297 | /* These are saved for the sake of maybe_warn_bool_compare. */ |
7298 | code_orig_arg1 = TREE_CODE (arg1_type); |
7299 | code_orig_arg2 = TREE_CODE (arg2_type); |
7300 | break; |
7301 | |
7302 | default: |
7303 | break; |
7304 | } |
7305 | |
7306 | arg2 = prep_operand (operand: arg2); |
7307 | arg3 = prep_operand (operand: arg3); |
7308 | |
7309 | if (code == COND_EXPR) |
7310 | /* Use build_conditional_expr instead. */ |
7311 | gcc_unreachable (); |
7312 | else if (! OVERLOAD_TYPE_P (arg1_type) |
7313 | && (! arg2 || ! OVERLOAD_TYPE_P (arg2_type))) |
7314 | goto builtin; |
7315 | |
7316 | if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR) |
7317 | { |
7318 | arg2 = integer_zero_node; |
7319 | arg2_type = integer_type_node; |
7320 | } |
7321 | |
7322 | arglist->quick_push (obj: arg1); |
7323 | if (arg2 != NULL_TREE) |
7324 | arglist->quick_push (obj: arg2); |
7325 | if (arg3 != NULL_TREE) |
7326 | arglist->quick_push (obj: arg3); |
7327 | |
7328 | result = add_operator_candidates (candidates: &candidates, code, code2, arglist, |
7329 | lookups, flags, complain); |
7330 | if (result == error_mark_node) |
7331 | return error_mark_node; |
7332 | |
7333 | switch (code) |
7334 | { |
7335 | case COMPOUND_EXPR: |
7336 | case ADDR_EXPR: |
7337 | /* For these, the built-in candidates set is empty |
7338 | [over.match.oper]/3. We don't want non-strict matches |
7339 | because exact matches are always possible with built-in |
7340 | operators. The built-in candidate set for COMPONENT_REF |
7341 | would be empty too, but since there are no such built-in |
7342 | operators, we accept non-strict matches for them. */ |
7343 | strict_p = true; |
7344 | break; |
7345 | |
7346 | default: |
7347 | strict_p = false; |
7348 | break; |
7349 | } |
7350 | |
7351 | candidates = splice_viable (cands: candidates, strict_p, any_viable_p: &any_viable_p); |
7352 | if (!any_viable_p) |
7353 | { |
7354 | switch (code) |
7355 | { |
7356 | case POSTINCREMENT_EXPR: |
7357 | case POSTDECREMENT_EXPR: |
7358 | /* Don't try anything fancy if we're not allowed to produce |
7359 | errors. */ |
7360 | if (!(complain & tf_error)) |
7361 | return error_mark_node; |
7362 | |
7363 | /* Look for an `operator++ (int)'. Pre-1985 C++ didn't |
7364 | distinguish between prefix and postfix ++ and |
7365 | operator++() was used for both, so we allow this with |
7366 | -fpermissive. */ |
7367 | else |
7368 | { |
7369 | tree fnname = ovl_op_identifier (isass: ismodop, code: ismodop ? code2 : code); |
7370 | const char *msg = (flag_permissive) |
7371 | ? G_("no %<%D(int)%> declared for postfix %qs," |
7372 | " trying prefix operator instead" ) |
7373 | : G_("no %<%D(int)%> declared for postfix %qs" ); |
7374 | permerror (loc, msg, fnname, OVL_OP_INFO (false, code)->name); |
7375 | } |
7376 | |
7377 | if (!flag_permissive) |
7378 | return error_mark_node; |
7379 | |
7380 | if (code == POSTINCREMENT_EXPR) |
7381 | code = PREINCREMENT_EXPR; |
7382 | else |
7383 | code = PREDECREMENT_EXPR; |
7384 | result = build_new_op (loc, code, flags, arg1, NULL_TREE, |
7385 | NULL_TREE, lookups, overload, complain); |
7386 | break; |
7387 | |
7388 | /* The caller will deal with these. */ |
7389 | case ADDR_EXPR: |
7390 | case COMPOUND_EXPR: |
7391 | case COMPONENT_REF: |
7392 | case CO_AWAIT_EXPR: |
7393 | result = NULL_TREE; |
7394 | result_valid_p = true; |
7395 | break; |
7396 | |
7397 | default: |
7398 | if (complain & tf_error) |
7399 | { |
7400 | /* If one of the arguments of the operator represents |
7401 | an invalid use of member function pointer, try to report |
7402 | a meaningful error ... */ |
7403 | if (invalid_nonstatic_memfn_p (loc, arg1, tf_error) |
7404 | || invalid_nonstatic_memfn_p (loc, arg2, tf_error) |
7405 | || invalid_nonstatic_memfn_p (loc, arg3, tf_error)) |
7406 | /* We displayed the error message. */; |
7407 | else |
7408 | { |
7409 | /* ... Otherwise, report the more generic |
7410 | "no matching operator found" error */ |
7411 | auto_diagnostic_group d; |
7412 | op_error (loc, code, code2, arg1, arg2, arg3, match: false); |
7413 | print_z_candidates (loc, candidates); |
7414 | } |
7415 | } |
7416 | result = error_mark_node; |
7417 | break; |
7418 | } |
7419 | } |
7420 | else |
7421 | { |
7422 | cand = tourney (candidates, complain); |
7423 | if (cand == 0) |
7424 | { |
7425 | if (complain & tf_error) |
7426 | { |
7427 | auto_diagnostic_group d; |
7428 | op_error (loc, code, code2, arg1, arg2, arg3, match: true); |
7429 | print_z_candidates (loc, candidates); |
7430 | } |
7431 | result = error_mark_node; |
7432 | if (overload) |
7433 | *overload = error_mark_node; |
7434 | } |
7435 | else if (TREE_CODE (cand->fn) == FUNCTION_DECL) |
7436 | { |
7437 | if (overload) |
7438 | *overload = cand->fn; |
7439 | |
7440 | if (resolve_args (args: arglist, complain) == NULL) |
7441 | result = error_mark_node; |
7442 | else |
7443 | { |
7444 | tsubst_flags_t ocomplain = complain; |
7445 | if (cand->rewritten ()) |
7446 | /* We'll wrap this call in another one. */ |
7447 | ocomplain &= ~tf_decltype; |
7448 | if (cand->reversed ()) |
7449 | { |
7450 | /* We swapped these in add_candidate, swap them back now. */ |
7451 | std::swap (a&: cand->convs[0], b&: cand->convs[1]); |
7452 | if (cand->fn == current_function_decl) |
7453 | warning_at (loc, 0, "in C++20 this comparison calls the " |
7454 | "current function recursively with reversed " |
7455 | "arguments" ); |
7456 | } |
7457 | result = build_over_call (cand, LOOKUP_NORMAL, ocomplain); |
7458 | } |
7459 | |
7460 | if (trivial_fn_p (cand->fn) || DECL_IMMEDIATE_FUNCTION_P (cand->fn)) |
7461 | /* There won't be a CALL_EXPR. */; |
7462 | else if (result && result != error_mark_node) |
7463 | { |
7464 | tree call = extract_call_expr (result); |
7465 | CALL_EXPR_OPERATOR_SYNTAX (call) = true; |
7466 | |
7467 | /* Specify evaluation order as per P0145R2. */ |
7468 | CALL_EXPR_ORDERED_ARGS (call) = false; |
7469 | switch (op_is_ordered (code)) |
7470 | { |
7471 | case -1: |
7472 | CALL_EXPR_REVERSE_ARGS (call) = true; |
7473 | break; |
7474 | |
7475 | case 1: |
7476 | CALL_EXPR_ORDERED_ARGS (call) = true; |
7477 | break; |
7478 | |
7479 | default: |
7480 | break; |
7481 | } |
7482 | } |
7483 | |
7484 | /* If this was a C++20 rewritten comparison, adjust the result. */ |
7485 | if (cand->rewritten ()) |
7486 | { |
7487 | /* FIXME build_min_non_dep_op_overload can't handle rewrites. */ |
7488 | if (overload) |
7489 | *overload = NULL_TREE; |
7490 | switch (code) |
7491 | { |
7492 | case EQ_EXPR: |
7493 | gcc_checking_assert (cand->reversed ()); |
7494 | gcc_fallthrough (); |
7495 | case NE_EXPR: |
7496 | if (result == error_mark_node) |
7497 | ; |
7498 | /* If a rewritten operator== candidate is selected by |
7499 | overload resolution for an operator @, its return type |
7500 | shall be cv bool.... */ |
7501 | else if (TREE_CODE (TREE_TYPE (result)) != BOOLEAN_TYPE) |
7502 | { |
7503 | if (complain & tf_error) |
7504 | { |
7505 | auto_diagnostic_group d; |
7506 | error_at (loc, "return type of %qD is not %qs" , |
7507 | cand->fn, "bool" ); |
7508 | inform (loc, "used as rewritten candidate for " |
7509 | "comparison of %qT and %qT" , |
7510 | arg1_type, arg2_type); |
7511 | } |
7512 | result = error_mark_node; |
7513 | } |
7514 | else if (code == NE_EXPR) |
7515 | /* !(y == x) or !(x == y) */ |
7516 | result = build1_loc (loc, code: TRUTH_NOT_EXPR, |
7517 | boolean_type_node, arg1: result); |
7518 | break; |
7519 | |
7520 | /* If a rewritten operator<=> candidate is selected by |
7521 | overload resolution for an operator @, x @ y is |
7522 | interpreted as 0 @ (y <=> x) if the selected candidate is |
7523 | a synthesized candidate with reversed order of parameters, |
7524 | or (x <=> y) @ 0 otherwise, using the selected rewritten |
7525 | operator<=> candidate. */ |
7526 | case SPACESHIP_EXPR: |
7527 | if (!cand->reversed ()) |
7528 | /* We're in the build_new_op call below for an outer |
7529 | reversed call; we don't need to do anything more. */ |
7530 | break; |
7531 | gcc_fallthrough (); |
7532 | case LT_EXPR: |
7533 | case LE_EXPR: |
7534 | case GT_EXPR: |
7535 | case GE_EXPR: |
7536 | { |
7537 | tree lhs = result; |
7538 | tree rhs = integer_zero_node; |
7539 | if (cand->reversed ()) |
7540 | std::swap (a&: lhs, b&: rhs); |
7541 | warning_sentinel ws (warn_zero_as_null_pointer_constant); |
7542 | result = build_new_op (loc, code, |
7543 | LOOKUP_NORMAL|LOOKUP_REWRITTEN, |
7544 | arg1: lhs, arg2: rhs, NULL_TREE, lookups, |
7545 | NULL, complain); |
7546 | } |
7547 | break; |
7548 | |
7549 | default: |
7550 | gcc_unreachable (); |
7551 | } |
7552 | } |
7553 | |
7554 | /* In an expression of the form `a[]' where cand->fn |
7555 | which is operator[] turns out to be a static member function, |
7556 | `a' is none-the-less evaluated. */ |
7557 | if (code == ARRAY_REF) |
7558 | result = keep_unused_object_arg (result, obj: arg1, fn: cand->fn); |
7559 | } |
7560 | else |
7561 | { |
7562 | /* Give any warnings we noticed during overload resolution. */ |
7563 | if (cand->warnings && (complain & tf_warning)) |
7564 | { |
7565 | struct candidate_warning *w; |
7566 | for (w = cand->warnings; w; w = w->next) |
7567 | joust (cand, w->loser, 1, complain); |
7568 | } |
7569 | |
7570 | /* Check for comparison of different enum types. */ |
7571 | switch (code) |
7572 | { |
7573 | case GT_EXPR: |
7574 | case LT_EXPR: |
7575 | case GE_EXPR: |
7576 | case LE_EXPR: |
7577 | case EQ_EXPR: |
7578 | case NE_EXPR: |
7579 | if (TREE_CODE (arg1_type) == ENUMERAL_TYPE |
7580 | && TREE_CODE (arg2_type) == ENUMERAL_TYPE |
7581 | && (TYPE_MAIN_VARIANT (arg1_type) |
7582 | != TYPE_MAIN_VARIANT (arg2_type))) |
7583 | { |
7584 | if (cxx_dialect >= cxx26 |
7585 | && (complain & tf_warning_or_error) == 0) |
7586 | result = error_mark_node; |
7587 | else if (cxx_dialect >= cxx26 || (complain & tf_warning)) |
7588 | emit_diagnostic (cxx_dialect >= cxx26 |
7589 | ? DK_PEDWARN : DK_WARNING, |
7590 | loc, OPT_Wenum_compare, |
7591 | "comparison between %q#T and %q#T" , |
7592 | arg1_type, arg2_type); |
7593 | } |
7594 | break; |
7595 | default: |
7596 | break; |
7597 | } |
7598 | |
7599 | /* "If a built-in candidate is selected by overload resolution, the |
7600 | operands of class type are converted to the types of the |
7601 | corresponding parameters of the selected operation function, |
7602 | except that the second standard conversion sequence of a |
7603 | user-defined conversion sequence (12.3.3.1.2) is not applied." */ |
7604 | conversion *conv = cand->convs[0]; |
7605 | if (conv->user_conv_p) |
7606 | { |
7607 | conv = strip_standard_conversion (conv); |
7608 | arg1 = convert_like (conv, arg1, complain); |
7609 | } |
7610 | |
7611 | if (arg2) |
7612 | { |
7613 | conv = cand->convs[1]; |
7614 | if (conv->user_conv_p) |
7615 | { |
7616 | conv = strip_standard_conversion (conv); |
7617 | arg2 = convert_like (conv, arg2, complain); |
7618 | } |
7619 | } |
7620 | |
7621 | if (arg3) |
7622 | { |
7623 | conv = cand->convs[2]; |
7624 | if (conv->user_conv_p) |
7625 | { |
7626 | conv = strip_standard_conversion (conv); |
7627 | arg3 = convert_like (conv, arg3, complain); |
7628 | } |
7629 | } |
7630 | } |
7631 | } |
7632 | |
7633 | if (result || result_valid_p) |
7634 | return result; |
7635 | |
7636 | builtin: |
7637 | switch (code) |
7638 | { |
7639 | case MODIFY_EXPR: |
7640 | return cp_build_modify_expr (loc, arg1, code2, arg2, complain); |
7641 | |
7642 | case INDIRECT_REF: |
7643 | return cp_build_indirect_ref (loc, arg1, RO_UNARY_STAR, complain); |
7644 | |
7645 | case TRUTH_ANDIF_EXPR: |
7646 | case TRUTH_ORIF_EXPR: |
7647 | case TRUTH_AND_EXPR: |
7648 | case TRUTH_OR_EXPR: |
7649 | if ((complain & tf_warning) && !processing_template_decl) |
7650 | warn_logical_operator (loc, code, boolean_type_node, |
7651 | code_orig_arg1, arg1, |
7652 | code_orig_arg2, arg2); |
7653 | /* Fall through. */ |
7654 | case GT_EXPR: |
7655 | case LT_EXPR: |
7656 | case GE_EXPR: |
7657 | case LE_EXPR: |
7658 | case EQ_EXPR: |
7659 | case NE_EXPR: |
7660 | if ((complain & tf_warning) |
7661 | && ((code_orig_arg1 == BOOLEAN_TYPE) |
7662 | ^ (code_orig_arg2 == BOOLEAN_TYPE))) |
7663 | maybe_warn_bool_compare (loc, code, arg1, arg2); |
7664 | if (complain & tf_warning && warn_tautological_compare) |
7665 | warn_tautological_cmp (loc, code, arg1, arg2); |
7666 | /* Fall through. */ |
7667 | case SPACESHIP_EXPR: |
7668 | case PLUS_EXPR: |
7669 | case MINUS_EXPR: |
7670 | case MULT_EXPR: |
7671 | case TRUNC_DIV_EXPR: |
7672 | case MAX_EXPR: |
7673 | case MIN_EXPR: |
7674 | case LSHIFT_EXPR: |
7675 | case RSHIFT_EXPR: |
7676 | case TRUNC_MOD_EXPR: |
7677 | case BIT_AND_EXPR: |
7678 | case BIT_IOR_EXPR: |
7679 | case BIT_XOR_EXPR: |
7680 | return cp_build_binary_op (loc, code, arg1, arg2, complain); |
7681 | |
7682 | case UNARY_PLUS_EXPR: |
7683 | case NEGATE_EXPR: |
7684 | case BIT_NOT_EXPR: |
7685 | case TRUTH_NOT_EXPR: |
7686 | case PREINCREMENT_EXPR: |
7687 | case POSTINCREMENT_EXPR: |
7688 | case PREDECREMENT_EXPR: |
7689 | case POSTDECREMENT_EXPR: |
7690 | case REALPART_EXPR: |
7691 | case IMAGPART_EXPR: |
7692 | case ABS_EXPR: |
7693 | case CO_AWAIT_EXPR: |
7694 | return cp_build_unary_op (code, arg1, false, complain); |
7695 | |
7696 | case ARRAY_REF: |
7697 | return cp_build_array_ref (input_location, arg1, arg2, complain); |
7698 | |
7699 | case MEMBER_REF: |
7700 | return build_m_component_ref (cp_build_indirect_ref (loc, arg1, |
7701 | RO_ARROW_STAR, |
7702 | complain), |
7703 | arg2, complain); |
7704 | |
7705 | /* The caller will deal with these. */ |
7706 | case ADDR_EXPR: |
7707 | case COMPONENT_REF: |
7708 | case COMPOUND_EXPR: |
7709 | return NULL_TREE; |
7710 | |
7711 | default: |
7712 | gcc_unreachable (); |
7713 | } |
7714 | return NULL_TREE; |
7715 | } |
7716 | |
7717 | /* Build a new call to operator[]. This may change ARGS. */ |
7718 | |
7719 | tree |
7720 | build_op_subscript (const op_location_t &loc, tree obj, |
7721 | vec<tree, va_gc> **args, tree *overload, |
7722 | tsubst_flags_t complain) |
7723 | { |
7724 | struct z_candidate *candidates = 0, *cand; |
7725 | tree fns, first_mem_arg = NULL_TREE; |
7726 | bool any_viable_p; |
7727 | tree result = NULL_TREE; |
7728 | |
7729 | auto_cond_timevar tv (TV_OVERLOAD); |
7730 | |
7731 | obj = mark_lvalue_use (obj); |
7732 | |
7733 | if (error_operand_p (t: obj)) |
7734 | return error_mark_node; |
7735 | |
7736 | tree type = TREE_TYPE (obj); |
7737 | |
7738 | obj = prep_operand (operand: obj); |
7739 | |
7740 | if (TYPE_BINFO (type)) |
7741 | { |
7742 | fns = lookup_fnfields (TYPE_BINFO (type), ovl_op_identifier (code: ARRAY_REF), |
7743 | 1, complain); |
7744 | if (fns == error_mark_node) |
7745 | return error_mark_node; |
7746 | } |
7747 | else |
7748 | fns = NULL_TREE; |
7749 | |
7750 | if (args != NULL && *args != NULL) |
7751 | { |
7752 | *args = resolve_args (args: *args, complain); |
7753 | if (*args == NULL) |
7754 | return error_mark_node; |
7755 | } |
7756 | |
7757 | conversion_obstack_sentinel cos; |
7758 | |
7759 | if (fns) |
7760 | { |
7761 | first_mem_arg = obj; |
7762 | |
7763 | add_candidates (BASELINK_FUNCTIONS (fns), |
7764 | first_arg: first_mem_arg, args: *args, NULL_TREE, |
7765 | NULL_TREE, template_only: false, |
7766 | BASELINK_BINFO (fns), BASELINK_ACCESS_BINFO (fns), |
7767 | LOOKUP_NORMAL, candidates: &candidates, complain); |
7768 | } |
7769 | |
7770 | /* Be strict here because if we choose a bad conversion candidate, the |
7771 | errors we get won't mention the call context. */ |
7772 | candidates = splice_viable (cands: candidates, strict_p: true, any_viable_p: &any_viable_p); |
7773 | if (!any_viable_p) |
7774 | { |
7775 | if (complain & tf_error) |
7776 | { |
7777 | auto_diagnostic_group d; |
7778 | error ("no match for call to %<%T::operator[] (%A)%>" , |
7779 | TREE_TYPE (obj), build_tree_list_vec (*args)); |
7780 | print_z_candidates (loc, candidates); |
7781 | } |
7782 | result = error_mark_node; |
7783 | } |
7784 | else |
7785 | { |
7786 | cand = tourney (candidates, complain); |
7787 | if (cand == 0) |
7788 | { |
7789 | if (complain & tf_error) |
7790 | { |
7791 | auto_diagnostic_group d; |
7792 | error ("call of %<%T::operator[] (%A)%> is ambiguous" , |
7793 | TREE_TYPE (obj), build_tree_list_vec (*args)); |
7794 | print_z_candidates (loc, candidates); |
7795 | } |
7796 | result = error_mark_node; |
7797 | } |
7798 | else if (TREE_CODE (cand->fn) == FUNCTION_DECL |
7799 | && DECL_OVERLOADED_OPERATOR_P (cand->fn) |
7800 | && DECL_OVERLOADED_OPERATOR_IS (cand->fn, ARRAY_REF)) |
7801 | { |
7802 | if (overload) |
7803 | *overload = cand->fn; |
7804 | result = build_over_call (cand, LOOKUP_NORMAL, complain); |
7805 | if (trivial_fn_p (cand->fn) || DECL_IMMEDIATE_FUNCTION_P (cand->fn)) |
7806 | /* There won't be a CALL_EXPR. */; |
7807 | else if (result && result != error_mark_node) |
7808 | { |
7809 | tree call = extract_call_expr (result); |
7810 | CALL_EXPR_OPERATOR_SYNTAX (call) = true; |
7811 | |
7812 | /* Specify evaluation order as per P0145R2. */ |
7813 | CALL_EXPR_ORDERED_ARGS (call) = op_is_ordered (code: ARRAY_REF) == 1; |
7814 | } |
7815 | |
7816 | /* In an expression of the form `a[]' where cand->fn |
7817 | which is operator[] turns out to be a static member function, |
7818 | `a' is none-the-less evaluated. */ |
7819 | result = keep_unused_object_arg (result, obj, fn: cand->fn); |
7820 | } |
7821 | else |
7822 | gcc_unreachable (); |
7823 | } |
7824 | |
7825 | return result; |
7826 | } |
7827 | |
7828 | /* CALL was returned by some call-building function; extract the actual |
7829 | CALL_EXPR from any bits that have been tacked on, e.g. by |
7830 | convert_from_reference. */ |
7831 | |
7832 | tree |
7833 | (tree call) |
7834 | { |
7835 | while (TREE_CODE (call) == COMPOUND_EXPR) |
7836 | call = TREE_OPERAND (call, 1); |
7837 | if (REFERENCE_REF_P (call)) |
7838 | call = TREE_OPERAND (call, 0); |
7839 | if (TREE_CODE (call) == TARGET_EXPR) |
7840 | call = TARGET_EXPR_INITIAL (call); |
7841 | if (cxx_dialect >= cxx20) |
7842 | switch (TREE_CODE (call)) |
7843 | { |
7844 | /* C++20 rewritten comparison operators. */ |
7845 | case TRUTH_NOT_EXPR: |
7846 | call = TREE_OPERAND (call, 0); |
7847 | break; |
7848 | case LT_EXPR: |
7849 | case LE_EXPR: |
7850 | case GT_EXPR: |
7851 | case GE_EXPR: |
7852 | case SPACESHIP_EXPR: |
7853 | { |
7854 | tree op0 = TREE_OPERAND (call, 0); |
7855 | if (integer_zerop (op0)) |
7856 | call = TREE_OPERAND (call, 1); |
7857 | else |
7858 | call = op0; |
7859 | } |
7860 | break; |
7861 | default:; |
7862 | } |
7863 | |
7864 | if (TREE_CODE (call) != CALL_EXPR |
7865 | && TREE_CODE (call) != AGGR_INIT_EXPR |
7866 | && call != error_mark_node) |
7867 | return NULL_TREE; |
7868 | return call; |
7869 | } |
7870 | |
7871 | /* Returns true if FN has two parameters, of which the second has type |
7872 | size_t. */ |
7873 | |
7874 | static bool |
7875 | second_parm_is_size_t (tree fn) |
7876 | { |
7877 | tree t = FUNCTION_ARG_CHAIN (fn); |
7878 | if (!t || !same_type_p (TREE_VALUE (t), size_type_node)) |
7879 | return false; |
7880 | t = TREE_CHAIN (t); |
7881 | if (t == void_list_node) |
7882 | return true; |
7883 | return false; |
7884 | } |
7885 | |
7886 | /* True if T, an allocation function, has std::align_val_t as its second |
7887 | argument. */ |
7888 | |
7889 | bool |
7890 | aligned_allocation_fn_p (tree t) |
7891 | { |
7892 | if (!aligned_new_threshold) |
7893 | return false; |
7894 | |
7895 | tree a = FUNCTION_ARG_CHAIN (t); |
7896 | return (a && same_type_p (TREE_VALUE (a), align_type_node)); |
7897 | } |
7898 | |
7899 | /* True if T is std::destroying_delete_t. */ |
7900 | |
7901 | static bool |
7902 | std_destroying_delete_t_p (tree t) |
7903 | { |
7904 | return (TYPE_CONTEXT (t) == std_node |
7905 | && id_equal (TYPE_IDENTIFIER (t), str: "destroying_delete_t" )); |
7906 | } |
7907 | |
7908 | /* A deallocation function with at least two parameters whose second parameter |
7909 | type is of type std::destroying_delete_t is a destroying operator delete. A |
7910 | destroying operator delete shall be a class member function named operator |
7911 | delete. [ Note: Array deletion cannot use a destroying operator |
7912 | delete. --end note ] */ |
7913 | |
7914 | tree |
7915 | destroying_delete_p (tree t) |
7916 | { |
7917 | tree a = TYPE_ARG_TYPES (TREE_TYPE (t)); |
7918 | if (!a || !TREE_CHAIN (a)) |
7919 | return NULL_TREE; |
7920 | tree type = TREE_VALUE (TREE_CHAIN (a)); |
7921 | return std_destroying_delete_t_p (t: type) ? type : NULL_TREE; |
7922 | } |
7923 | |
7924 | struct dealloc_info |
7925 | { |
7926 | bool sized; |
7927 | bool aligned; |
7928 | tree destroying; |
7929 | }; |
7930 | |
7931 | /* Returns true iff T, an element of an OVERLOAD chain, is a usual deallocation |
7932 | function (3.7.4.2 [basic.stc.dynamic.deallocation]). If so, and DI is |
7933 | non-null, also set *DI. */ |
7934 | |
7935 | static bool |
7936 | usual_deallocation_fn_p (tree t, dealloc_info *di) |
7937 | { |
7938 | if (di) *di = dealloc_info(); |
7939 | |
7940 | /* A template instance is never a usual deallocation function, |
7941 | regardless of its signature. */ |
7942 | if (TREE_CODE (t) == TEMPLATE_DECL |
7943 | || primary_template_specialization_p (t)) |
7944 | return false; |
7945 | |
7946 | /* A usual deallocation function is a deallocation function whose parameters |
7947 | after the first are |
7948 | - optionally, a parameter of type std::destroying_delete_t, then |
7949 | - optionally, a parameter of type std::size_t, then |
7950 | - optionally, a parameter of type std::align_val_t. */ |
7951 | bool global = DECL_NAMESPACE_SCOPE_P (t); |
7952 | tree chain = FUNCTION_ARG_CHAIN (t); |
7953 | if (chain && destroying_delete_p (t)) |
7954 | { |
7955 | if (di) di->destroying = TREE_VALUE (chain); |
7956 | chain = TREE_CHAIN (chain); |
7957 | } |
7958 | if (chain |
7959 | && (!global || flag_sized_deallocation) |
7960 | && same_type_p (TREE_VALUE (chain), size_type_node)) |
7961 | { |
7962 | if (di) di->sized = true; |
7963 | chain = TREE_CHAIN (chain); |
7964 | } |
7965 | if (chain && aligned_new_threshold |
7966 | && same_type_p (TREE_VALUE (chain), align_type_node)) |
7967 | { |
7968 | if (di) di->aligned = true; |
7969 | chain = TREE_CHAIN (chain); |
7970 | } |
7971 | return (chain == void_list_node); |
7972 | } |
7973 | |
7974 | /* Just return whether FN is a usual deallocation function. */ |
7975 | |
7976 | bool |
7977 | usual_deallocation_fn_p (tree fn) |
7978 | { |
7979 | return usual_deallocation_fn_p (t: fn, NULL); |
7980 | } |
7981 | |
7982 | /* Build a call to operator delete. This has to be handled very specially, |
7983 | because the restrictions on what signatures match are different from all |
7984 | other call instances. For a normal delete, only a delete taking (void *) |
7985 | or (void *, size_t) is accepted. For a placement delete, only an exact |
7986 | match with the placement new is accepted. |
7987 | |
7988 | CODE is either DELETE_EXPR or VEC_DELETE_EXPR. |
7989 | ADDR is the pointer to be deleted. |
7990 | SIZE is the size of the memory block to be deleted. |
7991 | GLOBAL_P is true if the delete-expression should not consider |
7992 | class-specific delete operators. |
7993 | CORO_P is true if the allocation is for a coroutine, where the two argument |
7994 | usual deallocation should be chosen in preference to the single argument |
7995 | version in a class context. |
7996 | PLACEMENT is the corresponding placement new call, or NULL_TREE. |
7997 | |
7998 | If this call to "operator delete" is being generated as part to |
7999 | deallocate memory allocated via a new-expression (as per [expr.new] |
8000 | which requires that if the initialization throws an exception then |
8001 | we call a deallocation function), then ALLOC_FN is the allocation |
8002 | function. */ |
8003 | |
8004 | static tree |
8005 | build_op_delete_call_1 (enum tree_code code, tree addr, tree size, |
8006 | bool global_p, bool coro_p, tree placement, |
8007 | tree alloc_fn, tsubst_flags_t complain) |
8008 | { |
8009 | tree fn = NULL_TREE; |
8010 | tree fns, fnname, type, t; |
8011 | dealloc_info di_fn = { }; |
8012 | |
8013 | if (addr == error_mark_node) |
8014 | return error_mark_node; |
8015 | |
8016 | type = strip_array_types (TREE_TYPE (TREE_TYPE (addr))); |
8017 | |
8018 | fnname = ovl_op_identifier (isass: false, code); |
8019 | |
8020 | if (CLASS_TYPE_P (type) |
8021 | && COMPLETE_TYPE_P (complete_type (type)) |
8022 | && !global_p) |
8023 | /* In [class.free] |
8024 | |
8025 | If the result of the lookup is ambiguous or inaccessible, or if |
8026 | the lookup selects a placement deallocation function, the |
8027 | program is ill-formed. |
8028 | |
8029 | Therefore, we ask lookup_fnfields to complain about ambiguity. */ |
8030 | { |
8031 | fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1, complain); |
8032 | if (fns == error_mark_node) |
8033 | return error_mark_node; |
8034 | } |
8035 | else |
8036 | fns = NULL_TREE; |
8037 | |
8038 | if (fns == NULL_TREE) |
8039 | fns = lookup_name (fnname, LOOK_where::BLOCK_NAMESPACE); |
8040 | |
8041 | /* Strip const and volatile from addr. */ |
8042 | tree oaddr = addr; |
8043 | addr = cp_convert (ptr_type_node, addr, complain); |
8044 | |
8045 | tree excluded_destroying = NULL_TREE; |
8046 | |
8047 | if (placement) |
8048 | { |
8049 | /* "A declaration of a placement deallocation function matches the |
8050 | declaration of a placement allocation function if it has the same |
8051 | number of parameters and, after parameter transformations (8.3.5), |
8052 | all parameter types except the first are identical." |
8053 | |
8054 | So we build up the function type we want and ask instantiate_type |
8055 | to get it for us. */ |
8056 | t = FUNCTION_ARG_CHAIN (alloc_fn); |
8057 | t = tree_cons (NULL_TREE, ptr_type_node, t); |
8058 | t = build_function_type (void_type_node, t); |
8059 | |
8060 | fn = instantiate_type (t, fns, tf_none); |
8061 | if (fn == error_mark_node) |
8062 | return NULL_TREE; |
8063 | |
8064 | fn = MAYBE_BASELINK_FUNCTIONS (fn); |
8065 | |
8066 | /* "If the lookup finds the two-parameter form of a usual deallocation |
8067 | function (3.7.4.2) and that function, considered as a placement |
8068 | deallocation function, would have been selected as a match for the |
8069 | allocation function, the program is ill-formed." */ |
8070 | if (second_parm_is_size_t (fn)) |
8071 | { |
8072 | const char *const msg1 |
8073 | = G_("exception cleanup for this placement new selects " |
8074 | "non-placement %<operator delete%>" ); |
8075 | const char *const msg2 |
8076 | = G_("%qD is a usual (non-placement) deallocation " |
8077 | "function in C++14 (or with %<-fsized-deallocation%>)" ); |
8078 | |
8079 | /* But if the class has an operator delete (void *), then that is |
8080 | the usual deallocation function, so we shouldn't complain |
8081 | about using the operator delete (void *, size_t). */ |
8082 | if (DECL_CLASS_SCOPE_P (fn)) |
8083 | for (tree elt : lkp_range (MAYBE_BASELINK_FUNCTIONS (fns))) |
8084 | { |
8085 | if (usual_deallocation_fn_p (fn: elt) |
8086 | && FUNCTION_ARG_CHAIN (elt) == void_list_node) |
8087 | goto ok; |
8088 | } |
8089 | /* Before C++14 a two-parameter global deallocation function is |
8090 | always a placement deallocation function, but warn if |
8091 | -Wc++14-compat. */ |
8092 | else if (!flag_sized_deallocation) |
8093 | { |
8094 | if (complain & tf_warning) |
8095 | { |
8096 | auto_diagnostic_group d; |
8097 | if (warning (OPT_Wc__14_compat, msg1)) |
8098 | inform (DECL_SOURCE_LOCATION (fn), msg2, fn); |
8099 | } |
8100 | goto ok; |
8101 | } |
8102 | |
8103 | if (complain & tf_warning_or_error) |
8104 | { |
8105 | auto_diagnostic_group d; |
8106 | if (permerror (input_location, msg1)) |
8107 | { |
8108 | /* Only mention C++14 for namespace-scope delete. */ |
8109 | if (DECL_NAMESPACE_SCOPE_P (fn)) |
8110 | inform (DECL_SOURCE_LOCATION (fn), msg2, fn); |
8111 | else |
8112 | inform (DECL_SOURCE_LOCATION (fn), |
8113 | "%qD is a usual (non-placement) deallocation " |
8114 | "function" , fn); |
8115 | } |
8116 | } |
8117 | else |
8118 | return error_mark_node; |
8119 | ok:; |
8120 | } |
8121 | } |
8122 | else |
8123 | /* "Any non-placement deallocation function matches a non-placement |
8124 | allocation function. If the lookup finds a single matching |
8125 | deallocation function, that function will be called; otherwise, no |
8126 | deallocation function will be called." */ |
8127 | for (tree elt : lkp_range (MAYBE_BASELINK_FUNCTIONS (fns))) |
8128 | { |
8129 | dealloc_info di_elt; |
8130 | if (usual_deallocation_fn_p (t: elt, di: &di_elt)) |
8131 | { |
8132 | /* If we're called for an EH cleanup in a new-expression, we can't |
8133 | use a destroying delete; the exception was thrown before the |
8134 | object was constructed. */ |
8135 | if (alloc_fn && di_elt.destroying) |
8136 | { |
8137 | excluded_destroying = elt; |
8138 | continue; |
8139 | } |
8140 | |
8141 | if (!fn) |
8142 | { |
8143 | fn = elt; |
8144 | di_fn = di_elt; |
8145 | continue; |
8146 | } |
8147 | |
8148 | /* -- If any of the deallocation functions is a destroying |
8149 | operator delete, all deallocation functions that are not |
8150 | destroying operator deletes are eliminated from further |
8151 | consideration. */ |
8152 | if (di_elt.destroying != di_fn.destroying) |
8153 | { |
8154 | if (di_elt.destroying) |
8155 | { |
8156 | fn = elt; |
8157 | di_fn = di_elt; |
8158 | } |
8159 | continue; |
8160 | } |
8161 | |
8162 | /* -- If the type has new-extended alignment, a function with a |
8163 | parameter of type std::align_val_t is preferred; otherwise a |
8164 | function without such a parameter is preferred. If exactly one |
8165 | preferred function is found, that function is selected and the |
8166 | selection process terminates. If more than one preferred |
8167 | function is found, all non-preferred functions are eliminated |
8168 | from further consideration. */ |
8169 | if (aligned_new_threshold) |
8170 | { |
8171 | bool want_align = type_has_new_extended_alignment (type); |
8172 | if (di_elt.aligned != di_fn.aligned) |
8173 | { |
8174 | if (want_align == di_elt.aligned) |
8175 | { |
8176 | fn = elt; |
8177 | di_fn = di_elt; |
8178 | } |
8179 | continue; |
8180 | } |
8181 | } |
8182 | |
8183 | /* -- If the deallocation functions have class scope, the one |
8184 | without a parameter of type std::size_t is selected. */ |
8185 | bool want_size; |
8186 | if (DECL_CLASS_SCOPE_P (fn) && !coro_p) |
8187 | want_size = false; |
8188 | |
8189 | /* -- If the type is complete and if, for the second alternative |
8190 | (delete array) only, the operand is a pointer to a class type |
8191 | with a non-trivial destructor or a (possibly multi-dimensional) |
8192 | array thereof, the function with a parameter of type std::size_t |
8193 | is selected. |
8194 | |
8195 | -- Otherwise, it is unspecified whether a deallocation function |
8196 | with a parameter of type std::size_t is selected. */ |
8197 | else |
8198 | { |
8199 | want_size = COMPLETE_TYPE_P (type); |
8200 | if (code == VEC_DELETE_EXPR |
8201 | && !TYPE_VEC_NEW_USES_COOKIE (type)) |
8202 | /* We need a cookie to determine the array size. */ |
8203 | want_size = false; |
8204 | } |
8205 | gcc_assert (di_fn.sized != di_elt.sized); |
8206 | if (want_size == di_elt.sized) |
8207 | { |
8208 | fn = elt; |
8209 | di_fn = di_elt; |
8210 | } |
8211 | } |
8212 | } |
8213 | |
8214 | /* If we have a matching function, call it. */ |
8215 | if (fn) |
8216 | { |
8217 | gcc_assert (TREE_CODE (fn) == FUNCTION_DECL); |
8218 | |
8219 | /* If the FN is a member function, make sure that it is |
8220 | accessible. */ |
8221 | if (BASELINK_P (fns)) |
8222 | perform_or_defer_access_check (BASELINK_BINFO (fns), fn, fn, |
8223 | complain); |
8224 | |
8225 | /* Core issue 901: It's ok to new a type with deleted delete. */ |
8226 | if (DECL_DELETED_FN (fn) && alloc_fn) |
8227 | return NULL_TREE; |
8228 | |
8229 | tree ret; |
8230 | if (placement) |
8231 | { |
8232 | /* The placement args might not be suitable for overload |
8233 | resolution at this point, so build the call directly. */ |
8234 | int nargs = call_expr_nargs (placement); |
8235 | tree *argarray = XALLOCAVEC (tree, nargs); |
8236 | int i; |
8237 | argarray[0] = addr; |
8238 | for (i = 1; i < nargs; i++) |
8239 | argarray[i] = CALL_EXPR_ARG (placement, i); |
8240 | if (!mark_used (fn, complain) && !(complain & tf_error)) |
8241 | return error_mark_node; |
8242 | ret = build_cxx_call (fn, nargs, argarray, complain); |
8243 | } |
8244 | else |
8245 | { |
8246 | tree destroying = di_fn.destroying; |
8247 | if (destroying) |
8248 | { |
8249 | /* Strip const and volatile from addr but retain the type of the |
8250 | object. */ |
8251 | tree rtype = TREE_TYPE (TREE_TYPE (oaddr)); |
8252 | rtype = cv_unqualified (rtype); |
8253 | rtype = TYPE_POINTER_TO (rtype); |
8254 | addr = cp_convert (rtype, oaddr, complain); |
8255 | destroying = build_functional_cast (input_location, |
8256 | destroying, NULL_TREE, |
8257 | complain); |
8258 | } |
8259 | |
8260 | releasing_vec args; |
8261 | args->quick_push (obj: addr); |
8262 | if (destroying) |
8263 | args->quick_push (obj: destroying); |
8264 | if (di_fn.sized) |
8265 | args->quick_push (obj: size); |
8266 | if (di_fn.aligned) |
8267 | { |
8268 | tree al = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (type)); |
8269 | args->quick_push (obj: al); |
8270 | } |
8271 | ret = cp_build_function_call_vec (fn, &args, complain); |
8272 | } |
8273 | |
8274 | /* Set this flag for all callers of this function. In addition to |
8275 | delete-expressions, this is called for deallocating coroutine state; |
8276 | treat that as an implicit delete-expression. This is also called for |
8277 | the delete if the constructor throws in a new-expression, and for a |
8278 | deleting destructor (which implements a delete-expression). */ |
8279 | /* But leave this flag off for destroying delete to avoid wrong |
8280 | assumptions in the optimizers. */ |
8281 | tree call = extract_call_expr (call: ret); |
8282 | if (TREE_CODE (call) == CALL_EXPR && !destroying_delete_p (t: fn)) |
8283 | CALL_FROM_NEW_OR_DELETE_P (call) = 1; |
8284 | |
8285 | return ret; |
8286 | } |
8287 | |
8288 | /* If there's only a destroying delete that we can't use because the |
8289 | object isn't constructed yet, and we used global new, use global |
8290 | delete as well. */ |
8291 | if (excluded_destroying |
8292 | && DECL_NAMESPACE_SCOPE_P (alloc_fn)) |
8293 | return build_op_delete_call (code, addr, size, true, placement, |
8294 | alloc_fn, complain); |
8295 | |
8296 | /* [expr.new] |
8297 | |
8298 | If no unambiguous matching deallocation function can be found, |
8299 | propagating the exception does not cause the object's memory to |
8300 | be freed. */ |
8301 | if (alloc_fn) |
8302 | { |
8303 | if ((complain & tf_warning) |
8304 | && !placement) |
8305 | { |
8306 | bool w = warning (0, |
8307 | "no corresponding deallocation function for %qD" , |
8308 | alloc_fn); |
8309 | if (w && excluded_destroying) |
8310 | inform (DECL_SOURCE_LOCATION (excluded_destroying), "destroying " |
8311 | "delete %qD cannot be used to release the allocated memory" |
8312 | " if the initialization throws because the object is not " |
8313 | "constructed yet" , excluded_destroying); |
8314 | } |
8315 | return NULL_TREE; |
8316 | } |
8317 | |
8318 | if (complain & tf_error) |
8319 | error ("no suitable %<operator %s%> for %qT" , |
8320 | OVL_OP_INFO (false, code)->name, type); |
8321 | return error_mark_node; |
8322 | } |
8323 | |
8324 | /* Arguments as per build_op_delete_call_1 (). */ |
8325 | |
8326 | tree |
8327 | build_op_delete_call (enum tree_code code, tree addr, tree size, bool global_p, |
8328 | tree placement, tree alloc_fn, tsubst_flags_t complain) |
8329 | { |
8330 | return build_op_delete_call_1 (code, addr, size, global_p, /*coro_p*/false, |
8331 | placement, alloc_fn, complain); |
8332 | } |
8333 | |
8334 | /* Arguments as per build_op_delete_call_1 (). */ |
8335 | |
8336 | tree |
8337 | build_coroutine_op_delete_call (enum tree_code code, tree addr, tree size, |
8338 | bool global_p, tree placement, tree alloc_fn, |
8339 | tsubst_flags_t complain) |
8340 | { |
8341 | return build_op_delete_call_1 (code, addr, size, global_p, /*coro_p*/true, |
8342 | placement, alloc_fn, complain); |
8343 | } |
8344 | |
8345 | /* Issue diagnostics about a disallowed access of DECL, using DIAG_DECL |
8346 | in the diagnostics. |
8347 | |
8348 | If ISSUE_ERROR is true, then issue an error about the access, followed |
8349 | by a note showing the declaration. Otherwise, just show the note. |
8350 | |
8351 | DIAG_DECL and DIAG_LOCATION will almost always be the same. |
8352 | DIAG_LOCATION is just another DECL. NO_ACCESS_REASON is an optional |
8353 | parameter used to specify why DECL wasn't accessible (e.g. ak_private |
8354 | would be because DECL was private). If not using NO_ACCESS_REASON, |
8355 | then it must be ak_none, and the access failure reason will be |
8356 | figured out by looking at the protection of DECL. */ |
8357 | |
8358 | void |
8359 | complain_about_access (tree decl, tree diag_decl, tree diag_location, |
8360 | bool issue_error, access_kind no_access_reason) |
8361 | { |
8362 | /* If we have not already figured out why DECL is inaccessible... */ |
8363 | if (no_access_reason == ak_none) |
8364 | { |
8365 | /* Examine the access of DECL to find out why. */ |
8366 | if (TREE_PRIVATE (decl)) |
8367 | no_access_reason = ak_private; |
8368 | else if (TREE_PROTECTED (decl)) |
8369 | no_access_reason = ak_protected; |
8370 | } |
8371 | |
8372 | /* Now generate an error message depending on calculated access. */ |
8373 | if (no_access_reason == ak_private) |
8374 | { |
8375 | if (issue_error) |
8376 | error ("%q#D is private within this context" , diag_decl); |
8377 | inform (DECL_SOURCE_LOCATION (diag_location), "declared private here" ); |
8378 | } |
8379 | else if (no_access_reason == ak_protected) |
8380 | { |
8381 | if (issue_error) |
8382 | error ("%q#D is protected within this context" , diag_decl); |
8383 | inform (DECL_SOURCE_LOCATION (diag_location), "declared protected here" ); |
8384 | } |
8385 | /* Couldn't figure out why DECL is inaccesible, so just say it's |
8386 | inaccessible. */ |
8387 | else |
8388 | { |
8389 | if (issue_error) |
8390 | error ("%q#D is inaccessible within this context" , diag_decl); |
8391 | inform (DECL_SOURCE_LOCATION (diag_decl), "declared here" ); |
8392 | } |
8393 | } |
8394 | |
8395 | /* Initialize a temporary of type TYPE with EXPR. The FLAGS are a |
8396 | bitwise or of LOOKUP_* values. If any errors are warnings are |
8397 | generated, set *DIAGNOSTIC_FN to "error" or "warning", |
8398 | respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN |
8399 | to NULL. */ |
8400 | |
8401 | static tree |
8402 | build_temp (tree expr, tree type, int flags, |
8403 | diagnostic_t *diagnostic_kind, tsubst_flags_t complain) |
8404 | { |
8405 | int savew, savee; |
8406 | |
8407 | *diagnostic_kind = DK_UNSPECIFIED; |
8408 | |
8409 | /* If the source is a packed field, calling the copy constructor will require |
8410 | binding the field to the reference parameter to the copy constructor, and |
8411 | we'll end up with an infinite loop. If we can use a bitwise copy, then |
8412 | do that now. */ |
8413 | if ((lvalue_kind (expr) & clk_packed) |
8414 | && CLASS_TYPE_P (TREE_TYPE (expr)) |
8415 | && !type_has_nontrivial_copy_init (TREE_TYPE (expr))) |
8416 | return get_target_expr (expr, complain); |
8417 | |
8418 | /* In decltype, we might have decided not to wrap this call in a TARGET_EXPR. |
8419 | But it turns out to be a subexpression, so perform temporary |
8420 | materialization now. */ |
8421 | if (TREE_CODE (expr) == CALL_EXPR |
8422 | && CLASS_TYPE_P (type) |
8423 | && same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (expr))) |
8424 | expr = build_cplus_new (type, expr, complain); |
8425 | |
8426 | savew = warningcount + werrorcount, savee = errorcount; |
8427 | releasing_vec args (make_tree_vector_single (expr)); |
8428 | expr = build_special_member_call (NULL_TREE, complete_ctor_identifier, |
8429 | &args, type, flags, complain); |
8430 | if (warningcount + werrorcount > savew) |
8431 | *diagnostic_kind = DK_WARNING; |
8432 | else if (errorcount > savee) |
8433 | *diagnostic_kind = DK_ERROR; |
8434 | return expr; |
8435 | } |
8436 | |
8437 | /* Get any location for EXPR, falling back to input_location. |
8438 | |
8439 | If the result is in a system header and is the virtual location for |
8440 | a token coming from the expansion of a macro, unwind it to the |
8441 | location of the expansion point of the macro (e.g. to avoid the |
8442 | diagnostic being suppressed for expansions of NULL where "NULL" is |
8443 | in a system header). */ |
8444 | |
8445 | static location_t |
8446 | (tree expr) |
8447 | { |
8448 | location_t loc = EXPR_LOC_OR_LOC (expr, input_location); |
8449 | loc = expansion_point_location_if_in_system_header (loc); |
8450 | return loc; |
8451 | } |
8452 | |
8453 | /* Perform warnings about peculiar, but valid, conversions from/to NULL. |
8454 | Also handle a subset of zero as null warnings. |
8455 | EXPR is implicitly converted to type TOTYPE. |
8456 | FN and ARGNUM are used for diagnostics. */ |
8457 | |
8458 | static void |
8459 | conversion_null_warnings (tree totype, tree expr, tree fn, int argnum) |
8460 | { |
8461 | /* Issue warnings about peculiar, but valid, uses of NULL. */ |
8462 | if (TREE_CODE (totype) != BOOLEAN_TYPE |
8463 | && ARITHMETIC_TYPE_P (totype) |
8464 | && null_node_p (expr)) |
8465 | { |
8466 | location_t loc = get_location_for_expr_unwinding_for_system_header (expr); |
8467 | if (fn) |
8468 | { |
8469 | auto_diagnostic_group d; |
8470 | if (warning_at (loc, OPT_Wconversion_null, |
8471 | "passing NULL to non-pointer argument %P of %qD" , |
8472 | argnum, fn)) |
8473 | inform (get_fndecl_argument_location (fn, argnum), |
8474 | "declared here" ); |
8475 | } |
8476 | else |
8477 | warning_at (loc, OPT_Wconversion_null, |
8478 | "converting to non-pointer type %qT from NULL" , totype); |
8479 | } |
8480 | |
8481 | /* Issue warnings if "false" is converted to a NULL pointer */ |
8482 | else if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE |
8483 | && TYPE_PTR_P (totype)) |
8484 | { |
8485 | location_t loc = get_location_for_expr_unwinding_for_system_header (expr); |
8486 | if (fn) |
8487 | { |
8488 | auto_diagnostic_group d; |
8489 | if (warning_at (loc, OPT_Wconversion_null, |
8490 | "converting %<false%> to pointer type for argument " |
8491 | "%P of %qD" , argnum, fn)) |
8492 | inform (get_fndecl_argument_location (fn, argnum), |
8493 | "declared here" ); |
8494 | } |
8495 | else |
8496 | warning_at (loc, OPT_Wconversion_null, |
8497 | "converting %<false%> to pointer type %qT" , totype); |
8498 | } |
8499 | /* Handle zero as null pointer warnings for cases other |
8500 | than EQ_EXPR and NE_EXPR */ |
8501 | else if ((TYPE_PTR_OR_PTRMEM_P (totype) || NULLPTR_TYPE_P (totype)) |
8502 | && null_ptr_cst_p (t: expr)) |
8503 | { |
8504 | location_t loc = get_location_for_expr_unwinding_for_system_header (expr); |
8505 | maybe_warn_zero_as_null_pointer_constant (expr, loc); |
8506 | } |
8507 | } |
8508 | |
8509 | /* We gave a diagnostic during a conversion. If this was in the second |
8510 | standard conversion sequence of a user-defined conversion sequence, say |
8511 | which user-defined conversion. */ |
8512 | |
8513 | static void |
8514 | maybe_print_user_conv_context (conversion *convs) |
8515 | { |
8516 | if (convs->user_conv_p) |
8517 | for (conversion *t = convs; t; t = next_conversion (conv: t)) |
8518 | if (t->kind == ck_user) |
8519 | { |
8520 | print_z_candidate (loc: 0, N_(" after user-defined conversion:" ), |
8521 | candidate: t->cand); |
8522 | break; |
8523 | } |
8524 | } |
8525 | |
8526 | /* Locate the parameter with the given index within FNDECL. |
8527 | ARGNUM is zero based, -1 indicates the `this' argument of a method. |
8528 | Return the location of the FNDECL itself if there are problems. */ |
8529 | |
8530 | location_t |
8531 | get_fndecl_argument_location (tree fndecl, int argnum) |
8532 | { |
8533 | /* The locations of implicitly-declared functions are likely to be |
8534 | more meaningful than those of their parameters. */ |
8535 | if (DECL_ARTIFICIAL (fndecl)) |
8536 | return DECL_SOURCE_LOCATION (fndecl); |
8537 | |
8538 | int i; |
8539 | tree param; |
8540 | |
8541 | /* Locate param by index within DECL_ARGUMENTS (fndecl). */ |
8542 | for (i = 0, param = FUNCTION_FIRST_USER_PARM (fndecl); |
8543 | i < argnum && param; |
8544 | i++, param = TREE_CHAIN (param)) |
8545 | ; |
8546 | |
8547 | /* If something went wrong (e.g. if we have a builtin and thus no arguments), |
8548 | return the location of FNDECL. */ |
8549 | if (param == NULL) |
8550 | return DECL_SOURCE_LOCATION (fndecl); |
8551 | |
8552 | return DECL_SOURCE_LOCATION (param); |
8553 | } |
8554 | |
8555 | /* If FNDECL is non-NULL, issue a note highlighting ARGNUM |
8556 | within its declaration (or the fndecl itself if something went |
8557 | wrong). */ |
8558 | |
8559 | void |
8560 | maybe_inform_about_fndecl_for_bogus_argument_init (tree fn, int argnum, |
8561 | const char *highlight_color) |
8562 | { |
8563 | if (fn) |
8564 | { |
8565 | gcc_rich_location richloc (get_fndecl_argument_location (fndecl: fn, argnum)); |
8566 | richloc.set_highlight_color (highlight_color); |
8567 | inform (&richloc, |
8568 | "initializing argument %P of %qD" , argnum, fn); |
8569 | } |
8570 | } |
8571 | |
8572 | /* Maybe warn about C++20 Conversions to arrays of unknown bound. C is |
8573 | the conversion, EXPR is the expression we're converting. */ |
8574 | |
8575 | static void |
8576 | maybe_warn_array_conv (location_t loc, conversion *c, tree expr) |
8577 | { |
8578 | if (cxx_dialect >= cxx20) |
8579 | return; |
8580 | |
8581 | tree type = TREE_TYPE (expr); |
8582 | type = strip_pointer_operator (type); |
8583 | |
8584 | if (TREE_CODE (type) != ARRAY_TYPE |
8585 | || TYPE_DOMAIN (type) == NULL_TREE) |
8586 | return; |
8587 | |
8588 | if (pedantic && conv_binds_to_array_of_unknown_bound (c)) |
8589 | pedwarn (loc, OPT_Wc__20_extensions, |
8590 | "conversions to arrays of unknown bound " |
8591 | "are only available with %<-std=c++20%> or %<-std=gnu++20%>" ); |
8592 | } |
8593 | |
8594 | /* We call this recursively in convert_like_internal. */ |
8595 | static tree convert_like (conversion *, tree, tree, int, bool, bool, bool, |
8596 | tsubst_flags_t); |
8597 | |
8598 | /* Adjust the result EXPR of a conversion to the expected type TOTYPE, which |
8599 | must be equivalent but might be a typedef. */ |
8600 | |
8601 | static tree |
8602 | maybe_adjust_type_name (tree type, tree expr, conversion_kind kind) |
8603 | { |
8604 | if (expr == error_mark_node |
8605 | || processing_template_decl) |
8606 | return expr; |
8607 | |
8608 | tree etype = TREE_TYPE (expr); |
8609 | if (etype == type) |
8610 | return expr; |
8611 | |
8612 | gcc_checking_assert (same_type_ignoring_top_level_qualifiers_p (etype, type) |
8613 | || is_bitfield_expr_with_lowered_type (expr) |
8614 | || seen_error ()); |
8615 | |
8616 | if (SCALAR_TYPE_P (type) |
8617 | && (kind == ck_rvalue |
8618 | /* ??? We should be able to do this for ck_identity of more prvalue |
8619 | expressions, but checking !obvalue_p here breaks, so for now let's |
8620 | just handle NON_LVALUE_EXPR (such as the location wrapper for a |
8621 | literal). Maybe we want to express already-rvalue in the |
8622 | conversion somehow? */ |
8623 | || TREE_CODE (expr) == NON_LVALUE_EXPR)) |
8624 | expr = build_nop (type, expr); |
8625 | |
8626 | return expr; |
8627 | } |
8628 | |
8629 | /* Perform the conversions in CONVS on the expression EXPR. FN and |
8630 | ARGNUM are used for diagnostics. ARGNUM is zero based, -1 |
8631 | indicates the `this' argument of a method. INNER is nonzero when |
8632 | being called to continue a conversion chain. It is negative when a |
8633 | reference binding will be applied, positive otherwise. If |
8634 | ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious |
8635 | conversions will be emitted if appropriate. If C_CAST_P is true, |
8636 | this conversion is coming from a C-style cast; in that case, |
8637 | conversions to inaccessible bases are permitted. */ |
8638 | |
8639 | static tree |
8640 | convert_like_internal (conversion *convs, tree expr, tree fn, int argnum, |
8641 | bool issue_conversion_warnings, bool c_cast_p, |
8642 | bool nested_p, tsubst_flags_t complain) |
8643 | { |
8644 | tree totype = convs->type; |
8645 | diagnostic_t diag_kind; |
8646 | int flags; |
8647 | location_t loc = cp_expr_loc_or_input_loc (t: expr); |
8648 | |
8649 | if (convs->bad_p && !(complain & tf_error)) |
8650 | return error_mark_node; |
8651 | |
8652 | gcc_checking_assert (!TYPE_REF_P (TREE_TYPE (expr))); |
8653 | |
8654 | if (convs->bad_p |
8655 | && convs->kind != ck_user |
8656 | && convs->kind != ck_list |
8657 | && convs->kind != ck_ambig |
8658 | && (convs->kind != ck_ref_bind |
8659 | || (convs->user_conv_p && next_conversion (conv: convs)->bad_p)) |
8660 | && (convs->kind != ck_rvalue |
8661 | || SCALAR_TYPE_P (totype)) |
8662 | && convs->kind != ck_base) |
8663 | { |
8664 | int complained = 0; |
8665 | conversion *t = convs; |
8666 | |
8667 | /* Give a helpful error if this is bad because of excess braces. */ |
8668 | if (BRACE_ENCLOSED_INITIALIZER_P (expr) |
8669 | && SCALAR_TYPE_P (totype) |
8670 | && CONSTRUCTOR_NELTS (expr) > 0 |
8671 | && BRACE_ENCLOSED_INITIALIZER_P (CONSTRUCTOR_ELT (expr, 0)->value)) |
8672 | { |
8673 | complained = permerror (loc, "too many braces around initializer " |
8674 | "for %qT" , totype); |
8675 | while (BRACE_ENCLOSED_INITIALIZER_P (expr) |
8676 | && CONSTRUCTOR_NELTS (expr) == 1) |
8677 | expr = CONSTRUCTOR_ELT (expr, 0)->value; |
8678 | } |
8679 | |
8680 | /* Give a helpful error if this is bad because a conversion to bool |
8681 | from std::nullptr_t requires direct-initialization. */ |
8682 | if (NULLPTR_TYPE_P (TREE_TYPE (expr)) |
8683 | && TREE_CODE (totype) == BOOLEAN_TYPE) |
8684 | complained = permerror (loc, "converting to %qH from %qI requires " |
8685 | "direct-initialization" , |
8686 | totype, TREE_TYPE (expr)); |
8687 | |
8688 | if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (expr)) |
8689 | && SCALAR_FLOAT_TYPE_P (totype) |
8690 | && (extended_float_type_p (TREE_TYPE (expr)) |
8691 | || extended_float_type_p (type: totype))) |
8692 | switch (cp_compare_floating_point_conversion_ranks (TREE_TYPE (expr), |
8693 | totype)) |
8694 | { |
8695 | case 2: |
8696 | if (pedwarn (loc, OPT_Wnarrowing, "ISO C++ does not allow " |
8697 | "converting to %qH from %qI with greater " |
8698 | "conversion rank" , totype, TREE_TYPE (expr))) |
8699 | complained = 1; |
8700 | else if (!complained) |
8701 | complained = -1; |
8702 | break; |
8703 | case 3: |
8704 | if (pedwarn (loc, OPT_Wnarrowing, "ISO C++ does not allow " |
8705 | "converting to %qH from %qI with unordered " |
8706 | "conversion rank" , totype, TREE_TYPE (expr))) |
8707 | complained = 1; |
8708 | else if (!complained) |
8709 | complained = -1; |
8710 | break; |
8711 | default: |
8712 | break; |
8713 | } |
8714 | |
8715 | for (; t ; t = next_conversion (conv: t)) |
8716 | { |
8717 | if (t->kind == ck_user && t->cand->reason) |
8718 | { |
8719 | auto_diagnostic_group d; |
8720 | complained = permerror (loc, "invalid user-defined conversion " |
8721 | "from %qH to %qI" , TREE_TYPE (expr), |
8722 | totype); |
8723 | if (complained) |
8724 | print_z_candidate (loc, N_("candidate is:" ), candidate: t->cand); |
8725 | expr = convert_like (t, expr, fn, argnum, |
8726 | /*issue_conversion_warnings=*/false, |
8727 | /*c_cast_p=*/false, /*nested_p=*/true, |
8728 | complain); |
8729 | break; |
8730 | } |
8731 | else if (t->kind == ck_user || !t->bad_p) |
8732 | { |
8733 | expr = convert_like (t, expr, fn, argnum, |
8734 | /*issue_conversion_warnings=*/false, |
8735 | /*c_cast_p=*/false, /*nested_p=*/true, |
8736 | complain); |
8737 | if (t->bad_p) |
8738 | complained = 1; |
8739 | break; |
8740 | } |
8741 | else if (t->kind == ck_ambig) |
8742 | return convert_like (t, expr, fn, argnum, |
8743 | /*issue_conversion_warnings=*/false, |
8744 | /*c_cast_p=*/false, /*nested_p=*/true, |
8745 | complain); |
8746 | else if (t->kind == ck_identity) |
8747 | break; |
8748 | } |
8749 | if (!complained && expr != error_mark_node) |
8750 | { |
8751 | range_label_for_type_mismatch label (TREE_TYPE (expr), totype); |
8752 | gcc_rich_location richloc (loc, &label, highlight_colors::percent_h); |
8753 | complained = permerror (&richloc, |
8754 | "invalid conversion from %qH to %qI" , |
8755 | TREE_TYPE (expr), totype); |
8756 | if (complained) |
8757 | maybe_emit_indirection_note (loc, expr, expected_type: totype); |
8758 | } |
8759 | if (convs->kind == ck_ref_bind) |
8760 | expr = convert_to_reference (totype, expr, CONV_IMPLICIT, |
8761 | LOOKUP_NORMAL, NULL_TREE, |
8762 | complain); |
8763 | else |
8764 | expr = cp_convert (totype, expr, complain); |
8765 | if (complained == 1) |
8766 | maybe_inform_about_fndecl_for_bogus_argument_init |
8767 | (fn, argnum, highlight_color: highlight_colors::percent_i); |
8768 | return expr; |
8769 | } |
8770 | |
8771 | if (issue_conversion_warnings && (complain & tf_warning)) |
8772 | conversion_null_warnings (totype, expr, fn, argnum); |
8773 | |
8774 | switch (convs->kind) |
8775 | { |
8776 | case ck_user: |
8777 | { |
8778 | struct z_candidate *cand = convs->cand; |
8779 | |
8780 | if (cand == NULL) |
8781 | /* We chose the surrogate function from add_conv_candidate, now we |
8782 | actually need to build the conversion. */ |
8783 | cand = build_user_type_conversion_1 (totype, expr, |
8784 | LOOKUP_NO_CONVERSION, complain); |
8785 | |
8786 | tree convfn = cand->fn; |
8787 | |
8788 | /* When converting from an init list we consider explicit |
8789 | constructors, but actually trying to call one is an error. */ |
8790 | if (DECL_NONCONVERTING_P (convfn) && DECL_CONSTRUCTOR_P (convfn) |
8791 | && BRACE_ENCLOSED_INITIALIZER_P (expr) |
8792 | /* Unless this is for direct-list-initialization. */ |
8793 | && (!CONSTRUCTOR_IS_DIRECT_INIT (expr) || convs->need_temporary_p) |
8794 | /* And in C++98 a default constructor can't be explicit. */ |
8795 | && cxx_dialect >= cxx11) |
8796 | { |
8797 | if (!(complain & tf_error)) |
8798 | return error_mark_node; |
8799 | location_t loc = location_of (expr); |
8800 | if (CONSTRUCTOR_NELTS (expr) == 0 |
8801 | && FUNCTION_FIRST_USER_PARMTYPE (convfn) != void_list_node) |
8802 | { |
8803 | auto_diagnostic_group d; |
8804 | if (pedwarn (loc, 0, "converting to %qT from initializer list " |
8805 | "would use explicit constructor %qD" , |
8806 | totype, convfn)) |
8807 | { |
8808 | inform (DECL_SOURCE_LOCATION (convfn), "%qD declared here" , |
8809 | convfn); |
8810 | inform (loc, "in C++11 and above a default constructor " |
8811 | "can be explicit" ); |
8812 | } |
8813 | } |
8814 | else |
8815 | { |
8816 | auto_diagnostic_group d; |
8817 | error ("converting to %qT from initializer list would use " |
8818 | "explicit constructor %qD" , totype, convfn); |
8819 | inform (DECL_SOURCE_LOCATION (convfn), "%qD declared here" , |
8820 | convfn); |
8821 | } |
8822 | } |
8823 | |
8824 | /* If we're initializing from {}, it's value-initialization. */ |
8825 | if (BRACE_ENCLOSED_INITIALIZER_P (expr) |
8826 | && CONSTRUCTOR_NELTS (expr) == 0 |
8827 | && TYPE_HAS_DEFAULT_CONSTRUCTOR (totype) |
8828 | && !processing_template_decl) |
8829 | { |
8830 | if (abstract_virtuals_error (NULL_TREE, totype, complain)) |
8831 | return error_mark_node; |
8832 | expr = build_value_init (totype, complain); |
8833 | expr = get_target_expr (expr, complain); |
8834 | if (expr != error_mark_node) |
8835 | TARGET_EXPR_LIST_INIT_P (expr) = true; |
8836 | return expr; |
8837 | } |
8838 | |
8839 | /* We don't know here whether EXPR is being used as an lvalue or |
8840 | rvalue, but we know it's read. */ |
8841 | mark_exp_read (expr); |
8842 | |
8843 | /* Give the conversion call the location of EXPR rather than the |
8844 | location of the context that caused the conversion. */ |
8845 | iloc_sentinel ils (loc); |
8846 | |
8847 | /* Pass LOOKUP_NO_CONVERSION so rvalue/base handling knows not to allow |
8848 | any more UDCs. */ |
8849 | expr = build_over_call (cand, LOOKUP_NORMAL|LOOKUP_NO_CONVERSION, |
8850 | complain); |
8851 | |
8852 | /* If this is a constructor or a function returning an aggr type, |
8853 | we need to build up a TARGET_EXPR. */ |
8854 | if (DECL_CONSTRUCTOR_P (convfn)) |
8855 | { |
8856 | expr = build_cplus_new (totype, expr, complain); |
8857 | |
8858 | /* Remember that this was list-initialization. */ |
8859 | if (convs->check_narrowing && expr != error_mark_node) |
8860 | TARGET_EXPR_LIST_INIT_P (expr) = true; |
8861 | } |
8862 | |
8863 | return expr; |
8864 | } |
8865 | case ck_identity: |
8866 | if (BRACE_ENCLOSED_INITIALIZER_P (expr)) |
8867 | { |
8868 | int nelts = CONSTRUCTOR_NELTS (expr); |
8869 | if (nelts == 0) |
8870 | expr = build_value_init (totype, complain); |
8871 | else if (nelts == 1) |
8872 | expr = CONSTRUCTOR_ELT (expr, 0)->value; |
8873 | else |
8874 | gcc_unreachable (); |
8875 | } |
8876 | expr = mark_use (expr, /*rvalue_p=*/!convs->rvaluedness_matches_p, |
8877 | /*read_p=*/true, UNKNOWN_LOCATION, |
8878 | /*reject_builtin=*/true); |
8879 | |
8880 | if (type_unknown_p (expr)) |
8881 | expr = instantiate_type (totype, expr, complain); |
8882 | if (!nested_p && TREE_CODE (expr) == EXCESS_PRECISION_EXPR) |
8883 | expr = cp_convert (totype, TREE_OPERAND (expr, 0), complain); |
8884 | if (expr == null_node |
8885 | && INTEGRAL_OR_UNSCOPED_ENUMERATION_TYPE_P (totype)) |
8886 | /* If __null has been converted to an integer type, we do not want to |
8887 | continue to warn about uses of EXPR as an integer, rather than as a |
8888 | pointer. */ |
8889 | expr = build_int_cst (totype, 0); |
8890 | return maybe_adjust_type_name (type: totype, expr, kind: convs->kind); |
8891 | case ck_ambig: |
8892 | /* We leave bad_p off ck_ambig because overload resolution considers |
8893 | it valid, it just fails when we try to perform it. So we need to |
8894 | check complain here, too. */ |
8895 | if (complain & tf_error) |
8896 | { |
8897 | /* Call build_user_type_conversion again for the error. */ |
8898 | int flags = (convs->need_temporary_p |
8899 | ? LOOKUP_IMPLICIT : LOOKUP_NORMAL); |
8900 | build_user_type_conversion (totype, expr: convs->u.expr, flags, complain); |
8901 | gcc_assert (seen_error ()); |
8902 | maybe_inform_about_fndecl_for_bogus_argument_init (fn, argnum); |
8903 | } |
8904 | return error_mark_node; |
8905 | |
8906 | case ck_list: |
8907 | { |
8908 | /* Conversion to std::initializer_list<T>. */ |
8909 | tree elttype = TREE_VEC_ELT (CLASSTYPE_TI_ARGS (totype), 0); |
8910 | unsigned HOST_WIDE_INT len = CONSTRUCTOR_NELTS (expr); |
8911 | tree array; |
8912 | |
8913 | if (tree init = maybe_init_list_as_array (elttype, init: expr)) |
8914 | { |
8915 | elttype |
8916 | = cp_build_qualified_type (elttype, (cp_type_quals (elttype) |
8917 | | TYPE_QUAL_CONST)); |
8918 | tree index_type = TYPE_DOMAIN (TREE_TYPE (init)); |
8919 | array = build_cplus_array_type (elttype, index_type); |
8920 | len = TREE_INT_CST_LOW (TYPE_MAX_VALUE (index_type)) + 1; |
8921 | array = build_vec_init_expr (array, init, complain); |
8922 | array = get_target_expr (array); |
8923 | array = cp_build_addr_expr (array, complain); |
8924 | } |
8925 | else if (len) |
8926 | { |
8927 | tree val; |
8928 | unsigned ix; |
8929 | tree new_ctor = build_constructor (init_list_type_node, NULL); |
8930 | |
8931 | /* Convert all the elements. */ |
8932 | FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), ix, val) |
8933 | { |
8934 | if (TREE_CODE (val) == RAW_DATA_CST) |
8935 | { |
8936 | /* For conversion to initializer_list<unsigned char> or |
8937 | initializer_list<char> or initializer_list<signed char> |
8938 | we can optimize and keep RAW_DATA_CST with adjusted |
8939 | type if we report narrowing errors if needed, for |
8940 | others this converts each element separately. */ |
8941 | if (convs->u.list[ix]->kind == ck_std) |
8942 | { |
8943 | tree et = convs->u.list[ix]->type; |
8944 | conversion *next = next_conversion (conv: convs->u.list[ix]); |
8945 | gcc_assert (et |
8946 | && (TREE_CODE (et) == INTEGER_TYPE |
8947 | || is_byte_access_type (et)) |
8948 | && TYPE_PRECISION (et) == CHAR_BIT |
8949 | && next |
8950 | && next->kind == ck_identity); |
8951 | if (!TYPE_UNSIGNED (et) |
8952 | /* For RAW_DATA_CST, TREE_TYPE (val) can be |
8953 | either integer_type_node (when it has been |
8954 | created by the lexer from CPP_EMBED) or |
8955 | after digestion/conversion some integral |
8956 | type with CHAR_BIT precision. For int with |
8957 | precision higher than CHAR_BIT or unsigned char |
8958 | diagnose narrowing conversions from |
8959 | that int/unsigned char to signed char if any |
8960 | byte has most significant bit set. */ |
8961 | && (TYPE_UNSIGNED (TREE_TYPE (val)) |
8962 | || (TYPE_PRECISION (TREE_TYPE (val)) |
8963 | > CHAR_BIT))) |
8964 | for (int i = 0; i < RAW_DATA_LENGTH (val); ++i) |
8965 | { |
8966 | if (RAW_DATA_SCHAR_ELT (val, i) >= 0) |
8967 | continue; |
8968 | else if (complain & tf_error) |
8969 | { |
8970 | location_t loc |
8971 | = cp_expr_loc_or_input_loc (t: val); |
8972 | int savederrorcount = errorcount; |
8973 | permerror_opt (loc, OPT_Wnarrowing, |
8974 | "narrowing conversion of " |
8975 | "%qd from %qH to %qI" , |
8976 | RAW_DATA_UCHAR_ELT (val, i), |
8977 | TREE_TYPE (val), et); |
8978 | if (errorcount != savederrorcount) |
8979 | return error_mark_node; |
8980 | } |
8981 | else |
8982 | return error_mark_node; |
8983 | } |
8984 | tree sub = copy_node (val); |
8985 | TREE_TYPE (sub) = et; |
8986 | CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_ctor), |
8987 | NULL_TREE, sub); |
8988 | } |
8989 | else |
8990 | { |
8991 | conversion *conv = convs->u.list[ix]; |
8992 | gcc_assert (conv->kind == ck_list); |
8993 | for (int i = 0; i < RAW_DATA_LENGTH (val); ++i) |
8994 | { |
8995 | tree elt |
8996 | = build_int_cst (TREE_TYPE (val), |
8997 | RAW_DATA_UCHAR_ELT (val, i)); |
8998 | tree sub |
8999 | = convert_like (conv->u.list[i], elt, |
9000 | fn, argnum, false, false, |
9001 | /*nested_p=*/true, complain); |
9002 | if (sub == error_mark_node) |
9003 | return sub; |
9004 | if (!check_narrowing (TREE_TYPE (sub), elt, |
9005 | complain)) |
9006 | return error_mark_node; |
9007 | tree nc = new_ctor; |
9008 | CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (nc), |
9009 | NULL_TREE, sub); |
9010 | if (!TREE_CONSTANT (sub)) |
9011 | TREE_CONSTANT (new_ctor) = false; |
9012 | } |
9013 | } |
9014 | len += RAW_DATA_LENGTH (val) - 1; |
9015 | continue; |
9016 | } |
9017 | tree sub = convert_like (convs->u.list[ix], val, fn, |
9018 | argnum, false, false, |
9019 | /*nested_p=*/true, complain); |
9020 | if (sub == error_mark_node) |
9021 | return sub; |
9022 | if (!BRACE_ENCLOSED_INITIALIZER_P (val) |
9023 | && !check_narrowing (TREE_TYPE (sub), val, complain)) |
9024 | return error_mark_node; |
9025 | CONSTRUCTOR_APPEND_ELT (CONSTRUCTOR_ELTS (new_ctor), |
9026 | NULL_TREE, sub); |
9027 | if (!TREE_CONSTANT (sub)) |
9028 | TREE_CONSTANT (new_ctor) = false; |
9029 | } |
9030 | /* Build up the array. */ |
9031 | elttype |
9032 | = cp_build_qualified_type (elttype, (cp_type_quals (elttype) |
9033 | | TYPE_QUAL_CONST)); |
9034 | array = build_array_of_n_type (elttype, len); |
9035 | array = finish_compound_literal (array, new_ctor, complain); |
9036 | /* This is dubious now, should be blessed by P2752. */ |
9037 | DECL_MERGEABLE (TARGET_EXPR_SLOT (array)) = true; |
9038 | array = cp_build_addr_expr (array, complain); |
9039 | } |
9040 | else |
9041 | array = nullptr_node; |
9042 | |
9043 | array = cp_convert (build_pointer_type (elttype), array, complain); |
9044 | if (array == error_mark_node) |
9045 | return error_mark_node; |
9046 | |
9047 | /* Build up the initializer_list object. Note: fail gracefully |
9048 | if the object cannot be completed because, for example, no |
9049 | definition is provided (c++/80956). */ |
9050 | totype = complete_type_or_maybe_complain (totype, NULL_TREE, complain); |
9051 | if (!totype) |
9052 | return error_mark_node; |
9053 | tree field = next_aggregate_field (TYPE_FIELDS (totype)); |
9054 | vec<constructor_elt, va_gc> *vec = NULL; |
9055 | CONSTRUCTOR_APPEND_ELT (vec, field, array); |
9056 | field = next_aggregate_field (DECL_CHAIN (field)); |
9057 | CONSTRUCTOR_APPEND_ELT (vec, field, size_int (len)); |
9058 | tree new_ctor = build_constructor (totype, vec); |
9059 | return get_target_expr (new_ctor, complain); |
9060 | } |
9061 | |
9062 | case ck_aggr: |
9063 | if (TREE_CODE (totype) == COMPLEX_TYPE) |
9064 | { |
9065 | tree real = CONSTRUCTOR_ELT (expr, 0)->value; |
9066 | tree imag = CONSTRUCTOR_ELT (expr, 1)->value; |
9067 | real = perform_implicit_conversion (TREE_TYPE (totype), |
9068 | real, complain); |
9069 | imag = perform_implicit_conversion (TREE_TYPE (totype), |
9070 | imag, complain); |
9071 | expr = build2 (COMPLEX_EXPR, totype, real, imag); |
9072 | return expr; |
9073 | } |
9074 | expr = reshape_init (totype, expr, complain); |
9075 | expr = get_target_expr (digest_init (totype, expr, complain), |
9076 | complain); |
9077 | if (expr != error_mark_node) |
9078 | TARGET_EXPR_LIST_INIT_P (expr) = true; |
9079 | return expr; |
9080 | |
9081 | default: |
9082 | break; |
9083 | }; |
9084 | |
9085 | conversion *nc = next_conversion (conv: convs); |
9086 | if (convs->kind == ck_ref_bind && nc->kind == ck_qual |
9087 | && !convs->need_temporary_p) |
9088 | /* direct_reference_binding might have inserted a ck_qual under |
9089 | this ck_ref_bind for the benefit of conversion sequence ranking. |
9090 | Don't actually perform that conversion. */ |
9091 | nc = next_conversion (conv: nc); |
9092 | |
9093 | expr = convert_like (nc, expr, fn, argnum, |
9094 | convs->kind == ck_ref_bind |
9095 | ? issue_conversion_warnings : false, |
9096 | c_cast_p, /*nested_p=*/true, complain & ~tf_no_cleanup); |
9097 | if (expr == error_mark_node) |
9098 | return error_mark_node; |
9099 | |
9100 | switch (convs->kind) |
9101 | { |
9102 | case ck_rvalue: |
9103 | expr = decay_conversion (expr, complain); |
9104 | if (expr == error_mark_node) |
9105 | { |
9106 | if (complain & tf_error) |
9107 | { |
9108 | auto_diagnostic_group d; |
9109 | maybe_print_user_conv_context (convs); |
9110 | maybe_inform_about_fndecl_for_bogus_argument_init (fn, argnum); |
9111 | } |
9112 | return error_mark_node; |
9113 | } |
9114 | |
9115 | if ((complain & tf_warning) && fn |
9116 | && warn_suggest_attribute_format) |
9117 | { |
9118 | tree rhstype = TREE_TYPE (expr); |
9119 | const enum tree_code coder = TREE_CODE (rhstype); |
9120 | const enum tree_code codel = TREE_CODE (totype); |
9121 | if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE) |
9122 | && coder == codel |
9123 | && check_missing_format_attribute (totype, rhstype)) |
9124 | warning (OPT_Wsuggest_attribute_format, |
9125 | "argument of function call might be a candidate " |
9126 | "for a format attribute" ); |
9127 | } |
9128 | |
9129 | if (! MAYBE_CLASS_TYPE_P (totype)) |
9130 | return maybe_adjust_type_name (type: totype, expr, kind: convs->kind); |
9131 | |
9132 | /* Don't introduce copies when passing arguments along to the inherited |
9133 | constructor. */ |
9134 | if (current_function_decl |
9135 | && flag_new_inheriting_ctors |
9136 | && DECL_INHERITED_CTOR (current_function_decl)) |
9137 | return expr; |
9138 | |
9139 | if (TREE_CODE (expr) == TARGET_EXPR |
9140 | && TARGET_EXPR_LIST_INIT_P (expr)) |
9141 | /* Copy-list-initialization doesn't actually involve a copy. */ |
9142 | return expr; |
9143 | |
9144 | /* Fall through. */ |
9145 | case ck_base: |
9146 | if (convs->kind == ck_base && !convs->need_temporary_p) |
9147 | { |
9148 | /* We are going to bind a reference directly to a base-class |
9149 | subobject of EXPR. */ |
9150 | /* Build an expression for `*((base*) &expr)'. */ |
9151 | expr = convert_to_base (expr, totype, |
9152 | !c_cast_p, /*nonnull=*/true, complain); |
9153 | return expr; |
9154 | } |
9155 | |
9156 | /* Copy-initialization where the cv-unqualified version of the source |
9157 | type is the same class as, or a derived class of, the class of the |
9158 | destination [is treated as direct-initialization]. [dcl.init] */ |
9159 | flags = LOOKUP_NORMAL; |
9160 | /* This conversion is being done in the context of a user-defined |
9161 | conversion (i.e. the second step of copy-initialization), so |
9162 | don't allow any more. */ |
9163 | if (convs->user_conv_p) |
9164 | flags |= LOOKUP_NO_CONVERSION; |
9165 | /* We might be performing a conversion of the argument |
9166 | to the user-defined conversion, i.e., not a conversion of the |
9167 | result of the user-defined conversion. In which case we skip |
9168 | explicit constructors. */ |
9169 | if (convs->copy_init_p) |
9170 | flags |= LOOKUP_ONLYCONVERTING; |
9171 | expr = build_temp (expr, type: totype, flags, diagnostic_kind: &diag_kind, complain); |
9172 | if (diag_kind && complain) |
9173 | { |
9174 | auto_diagnostic_group d; |
9175 | maybe_print_user_conv_context (convs); |
9176 | maybe_inform_about_fndecl_for_bogus_argument_init (fn, argnum); |
9177 | } |
9178 | |
9179 | return build_cplus_new (totype, expr, complain); |
9180 | |
9181 | case ck_ref_bind: |
9182 | { |
9183 | tree ref_type = totype; |
9184 | |
9185 | if (convs->bad_p && !next_conversion (conv: convs)->bad_p) |
9186 | { |
9187 | tree extype = TREE_TYPE (expr); |
9188 | auto_diagnostic_group d; |
9189 | if (TYPE_REF_IS_RVALUE (ref_type) |
9190 | && lvalue_p (expr)) |
9191 | error_at (loc, "cannot bind rvalue reference of type %qH to " |
9192 | "lvalue of type %qI" , totype, extype); |
9193 | else if (!TYPE_REF_IS_RVALUE (ref_type) && !lvalue_p (expr) |
9194 | && !CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type))) |
9195 | { |
9196 | conversion *next = next_conversion (conv: convs); |
9197 | if (next->kind == ck_std) |
9198 | { |
9199 | next = next_conversion (conv: next); |
9200 | error_at (loc, "cannot bind non-const lvalue reference of " |
9201 | "type %qH to a value of type %qI" , |
9202 | totype, next->type); |
9203 | } |
9204 | else if (!CP_TYPE_CONST_P (TREE_TYPE (ref_type))) |
9205 | error_at (loc, "cannot bind non-const lvalue reference of " |
9206 | "type %qH to an rvalue of type %qI" , totype, extype); |
9207 | else // extype is volatile |
9208 | error_at (loc, "cannot bind lvalue reference of type " |
9209 | "%qH to an rvalue of type %qI" , totype, |
9210 | extype); |
9211 | } |
9212 | else if (!reference_compatible_p (TREE_TYPE (totype), t2: extype)) |
9213 | { |
9214 | /* If we're converting from T[] to T[N], don't talk |
9215 | about discarding qualifiers. (Converting from T[N] to |
9216 | T[] is allowed by P0388R4.) */ |
9217 | if (TREE_CODE (extype) == ARRAY_TYPE |
9218 | && TYPE_DOMAIN (extype) == NULL_TREE |
9219 | && TREE_CODE (TREE_TYPE (totype)) == ARRAY_TYPE |
9220 | && TYPE_DOMAIN (TREE_TYPE (totype)) != NULL_TREE) |
9221 | error_at (loc, "cannot bind reference of type %qH to %qI " |
9222 | "due to different array bounds" , totype, extype); |
9223 | else |
9224 | error_at (loc, "binding reference of type %qH to %qI " |
9225 | "discards qualifiers" , totype, extype); |
9226 | } |
9227 | else |
9228 | gcc_unreachable (); |
9229 | maybe_print_user_conv_context (convs); |
9230 | maybe_inform_about_fndecl_for_bogus_argument_init (fn, argnum); |
9231 | |
9232 | return error_mark_node; |
9233 | } |
9234 | else if (complain & tf_warning) |
9235 | maybe_warn_array_conv (loc, c: convs, expr); |
9236 | |
9237 | /* If necessary, create a temporary. |
9238 | |
9239 | VA_ARG_EXPR and CONSTRUCTOR expressions are special cases |
9240 | that need temporaries, even when their types are reference |
9241 | compatible with the type of reference being bound, so the |
9242 | upcoming call to cp_build_addr_expr doesn't fail. */ |
9243 | if (convs->need_temporary_p |
9244 | || TREE_CODE (expr) == CONSTRUCTOR |
9245 | || TREE_CODE (expr) == VA_ARG_EXPR) |
9246 | { |
9247 | /* Otherwise, a temporary of type "cv1 T1" is created and |
9248 | initialized from the initializer expression using the rules |
9249 | for a non-reference copy-initialization (8.5). */ |
9250 | |
9251 | tree type = TREE_TYPE (ref_type); |
9252 | cp_lvalue_kind lvalue = lvalue_kind (expr); |
9253 | |
9254 | gcc_assert (similar_type_p (type, next_conversion (convs)->type)); |
9255 | if (!CP_TYPE_CONST_NON_VOLATILE_P (type) |
9256 | && !TYPE_REF_IS_RVALUE (ref_type)) |
9257 | { |
9258 | /* If the reference is volatile or non-const, we |
9259 | cannot create a temporary. */ |
9260 | if (complain & tf_error) |
9261 | { |
9262 | if (lvalue & clk_bitfield) |
9263 | error_at (loc, "cannot bind bit-field %qE to %qT" , |
9264 | expr, ref_type); |
9265 | else if (lvalue & clk_packed) |
9266 | error_at (loc, "cannot bind packed field %qE to %qT" , |
9267 | expr, ref_type); |
9268 | else |
9269 | error_at (loc, "cannot bind rvalue %qE to %qT" , |
9270 | expr, ref_type); |
9271 | } |
9272 | return error_mark_node; |
9273 | } |
9274 | /* If the source is a packed field, and we must use a copy |
9275 | constructor, then building the target expr will require |
9276 | binding the field to the reference parameter to the |
9277 | copy constructor, and we'll end up with an infinite |
9278 | loop. If we can use a bitwise copy, then we'll be |
9279 | OK. */ |
9280 | if ((lvalue & clk_packed) |
9281 | && CLASS_TYPE_P (type) |
9282 | && type_has_nontrivial_copy_init (type)) |
9283 | { |
9284 | error_at (loc, "cannot bind packed field %qE to %qT" , |
9285 | expr, ref_type); |
9286 | return error_mark_node; |
9287 | } |
9288 | if (lvalue & clk_bitfield) |
9289 | { |
9290 | expr = convert_bitfield_to_declared_type (expr); |
9291 | expr = fold_convert (type, expr); |
9292 | } |
9293 | |
9294 | /* Creating &TARGET_EXPR<> in a template would break when |
9295 | tsubsting the expression, so use an IMPLICIT_CONV_EXPR |
9296 | instead. This can happen even when there's no class |
9297 | involved, e.g., when converting an integer to a reference |
9298 | type. */ |
9299 | if (processing_template_decl) |
9300 | return build1 (IMPLICIT_CONV_EXPR, totype, expr); |
9301 | expr = build_target_expr_with_type (expr, type, complain); |
9302 | } |
9303 | |
9304 | /* Take the address of the thing to which we will bind the |
9305 | reference. */ |
9306 | expr = cp_build_addr_expr (expr, complain); |
9307 | if (expr == error_mark_node) |
9308 | return error_mark_node; |
9309 | |
9310 | /* Convert it to a pointer to the type referred to by the |
9311 | reference. This will adjust the pointer if a derived to |
9312 | base conversion is being performed. */ |
9313 | expr = cp_convert (build_pointer_type (TREE_TYPE (ref_type)), |
9314 | expr, complain); |
9315 | /* Convert the pointer to the desired reference type. */ |
9316 | return build_nop (ref_type, expr); |
9317 | } |
9318 | |
9319 | case ck_lvalue: |
9320 | return decay_conversion (expr, complain); |
9321 | |
9322 | case ck_fnptr: |
9323 | /* ??? Should the address of a transaction-safe pointer point to the TM |
9324 | clone, and this conversion look up the primary function? */ |
9325 | return build_nop (totype, expr); |
9326 | |
9327 | case ck_qual: |
9328 | /* Warn about deprecated conversion if appropriate. */ |
9329 | if (complain & tf_warning) |
9330 | { |
9331 | string_conv_p (totype, expr, 1); |
9332 | maybe_warn_array_conv (loc, c: convs, expr); |
9333 | } |
9334 | break; |
9335 | |
9336 | case ck_ptr: |
9337 | if (convs->base_p) |
9338 | expr = convert_to_base (expr, totype, !c_cast_p, |
9339 | /*nonnull=*/false, complain); |
9340 | return build_nop (totype, expr); |
9341 | |
9342 | case ck_pmem: |
9343 | return convert_ptrmem (totype, expr, /*allow_inverse_p=*/false, |
9344 | c_cast_p, complain); |
9345 | |
9346 | default: |
9347 | break; |
9348 | } |
9349 | |
9350 | if (convs->check_narrowing |
9351 | && !check_narrowing (totype, expr, complain, |
9352 | convs->check_narrowing_const_only)) |
9353 | return error_mark_node; |
9354 | |
9355 | warning_sentinel w (warn_zero_as_null_pointer_constant); |
9356 | if (issue_conversion_warnings) |
9357 | expr = cp_convert_and_check (totype, expr, complain); |
9358 | else |
9359 | { |
9360 | if (TREE_CODE (expr) == EXCESS_PRECISION_EXPR) |
9361 | expr = TREE_OPERAND (expr, 0); |
9362 | expr = cp_convert (totype, expr, complain); |
9363 | } |
9364 | |
9365 | return expr; |
9366 | } |
9367 | |
9368 | /* Return true if converting FROM to TO is unsafe in a template. */ |
9369 | |
9370 | static bool |
9371 | conv_unsafe_in_template_p (tree to, tree from) |
9372 | { |
9373 | /* Converting classes involves TARGET_EXPR. */ |
9374 | if (CLASS_TYPE_P (to) || CLASS_TYPE_P (from)) |
9375 | return true; |
9376 | |
9377 | /* Converting real to integer produces FIX_TRUNC_EXPR which tsubst |
9378 | doesn't handle. */ |
9379 | if (SCALAR_FLOAT_TYPE_P (from) && INTEGRAL_OR_ENUMERATION_TYPE_P (to)) |
9380 | return true; |
9381 | |
9382 | /* Converting integer to real isn't a trivial conversion, either. */ |
9383 | if (INTEGRAL_OR_ENUMERATION_TYPE_P (from) && SCALAR_FLOAT_TYPE_P (to)) |
9384 | return true; |
9385 | |
9386 | return false; |
9387 | } |
9388 | |
9389 | /* Wrapper for convert_like_internal that handles creating |
9390 | IMPLICIT_CONV_EXPR. */ |
9391 | |
9392 | static tree |
9393 | convert_like (conversion *convs, tree expr, tree fn, int argnum, |
9394 | bool issue_conversion_warnings, bool c_cast_p, bool nested_p, |
9395 | tsubst_flags_t complain) |
9396 | { |
9397 | /* Creating &TARGET_EXPR<> in a template breaks when substituting, |
9398 | and creating a CALL_EXPR in a template breaks in finish_call_expr |
9399 | so use an IMPLICIT_CONV_EXPR for this conversion. We would have |
9400 | created such codes e.g. when calling a user-defined conversion |
9401 | function. */ |
9402 | tree conv_expr = NULL_TREE; |
9403 | if (processing_template_decl |
9404 | && convs->kind != ck_identity |
9405 | && conv_unsafe_in_template_p (to: convs->type, TREE_TYPE (expr))) |
9406 | { |
9407 | conv_expr = build1 (IMPLICIT_CONV_EXPR, convs->type, expr); |
9408 | if (convs->kind != ck_ref_bind) |
9409 | conv_expr = convert_from_reference (conv_expr); |
9410 | if (!convs->bad_p) |
9411 | return conv_expr; |
9412 | /* Do the normal processing to give the bad_p errors. But we still |
9413 | need to return the IMPLICIT_CONV_EXPR, unless we're returning |
9414 | error_mark_node. */ |
9415 | } |
9416 | expr = convert_like_internal (convs, expr, fn, argnum, |
9417 | issue_conversion_warnings, c_cast_p, |
9418 | nested_p, complain); |
9419 | if (expr == error_mark_node) |
9420 | return error_mark_node; |
9421 | return conv_expr ? conv_expr : expr; |
9422 | } |
9423 | |
9424 | /* Convenience wrapper for convert_like. */ |
9425 | |
9426 | static inline tree |
9427 | convert_like (conversion *convs, tree expr, tsubst_flags_t complain) |
9428 | { |
9429 | return convert_like (convs, expr, NULL_TREE, argnum: 0, |
9430 | /*issue_conversion_warnings=*/true, |
9431 | /*c_cast_p=*/false, /*nested_p=*/false, complain); |
9432 | } |
9433 | |
9434 | /* Convenience wrapper for convert_like. */ |
9435 | |
9436 | static inline tree |
9437 | convert_like_with_context (conversion *convs, tree expr, tree fn, int argnum, |
9438 | tsubst_flags_t complain) |
9439 | { |
9440 | return convert_like (convs, expr, fn, argnum, |
9441 | /*issue_conversion_warnings=*/true, |
9442 | /*c_cast_p=*/false, /*nested_p=*/false, complain); |
9443 | } |
9444 | |
9445 | /* ARG is being passed to a varargs function. Perform any conversions |
9446 | required. Return the converted value. */ |
9447 | |
9448 | tree |
9449 | convert_arg_to_ellipsis (tree arg, tsubst_flags_t complain) |
9450 | { |
9451 | tree arg_type = TREE_TYPE (arg); |
9452 | location_t loc = cp_expr_loc_or_input_loc (t: arg); |
9453 | |
9454 | /* [expr.call] |
9455 | |
9456 | If the argument has integral or enumeration type that is subject |
9457 | to the integral promotions (_conv.prom_), or a floating-point |
9458 | type that is subject to the floating-point promotion |
9459 | (_conv.fpprom_), the value of the argument is converted to the |
9460 | promoted type before the call. */ |
9461 | if (SCALAR_FLOAT_TYPE_P (arg_type) |
9462 | && (TYPE_PRECISION (arg_type) |
9463 | < TYPE_PRECISION (double_type_node)) |
9464 | && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (arg_type)) |
9465 | && !extended_float_type_p (type: arg_type)) |
9466 | { |
9467 | if ((complain & tf_warning) |
9468 | && warn_double_promotion && !c_inhibit_evaluation_warnings) |
9469 | warning_at (loc, OPT_Wdouble_promotion, |
9470 | "implicit conversion from %qH to %qI when passing " |
9471 | "argument to function" , |
9472 | arg_type, double_type_node); |
9473 | if (TREE_CODE (arg) == EXCESS_PRECISION_EXPR) |
9474 | arg = TREE_OPERAND (arg, 0); |
9475 | arg = mark_rvalue_use (arg); |
9476 | arg = convert_to_real_nofold (double_type_node, x: arg); |
9477 | } |
9478 | else if (NULLPTR_TYPE_P (arg_type)) |
9479 | { |
9480 | arg = mark_rvalue_use (arg); |
9481 | if (TREE_SIDE_EFFECTS (arg)) |
9482 | { |
9483 | warning_sentinel w(warn_unused_result); |
9484 | arg = cp_build_compound_expr (arg, null_pointer_node, complain); |
9485 | } |
9486 | else |
9487 | arg = null_pointer_node; |
9488 | } |
9489 | else if (INTEGRAL_OR_ENUMERATION_TYPE_P (arg_type)) |
9490 | { |
9491 | if (SCOPED_ENUM_P (arg_type)) |
9492 | { |
9493 | tree prom = cp_convert (ENUM_UNDERLYING_TYPE (arg_type), arg, |
9494 | complain); |
9495 | prom = cp_perform_integral_promotions (prom, complain); |
9496 | if (abi_version_crosses (6) |
9497 | && TYPE_MODE (TREE_TYPE (prom)) != TYPE_MODE (arg_type) |
9498 | && (complain & tf_warning)) |
9499 | warning_at (loc, OPT_Wabi, "scoped enum %qT passed through %<...%>" |
9500 | " as %qT before %<-fabi-version=6%>, %qT after" , |
9501 | arg_type, |
9502 | TREE_TYPE (prom), ENUM_UNDERLYING_TYPE (arg_type)); |
9503 | if (!abi_version_at_least (6)) |
9504 | arg = prom; |
9505 | } |
9506 | else |
9507 | arg = cp_perform_integral_promotions (arg, complain); |
9508 | } |
9509 | else |
9510 | /* [expr.call] |
9511 | |
9512 | The lvalue-to-rvalue, array-to-pointer, and function-to-pointer |
9513 | standard conversions are performed. */ |
9514 | arg = decay_conversion (arg, complain); |
9515 | |
9516 | arg = require_complete_type (arg, complain); |
9517 | arg_type = TREE_TYPE (arg); |
9518 | |
9519 | if (arg != error_mark_node |
9520 | /* In a template (or ill-formed code), we can have an incomplete type |
9521 | even after require_complete_type, in which case we don't know |
9522 | whether it has trivial copy or not. */ |
9523 | && COMPLETE_TYPE_P (arg_type) |
9524 | && !cp_unevaluated_operand) |
9525 | { |
9526 | /* [expr.call] 5.2.2/7: |
9527 | Passing a potentially-evaluated argument of class type (Clause 9) |
9528 | with a non-trivial copy constructor or a non-trivial destructor |
9529 | with no corresponding parameter is conditionally-supported, with |
9530 | implementation-defined semantics. |
9531 | |
9532 | We support it as pass-by-invisible-reference, just like a normal |
9533 | value parameter. |
9534 | |
9535 | If the call appears in the context of a sizeof expression, |
9536 | it is not potentially-evaluated. */ |
9537 | if (type_has_nontrivial_copy_init (arg_type) |
9538 | || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (arg_type)) |
9539 | { |
9540 | arg = force_rvalue (arg, complain); |
9541 | if (complain & tf_warning) |
9542 | warning (OPT_Wconditionally_supported, |
9543 | "passing objects of non-trivially-copyable " |
9544 | "type %q#T through %<...%> is conditionally supported" , |
9545 | arg_type); |
9546 | return build1 (ADDR_EXPR, build_reference_type (arg_type), arg); |
9547 | } |
9548 | /* Build up a real lvalue-to-rvalue conversion in case the |
9549 | copy constructor is trivial but not callable. */ |
9550 | else if (CLASS_TYPE_P (arg_type)) |
9551 | force_rvalue (arg, complain); |
9552 | |
9553 | } |
9554 | |
9555 | return arg; |
9556 | } |
9557 | |
9558 | /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */ |
9559 | |
9560 | tree |
9561 | build_x_va_arg (location_t loc, tree expr, tree type) |
9562 | { |
9563 | if (processing_template_decl) |
9564 | { |
9565 | tree r = build_min (VA_ARG_EXPR, type, expr); |
9566 | SET_EXPR_LOCATION (r, loc); |
9567 | return r; |
9568 | } |
9569 | |
9570 | type = complete_type_or_else (type, NULL_TREE); |
9571 | |
9572 | if (expr == error_mark_node || !type) |
9573 | return error_mark_node; |
9574 | |
9575 | expr = mark_lvalue_use (expr); |
9576 | |
9577 | if (TYPE_REF_P (type)) |
9578 | { |
9579 | error ("cannot receive reference type %qT through %<...%>" , type); |
9580 | return error_mark_node; |
9581 | } |
9582 | |
9583 | if (type_has_nontrivial_copy_init (type) |
9584 | || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
9585 | { |
9586 | /* conditionally-supported behavior [expr.call] 5.2.2/7. Let's treat |
9587 | it as pass by invisible reference. */ |
9588 | warning_at (loc, OPT_Wconditionally_supported, |
9589 | "receiving objects of non-trivially-copyable type %q#T " |
9590 | "through %<...%> is conditionally-supported" , type); |
9591 | |
9592 | tree ref = cp_build_reference_type (type, false); |
9593 | expr = build_va_arg (loc, expr, ref); |
9594 | return convert_from_reference (expr); |
9595 | } |
9596 | |
9597 | tree ret = build_va_arg (loc, expr, type); |
9598 | if (CLASS_TYPE_P (type)) |
9599 | /* Wrap the VA_ARG_EXPR in a TARGET_EXPR now so other code doesn't need to |
9600 | know how to handle it. */ |
9601 | ret = get_target_expr (ret); |
9602 | return ret; |
9603 | } |
9604 | |
9605 | /* TYPE has been given to va_arg. Apply the default conversions which |
9606 | would have happened when passed via ellipsis. Return the promoted |
9607 | type, or the passed type if there is no change. */ |
9608 | |
9609 | tree |
9610 | cxx_type_promotes_to (tree type) |
9611 | { |
9612 | tree promote; |
9613 | |
9614 | /* Perform the array-to-pointer and function-to-pointer |
9615 | conversions. */ |
9616 | type = type_decays_to (type); |
9617 | |
9618 | promote = type_promotes_to (type); |
9619 | if (same_type_p (type, promote)) |
9620 | promote = type; |
9621 | |
9622 | return promote; |
9623 | } |
9624 | |
9625 | /* ARG is a default argument expression being passed to a parameter of |
9626 | the indicated TYPE, which is a parameter to FN. PARMNUM is the |
9627 | zero-based argument number. Do any required conversions. Return |
9628 | the converted value. */ |
9629 | |
9630 | static GTY(()) vec<tree, va_gc> *default_arg_context; |
9631 | void |
9632 | push_defarg_context (tree fn) |
9633 | { vec_safe_push (v&: default_arg_context, obj: fn); } |
9634 | |
9635 | void |
9636 | pop_defarg_context (void) |
9637 | { default_arg_context->pop (); } |
9638 | |
9639 | tree |
9640 | convert_default_arg (tree type, tree arg, tree fn, int parmnum, |
9641 | tsubst_flags_t complain) |
9642 | { |
9643 | int i; |
9644 | tree t; |
9645 | |
9646 | /* See through clones. */ |
9647 | fn = DECL_ORIGIN (fn); |
9648 | /* And inheriting ctors. */ |
9649 | if (flag_new_inheriting_ctors) |
9650 | fn = strip_inheriting_ctors (fn); |
9651 | |
9652 | /* Detect recursion. */ |
9653 | FOR_EACH_VEC_SAFE_ELT (default_arg_context, i, t) |
9654 | if (t == fn) |
9655 | { |
9656 | if (complain & tf_error) |
9657 | error ("recursive evaluation of default argument for %q#D" , fn); |
9658 | return error_mark_node; |
9659 | } |
9660 | |
9661 | /* If the ARG is an unparsed default argument expression, the |
9662 | conversion cannot be performed. */ |
9663 | if (TREE_CODE (arg) == DEFERRED_PARSE) |
9664 | { |
9665 | if (complain & tf_error) |
9666 | error ("call to %qD uses the default argument for parameter %P, which " |
9667 | "is not yet defined" , fn, parmnum); |
9668 | return error_mark_node; |
9669 | } |
9670 | |
9671 | push_defarg_context (fn); |
9672 | |
9673 | if (fn && DECL_TEMPLATE_INFO (fn)) |
9674 | arg = tsubst_default_argument (fn, parmnum, type, arg, complain); |
9675 | |
9676 | /* Due to: |
9677 | |
9678 | [dcl.fct.default] |
9679 | |
9680 | The names in the expression are bound, and the semantic |
9681 | constraints are checked, at the point where the default |
9682 | expressions appears. |
9683 | |
9684 | we must not perform access checks here. */ |
9685 | push_deferring_access_checks (dk_no_check); |
9686 | /* We must make a copy of ARG, in case subsequent processing |
9687 | alters any part of it. */ |
9688 | arg = break_out_target_exprs (arg, /*clear location*/true); |
9689 | |
9690 | arg = convert_for_initialization (0, type, arg, LOOKUP_IMPLICIT, |
9691 | ICR_DEFAULT_ARGUMENT, fn, parmnum, |
9692 | complain); |
9693 | arg = convert_for_arg_passing (type, arg, complain); |
9694 | pop_deferring_access_checks(); |
9695 | |
9696 | pop_defarg_context (); |
9697 | |
9698 | return arg; |
9699 | } |
9700 | |
9701 | /* Returns the type which will really be used for passing an argument of |
9702 | type TYPE. */ |
9703 | |
9704 | tree |
9705 | type_passed_as (tree type) |
9706 | { |
9707 | /* Pass classes with copy ctors by invisible reference. */ |
9708 | if (TREE_ADDRESSABLE (type)) |
9709 | type = build_reference_type (type); |
9710 | |
9711 | return type; |
9712 | } |
9713 | |
9714 | /* Actually perform the appropriate conversion. */ |
9715 | |
9716 | tree |
9717 | convert_for_arg_passing (tree type, tree val, tsubst_flags_t complain) |
9718 | { |
9719 | tree bitfield_type; |
9720 | |
9721 | /* If VAL is a bitfield, then -- since it has already been converted |
9722 | to TYPE -- it cannot have a precision greater than TYPE. |
9723 | |
9724 | If it has a smaller precision, we must widen it here. For |
9725 | example, passing "int f:3;" to a function expecting an "int" will |
9726 | not result in any conversion before this point. |
9727 | |
9728 | If the precision is the same we must not risk widening. For |
9729 | example, the COMPONENT_REF for a 32-bit "long long" bitfield will |
9730 | often have type "int", even though the C++ type for the field is |
9731 | "long long". If the value is being passed to a function |
9732 | expecting an "int", then no conversions will be required. But, |
9733 | if we call convert_bitfield_to_declared_type, the bitfield will |
9734 | be converted to "long long". */ |
9735 | bitfield_type = is_bitfield_expr_with_lowered_type (val); |
9736 | if (bitfield_type |
9737 | && TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)) |
9738 | val = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type), x: val); |
9739 | |
9740 | if (val == error_mark_node) |
9741 | ; |
9742 | /* Pass classes with copy ctors by invisible reference. */ |
9743 | else if (TREE_ADDRESSABLE (type)) |
9744 | val = build1 (ADDR_EXPR, build_reference_type (type), val); |
9745 | if (complain & tf_warning) |
9746 | maybe_warn_parm_abi (type, cp_expr_loc_or_input_loc (t: val)); |
9747 | |
9748 | if (complain & tf_warning) |
9749 | warn_for_address_of_packed_member (type, val); |
9750 | |
9751 | /* gimplify_arg elides TARGET_EXPRs that initialize a function argument, |
9752 | unless the initializer is a CONSTRUCTOR. In that case, we fail to |
9753 | elide the copy anyway. See that function for more information. */ |
9754 | if (SIMPLE_TARGET_EXPR_P (val) |
9755 | && TREE_CODE (TARGET_EXPR_INITIAL (val)) != CONSTRUCTOR) |
9756 | set_target_expr_eliding (val); |
9757 | |
9758 | return val; |
9759 | } |
9760 | |
9761 | /* Returns non-zero iff FN is a function with magic varargs, i.e. ones for |
9762 | which just decay_conversion or no conversions at all should be done. |
9763 | This is true for some builtins which don't act like normal functions. |
9764 | Return 2 if just decay_conversion and removal of excess precision should |
9765 | be done, 1 if just decay_conversion. Return 3 for special treatment of |
9766 | the 3rd argument for __builtin_*_overflow_p. Return 4 for special |
9767 | treatment of the 1st argument for |
9768 | __builtin_{clz,ctz,clrsb,ffs,parity,popcount}g. */ |
9769 | |
9770 | int |
9771 | magic_varargs_p (tree fn) |
9772 | { |
9773 | if (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL) |
9774 | switch (DECL_FUNCTION_CODE (decl: fn)) |
9775 | { |
9776 | case BUILT_IN_CLASSIFY_TYPE: |
9777 | case BUILT_IN_CONSTANT_P: |
9778 | case BUILT_IN_NEXT_ARG: |
9779 | case BUILT_IN_VA_START: |
9780 | return 1; |
9781 | |
9782 | case BUILT_IN_ADD_OVERFLOW_P: |
9783 | case BUILT_IN_SUB_OVERFLOW_P: |
9784 | case BUILT_IN_MUL_OVERFLOW_P: |
9785 | return 3; |
9786 | |
9787 | case BUILT_IN_ISFINITE: |
9788 | case BUILT_IN_ISINF: |
9789 | case BUILT_IN_ISINF_SIGN: |
9790 | case BUILT_IN_ISNAN: |
9791 | case BUILT_IN_ISNORMAL: |
9792 | case BUILT_IN_FPCLASSIFY: |
9793 | return 2; |
9794 | |
9795 | case BUILT_IN_CLZG: |
9796 | case BUILT_IN_CTZG: |
9797 | case BUILT_IN_CLRSBG: |
9798 | case BUILT_IN_FFSG: |
9799 | case BUILT_IN_PARITYG: |
9800 | case BUILT_IN_POPCOUNTG: |
9801 | return 4; |
9802 | |
9803 | default: |
9804 | return lookup_attribute (attr_name: "type generic" , |
9805 | TYPE_ATTRIBUTES (TREE_TYPE (fn))) != 0; |
9806 | } |
9807 | |
9808 | return 0; |
9809 | } |
9810 | |
9811 | /* Returns the decl of the dispatcher function if FN is a function version. */ |
9812 | |
9813 | tree |
9814 | get_function_version_dispatcher (tree fn) |
9815 | { |
9816 | tree dispatcher_decl = NULL; |
9817 | |
9818 | if (DECL_LOCAL_DECL_P (fn)) |
9819 | fn = DECL_LOCAL_DECL_ALIAS (fn); |
9820 | |
9821 | gcc_assert (TREE_CODE (fn) == FUNCTION_DECL |
9822 | && DECL_FUNCTION_VERSIONED (fn)); |
9823 | |
9824 | gcc_assert (targetm.get_function_versions_dispatcher); |
9825 | dispatcher_decl = targetm.get_function_versions_dispatcher (fn); |
9826 | |
9827 | if (dispatcher_decl == NULL) |
9828 | { |
9829 | error_at (input_location, "use of multiversioned function " |
9830 | "without a default" ); |
9831 | return NULL; |
9832 | } |
9833 | |
9834 | retrofit_lang_decl (dispatcher_decl); |
9835 | gcc_assert (dispatcher_decl != NULL); |
9836 | return dispatcher_decl; |
9837 | } |
9838 | |
9839 | /* fn is a function version dispatcher that is marked used. Mark all the |
9840 | semantically identical function versions it will dispatch as used. */ |
9841 | |
9842 | void |
9843 | mark_versions_used (tree fn) |
9844 | { |
9845 | struct cgraph_node *node; |
9846 | struct cgraph_function_version_info *node_v; |
9847 | struct cgraph_function_version_info *it_v; |
9848 | |
9849 | gcc_assert (TREE_CODE (fn) == FUNCTION_DECL); |
9850 | |
9851 | node = cgraph_node::get (decl: fn); |
9852 | if (node == NULL) |
9853 | return; |
9854 | |
9855 | gcc_assert (node->dispatcher_function); |
9856 | |
9857 | node_v = node->function_version (); |
9858 | if (node_v == NULL) |
9859 | return; |
9860 | |
9861 | /* All semantically identical versions are chained. Traverse and mark each |
9862 | one of them as used. */ |
9863 | it_v = node_v->next; |
9864 | while (it_v != NULL) |
9865 | { |
9866 | mark_used (it_v->this_node->decl); |
9867 | it_v = it_v->next; |
9868 | } |
9869 | } |
9870 | |
9871 | /* Build a call to "the copy constructor" for the type of A, even if it |
9872 | wouldn't be selected by normal overload resolution. Used for |
9873 | diagnostics. */ |
9874 | |
9875 | static tree |
9876 | call_copy_ctor (tree a, tsubst_flags_t complain) |
9877 | { |
9878 | tree ctype = TYPE_MAIN_VARIANT (TREE_TYPE (a)); |
9879 | tree binfo = TYPE_BINFO (ctype); |
9880 | tree copy = get_copy_ctor (ctype, complain); |
9881 | copy = build_baselink (binfo, binfo, copy, NULL_TREE); |
9882 | tree ob = build_dummy_object (ctype); |
9883 | releasing_vec args (make_tree_vector_single (a)); |
9884 | tree r = build_new_method_call (ob, copy, &args, NULL_TREE, |
9885 | LOOKUP_NORMAL, NULL, complain); |
9886 | return r; |
9887 | } |
9888 | |
9889 | /* Return the base constructor corresponding to COMPLETE_CTOR or NULL_TREE. */ |
9890 | |
9891 | static tree |
9892 | base_ctor_for (tree complete_ctor) |
9893 | { |
9894 | tree clone; |
9895 | FOR_EACH_CLONE (clone, DECL_CLONED_FUNCTION (complete_ctor)) |
9896 | if (DECL_BASE_CONSTRUCTOR_P (clone)) |
9897 | return clone; |
9898 | return NULL_TREE; |
9899 | } |
9900 | |
9901 | /* Try to make EXP suitable to be used as the initializer for a base subobject, |
9902 | and return whether we were successful. EXP must have already been cleared |
9903 | by unsafe_copy_elision_p{,_opt}. */ |
9904 | |
9905 | static bool |
9906 | make_base_init_ok (tree exp) |
9907 | { |
9908 | if (TREE_CODE (exp) == TARGET_EXPR) |
9909 | exp = TARGET_EXPR_INITIAL (exp); |
9910 | while (TREE_CODE (exp) == COMPOUND_EXPR) |
9911 | exp = TREE_OPERAND (exp, 1); |
9912 | if (TREE_CODE (exp) == COND_EXPR) |
9913 | { |
9914 | bool ret = make_base_init_ok (TREE_OPERAND (exp, 2)); |
9915 | if (tree op1 = TREE_OPERAND (exp, 1)) |
9916 | { |
9917 | bool r1 = make_base_init_ok (exp: op1); |
9918 | /* If unsafe_copy_elision_p was false, the arms should match. */ |
9919 | gcc_assert (r1 == ret); |
9920 | } |
9921 | return ret; |
9922 | } |
9923 | if (TREE_CODE (exp) != AGGR_INIT_EXPR) |
9924 | /* A trivial copy is OK. */ |
9925 | return true; |
9926 | if (!AGGR_INIT_VIA_CTOR_P (exp)) |
9927 | /* unsafe_copy_elision_p_opt must have said this is OK. */ |
9928 | return true; |
9929 | tree fn = cp_get_callee_fndecl_nofold (exp); |
9930 | if (DECL_BASE_CONSTRUCTOR_P (fn)) |
9931 | return true; |
9932 | gcc_assert (DECL_COMPLETE_CONSTRUCTOR_P (fn)); |
9933 | fn = base_ctor_for (complete_ctor: fn); |
9934 | if (!fn || DECL_HAS_VTT_PARM_P (fn)) |
9935 | /* The base constructor has more parameters, so we can't just change the |
9936 | call target. It would be possible to splice in the appropriate |
9937 | arguments, but probably not worth the complexity. */ |
9938 | return false; |
9939 | mark_used (fn); |
9940 | AGGR_INIT_EXPR_FN (exp) = build_address (fn); |
9941 | return true; |
9942 | } |
9943 | |
9944 | /* Return 2 if T refers to a base, 1 if a potentially-overlapping field, |
9945 | neither of which can be used for return by invisible reference. We avoid |
9946 | doing C++17 mandatory copy elision for either of these cases. |
9947 | |
9948 | This returns non-zero even if the type of T has no tail padding that other |
9949 | data could be allocated into, because that depends on the particular ABI. |
9950 | unsafe_copy_elision_p_opt does consider whether there is padding. */ |
9951 | |
9952 | int |
9953 | unsafe_return_slot_p (tree t) |
9954 | { |
9955 | /* Check empty bases separately, they don't have fields. */ |
9956 | if (is_empty_base_ref (t)) |
9957 | return 2; |
9958 | |
9959 | /* A delegating constructor might be used to initialize a base. */ |
9960 | if (current_function_decl |
9961 | && DECL_CONSTRUCTOR_P (current_function_decl) |
9962 | && (t == current_class_ref |
9963 | || tree_strip_nop_conversions (t) == current_class_ptr)) |
9964 | return 2; |
9965 | |
9966 | STRIP_NOPS (t); |
9967 | if (TREE_CODE (t) == ADDR_EXPR) |
9968 | t = TREE_OPERAND (t, 0); |
9969 | if (TREE_CODE (t) == COMPONENT_REF) |
9970 | t = TREE_OPERAND (t, 1); |
9971 | if (TREE_CODE (t) != FIELD_DECL) |
9972 | return false; |
9973 | if (!CLASS_TYPE_P (TREE_TYPE (t))) |
9974 | /* The middle-end will do the right thing for scalar types. */ |
9975 | return false; |
9976 | if (DECL_FIELD_IS_BASE (t)) |
9977 | return 2; |
9978 | if (lookup_attribute (attr_name: "no_unique_address" , DECL_ATTRIBUTES (t))) |
9979 | return 1; |
9980 | return 0; |
9981 | } |
9982 | |
9983 | /* True IFF EXP is a prvalue that represents return by invisible reference. */ |
9984 | |
9985 | static bool |
9986 | init_by_return_slot_p (tree exp) |
9987 | { |
9988 | /* Copy elision only happens with a TARGET_EXPR. */ |
9989 | if (TREE_CODE (exp) != TARGET_EXPR) |
9990 | return false; |
9991 | tree init = TARGET_EXPR_INITIAL (exp); |
9992 | /* build_compound_expr pushes COMPOUND_EXPR inside TARGET_EXPR. */ |
9993 | while (TREE_CODE (init) == COMPOUND_EXPR) |
9994 | init = TREE_OPERAND (init, 1); |
9995 | if (TREE_CODE (init) == COND_EXPR) |
9996 | { |
9997 | /* We'll end up copying from each of the arms of the COND_EXPR directly |
9998 | into the target, so look at them. */ |
9999 | if (tree op = TREE_OPERAND (init, 1)) |
10000 | if (init_by_return_slot_p (exp: op)) |
10001 | return true; |
10002 | return init_by_return_slot_p (TREE_OPERAND (init, 2)); |
10003 | } |
10004 | return (TREE_CODE (init) == AGGR_INIT_EXPR |
10005 | && !AGGR_INIT_VIA_CTOR_P (init)); |
10006 | } |
10007 | |
10008 | /* We can't elide a copy from a function returning by value to a |
10009 | potentially-overlapping subobject, as the callee might clobber tail padding. |
10010 | Return true iff this could be that case. |
10011 | |
10012 | Places that use this function (or _opt) to decide to elide a copy should |
10013 | probably use make_safe_copy_elision instead. */ |
10014 | |
10015 | bool |
10016 | unsafe_copy_elision_p (tree target, tree exp) |
10017 | { |
10018 | return unsafe_return_slot_p (t: target) && init_by_return_slot_p (exp); |
10019 | } |
10020 | |
10021 | /* As above, but for optimization allow more cases that are actually safe. */ |
10022 | |
10023 | static bool |
10024 | unsafe_copy_elision_p_opt (tree target, tree exp) |
10025 | { |
10026 | tree type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); |
10027 | /* It's safe to elide the copy for a class with no tail padding. */ |
10028 | if (!is_empty_class (type) |
10029 | && tree_int_cst_equal (TYPE_SIZE (type), CLASSTYPE_SIZE (type))) |
10030 | return false; |
10031 | return unsafe_copy_elision_p (target, exp); |
10032 | } |
10033 | |
10034 | /* Try to make EXP suitable to be used as the initializer for TARGET, |
10035 | and return whether we were successful. */ |
10036 | |
10037 | bool |
10038 | make_safe_copy_elision (tree target, tree exp) |
10039 | { |
10040 | int uns = unsafe_return_slot_p (t: target); |
10041 | if (!uns) |
10042 | return true; |
10043 | if (init_by_return_slot_p (exp)) |
10044 | return false; |
10045 | if (uns == 1) |
10046 | return true; |
10047 | return make_base_init_ok (exp); |
10048 | } |
10049 | |
10050 | /* True IFF the result of the conversion C is a prvalue. */ |
10051 | |
10052 | static bool |
10053 | conv_is_prvalue (conversion *c) |
10054 | { |
10055 | if (c->kind == ck_rvalue) |
10056 | return true; |
10057 | if (c->kind == ck_base && c->need_temporary_p) |
10058 | return true; |
10059 | if (c->kind == ck_user && !TYPE_REF_P (c->type)) |
10060 | return true; |
10061 | if (c->kind == ck_identity && c->u.expr |
10062 | && TREE_CODE (c->u.expr) == TARGET_EXPR) |
10063 | return true; |
10064 | |
10065 | return false; |
10066 | } |
10067 | |
10068 | /* True iff C is a conversion that binds a reference to a prvalue. */ |
10069 | |
10070 | static bool |
10071 | conv_binds_ref_to_prvalue (conversion *c) |
10072 | { |
10073 | if (c->kind != ck_ref_bind) |
10074 | return false; |
10075 | if (c->need_temporary_p) |
10076 | return true; |
10077 | |
10078 | return conv_is_prvalue (c: next_conversion (conv: c)); |
10079 | } |
10080 | |
10081 | /* True iff EXPR represents a (subobject of a) temporary. */ |
10082 | |
10083 | static bool |
10084 | expr_represents_temporary_p (tree expr) |
10085 | { |
10086 | while (handled_component_p (t: expr)) |
10087 | expr = TREE_OPERAND (expr, 0); |
10088 | return TREE_CODE (expr) == TARGET_EXPR; |
10089 | } |
10090 | |
10091 | /* True iff C is a conversion that binds a reference to a temporary. |
10092 | This is a superset of conv_binds_ref_to_prvalue: here we're also |
10093 | interested in xvalues. */ |
10094 | |
10095 | static bool |
10096 | conv_binds_ref_to_temporary (conversion *c) |
10097 | { |
10098 | if (conv_binds_ref_to_prvalue (c)) |
10099 | return true; |
10100 | if (c->kind != ck_ref_bind) |
10101 | return false; |
10102 | c = next_conversion (conv: c); |
10103 | /* This is the case for |
10104 | struct Base {}; |
10105 | struct Derived : Base {}; |
10106 | const Base& b(Derived{}); |
10107 | where we bind 'b' to the Base subobject of a temporary object of type |
10108 | Derived. The subobject is an xvalue; the whole object is a prvalue. |
10109 | |
10110 | The ck_base doesn't have to be present for cases like X{}.m. */ |
10111 | if (c->kind == ck_base) |
10112 | c = next_conversion (conv: c); |
10113 | if (c->kind == ck_identity && c->u.expr |
10114 | && expr_represents_temporary_p (expr: c->u.expr)) |
10115 | return true; |
10116 | return false; |
10117 | } |
10118 | |
10119 | /* Return tristate::TS_TRUE if converting EXPR to a reference type TYPE binds |
10120 | the reference to a temporary. Return tristate::TS_FALSE if converting |
10121 | EXPR to a reference type TYPE doesn't bind the reference to a temporary. If |
10122 | the conversion is invalid or bad, return tristate::TS_UNKNOWN. DIRECT_INIT_P |
10123 | says whether the conversion should be done in direct- or copy-initialization |
10124 | context. */ |
10125 | |
10126 | tristate |
10127 | ref_conv_binds_to_temporary (tree type, tree expr, bool direct_init_p/*=false*/) |
10128 | { |
10129 | gcc_assert (TYPE_REF_P (type)); |
10130 | |
10131 | conversion_obstack_sentinel cos; |
10132 | |
10133 | const int flags = direct_init_p ? LOOKUP_NORMAL : LOOKUP_IMPLICIT; |
10134 | conversion *conv = implicit_conversion (to: type, TREE_TYPE (expr), expr, |
10135 | /*c_cast_p=*/false, flags, complain: tf_none); |
10136 | tristate ret (tristate::TS_UNKNOWN); |
10137 | if (conv && !conv->bad_p) |
10138 | ret = tristate (conv_binds_ref_to_temporary (c: conv)); |
10139 | |
10140 | return ret; |
10141 | } |
10142 | |
10143 | /* Call the trivial destructor for INSTANCE, which can be either an lvalue of |
10144 | class type or a pointer to class type. If NO_PTR_DEREF is true and |
10145 | INSTANCE has pointer type, clobber the pointer rather than what it points |
10146 | to. */ |
10147 | |
10148 | tree |
10149 | build_trivial_dtor_call (tree instance, bool no_ptr_deref) |
10150 | { |
10151 | gcc_assert (!is_dummy_object (instance)); |
10152 | |
10153 | if (!flag_lifetime_dse) |
10154 | { |
10155 | no_clobber: |
10156 | return fold_convert (void_type_node, instance); |
10157 | } |
10158 | |
10159 | if (INDIRECT_TYPE_P (TREE_TYPE (instance)) |
10160 | && (!no_ptr_deref || TYPE_REF_P (TREE_TYPE (instance)))) |
10161 | { |
10162 | if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (instance)))) |
10163 | goto no_clobber; |
10164 | instance = cp_build_fold_indirect_ref (instance); |
10165 | } |
10166 | |
10167 | /* A trivial destructor should still clobber the object. */ |
10168 | tree clobber = build_clobber (TREE_TYPE (instance), CLOBBER_OBJECT_END); |
10169 | return build2 (MODIFY_EXPR, void_type_node, |
10170 | instance, clobber); |
10171 | } |
10172 | |
10173 | /* Return true if in an immediate function context, or an unevaluated operand, |
10174 | or a default argument/member initializer, or a subexpression of an immediate |
10175 | invocation. */ |
10176 | |
10177 | bool |
10178 | in_immediate_context () |
10179 | { |
10180 | return (cp_unevaluated_operand != 0 |
10181 | || (current_function_decl != NULL_TREE |
10182 | && DECL_IMMEDIATE_FUNCTION_P (current_function_decl)) |
10183 | /* DR 2631: default args and DMI aren't immediately evaluated. |
10184 | Return true here so immediate_invocation_p returns false. */ |
10185 | || current_binding_level->kind == sk_function_parms |
10186 | || current_binding_level->kind == sk_template_parms |
10187 | || parsing_nsdmi () |
10188 | || in_consteval_if_p); |
10189 | } |
10190 | |
10191 | /* Return true if a call to FN with number of arguments NARGS |
10192 | is an immediate invocation. */ |
10193 | |
10194 | bool |
10195 | immediate_invocation_p (tree fn) |
10196 | { |
10197 | return (TREE_CODE (fn) == FUNCTION_DECL |
10198 | && DECL_IMMEDIATE_FUNCTION_P (fn) |
10199 | && !in_immediate_context ()); |
10200 | } |
10201 | |
10202 | /* Subroutine of the various build_*_call functions. Overload resolution |
10203 | has chosen a winning candidate CAND; build up a CALL_EXPR accordingly. |
10204 | ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a |
10205 | bitmask of various LOOKUP_* flags which apply to the call itself. */ |
10206 | |
10207 | static tree |
10208 | build_over_call (struct z_candidate *cand, int flags, tsubst_flags_t complain) |
10209 | { |
10210 | tree fn = cand->fn; |
10211 | const vec<tree, va_gc> *args = cand->args; |
10212 | tree first_arg = cand->first_arg; |
10213 | conversion **convs = cand->convs; |
10214 | tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn)); |
10215 | int parmlen; |
10216 | tree val; |
10217 | int nargs; |
10218 | tree *argarray; |
10219 | bool already_used = false; |
10220 | |
10221 | /* In a template, there is no need to perform all of the work that |
10222 | is normally done. We are only interested in the type of the call |
10223 | expression, i.e., the return type of the function. Any semantic |
10224 | errors will be deferred until the template is instantiated. */ |
10225 | if (processing_template_decl) |
10226 | { |
10227 | if (undeduced_auto_decl (fn)) |
10228 | mark_used (fn, complain); |
10229 | else |
10230 | /* Otherwise set TREE_USED for the benefit of -Wunused-function. |
10231 | See PR80598. */ |
10232 | TREE_USED (fn) = 1; |
10233 | |
10234 | tree return_type = TREE_TYPE (TREE_TYPE (fn)); |
10235 | tree callee; |
10236 | if (first_arg == NULL_TREE) |
10237 | { |
10238 | callee = build_addr_func (function: fn, complain); |
10239 | if (callee == error_mark_node) |
10240 | return error_mark_node; |
10241 | } |
10242 | else |
10243 | { |
10244 | callee = build_baselink (cand->conversion_path, cand->access_path, |
10245 | fn, NULL_TREE); |
10246 | callee = build_min (COMPONENT_REF, TREE_TYPE (fn), |
10247 | first_arg, callee, NULL_TREE); |
10248 | } |
10249 | |
10250 | tree expr = build_call_vec (return_type, callee, args); |
10251 | SET_EXPR_LOCATION (expr, input_location); |
10252 | if (TREE_THIS_VOLATILE (fn) && cfun) |
10253 | current_function_returns_abnormally = 1; |
10254 | if (TREE_DEPRECATED (fn) |
10255 | && warning_suppressed_at (input_location, |
10256 | OPT_Wdeprecated_declarations)) |
10257 | /* Make the expr consistent with the location. */ |
10258 | TREE_NO_WARNING (expr) = true; |
10259 | if (immediate_invocation_p (fn)) |
10260 | { |
10261 | tree obj_arg = NULL_TREE, exprimm = expr; |
10262 | if (DECL_CONSTRUCTOR_P (fn)) |
10263 | obj_arg = first_arg; |
10264 | if (obj_arg |
10265 | && is_dummy_object (obj_arg) |
10266 | && !type_dependent_expression_p (obj_arg)) |
10267 | { |
10268 | exprimm = build_cplus_new (DECL_CONTEXT (fn), expr, complain); |
10269 | obj_arg = NULL_TREE; |
10270 | } |
10271 | /* Look through *(const T *)&obj. */ |
10272 | else if (obj_arg && INDIRECT_REF_P (obj_arg)) |
10273 | { |
10274 | tree addr = TREE_OPERAND (obj_arg, 0); |
10275 | STRIP_NOPS (addr); |
10276 | if (TREE_CODE (addr) == ADDR_EXPR) |
10277 | { |
10278 | tree typeo = TREE_TYPE (obj_arg); |
10279 | tree typei = TREE_TYPE (TREE_OPERAND (addr, 0)); |
10280 | if (same_type_ignoring_top_level_qualifiers_p (typeo, typei)) |
10281 | obj_arg = TREE_OPERAND (addr, 0); |
10282 | } |
10283 | } |
10284 | fold_non_dependent_expr (exprimm, complain, |
10285 | /*manifestly_const_eval=*/true, |
10286 | obj_arg); |
10287 | } |
10288 | return convert_from_reference (expr); |
10289 | } |
10290 | |
10291 | /* Give any warnings we noticed during overload resolution. */ |
10292 | if (cand->warnings && (complain & tf_warning)) |
10293 | { |
10294 | struct candidate_warning *w; |
10295 | for (w = cand->warnings; w; w = w->next) |
10296 | joust (cand, w->loser, 1, complain); |
10297 | } |
10298 | |
10299 | /* Core issue 2327: P0135 doesn't say how to handle the case where the |
10300 | argument to the copy constructor ends up being a prvalue after |
10301 | conversion. Let's do the normal processing, but pretend we aren't |
10302 | actually using the copy constructor. */ |
10303 | bool force_elide = false; |
10304 | if (cxx_dialect >= cxx17 |
10305 | && cand->num_convs == 1 |
10306 | && DECL_COMPLETE_CONSTRUCTOR_P (fn) |
10307 | && (DECL_COPY_CONSTRUCTOR_P (fn) |
10308 | || DECL_MOVE_CONSTRUCTOR_P (fn)) |
10309 | && !unsafe_return_slot_p (t: first_arg) |
10310 | && conv_binds_ref_to_prvalue (c: convs[0])) |
10311 | { |
10312 | force_elide = true; |
10313 | goto not_really_used; |
10314 | } |
10315 | |
10316 | /* OK, we're actually calling this inherited constructor; set its deletedness |
10317 | appropriately. We can get away with doing this here because calling is |
10318 | the only way to refer to a constructor. */ |
10319 | if (DECL_INHERITED_CTOR (fn) |
10320 | && !deduce_inheriting_ctor (fn)) |
10321 | { |
10322 | if (complain & tf_error) |
10323 | mark_used (fn); |
10324 | return error_mark_node; |
10325 | } |
10326 | |
10327 | /* Make =delete work with SFINAE. */ |
10328 | if (DECL_DELETED_FN (fn)) |
10329 | { |
10330 | if (complain & tf_error) |
10331 | { |
10332 | mark_used (fn); |
10333 | if (cand->next) |
10334 | { |
10335 | if (flag_diagnostics_all_candidates) |
10336 | print_z_candidates (loc: input_location, candidates: cand, /*only_viable_p=*/false); |
10337 | else |
10338 | inform (input_location, |
10339 | "use %<-fdiagnostics-all-candidates%> to display " |
10340 | "considered candidates" ); |
10341 | } |
10342 | } |
10343 | return error_mark_node; |
10344 | } |
10345 | |
10346 | if (DECL_FUNCTION_MEMBER_P (fn)) |
10347 | { |
10348 | tree access_fn; |
10349 | /* If FN is a template function, two cases must be considered. |
10350 | For example: |
10351 | |
10352 | struct A { |
10353 | protected: |
10354 | template <class T> void f(); |
10355 | }; |
10356 | template <class T> struct B { |
10357 | protected: |
10358 | void g(); |
10359 | }; |
10360 | struct C : A, B<int> { |
10361 | using A::f; // #1 |
10362 | using B<int>::g; // #2 |
10363 | }; |
10364 | |
10365 | In case #1 where `A::f' is a member template, DECL_ACCESS is |
10366 | recorded in the primary template but not in its specialization. |
10367 | We check access of FN using its primary template. |
10368 | |
10369 | In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply |
10370 | because it is a member of class template B, DECL_ACCESS is |
10371 | recorded in the specialization `B<int>::g'. We cannot use its |
10372 | primary template because `B<T>::g' and `B<int>::g' may have |
10373 | different access. */ |
10374 | if (DECL_TEMPLATE_INFO (fn) |
10375 | && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn))) |
10376 | access_fn = DECL_TI_TEMPLATE (fn); |
10377 | else |
10378 | access_fn = fn; |
10379 | if (!perform_or_defer_access_check (cand->access_path, access_fn, |
10380 | fn, complain)) |
10381 | return error_mark_node; |
10382 | } |
10383 | |
10384 | /* If we're checking for implicit delete, don't bother with argument |
10385 | conversions. */ |
10386 | if (flags & LOOKUP_SPECULATIVE) |
10387 | { |
10388 | if (cand->viable == 1) |
10389 | return fn; |
10390 | else if (!(complain & tf_error)) |
10391 | /* Reject bad conversions now. */ |
10392 | return error_mark_node; |
10393 | /* else continue to get conversion error. */ |
10394 | } |
10395 | |
10396 | not_really_used: |
10397 | |
10398 | /* N3276 magic doesn't apply to nested calls. */ |
10399 | tsubst_flags_t decltype_flag = (complain & tf_decltype); |
10400 | complain &= ~tf_decltype; |
10401 | /* No-Cleanup doesn't apply to nested calls either. */ |
10402 | tsubst_flags_t no_cleanup_complain = complain; |
10403 | complain &= ~tf_no_cleanup; |
10404 | |
10405 | /* Find maximum size of vector to hold converted arguments. */ |
10406 | parmlen = list_length (parm); |
10407 | nargs = vec_safe_length (v: args) + (first_arg != NULL_TREE ? 1 : 0); |
10408 | if (parmlen > nargs) |
10409 | nargs = parmlen; |
10410 | argarray = XALLOCAVEC (tree, nargs); |
10411 | |
10412 | in_consteval_if_p_temp_override icip; |
10413 | /* If the call is immediate function invocation, make sure |
10414 | taking address of immediate functions is allowed in its arguments. */ |
10415 | if (immediate_invocation_p (STRIP_TEMPLATE (fn))) |
10416 | in_consteval_if_p = true; |
10417 | |
10418 | int argarray_size = 0; |
10419 | unsigned int arg_index = 0; |
10420 | int conv_index = 0; |
10421 | int param_index = 0; |
10422 | |
10423 | auto consume_object_arg = [&arg_index, &first_arg, args]() |
10424 | { |
10425 | if (!first_arg) |
10426 | return (*args)[arg_index++]; |
10427 | tree object_arg = first_arg; |
10428 | first_arg = NULL_TREE; |
10429 | return object_arg; |
10430 | }; |
10431 | |
10432 | /* The implicit parameters to a constructor are not considered by overload |
10433 | resolution, and must be of the proper type. */ |
10434 | if (DECL_CONSTRUCTOR_P (fn)) |
10435 | { |
10436 | tree object_arg = consume_object_arg (); |
10437 | argarray[argarray_size++] = build_this (obj: object_arg); |
10438 | parm = TREE_CHAIN (parm); |
10439 | /* We should never try to call the abstract constructor. */ |
10440 | gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn)); |
10441 | |
10442 | if (DECL_HAS_VTT_PARM_P (fn)) |
10443 | { |
10444 | argarray[argarray_size++] = (*args)[arg_index]; |
10445 | ++arg_index; |
10446 | parm = TREE_CHAIN (parm); |
10447 | } |
10448 | } |
10449 | /* Bypass access control for 'this' parameter. */ |
10450 | else if (DECL_IOBJ_MEMBER_FUNCTION_P (fn)) |
10451 | { |
10452 | tree arg = build_this (obj: consume_object_arg ()); |
10453 | tree argtype = TREE_TYPE (arg); |
10454 | |
10455 | if (arg == error_mark_node) |
10456 | return error_mark_node; |
10457 | if (convs[conv_index++]->bad_p) |
10458 | { |
10459 | if (complain & tf_error) |
10460 | { |
10461 | auto_diagnostic_group d; |
10462 | if (permerror (input_location, "passing %qT as %<this%> " |
10463 | "argument discards qualifiers" , |
10464 | TREE_TYPE (argtype))) |
10465 | inform (DECL_SOURCE_LOCATION (fn), " in call to %qD" , fn); |
10466 | } |
10467 | else |
10468 | return error_mark_node; |
10469 | } |
10470 | |
10471 | /* The class where FN is defined. */ |
10472 | tree ctx = DECL_CONTEXT (fn); |
10473 | |
10474 | /* See if the function member or the whole class type is declared |
10475 | final and the call can be devirtualized. */ |
10476 | if (DECL_FINAL_P (fn) || CLASSTYPE_FINAL (ctx)) |
10477 | flags |= LOOKUP_NONVIRTUAL; |
10478 | |
10479 | /* [class.mfct.non-static]: If a non-static member function of a class |
10480 | X is called for an object that is not of type X, or of a type |
10481 | derived from X, the behavior is undefined. |
10482 | |
10483 | So we can assume that anything passed as 'this' is non-null, and |
10484 | optimize accordingly. */ |
10485 | /* Check that the base class is accessible. */ |
10486 | if (!accessible_base_p (TREE_TYPE (argtype), |
10487 | BINFO_TYPE (cand->conversion_path), true)) |
10488 | { |
10489 | if (complain & tf_error) |
10490 | error ("%qT is not an accessible base of %qT" , |
10491 | BINFO_TYPE (cand->conversion_path), |
10492 | TREE_TYPE (argtype)); |
10493 | else |
10494 | return error_mark_node; |
10495 | } |
10496 | /* If fn was found by a using declaration, the conversion path |
10497 | will be to the derived class, not the base declaring fn. We |
10498 | must convert to the base. */ |
10499 | tree base_binfo = cand->conversion_path; |
10500 | if (BINFO_TYPE (base_binfo) != ctx) |
10501 | { |
10502 | base_binfo = lookup_base (base_binfo, ctx, ba_unique, NULL, complain); |
10503 | if (base_binfo == error_mark_node) |
10504 | return error_mark_node; |
10505 | } |
10506 | |
10507 | /* If we know the dynamic type of the object, look up the final overrider |
10508 | in the BINFO. */ |
10509 | if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0 |
10510 | && resolves_to_fixed_type_p (arg)) |
10511 | { |
10512 | tree ov = lookup_vfn_in_binfo (DECL_VINDEX (fn), base_binfo); |
10513 | |
10514 | /* And unwind base_binfo to match. If we don't find the type we're |
10515 | looking for in BINFO_INHERITANCE_CHAIN, we're looking at diamond |
10516 | inheritance; for now do a normal virtual call in that case. */ |
10517 | tree octx = DECL_CONTEXT (ov); |
10518 | tree obinfo = base_binfo; |
10519 | while (obinfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (obinfo), octx)) |
10520 | obinfo = BINFO_INHERITANCE_CHAIN (obinfo); |
10521 | if (obinfo) |
10522 | { |
10523 | fn = ov; |
10524 | base_binfo = obinfo; |
10525 | flags |= LOOKUP_NONVIRTUAL; |
10526 | } |
10527 | } |
10528 | |
10529 | tree converted_arg = build_base_path (PLUS_EXPR, arg, |
10530 | base_binfo, 1, complain); |
10531 | |
10532 | argarray[argarray_size++] = converted_arg; |
10533 | parm = TREE_CHAIN (parm); |
10534 | } |
10535 | |
10536 | auto handle_arg = [fn, flags](tree type, |
10537 | tree arg, |
10538 | int const param_index, |
10539 | conversion *conv, |
10540 | tsubst_flags_t const arg_complain) |
10541 | { |
10542 | /* Set user_conv_p on the argument conversions, so rvalue/base handling |
10543 | knows not to allow any more UDCs. This needs to happen after we |
10544 | process cand->warnings. */ |
10545 | if (flags & LOOKUP_NO_CONVERSION) |
10546 | conv->user_conv_p = true; |
10547 | |
10548 | if (arg_complain & tf_warning) |
10549 | maybe_warn_pessimizing_move (arg, type, /*return_p=*/false); |
10550 | |
10551 | tree val = convert_like_with_context (convs: conv, expr: arg, fn, |
10552 | argnum: param_index, complain: arg_complain); |
10553 | val = convert_for_arg_passing (type, val, complain: arg_complain); |
10554 | return val; |
10555 | }; |
10556 | |
10557 | if (DECL_XOBJ_MEMBER_FUNCTION_P (fn)) |
10558 | { |
10559 | gcc_assert (cand->num_convs > 0); |
10560 | tree object_arg = consume_object_arg (); |
10561 | val = handle_arg (TREE_VALUE (parm), |
10562 | object_arg, |
10563 | param_index++, |
10564 | convs[conv_index++], |
10565 | complain); |
10566 | |
10567 | if (val == error_mark_node) |
10568 | return error_mark_node; |
10569 | else |
10570 | argarray[argarray_size++] = val; |
10571 | parm = TREE_CHAIN (parm); |
10572 | } |
10573 | |
10574 | gcc_assert (first_arg == NULL_TREE); |
10575 | for (; arg_index < vec_safe_length (v: args) && parm; |
10576 | parm = TREE_CHAIN (parm), ++arg_index, ++param_index, ++conv_index) |
10577 | { |
10578 | tree current_arg = (*args)[arg_index]; |
10579 | |
10580 | /* If the argument is NULL and used to (implicitly) instantiate a |
10581 | template function (and bind one of the template arguments to |
10582 | the type of 'long int'), we don't want to warn about passing NULL |
10583 | to non-pointer argument. |
10584 | For example, if we have this template function: |
10585 | |
10586 | template<typename T> void func(T x) {} |
10587 | |
10588 | we want to warn (when -Wconversion is enabled) in this case: |
10589 | |
10590 | void foo() { |
10591 | func<int>(NULL); |
10592 | } |
10593 | |
10594 | but not in this case: |
10595 | |
10596 | void foo() { |
10597 | func(NULL); |
10598 | } |
10599 | */ |
10600 | bool const conversion_warning = !(null_node_p (expr: current_arg) |
10601 | && DECL_TEMPLATE_INFO (fn) |
10602 | && cand->template_decl |
10603 | && !cand->explicit_targs); |
10604 | |
10605 | tsubst_flags_t const arg_complain |
10606 | = conversion_warning ? complain : complain & ~tf_warning; |
10607 | |
10608 | val = handle_arg (TREE_VALUE (parm), |
10609 | current_arg, |
10610 | param_index, |
10611 | convs[conv_index], |
10612 | arg_complain); |
10613 | |
10614 | if (val == error_mark_node) |
10615 | return error_mark_node; |
10616 | else |
10617 | argarray[argarray_size++] = val; |
10618 | } |
10619 | |
10620 | /* Default arguments */ |
10621 | for (; parm && parm != void_list_node; |
10622 | parm = TREE_CHAIN (parm), param_index++) |
10623 | { |
10624 | if (TREE_VALUE (parm) == error_mark_node) |
10625 | return error_mark_node; |
10626 | val = convert_default_arg (TREE_VALUE (parm), |
10627 | TREE_PURPOSE (parm), |
10628 | fn, parmnum: param_index, |
10629 | complain); |
10630 | if (val == error_mark_node) |
10631 | return error_mark_node; |
10632 | argarray[argarray_size++] = val; |
10633 | } |
10634 | |
10635 | /* Ellipsis */ |
10636 | int magic = magic_varargs_p (fn); |
10637 | for (; arg_index < vec_safe_length (v: args); ++arg_index) |
10638 | { |
10639 | tree a = (*args)[arg_index]; |
10640 | if ((magic == 3 && arg_index == 2) || (magic == 4 && arg_index == 0)) |
10641 | { |
10642 | /* Do no conversions for certain magic varargs. */ |
10643 | a = mark_type_use (a); |
10644 | if (TREE_CODE (a) == FUNCTION_DECL && reject_gcc_builtin (a)) |
10645 | return error_mark_node; |
10646 | } |
10647 | else if (magic != 0) |
10648 | { |
10649 | /* Don't truncate excess precision to the semantic type. */ |
10650 | if (magic == 1 && TREE_CODE (a) == EXCESS_PRECISION_EXPR) |
10651 | a = TREE_OPERAND (a, 0); |
10652 | /* For other magic varargs only do decay_conversion. */ |
10653 | a = decay_conversion (a, complain); |
10654 | } |
10655 | else if (DECL_CONSTRUCTOR_P (fn) |
10656 | && vec_safe_length (v: args) == 1 |
10657 | && same_type_ignoring_top_level_qualifiers_p (DECL_CONTEXT (fn), |
10658 | TREE_TYPE (a))) |
10659 | { |
10660 | /* Avoid infinite recursion trying to call A(...). */ |
10661 | if (complain & tf_error) |
10662 | /* Try to call the actual copy constructor for a good error. */ |
10663 | call_copy_ctor (a, complain); |
10664 | return error_mark_node; |
10665 | } |
10666 | else |
10667 | a = convert_arg_to_ellipsis (arg: a, complain); |
10668 | if (a == error_mark_node) |
10669 | return error_mark_node; |
10670 | argarray[argarray_size++] = a; |
10671 | } |
10672 | |
10673 | gcc_assert (argarray_size <= nargs); |
10674 | nargs = argarray_size; |
10675 | icip.reset (); |
10676 | |
10677 | /* Avoid performing argument transformation if warnings are disabled. |
10678 | When tf_warning is set and at least one of the warnings is active |
10679 | the check_function_arguments function might warn about something. */ |
10680 | |
10681 | bool warned_p = false; |
10682 | if ((complain & tf_warning) |
10683 | && (warn_nonnull |
10684 | || warn_format |
10685 | || warn_suggest_attribute_format |
10686 | || warn_restrict)) |
10687 | { |
10688 | tree *fargs = (!nargs ? argarray |
10689 | : (tree *) alloca (nargs * sizeof (tree))); |
10690 | for (int j = 0; j < nargs; j++) |
10691 | { |
10692 | /* For -Wformat undo the implicit passing by hidden reference |
10693 | done by convert_arg_to_ellipsis. */ |
10694 | if (TREE_CODE (argarray[j]) == ADDR_EXPR |
10695 | && TYPE_REF_P (TREE_TYPE (argarray[j]))) |
10696 | fargs[j] = TREE_OPERAND (argarray[j], 0); |
10697 | else |
10698 | fargs[j] = argarray[j]; |
10699 | } |
10700 | |
10701 | warned_p = check_function_arguments (loc: input_location, fn, TREE_TYPE (fn), |
10702 | nargs, fargs, NULL, |
10703 | comp_types: cp_comp_parm_types); |
10704 | } |
10705 | |
10706 | if (DECL_INHERITED_CTOR (fn)) |
10707 | { |
10708 | /* Check for passing ellipsis arguments to an inherited constructor. We |
10709 | could handle this by open-coding the inherited constructor rather than |
10710 | defining it, but let's not bother now. */ |
10711 | if (!cp_unevaluated_operand |
10712 | && cand->num_convs |
10713 | && cand->convs[cand->num_convs-1]->ellipsis_p) |
10714 | { |
10715 | if (complain & tf_error) |
10716 | { |
10717 | sorry ("passing arguments to ellipsis of inherited constructor " |
10718 | "%qD" , cand->fn); |
10719 | inform (DECL_SOURCE_LOCATION (cand->fn), "declared here" ); |
10720 | } |
10721 | return error_mark_node; |
10722 | } |
10723 | |
10724 | /* A base constructor inheriting from a virtual base doesn't get the |
10725 | inherited arguments, just this and __vtt. */ |
10726 | if (ctor_omit_inherited_parms (fn)) |
10727 | nargs = 2; |
10728 | } |
10729 | |
10730 | /* Avoid actually calling copy constructors and copy assignment operators, |
10731 | if possible. */ |
10732 | |
10733 | if (!force_elide |
10734 | && (!flag_elide_constructors |
10735 | /* It's unsafe to elide the operation when handling |
10736 | a noexcept-expression, it may evaluate to the wrong |
10737 | value (c++/53025, c++/96090). */ |
10738 | || cp_noexcept_operand != 0)) |
10739 | /* Do things the hard way. */; |
10740 | else if (cand->num_convs == 1 |
10741 | && (DECL_COPY_CONSTRUCTOR_P (fn) |
10742 | || DECL_MOVE_CONSTRUCTOR_P (fn))) |
10743 | { |
10744 | tree targ; |
10745 | tree arg = argarray[num_artificial_parms_for (fn)]; |
10746 | tree fa = argarray[0]; |
10747 | bool trivial = trivial_fn_p (fn); |
10748 | |
10749 | /* Pull out the real argument, disregarding const-correctness. */ |
10750 | targ = arg; |
10751 | /* Strip the reference binding for the constructor parameter. */ |
10752 | if (CONVERT_EXPR_P (targ) |
10753 | && TYPE_REF_P (TREE_TYPE (targ))) |
10754 | targ = TREE_OPERAND (targ, 0); |
10755 | /* But don't strip any other reference bindings; binding a temporary to a |
10756 | reference prevents copy elision. */ |
10757 | while ((CONVERT_EXPR_P (targ) |
10758 | && !TYPE_REF_P (TREE_TYPE (targ))) |
10759 | || TREE_CODE (targ) == NON_LVALUE_EXPR) |
10760 | targ = TREE_OPERAND (targ, 0); |
10761 | if (TREE_CODE (targ) == ADDR_EXPR) |
10762 | { |
10763 | targ = TREE_OPERAND (targ, 0); |
10764 | if (!same_type_ignoring_top_level_qualifiers_p |
10765 | (TREE_TYPE (TREE_TYPE (arg)), TREE_TYPE (targ))) |
10766 | targ = NULL_TREE; |
10767 | } |
10768 | else |
10769 | targ = NULL_TREE; |
10770 | |
10771 | if (targ) |
10772 | arg = targ; |
10773 | else |
10774 | arg = cp_build_fold_indirect_ref (arg); |
10775 | |
10776 | /* In C++17 we shouldn't be copying a TARGET_EXPR except into a |
10777 | potentially-overlapping subobject. */ |
10778 | if (CHECKING_P && cxx_dialect >= cxx17) |
10779 | gcc_assert (TREE_CODE (arg) != TARGET_EXPR |
10780 | || force_elide |
10781 | /* It's from binding the ref parm to a packed field. */ |
10782 | || convs[0]->need_temporary_p |
10783 | || seen_error () |
10784 | /* See unsafe_copy_elision_p. */ |
10785 | || unsafe_return_slot_p (fa)); |
10786 | |
10787 | bool unsafe = unsafe_copy_elision_p_opt (target: fa, exp: arg); |
10788 | bool eliding_temp = (TREE_CODE (arg) == TARGET_EXPR && !unsafe); |
10789 | |
10790 | /* [class.copy]: the copy constructor is implicitly defined even if the |
10791 | implementation elided its use. But don't warn about deprecation when |
10792 | eliding a temporary, as then no copy is actually performed. */ |
10793 | warning_sentinel s (warn_deprecated_copy, eliding_temp); |
10794 | if (force_elide) |
10795 | /* The language says this isn't called. */; |
10796 | else if (!trivial) |
10797 | { |
10798 | if (!mark_used (fn, complain) && !(complain & tf_error)) |
10799 | return error_mark_node; |
10800 | already_used = true; |
10801 | } |
10802 | else |
10803 | cp_handle_deprecated_or_unavailable (fn, complain); |
10804 | |
10805 | if (eliding_temp && DECL_BASE_CONSTRUCTOR_P (fn) |
10806 | && !make_base_init_ok (exp: arg)) |
10807 | unsafe = true; |
10808 | |
10809 | /* If we're creating a temp and we already have one, don't create a |
10810 | new one. If we're not creating a temp but we get one, use |
10811 | INIT_EXPR to collapse the temp into our target. Otherwise, if the |
10812 | ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a |
10813 | temp or an INIT_EXPR otherwise. */ |
10814 | if (is_dummy_object (fa)) |
10815 | { |
10816 | if (TREE_CODE (arg) == TARGET_EXPR) |
10817 | return arg; |
10818 | else if (trivial) |
10819 | return force_target_expr (DECL_CONTEXT (fn), arg, complain); |
10820 | } |
10821 | else if ((trivial || TREE_CODE (arg) == TARGET_EXPR) |
10822 | && !unsafe) |
10823 | { |
10824 | tree to = cp_build_fold_indirect_ref (fa); |
10825 | val = cp_build_init_expr (t: to, i: arg); |
10826 | return val; |
10827 | } |
10828 | } |
10829 | else if (DECL_ASSIGNMENT_OPERATOR_P (fn) |
10830 | && DECL_OVERLOADED_OPERATOR_IS (fn, NOP_EXPR) |
10831 | && trivial_fn_p (fn)) |
10832 | { |
10833 | tree to = cp_build_fold_indirect_ref (argarray[0]); |
10834 | tree type = TREE_TYPE (to); |
10835 | tree as_base = CLASSTYPE_AS_BASE (type); |
10836 | tree arg = argarray[1]; |
10837 | location_t loc = cp_expr_loc_or_input_loc (t: arg); |
10838 | |
10839 | if (is_really_empty_class (type, /*ignore_vptr*/true)) |
10840 | { |
10841 | /* Avoid copying empty classes, but ensure op= returns an lvalue even |
10842 | if the object argument isn't one. */ |
10843 | to = force_lvalue (to, complain); |
10844 | val = build2 (COMPOUND_EXPR, type, arg, to); |
10845 | suppress_warning (val, OPT_Wunused); |
10846 | } |
10847 | else if (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (as_base))) |
10848 | { |
10849 | if (is_std_init_list (type) |
10850 | && conv_binds_ref_to_prvalue (c: convs[1])) |
10851 | warning_at (loc, OPT_Winit_list_lifetime, |
10852 | "assignment from temporary %<initializer_list%> does " |
10853 | "not extend the lifetime of the underlying array" ); |
10854 | arg = cp_build_fold_indirect_ref (arg); |
10855 | val = build2 (MODIFY_EXPR, TREE_TYPE (to), to, arg); |
10856 | } |
10857 | else |
10858 | { |
10859 | /* We must only copy the non-tail padding parts. */ |
10860 | tree arg0, arg2, t; |
10861 | tree array_type, alias_set; |
10862 | |
10863 | arg2 = TYPE_SIZE_UNIT (as_base); |
10864 | /* Ensure op= returns an lvalue even if the object argument isn't |
10865 | one. */ |
10866 | to = force_lvalue (to, complain); |
10867 | to = cp_stabilize_reference (to); |
10868 | arg0 = cp_build_addr_expr (to, complain); |
10869 | |
10870 | array_type = build_array_type (unsigned_char_type_node, |
10871 | build_index_type |
10872 | (size_binop (MINUS_EXPR, |
10873 | arg2, size_int (1)))); |
10874 | alias_set = build_int_cst (build_pointer_type (type), 0); |
10875 | t = build2 (MODIFY_EXPR, void_type_node, |
10876 | build2 (MEM_REF, array_type, arg0, alias_set), |
10877 | build2 (MEM_REF, array_type, arg, alias_set)); |
10878 | val = build2 (COMPOUND_EXPR, TREE_TYPE (to), t, to); |
10879 | suppress_warning (val, OPT_Wunused); |
10880 | } |
10881 | |
10882 | cp_handle_deprecated_or_unavailable (fn, complain); |
10883 | |
10884 | return val; |
10885 | } |
10886 | else if (trivial_fn_p (fn)) |
10887 | { |
10888 | if (DECL_DESTRUCTOR_P (fn)) |
10889 | return build_trivial_dtor_call (instance: argarray[0]); |
10890 | else if (default_ctor_p (fn)) |
10891 | { |
10892 | if (is_dummy_object (argarray[0])) |
10893 | return force_target_expr (DECL_CONTEXT (fn), void_node, |
10894 | no_cleanup_complain); |
10895 | else |
10896 | return cp_build_fold_indirect_ref (argarray[0]); |
10897 | } |
10898 | } |
10899 | |
10900 | gcc_assert (!force_elide); |
10901 | |
10902 | if (!already_used |
10903 | && !mark_used (fn, complain)) |
10904 | return error_mark_node; |
10905 | |
10906 | /* Warn if the built-in writes to an object of a non-trivial type. */ |
10907 | if (warn_class_memaccess |
10908 | && vec_safe_length (v: args) >= 2 |
10909 | && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL) |
10910 | maybe_warn_class_memaccess (input_location, fn, args); |
10911 | |
10912 | if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0) |
10913 | { |
10914 | tree t; |
10915 | tree binfo = lookup_base (TREE_TYPE (TREE_TYPE (argarray[0])), |
10916 | DECL_CONTEXT (fn), |
10917 | ba_any, NULL, complain); |
10918 | gcc_assert (binfo && binfo != error_mark_node); |
10919 | |
10920 | argarray[0] = build_base_path (PLUS_EXPR, argarray[0], binfo, 1, |
10921 | complain); |
10922 | if (TREE_SIDE_EFFECTS (argarray[0])) |
10923 | argarray[0] = save_expr (argarray[0]); |
10924 | t = build_pointer_type (TREE_TYPE (fn)); |
10925 | fn = build_vfn_ref (argarray[0], DECL_VINDEX (fn)); |
10926 | TREE_TYPE (fn) = t; |
10927 | } |
10928 | else |
10929 | { |
10930 | /* If FN is marked deprecated or unavailable, then we've already |
10931 | issued a diagnostic from mark_used above, so avoid redundantly |
10932 | issuing another one from build_addr_func. */ |
10933 | auto w = make_temp_override (var&: deprecated_state, |
10934 | overrider: UNAVAILABLE_DEPRECATED_SUPPRESS); |
10935 | |
10936 | fn = build_addr_func (function: fn, complain); |
10937 | if (fn == error_mark_node) |
10938 | return error_mark_node; |
10939 | |
10940 | /* We're actually invoking the function. (Immediate functions get an |
10941 | & when invoking it even though the user didn't use &.) */ |
10942 | ADDR_EXPR_DENOTES_CALL_P (fn) = true; |
10943 | } |
10944 | |
10945 | tree call = build_cxx_call (fn, nargs, argarray, complain|decltype_flag); |
10946 | if (call == error_mark_node) |
10947 | return call; |
10948 | if (cand->flags & LOOKUP_LIST_INIT_CTOR) |
10949 | { |
10950 | tree c = extract_call_expr (call); |
10951 | /* build_new_op will clear this when appropriate. */ |
10952 | CALL_EXPR_ORDERED_ARGS (c) = true; |
10953 | } |
10954 | if (warned_p) |
10955 | { |
10956 | tree c = extract_call_expr (call); |
10957 | if (TREE_CODE (c) == CALL_EXPR) |
10958 | suppress_warning (c /* Suppress all warnings. */); |
10959 | } |
10960 | else if (TREE_DEPRECATED (fn) |
10961 | && warning_suppressed_at (input_location, |
10962 | OPT_Wdeprecated_declarations)) |
10963 | { |
10964 | tree c = extract_call_expr (call); |
10965 | if (TREE_CODE (c) == CALL_EXPR) |
10966 | TREE_NO_WARNING (c) = true; |
10967 | } |
10968 | |
10969 | return call; |
10970 | } |
10971 | |
10972 | namespace |
10973 | { |
10974 | |
10975 | /* Return the DECL of the first non-static subobject of class TYPE |
10976 | that satisfies the predicate PRED or null if none can be found. */ |
10977 | |
10978 | template <class Predicate> |
10979 | tree |
10980 | first_non_static_field (tree type, Predicate pred) |
10981 | { |
10982 | if (!type || !CLASS_TYPE_P (type)) |
10983 | return NULL_TREE; |
10984 | |
10985 | for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
10986 | { |
10987 | if (TREE_CODE (field) != FIELD_DECL) |
10988 | continue; |
10989 | if (TREE_STATIC (field)) |
10990 | continue; |
10991 | if (pred (field)) |
10992 | return field; |
10993 | } |
10994 | |
10995 | int i = 0; |
10996 | |
10997 | for (tree base_binfo, binfo = TYPE_BINFO (type); |
10998 | BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
10999 | { |
11000 | tree base = TREE_TYPE (base_binfo); |
11001 | if (pred (base)) |
11002 | return base; |
11003 | if (tree field = first_non_static_field (base, pred)) |
11004 | return field; |
11005 | } |
11006 | |
11007 | return NULL_TREE; |
11008 | } |
11009 | |
11010 | struct NonPublicField |
11011 | { |
11012 | bool operator() (const_tree t) const |
11013 | { |
11014 | return DECL_P (t) && (TREE_PRIVATE (t) || TREE_PROTECTED (t)); |
11015 | } |
11016 | }; |
11017 | |
11018 | /* Return the DECL of the first non-public subobject of class TYPE |
11019 | or null if none can be found. */ |
11020 | |
11021 | static inline tree |
11022 | first_non_public_field (tree type) |
11023 | { |
11024 | return first_non_static_field (type, pred: NonPublicField ()); |
11025 | } |
11026 | |
11027 | struct NonTrivialField |
11028 | { |
11029 | bool operator() (const_tree t) const |
11030 | { |
11031 | return !trivial_type_p (DECL_P (t) ? TREE_TYPE (t) : t); |
11032 | } |
11033 | }; |
11034 | |
11035 | /* Return the DECL of the first non-trivial subobject of class TYPE |
11036 | or null if none can be found. */ |
11037 | |
11038 | static inline tree |
11039 | first_non_trivial_field (tree type) |
11040 | { |
11041 | return first_non_static_field (type, pred: NonTrivialField ()); |
11042 | } |
11043 | |
11044 | } /* unnamed namespace */ |
11045 | |
11046 | /* Return true if all copy and move assignment operator overloads for |
11047 | class TYPE are trivial and at least one of them is not deleted and, |
11048 | when ACCESS is set, accessible. Return false otherwise. Set |
11049 | HASASSIGN to true when the TYPE has a (not necessarily trivial) |
11050 | copy or move assignment. */ |
11051 | |
11052 | static bool |
11053 | has_trivial_copy_assign_p (tree type, bool access, bool *hasassign) |
11054 | { |
11055 | tree fns = get_class_binding (type, assign_op_identifier); |
11056 | bool all_trivial = true; |
11057 | |
11058 | /* Iterate over overloads of the assignment operator, checking |
11059 | accessible copy assignments for triviality. */ |
11060 | |
11061 | for (tree f : ovl_range (fns)) |
11062 | { |
11063 | /* Skip operators that aren't copy assignments. */ |
11064 | if (!copy_fn_p (f)) |
11065 | continue; |
11066 | |
11067 | bool accessible = (!access || !(TREE_PRIVATE (f) || TREE_PROTECTED (f)) |
11068 | || accessible_p (TYPE_BINFO (type), f, true)); |
11069 | |
11070 | /* Skip template assignment operators and deleted functions. */ |
11071 | if (TREE_CODE (f) != FUNCTION_DECL || DECL_DELETED_FN (f)) |
11072 | continue; |
11073 | |
11074 | if (accessible) |
11075 | *hasassign = true; |
11076 | |
11077 | if (!accessible || !trivial_fn_p (f)) |
11078 | all_trivial = false; |
11079 | |
11080 | /* Break early when both properties have been determined. */ |
11081 | if (*hasassign && !all_trivial) |
11082 | break; |
11083 | } |
11084 | |
11085 | /* Return true if they're all trivial and one of the expressions |
11086 | TYPE() = TYPE() or TYPE() = (TYPE&)() is valid. */ |
11087 | tree ref = cp_build_reference_type (type, false); |
11088 | return (all_trivial |
11089 | && (is_trivially_xible (MODIFY_EXPR, type, type) |
11090 | || is_trivially_xible (MODIFY_EXPR, type, ref))); |
11091 | } |
11092 | |
11093 | /* Return true if all copy and move ctor overloads for class TYPE are |
11094 | trivial and at least one of them is not deleted and, when ACCESS is |
11095 | set, accessible. Return false otherwise. Set each element of HASCTOR[] |
11096 | to true when the TYPE has a (not necessarily trivial) default and copy |
11097 | (or move) ctor, respectively. */ |
11098 | |
11099 | static bool |
11100 | has_trivial_copy_p (tree type, bool access, bool hasctor[2]) |
11101 | { |
11102 | tree fns = get_class_binding (type, complete_ctor_identifier); |
11103 | bool all_trivial = true; |
11104 | |
11105 | for (tree f : ovl_range (fns)) |
11106 | { |
11107 | /* Skip template constructors. */ |
11108 | if (TREE_CODE (f) != FUNCTION_DECL) |
11109 | continue; |
11110 | |
11111 | bool cpy_or_move_ctor_p = copy_fn_p (f); |
11112 | |
11113 | /* Skip ctors other than default, copy, and move. */ |
11114 | if (!cpy_or_move_ctor_p && !default_ctor_p (f)) |
11115 | continue; |
11116 | |
11117 | if (DECL_DELETED_FN (f)) |
11118 | continue; |
11119 | |
11120 | bool accessible = (!access || !(TREE_PRIVATE (f) || TREE_PROTECTED (f)) |
11121 | || accessible_p (TYPE_BINFO (type), f, true)); |
11122 | |
11123 | if (accessible) |
11124 | hasctor[cpy_or_move_ctor_p] = true; |
11125 | |
11126 | if (cpy_or_move_ctor_p && (!accessible || !trivial_fn_p (f))) |
11127 | all_trivial = false; |
11128 | |
11129 | /* Break early when both properties have been determined. */ |
11130 | if (hasctor[0] && hasctor[1] && !all_trivial) |
11131 | break; |
11132 | } |
11133 | |
11134 | return all_trivial; |
11135 | } |
11136 | |
11137 | /* Issue a warning on a call to the built-in function FNDECL if it is |
11138 | a raw memory write whose destination is not an object of (something |
11139 | like) trivial or standard layout type with a non-deleted assignment |
11140 | and copy ctor. Detects const correctness violations, corrupting |
11141 | references, virtual table pointers, and bypassing non-trivial |
11142 | assignments. */ |
11143 | |
11144 | static void |
11145 | maybe_warn_class_memaccess (location_t loc, tree fndecl, |
11146 | const vec<tree, va_gc> *args) |
11147 | { |
11148 | /* Except for bcopy where it's second, the destination pointer is |
11149 | the first argument for all functions handled here. Compute |
11150 | the index of the destination and source arguments. */ |
11151 | unsigned dstidx = DECL_FUNCTION_CODE (decl: fndecl) == BUILT_IN_BCOPY; |
11152 | unsigned srcidx = !dstidx; |
11153 | |
11154 | tree dest = (*args)[dstidx]; |
11155 | if (!TREE_TYPE (dest) |
11156 | || (TREE_CODE (TREE_TYPE (dest)) != ARRAY_TYPE |
11157 | && !INDIRECT_TYPE_P (TREE_TYPE (dest)))) |
11158 | return; |
11159 | |
11160 | tree srctype = NULL_TREE; |
11161 | |
11162 | /* Determine the type of the pointed-to object and whether it's |
11163 | a complete class type. */ |
11164 | tree desttype = TREE_TYPE (TREE_TYPE (dest)); |
11165 | |
11166 | if (!desttype || !COMPLETE_TYPE_P (desttype) || !CLASS_TYPE_P (desttype)) |
11167 | return; |
11168 | |
11169 | /* Check to see if the raw memory call is made by a non-static member |
11170 | function with THIS as the destination argument for the destination |
11171 | type. If so, and if the class has no non-trivial bases or members, |
11172 | be more permissive. */ |
11173 | if (current_function_decl |
11174 | && DECL_OBJECT_MEMBER_FUNCTION_P (current_function_decl) |
11175 | && is_object_parameter (tree_strip_nop_conversions (dest))) |
11176 | { |
11177 | tree ctx = DECL_CONTEXT (current_function_decl); |
11178 | bool special = same_type_ignoring_top_level_qualifiers_p (ctx, desttype); |
11179 | tree binfo = TYPE_BINFO (ctx); |
11180 | |
11181 | if (special |
11182 | && !BINFO_VTABLE (binfo) |
11183 | && !first_non_trivial_field (type: desttype)) |
11184 | return; |
11185 | } |
11186 | |
11187 | /* True if the class is trivial. */ |
11188 | bool trivial = trivial_type_p (desttype); |
11189 | |
11190 | /* Set to true if DESTYPE has an accessible copy assignment. */ |
11191 | bool hasassign = false; |
11192 | /* True if all of the class' overloaded copy assignment operators |
11193 | are all trivial (and not deleted) and at least one of them is |
11194 | accessible. */ |
11195 | bool trivassign = has_trivial_copy_assign_p (type: desttype, access: true, hasassign: &hasassign); |
11196 | |
11197 | /* Set to true if DESTTYPE has an accessible default and copy ctor, |
11198 | respectively. */ |
11199 | bool hasctors[2] = { false, false }; |
11200 | |
11201 | /* True if all of the class' overloaded copy constructors are all |
11202 | trivial (and not deleted) and at least one of them is accessible. */ |
11203 | bool trivcopy = has_trivial_copy_p (type: desttype, access: true, hasctor: hasctors); |
11204 | |
11205 | /* Set FLD to the first private/protected member of the class. */ |
11206 | tree fld = trivial ? first_non_public_field (type: desttype) : NULL_TREE; |
11207 | |
11208 | /* The warning format string. */ |
11209 | const char *warnfmt = NULL; |
11210 | /* A suggested alternative to offer instead of the raw memory call. |
11211 | Empty string when none can be come up with. */ |
11212 | const char *suggest = "" ; |
11213 | bool warned = false; |
11214 | |
11215 | switch (DECL_FUNCTION_CODE (decl: fndecl)) |
11216 | { |
11217 | case BUILT_IN_MEMSET: |
11218 | if (!integer_zerop (maybe_constant_value ((*args)[1]))) |
11219 | { |
11220 | /* Diagnose setting non-copy-assignable or non-trivial types, |
11221 | or types with a private member, to (potentially) non-zero |
11222 | bytes. Since the value of the bytes being written is unknown, |
11223 | suggest using assignment instead (if one exists). Also warn |
11224 | for writes into objects for which zero-initialization doesn't |
11225 | mean all bits clear (pointer-to-member data, where null is all |
11226 | bits set). Since the value being written is (most likely) |
11227 | non-zero, simply suggest assignment (but not copy assignment). */ |
11228 | suggest = "; use assignment instead" ; |
11229 | if (!trivassign) |
11230 | warnfmt = G_("%qD writing to an object of type %#qT with " |
11231 | "no trivial copy-assignment" ); |
11232 | else if (!trivial) |
11233 | warnfmt = G_("%qD writing to an object of non-trivial type %#qT%s" ); |
11234 | else if (fld) |
11235 | { |
11236 | const char *access = TREE_PRIVATE (fld) ? "private" : "protected" ; |
11237 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11238 | "%qD writing to an object of type %#qT with " |
11239 | "%qs member %qD" , |
11240 | fndecl, desttype, access, fld); |
11241 | } |
11242 | else if (!zero_init_p (desttype)) |
11243 | warnfmt = G_("%qD writing to an object of type %#qT containing " |
11244 | "a pointer to data member%s" ); |
11245 | |
11246 | break; |
11247 | } |
11248 | /* Fall through. */ |
11249 | |
11250 | case BUILT_IN_BZERO: |
11251 | /* Similarly to the above, diagnose clearing non-trivial or non- |
11252 | standard layout objects, or objects of types with no assignmenmt. |
11253 | Since the value being written is known to be zero, suggest either |
11254 | copy assignment, copy ctor, or default ctor as an alternative, |
11255 | depending on what's available. */ |
11256 | |
11257 | if (hasassign && hasctors[0]) |
11258 | suggest = G_("; use assignment or value-initialization instead" ); |
11259 | else if (hasassign) |
11260 | suggest = G_("; use assignment instead" ); |
11261 | else if (hasctors[0]) |
11262 | suggest = G_("; use value-initialization instead" ); |
11263 | |
11264 | if (!trivassign) |
11265 | warnfmt = G_("%qD clearing an object of type %#qT with " |
11266 | "no trivial copy-assignment%s" ); |
11267 | else if (!trivial) |
11268 | warnfmt = G_("%qD clearing an object of non-trivial type %#qT%s" ); |
11269 | else if (!zero_init_p (desttype)) |
11270 | warnfmt = G_("%qD clearing an object of type %#qT containing " |
11271 | "a pointer-to-member%s" ); |
11272 | break; |
11273 | |
11274 | case BUILT_IN_BCOPY: |
11275 | case BUILT_IN_MEMCPY: |
11276 | case BUILT_IN_MEMMOVE: |
11277 | case BUILT_IN_MEMPCPY: |
11278 | /* Determine the type of the source object. */ |
11279 | srctype = TREE_TYPE ((*args)[srcidx]); |
11280 | if (!srctype || !INDIRECT_TYPE_P (srctype)) |
11281 | srctype = void_type_node; |
11282 | else |
11283 | srctype = TREE_TYPE (srctype); |
11284 | |
11285 | /* Since it's impossible to determine wheter the byte copy is |
11286 | being used in place of assignment to an existing object or |
11287 | as a substitute for initialization, assume it's the former. |
11288 | Determine the best alternative to use instead depending on |
11289 | what's not deleted. */ |
11290 | if (hasassign && hasctors[1]) |
11291 | suggest = G_("; use copy-assignment or copy-initialization instead" ); |
11292 | else if (hasassign) |
11293 | suggest = G_("; use copy-assignment instead" ); |
11294 | else if (hasctors[1]) |
11295 | suggest = G_("; use copy-initialization instead" ); |
11296 | |
11297 | if (!trivassign) |
11298 | warnfmt = G_("%qD writing to an object of type %#qT with no trivial " |
11299 | "copy-assignment%s" ); |
11300 | else if (!trivially_copyable_p (desttype)) |
11301 | warnfmt = G_("%qD writing to an object of non-trivially copyable " |
11302 | "type %#qT%s" ); |
11303 | else if (!trivcopy) |
11304 | warnfmt = G_("%qD writing to an object with a deleted copy constructor" ); |
11305 | |
11306 | else if (!trivial |
11307 | && !VOID_TYPE_P (srctype) |
11308 | && !is_byte_access_type (srctype) |
11309 | && !same_type_ignoring_top_level_qualifiers_p (desttype, |
11310 | srctype)) |
11311 | { |
11312 | /* Warn when copying into a non-trivial object from an object |
11313 | of a different type other than void or char. */ |
11314 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11315 | "%qD copying an object of non-trivial type " |
11316 | "%#qT from an array of %#qT" , |
11317 | fndecl, desttype, srctype); |
11318 | } |
11319 | else if (fld |
11320 | && !VOID_TYPE_P (srctype) |
11321 | && !is_byte_access_type (srctype) |
11322 | && !same_type_ignoring_top_level_qualifiers_p (desttype, |
11323 | srctype)) |
11324 | { |
11325 | const char *access = TREE_PRIVATE (fld) ? "private" : "protected" ; |
11326 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11327 | "%qD copying an object of type %#qT with " |
11328 | "%qs member %qD from an array of %#qT; use " |
11329 | "assignment or copy-initialization instead" , |
11330 | fndecl, desttype, access, fld, srctype); |
11331 | } |
11332 | else if (!trivial && vec_safe_length (v: args) > 2) |
11333 | { |
11334 | tree sz = maybe_constant_value ((*args)[2]); |
11335 | if (!tree_fits_uhwi_p (sz)) |
11336 | break; |
11337 | |
11338 | /* Finally, warn on partial copies. */ |
11339 | unsigned HOST_WIDE_INT typesize |
11340 | = tree_to_uhwi (TYPE_SIZE_UNIT (desttype)); |
11341 | if (typesize == 0) |
11342 | break; |
11343 | if (unsigned HOST_WIDE_INT partial = tree_to_uhwi (sz) % typesize) |
11344 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11345 | (typesize - partial > 1 |
11346 | ? G_("%qD writing to an object of " |
11347 | "a non-trivial type %#qT leaves %wu " |
11348 | "bytes unchanged" ) |
11349 | : G_("%qD writing to an object of " |
11350 | "a non-trivial type %#qT leaves %wu " |
11351 | "byte unchanged" )), |
11352 | fndecl, desttype, typesize - partial); |
11353 | } |
11354 | break; |
11355 | |
11356 | case BUILT_IN_REALLOC: |
11357 | |
11358 | if (!trivially_copyable_p (desttype)) |
11359 | warnfmt = G_("%qD moving an object of non-trivially copyable type " |
11360 | "%#qT; use %<new%> and %<delete%> instead" ); |
11361 | else if (!trivcopy) |
11362 | warnfmt = G_("%qD moving an object of type %#qT with deleted copy " |
11363 | "constructor; use %<new%> and %<delete%> instead" ); |
11364 | else if (!get_dtor (desttype, tf_none)) |
11365 | warnfmt = G_("%qD moving an object of type %#qT with deleted " |
11366 | "destructor" ); |
11367 | else if (!trivial) |
11368 | { |
11369 | tree sz = maybe_constant_value ((*args)[1]); |
11370 | if (TREE_CODE (sz) == INTEGER_CST |
11371 | && tree_int_cst_lt (t1: sz, TYPE_SIZE_UNIT (desttype))) |
11372 | /* Finally, warn on reallocation into insufficient space. */ |
11373 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11374 | "%qD moving an object of non-trivial type " |
11375 | "%#qT and size %E into a region of size %E" , |
11376 | fndecl, desttype, TYPE_SIZE_UNIT (desttype), |
11377 | sz); |
11378 | } |
11379 | break; |
11380 | |
11381 | default: |
11382 | return; |
11383 | } |
11384 | |
11385 | if (warnfmt) |
11386 | { |
11387 | if (suggest) |
11388 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11389 | warnfmt, fndecl, desttype, suggest); |
11390 | else |
11391 | warned = warning_at (loc, OPT_Wclass_memaccess, |
11392 | warnfmt, fndecl, desttype); |
11393 | } |
11394 | |
11395 | if (warned) |
11396 | inform (location_of (desttype), "%#qT declared here" , desttype); |
11397 | } |
11398 | |
11399 | /* Build and return a call to FN, using NARGS arguments in ARGARRAY. |
11400 | If FN is the result of resolving an overloaded target built-in, |
11401 | ORIG_FNDECL is the original function decl, otherwise it is null. |
11402 | This function performs no overload resolution, conversion, or other |
11403 | high-level operations. */ |
11404 | |
11405 | tree |
11406 | build_cxx_call (tree fn, int nargs, tree *argarray, |
11407 | tsubst_flags_t complain, tree orig_fndecl) |
11408 | { |
11409 | tree fndecl; |
11410 | |
11411 | /* Remember roughly where this call is. */ |
11412 | location_t loc = cp_expr_loc_or_input_loc (t: fn); |
11413 | fn = build_call_a (function: fn, n: nargs, argarray); |
11414 | SET_EXPR_LOCATION (fn, loc); |
11415 | |
11416 | fndecl = get_callee_fndecl (fn); |
11417 | if (!orig_fndecl) |
11418 | orig_fndecl = fndecl; |
11419 | |
11420 | /* Check that arguments to builtin functions match the expectations. */ |
11421 | if (fndecl |
11422 | && !processing_template_decl |
11423 | && fndecl_built_in_p (node: fndecl)) |
11424 | { |
11425 | int i; |
11426 | |
11427 | /* We need to take care that values to BUILT_IN_NORMAL |
11428 | are reduced. */ |
11429 | for (i = 0; i < nargs; i++) |
11430 | argarray[i] = maybe_constant_value (argarray[i]); |
11431 | |
11432 | if (!check_builtin_function_arguments (EXPR_LOCATION (fn), vNULL, fndecl, |
11433 | orig_fndecl, nargs, argarray, |
11434 | complain & tf_error)) |
11435 | return error_mark_node; |
11436 | else if (fndecl_built_in_p (node: fndecl, name1: BUILT_IN_CLEAR_PADDING)) |
11437 | { |
11438 | tree arg0 = argarray[0]; |
11439 | STRIP_NOPS (arg0); |
11440 | if (TREE_CODE (arg0) == ADDR_EXPR |
11441 | && DECL_P (TREE_OPERAND (arg0, 0)) |
11442 | && same_type_ignoring_top_level_qualifiers_p |
11443 | (TREE_TYPE (TREE_TYPE (argarray[0])), |
11444 | TREE_TYPE (TREE_TYPE (arg0)))) |
11445 | /* For __builtin_clear_padding (&var) we know the type |
11446 | is for a complete object, so there is no risk in clearing |
11447 | padding that is reused in some derived class member. */; |
11448 | else if (!trivially_copyable_p (TREE_TYPE (TREE_TYPE (argarray[0])))) |
11449 | { |
11450 | error_at (EXPR_LOC_OR_LOC (argarray[0], input_location), |
11451 | "argument %u in call to function %qE " |
11452 | "has pointer to a non-trivially-copyable type (%qT)" , |
11453 | 1, fndecl, TREE_TYPE (argarray[0])); |
11454 | return error_mark_node; |
11455 | } |
11456 | } |
11457 | } |
11458 | |
11459 | if (VOID_TYPE_P (TREE_TYPE (fn))) |
11460 | return fn; |
11461 | |
11462 | /* 5.2.2/11: If a function call is a prvalue of object type: if the |
11463 | function call is either the operand of a decltype-specifier or the |
11464 | right operand of a comma operator that is the operand of a |
11465 | decltype-specifier, a temporary object is not introduced for the |
11466 | prvalue. The type of the prvalue may be incomplete. */ |
11467 | if (!(complain & tf_decltype)) |
11468 | { |
11469 | fn = require_complete_type (fn, complain); |
11470 | if (fn == error_mark_node) |
11471 | return error_mark_node; |
11472 | |
11473 | if (MAYBE_CLASS_TYPE_P (TREE_TYPE (fn))) |
11474 | { |
11475 | fn = build_cplus_new (TREE_TYPE (fn), fn, complain); |
11476 | maybe_warn_parm_abi (TREE_TYPE (fn), loc); |
11477 | } |
11478 | } |
11479 | return convert_from_reference (fn); |
11480 | } |
11481 | |
11482 | /* Returns the value to use for the in-charge parameter when making a |
11483 | call to a function with the indicated NAME. |
11484 | |
11485 | FIXME:Can't we find a neater way to do this mapping? */ |
11486 | |
11487 | tree |
11488 | in_charge_arg_for_name (tree name) |
11489 | { |
11490 | if (IDENTIFIER_CTOR_P (name)) |
11491 | { |
11492 | if (name == complete_ctor_identifier) |
11493 | return integer_one_node; |
11494 | gcc_checking_assert (name == base_ctor_identifier); |
11495 | } |
11496 | else |
11497 | { |
11498 | if (name == complete_dtor_identifier) |
11499 | return integer_two_node; |
11500 | else if (name == deleting_dtor_identifier) |
11501 | /* The deleting dtor should now be handled by |
11502 | build_delete_destructor_body. */ |
11503 | gcc_unreachable (); |
11504 | gcc_checking_assert (name == base_dtor_identifier); |
11505 | } |
11506 | |
11507 | return integer_zero_node; |
11508 | } |
11509 | |
11510 | /* We've built up a constructor call RET. Complain if it delegates to the |
11511 | constructor we're currently compiling. */ |
11512 | |
11513 | static void |
11514 | check_self_delegation (tree ret) |
11515 | { |
11516 | if (TREE_CODE (ret) == TARGET_EXPR) |
11517 | ret = TARGET_EXPR_INITIAL (ret); |
11518 | tree fn = cp_get_callee_fndecl_nofold (ret); |
11519 | if (fn && DECL_ABSTRACT_ORIGIN (fn) == current_function_decl) |
11520 | error ("constructor delegates to itself" ); |
11521 | } |
11522 | |
11523 | /* Build a call to a constructor, destructor, or an assignment |
11524 | operator for INSTANCE, an expression with class type. NAME |
11525 | indicates the special member function to call; *ARGS are the |
11526 | arguments. ARGS may be NULL. This may change ARGS. BINFO |
11527 | indicates the base of INSTANCE that is to be passed as the `this' |
11528 | parameter to the member function called. |
11529 | |
11530 | FLAGS are the LOOKUP_* flags to use when processing the call. |
11531 | |
11532 | If NAME indicates a complete object constructor, INSTANCE may be |
11533 | NULL_TREE. In this case, the caller will call build_cplus_new to |
11534 | store the newly constructed object into a VAR_DECL. */ |
11535 | |
11536 | tree |
11537 | build_special_member_call (tree instance, tree name, vec<tree, va_gc> **args, |
11538 | tree binfo, int flags, tsubst_flags_t complain) |
11539 | { |
11540 | tree fns; |
11541 | /* The type of the subobject to be constructed or destroyed. */ |
11542 | tree class_type; |
11543 | vec<tree, va_gc> *allocated = NULL; |
11544 | tree ret; |
11545 | |
11546 | gcc_assert (IDENTIFIER_CDTOR_P (name) || name == assign_op_identifier); |
11547 | |
11548 | if (error_operand_p (t: instance)) |
11549 | return error_mark_node; |
11550 | |
11551 | if (IDENTIFIER_DTOR_P (name)) |
11552 | { |
11553 | gcc_assert (args == NULL || vec_safe_is_empty (*args)); |
11554 | if (!type_build_dtor_call (TREE_TYPE (instance))) |
11555 | /* Shortcut to avoid lazy destructor declaration. */ |
11556 | return build_trivial_dtor_call (instance); |
11557 | } |
11558 | |
11559 | if (TYPE_P (binfo)) |
11560 | { |
11561 | /* Resolve the name. */ |
11562 | if (!complete_type_or_maybe_complain (binfo, NULL_TREE, complain)) |
11563 | return error_mark_node; |
11564 | |
11565 | binfo = TYPE_BINFO (binfo); |
11566 | } |
11567 | |
11568 | gcc_assert (binfo != NULL_TREE); |
11569 | |
11570 | class_type = BINFO_TYPE (binfo); |
11571 | |
11572 | /* Handle the special case where INSTANCE is NULL_TREE. */ |
11573 | if (name == complete_ctor_identifier && !instance) |
11574 | instance = build_dummy_object (class_type); |
11575 | else |
11576 | { |
11577 | /* Convert to the base class, if necessary. */ |
11578 | if (!same_type_ignoring_top_level_qualifiers_p |
11579 | (TREE_TYPE (instance), BINFO_TYPE (binfo))) |
11580 | { |
11581 | if (IDENTIFIER_CDTOR_P (name)) |
11582 | /* For constructors and destructors, either the base is |
11583 | non-virtual, or it is virtual but we are doing the |
11584 | conversion from a constructor or destructor for the |
11585 | complete object. In either case, we can convert |
11586 | statically. */ |
11587 | instance = convert_to_base_statically (instance, binfo); |
11588 | else |
11589 | { |
11590 | /* However, for assignment operators, we must convert |
11591 | dynamically if the base is virtual. */ |
11592 | gcc_checking_assert (name == assign_op_identifier); |
11593 | instance = build_base_path (PLUS_EXPR, instance, |
11594 | binfo, /*nonnull=*/1, complain); |
11595 | } |
11596 | } |
11597 | } |
11598 | |
11599 | gcc_assert (instance != NULL_TREE); |
11600 | |
11601 | /* In C++17, "If the initializer expression is a prvalue and the |
11602 | cv-unqualified version of the source type is the same class as the class |
11603 | of the destination, the initializer expression is used to initialize the |
11604 | destination object." Handle that here to avoid doing overload |
11605 | resolution. */ |
11606 | if (cxx_dialect >= cxx17 |
11607 | && args && vec_safe_length (v: *args) == 1 |
11608 | && !unsafe_return_slot_p (t: instance)) |
11609 | { |
11610 | tree arg = (**args)[0]; |
11611 | |
11612 | if (BRACE_ENCLOSED_INITIALIZER_P (arg) |
11613 | && !TYPE_HAS_LIST_CTOR (class_type) |
11614 | && !CONSTRUCTOR_IS_DESIGNATED_INIT (arg) |
11615 | && CONSTRUCTOR_NELTS (arg) == 1) |
11616 | arg = CONSTRUCTOR_ELT (arg, 0)->value; |
11617 | |
11618 | if ((TREE_CODE (arg) == TARGET_EXPR |
11619 | || TREE_CODE (arg) == CONSTRUCTOR) |
11620 | && (same_type_ignoring_top_level_qualifiers_p |
11621 | (class_type, TREE_TYPE (arg)))) |
11622 | { |
11623 | if (is_dummy_object (instance)) |
11624 | return arg; |
11625 | else if (TREE_CODE (arg) == TARGET_EXPR) |
11626 | TARGET_EXPR_DIRECT_INIT_P (arg) = true; |
11627 | |
11628 | if ((complain & tf_error) |
11629 | && (flags & LOOKUP_DELEGATING_CONS)) |
11630 | check_self_delegation (ret: arg); |
11631 | /* Avoid change of behavior on Wunused-var-2.C. */ |
11632 | instance = mark_lvalue_use (instance); |
11633 | return cp_build_init_expr (t: instance, i: arg); |
11634 | } |
11635 | } |
11636 | |
11637 | fns = lookup_fnfields (binfo, name, 1, complain); |
11638 | |
11639 | /* When making a call to a constructor or destructor for a subobject |
11640 | that uses virtual base classes, pass down a pointer to a VTT for |
11641 | the subobject. */ |
11642 | if ((name == base_ctor_identifier |
11643 | || name == base_dtor_identifier) |
11644 | && CLASSTYPE_VBASECLASSES (class_type)) |
11645 | { |
11646 | tree vtt; |
11647 | tree sub_vtt; |
11648 | |
11649 | /* If the current function is a complete object constructor |
11650 | or destructor, then we fetch the VTT directly. |
11651 | Otherwise, we look it up using the VTT we were given. */ |
11652 | vtt = DECL_CHAIN (CLASSTYPE_VTABLES (current_class_type)); |
11653 | vtt = decay_conversion (vtt, complain); |
11654 | if (vtt == error_mark_node) |
11655 | return error_mark_node; |
11656 | vtt = build_if_in_charge (true_stmt: vtt, current_vtt_parm); |
11657 | if (BINFO_SUBVTT_INDEX (binfo)) |
11658 | sub_vtt = fold_build_pointer_plus (vtt, BINFO_SUBVTT_INDEX (binfo)); |
11659 | else |
11660 | sub_vtt = vtt; |
11661 | |
11662 | if (args == NULL) |
11663 | { |
11664 | allocated = make_tree_vector (); |
11665 | args = &allocated; |
11666 | } |
11667 | |
11668 | vec_safe_insert (v&: *args, ix: 0, obj: sub_vtt); |
11669 | } |
11670 | |
11671 | ret = build_new_method_call (instance, fns, args, |
11672 | TYPE_BINFO (BINFO_TYPE (binfo)), |
11673 | flags, /*fn=*/NULL, |
11674 | complain); |
11675 | |
11676 | if (allocated != NULL) |
11677 | release_tree_vector (allocated); |
11678 | |
11679 | if ((complain & tf_error) |
11680 | && (flags & LOOKUP_DELEGATING_CONS) |
11681 | && name == complete_ctor_identifier) |
11682 | check_self_delegation (ret); |
11683 | |
11684 | return ret; |
11685 | } |
11686 | |
11687 | /* Return the NAME, as a C string. The NAME indicates a function that |
11688 | is a member of TYPE. *FREE_P is set to true if the caller must |
11689 | free the memory returned. |
11690 | |
11691 | Rather than go through all of this, we should simply set the names |
11692 | of constructors and destructors appropriately, and dispense with |
11693 | ctor_identifier, dtor_identifier, etc. */ |
11694 | |
11695 | static char * |
11696 | name_as_c_string (tree name, tree type, bool *free_p) |
11697 | { |
11698 | const char *pretty_name; |
11699 | |
11700 | /* Assume that we will not allocate memory. */ |
11701 | *free_p = false; |
11702 | /* Constructors and destructors are special. */ |
11703 | if (IDENTIFIER_CDTOR_P (name)) |
11704 | { |
11705 | pretty_name |
11706 | = identifier_to_locale (IDENTIFIER_POINTER (constructor_name (type))); |
11707 | /* For a destructor, add the '~'. */ |
11708 | if (IDENTIFIER_DTOR_P (name)) |
11709 | { |
11710 | pretty_name = concat ("~" , pretty_name, NULL); |
11711 | /* Remember that we need to free the memory allocated. */ |
11712 | *free_p = true; |
11713 | } |
11714 | } |
11715 | else if (IDENTIFIER_CONV_OP_P (name)) |
11716 | { |
11717 | pretty_name = concat ("operator " , |
11718 | type_as_string_translate (TREE_TYPE (name), |
11719 | TFF_PLAIN_IDENTIFIER), |
11720 | NULL); |
11721 | /* Remember that we need to free the memory allocated. */ |
11722 | *free_p = true; |
11723 | } |
11724 | else |
11725 | pretty_name = identifier_to_locale (IDENTIFIER_POINTER (name)); |
11726 | |
11727 | return CONST_CAST (char *, pretty_name); |
11728 | } |
11729 | |
11730 | /* If CANDIDATES contains exactly one candidate, return it, otherwise |
11731 | return NULL. */ |
11732 | |
11733 | static z_candidate * |
11734 | single_z_candidate (z_candidate *candidates) |
11735 | { |
11736 | if (candidates == NULL) |
11737 | return NULL; |
11738 | |
11739 | if (candidates->next) |
11740 | return NULL; |
11741 | |
11742 | return candidates; |
11743 | } |
11744 | |
11745 | /* If CANDIDATE is invalid due to a bad argument type, return the |
11746 | pertinent conversion_info. |
11747 | |
11748 | Otherwise, return NULL. */ |
11749 | |
11750 | static const conversion_info * |
11751 | maybe_get_bad_conversion_for_unmatched_call (const z_candidate *candidate) |
11752 | { |
11753 | /* Must be an rr_arg_conversion or rr_bad_arg_conversion. */ |
11754 | rejection_reason *r = candidate->reason; |
11755 | |
11756 | if (r == NULL) |
11757 | return NULL; |
11758 | |
11759 | switch (r->code) |
11760 | { |
11761 | default: |
11762 | return NULL; |
11763 | |
11764 | case rr_arg_conversion: |
11765 | return &r->u.conversion; |
11766 | |
11767 | case rr_bad_arg_conversion: |
11768 | return &r->u.bad_conversion; |
11769 | } |
11770 | } |
11771 | |
11772 | /* Issue an error and note complaining about a bad argument type at a |
11773 | callsite with a single candidate FNDECL. |
11774 | |
11775 | ARG_LOC is the location of the argument (or UNKNOWN_LOCATION, in which |
11776 | case input_location is used). |
11777 | FROM_TYPE is the type of the actual argument; TO_TYPE is the type of |
11778 | the formal parameter. */ |
11779 | |
11780 | void |
11781 | complain_about_bad_argument (location_t arg_loc, |
11782 | tree from_type, tree to_type, |
11783 | tree fndecl, int parmnum) |
11784 | { |
11785 | auto_diagnostic_group d; |
11786 | range_label_for_type_mismatch rhs_label (from_type, to_type); |
11787 | range_label *label = &rhs_label; |
11788 | if (arg_loc == UNKNOWN_LOCATION) |
11789 | { |
11790 | arg_loc = input_location; |
11791 | label = NULL; |
11792 | } |
11793 | gcc_rich_location richloc (arg_loc, label, highlight_colors::percent_h); |
11794 | error_at (&richloc, |
11795 | "cannot convert %qH to %qI" , |
11796 | from_type, to_type); |
11797 | maybe_inform_about_fndecl_for_bogus_argument_init |
11798 | (fn: fndecl, |
11799 | argnum: parmnum, |
11800 | highlight_color: highlight_colors::percent_i); |
11801 | } |
11802 | |
11803 | /* Subroutine of build_new_method_call_1, for where there are no viable |
11804 | candidates for the call. */ |
11805 | |
11806 | static void |
11807 | complain_about_no_candidates_for_method_call (tree instance, |
11808 | z_candidate *candidates, |
11809 | tree explicit_targs, |
11810 | tree basetype, |
11811 | tree optype, tree name, |
11812 | bool skip_first_for_error, |
11813 | vec<tree, va_gc> *user_args) |
11814 | { |
11815 | auto_diagnostic_group d; |
11816 | if (!COMPLETE_OR_OPEN_TYPE_P (basetype)) |
11817 | cxx_incomplete_type_error (value: instance, type: basetype); |
11818 | else if (optype) |
11819 | error ("no matching function for call to %<%T::operator %T(%A)%#V%>" , |
11820 | basetype, optype, build_tree_list_vec (user_args), |
11821 | TREE_TYPE (instance)); |
11822 | else |
11823 | { |
11824 | /* Special-case for when there's a single candidate that's failing |
11825 | due to a bad argument type. */ |
11826 | if (z_candidate *candidate = single_z_candidate (candidates)) |
11827 | if (const conversion_info *conv |
11828 | = maybe_get_bad_conversion_for_unmatched_call (candidate)) |
11829 | { |
11830 | tree from_type = conv->from; |
11831 | if (!TYPE_P (conv->from)) |
11832 | from_type = lvalue_type (conv->from); |
11833 | complain_about_bad_argument (arg_loc: conv->loc, |
11834 | from_type, to_type: conv->to_type, |
11835 | fndecl: candidate->fn, parmnum: conv->n_arg); |
11836 | return; |
11837 | } |
11838 | |
11839 | tree arglist = build_tree_list_vec (user_args); |
11840 | tree errname = name; |
11841 | bool twiddle = false; |
11842 | if (IDENTIFIER_CDTOR_P (errname)) |
11843 | { |
11844 | twiddle = IDENTIFIER_DTOR_P (errname); |
11845 | errname = constructor_name (basetype); |
11846 | } |
11847 | if (explicit_targs) |
11848 | errname = lookup_template_function (errname, explicit_targs); |
11849 | if (skip_first_for_error) |
11850 | arglist = TREE_CHAIN (arglist); |
11851 | error ("no matching function for call to %<%T::%s%E(%A)%#V%>" , |
11852 | basetype, &"~" [!twiddle], errname, arglist, |
11853 | TREE_TYPE (instance)); |
11854 | } |
11855 | print_z_candidates (loc: location_of (name), candidates); |
11856 | } |
11857 | |
11858 | /* Build a call to "INSTANCE.FN (ARGS)". If FN_P is non-NULL, it will |
11859 | be set, upon return, to the function called. ARGS may be NULL. |
11860 | This may change ARGS. */ |
11861 | |
11862 | tree |
11863 | build_new_method_call (tree instance, tree fns, vec<tree, va_gc> **args, |
11864 | tree conversion_path, int flags, |
11865 | tree *fn_p, tsubst_flags_t complain) |
11866 | { |
11867 | struct z_candidate *candidates = 0, *cand; |
11868 | tree explicit_targs = NULL_TREE; |
11869 | tree basetype = NULL_TREE; |
11870 | tree access_binfo; |
11871 | tree optype; |
11872 | tree first_mem_arg = NULL_TREE; |
11873 | tree name; |
11874 | bool skip_first_for_error; |
11875 | vec<tree, va_gc> *user_args; |
11876 | tree call; |
11877 | tree fn; |
11878 | int template_only = 0; |
11879 | bool any_viable_p; |
11880 | tree orig_instance; |
11881 | tree orig_fns; |
11882 | vec<tree, va_gc> *orig_args = NULL; |
11883 | |
11884 | auto_cond_timevar tv (TV_OVERLOAD); |
11885 | |
11886 | gcc_assert (instance != NULL_TREE); |
11887 | |
11888 | /* We don't know what function we're going to call, yet. */ |
11889 | if (fn_p) |
11890 | *fn_p = NULL_TREE; |
11891 | |
11892 | if (error_operand_p (t: instance) |
11893 | || !fns || error_operand_p (t: fns)) |
11894 | return error_mark_node; |
11895 | |
11896 | if (!BASELINK_P (fns)) |
11897 | { |
11898 | if (complain & tf_error) |
11899 | error ("call to non-function %qD" , fns); |
11900 | return error_mark_node; |
11901 | } |
11902 | |
11903 | orig_instance = instance; |
11904 | orig_fns = fns; |
11905 | |
11906 | /* Dismantle the baselink to collect all the information we need. */ |
11907 | if (!conversion_path) |
11908 | conversion_path = BASELINK_BINFO (fns); |
11909 | access_binfo = BASELINK_ACCESS_BINFO (fns); |
11910 | optype = BASELINK_OPTYPE (fns); |
11911 | fns = BASELINK_FUNCTIONS (fns); |
11912 | if (TREE_CODE (fns) == TEMPLATE_ID_EXPR) |
11913 | { |
11914 | explicit_targs = TREE_OPERAND (fns, 1); |
11915 | fns = TREE_OPERAND (fns, 0); |
11916 | template_only = 1; |
11917 | } |
11918 | gcc_assert (OVL_P (fns)); |
11919 | fn = OVL_FIRST (fns); |
11920 | name = DECL_NAME (fn); |
11921 | |
11922 | basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance)); |
11923 | gcc_assert (CLASS_TYPE_P (basetype)); |
11924 | |
11925 | user_args = args == NULL ? NULL : *args; |
11926 | /* Under DR 147 A::A() is an invalid constructor call, |
11927 | not a functional cast. */ |
11928 | if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn)) |
11929 | { |
11930 | if (! (complain & tf_error)) |
11931 | return error_mark_node; |
11932 | |
11933 | basetype = DECL_CONTEXT (fn); |
11934 | name = constructor_name (basetype); |
11935 | auto_diagnostic_group d; |
11936 | if (permerror (input_location, |
11937 | "cannot call constructor %<%T::%D%> directly" , |
11938 | basetype, name)) |
11939 | inform (input_location, "for a function-style cast, remove the " |
11940 | "redundant %<::%D%>" , name); |
11941 | call = build_functional_cast (input_location, basetype, |
11942 | build_tree_list_vec (user_args), |
11943 | complain); |
11944 | return call; |
11945 | } |
11946 | |
11947 | if (processing_template_decl) |
11948 | orig_args = args == NULL ? NULL : make_tree_vector_copy (*args); |
11949 | |
11950 | /* Process the argument list. */ |
11951 | if (args != NULL && *args != NULL) |
11952 | { |
11953 | *args = resolve_args (args: *args, complain); |
11954 | if (*args == NULL) |
11955 | return error_mark_node; |
11956 | user_args = *args; |
11957 | } |
11958 | |
11959 | /* Consider the object argument to be used even if we end up selecting a |
11960 | static member function. */ |
11961 | instance = mark_type_use (instance); |
11962 | |
11963 | /* Figure out whether to skip the first argument for the error |
11964 | message we will display to users if an error occurs. We don't |
11965 | want to display any compiler-generated arguments. The "this" |
11966 | pointer hasn't been added yet. However, we must remove the VTT |
11967 | pointer if this is a call to a base-class constructor or |
11968 | destructor. */ |
11969 | skip_first_for_error = false; |
11970 | if (IDENTIFIER_CDTOR_P (name)) |
11971 | { |
11972 | /* Callers should explicitly indicate whether they want to ctor |
11973 | the complete object or just the part without virtual bases. */ |
11974 | gcc_assert (name != ctor_identifier); |
11975 | |
11976 | /* Remove the VTT pointer, if present. */ |
11977 | if ((name == base_ctor_identifier || name == base_dtor_identifier) |
11978 | && CLASSTYPE_VBASECLASSES (basetype)) |
11979 | skip_first_for_error = true; |
11980 | |
11981 | /* It's OK to call destructors and constructors on cv-qualified |
11982 | objects. Therefore, convert the INSTANCE to the unqualified |
11983 | type, if necessary. */ |
11984 | if (!same_type_p (basetype, TREE_TYPE (instance))) |
11985 | { |
11986 | instance = build_this (obj: instance); |
11987 | instance = build_nop (build_pointer_type (basetype), instance); |
11988 | instance = build_fold_indirect_ref (instance); |
11989 | } |
11990 | } |
11991 | else |
11992 | gcc_assert (!DECL_DESTRUCTOR_P (fn) && !DECL_CONSTRUCTOR_P (fn)); |
11993 | |
11994 | /* For the overload resolution we need to find the actual `this` |
11995 | that would be captured if the call turns out to be to a |
11996 | non-static member function. Do not actually capture it at this |
11997 | point. */ |
11998 | if (DECL_CONSTRUCTOR_P (fn)) |
11999 | /* Constructors don't use the enclosing 'this'. */ |
12000 | first_mem_arg = instance; |
12001 | else |
12002 | first_mem_arg = maybe_resolve_dummy (instance, false); |
12003 | |
12004 | conversion_obstack_sentinel cos; |
12005 | |
12006 | /* The number of arguments artificial parms in ARGS; we subtract one because |
12007 | there's no 'this' in ARGS. */ |
12008 | unsigned skip = num_artificial_parms_for (fn) - 1; |
12009 | |
12010 | /* If CONSTRUCTOR_IS_DIRECT_INIT is set, this was a T{ } form |
12011 | initializer, not T({ }). */ |
12012 | if (DECL_CONSTRUCTOR_P (fn) |
12013 | && vec_safe_length (v: user_args) > skip |
12014 | && DIRECT_LIST_INIT_P ((*user_args)[skip])) |
12015 | { |
12016 | tree init_list = (*user_args)[skip]; |
12017 | tree init = NULL_TREE; |
12018 | |
12019 | gcc_assert (user_args->length () == skip + 1 |
12020 | && !(flags & LOOKUP_ONLYCONVERTING)); |
12021 | |
12022 | /* If the initializer list has no elements and T is a class type with |
12023 | a default constructor, the object is value-initialized. Handle |
12024 | this here so we don't need to handle it wherever we use |
12025 | build_special_member_call. */ |
12026 | if (CONSTRUCTOR_NELTS (init_list) == 0 |
12027 | && TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype) |
12028 | /* For a user-provided default constructor, use the normal |
12029 | mechanisms so that protected access works. */ |
12030 | && type_has_non_user_provided_default_constructor (basetype) |
12031 | && !processing_template_decl) |
12032 | init = build_value_init (basetype, complain); |
12033 | |
12034 | /* If BASETYPE is an aggregate, we need to do aggregate |
12035 | initialization. */ |
12036 | else if (CP_AGGREGATE_TYPE_P (basetype)) |
12037 | { |
12038 | init = reshape_init (basetype, init_list, complain); |
12039 | init = digest_init (basetype, init, complain); |
12040 | } |
12041 | |
12042 | if (init) |
12043 | { |
12044 | if (is_dummy_object (instance)) |
12045 | return get_target_expr (init, complain); |
12046 | return cp_build_init_expr (t: instance, i: init); |
12047 | } |
12048 | |
12049 | /* Otherwise go ahead with overload resolution. */ |
12050 | add_list_candidates (fns, first_arg: first_mem_arg, args: user_args, |
12051 | totype: basetype, explicit_targs, template_only, |
12052 | conversion_path, access_path: access_binfo, flags, |
12053 | candidates: &candidates, complain); |
12054 | } |
12055 | else |
12056 | add_candidates (fns, first_arg: first_mem_arg, args: user_args, return_type: optype, |
12057 | explicit_targs, template_only, conversion_path, |
12058 | access_path: access_binfo, flags, candidates: &candidates, complain); |
12059 | |
12060 | any_viable_p = false; |
12061 | candidates = splice_viable (cands: candidates, strict_p: false, any_viable_p: &any_viable_p); |
12062 | |
12063 | if (!any_viable_p) |
12064 | { |
12065 | /* [dcl.init], 17.6.2.2: |
12066 | |
12067 | Otherwise, if no constructor is viable, the destination type is |
12068 | a (possibly cv-qualified) aggregate class A, and the initializer |
12069 | is a parenthesized expression-list, the object is initialized as |
12070 | follows... |
12071 | |
12072 | We achieve this by building up a CONSTRUCTOR, as for list-init, |
12073 | and setting CONSTRUCTOR_IS_PAREN_INIT to distinguish between |
12074 | the two. */ |
12075 | if (DECL_CONSTRUCTOR_P (fn) |
12076 | && !(flags & LOOKUP_ONLYCONVERTING) |
12077 | && cxx_dialect >= cxx20 |
12078 | && CP_AGGREGATE_TYPE_P (basetype) |
12079 | && !vec_safe_is_empty (v: user_args)) |
12080 | { |
12081 | /* Create a CONSTRUCTOR from ARGS, e.g. {1, 2} from <1, 2>. */ |
12082 | tree ctor = build_constructor_from_vec (init_list_type_node, |
12083 | user_args); |
12084 | CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true; |
12085 | CONSTRUCTOR_IS_PAREN_INIT (ctor) = true; |
12086 | if (is_dummy_object (instance)) |
12087 | return ctor; |
12088 | else |
12089 | { |
12090 | ctor = digest_init (basetype, ctor, complain); |
12091 | if (ctor == error_mark_node) |
12092 | return error_mark_node; |
12093 | return cp_build_init_expr (t: instance, i: ctor); |
12094 | } |
12095 | } |
12096 | if (complain & tf_error) |
12097 | complain_about_no_candidates_for_method_call (instance, candidates, |
12098 | explicit_targs, basetype, |
12099 | optype, name, |
12100 | skip_first_for_error, |
12101 | user_args); |
12102 | call = error_mark_node; |
12103 | } |
12104 | else |
12105 | { |
12106 | cand = tourney (candidates, complain); |
12107 | if (cand == 0) |
12108 | { |
12109 | char *pretty_name; |
12110 | bool free_p; |
12111 | tree arglist; |
12112 | |
12113 | if (complain & tf_error) |
12114 | { |
12115 | pretty_name = name_as_c_string (name, type: basetype, free_p: &free_p); |
12116 | arglist = build_tree_list_vec (user_args); |
12117 | if (skip_first_for_error) |
12118 | arglist = TREE_CHAIN (arglist); |
12119 | auto_diagnostic_group d; |
12120 | if (!any_strictly_viable (cands: candidates)) |
12121 | error ("no matching function for call to %<%s(%A)%>" , |
12122 | pretty_name, arglist); |
12123 | else |
12124 | error ("call of overloaded %<%s(%A)%> is ambiguous" , |
12125 | pretty_name, arglist); |
12126 | print_z_candidates (loc: location_of (name), candidates); |
12127 | if (free_p) |
12128 | free (ptr: pretty_name); |
12129 | } |
12130 | call = error_mark_node; |
12131 | if (fn_p) |
12132 | *fn_p = error_mark_node; |
12133 | } |
12134 | else |
12135 | { |
12136 | fn = cand->fn; |
12137 | call = NULL_TREE; |
12138 | |
12139 | if (!(flags & LOOKUP_NONVIRTUAL) |
12140 | && DECL_PURE_VIRTUAL_P (fn) |
12141 | && instance == current_class_ref |
12142 | && (complain & tf_warning)) |
12143 | { |
12144 | /* This is not an error, it is runtime undefined |
12145 | behavior. */ |
12146 | if (!current_function_decl) |
12147 | warning (0, "pure virtual %q#D called from " |
12148 | "non-static data member initializer" , fn); |
12149 | else if (DECL_CONSTRUCTOR_P (current_function_decl) |
12150 | || DECL_DESTRUCTOR_P (current_function_decl)) |
12151 | warning (0, (DECL_CONSTRUCTOR_P (current_function_decl) |
12152 | ? G_("pure virtual %q#D called from constructor" ) |
12153 | : G_("pure virtual %q#D called from destructor" )), |
12154 | fn); |
12155 | } |
12156 | |
12157 | if (DECL_OBJECT_MEMBER_FUNCTION_P (fn) |
12158 | && !DECL_CONSTRUCTOR_P (fn) |
12159 | && is_dummy_object (instance)) |
12160 | { |
12161 | instance = maybe_resolve_dummy (instance, true); |
12162 | if (instance == error_mark_node) |
12163 | call = error_mark_node; |
12164 | else if (!is_dummy_object (instance)) |
12165 | { |
12166 | /* We captured 'this' in the current lambda now that |
12167 | we know we really need it. */ |
12168 | cand->first_arg = instance; |
12169 | } |
12170 | else if (current_class_ptr && any_dependent_bases_p ()) |
12171 | /* We can't tell until instantiation time whether we can use |
12172 | *this as the implicit object argument. */; |
12173 | else |
12174 | { |
12175 | if (complain & tf_error) |
12176 | error ("cannot call member function %qD without object" , |
12177 | fn); |
12178 | call = error_mark_node; |
12179 | } |
12180 | } |
12181 | |
12182 | if (call != error_mark_node) |
12183 | { |
12184 | /* Now we know what function is being called. */ |
12185 | if (fn_p) |
12186 | *fn_p = fn; |
12187 | /* Build the actual CALL_EXPR. */ |
12188 | call = build_over_call (cand, flags, complain); |
12189 | |
12190 | /* Suppress warnings for if (my_struct.operator= (x)) where |
12191 | my_struct is implicitly converted to bool. */ |
12192 | if (TREE_CODE (call) == MODIFY_EXPR) |
12193 | suppress_warning (call, OPT_Wparentheses); |
12194 | |
12195 | /* In an expression of the form `a->f()' where `f' turns |
12196 | out to be a static member function, `a' is |
12197 | none-the-less evaluated. */ |
12198 | if (!is_dummy_object (instance)) |
12199 | call = keep_unused_object_arg (result: call, obj: instance, fn); |
12200 | if (call != error_mark_node |
12201 | && DECL_DESTRUCTOR_P (cand->fn) |
12202 | && !VOID_TYPE_P (TREE_TYPE (call))) |
12203 | /* An explicit call of the form "x->~X()" has type |
12204 | "void". However, on platforms where destructors |
12205 | return "this" (i.e., those where |
12206 | targetm.cxx.cdtor_returns_this is true), such calls |
12207 | will appear to have a return value of pointer type |
12208 | to the low-level call machinery. We do not want to |
12209 | change the low-level machinery, since we want to be |
12210 | able to optimize "delete f()" on such platforms as |
12211 | "operator delete(~X(f()))" (rather than generating |
12212 | "t = f(), ~X(t), operator delete (t)"). */ |
12213 | call = build_nop (void_type_node, call); |
12214 | } |
12215 | } |
12216 | } |
12217 | |
12218 | if (processing_template_decl && call != error_mark_node) |
12219 | { |
12220 | bool cast_to_void = false; |
12221 | |
12222 | if (TREE_CODE (call) == COMPOUND_EXPR) |
12223 | call = TREE_OPERAND (call, 1); |
12224 | else if (TREE_CODE (call) == NOP_EXPR) |
12225 | { |
12226 | cast_to_void = true; |
12227 | call = TREE_OPERAND (call, 0); |
12228 | } |
12229 | if (INDIRECT_REF_P (call)) |
12230 | call = TREE_OPERAND (call, 0); |
12231 | |
12232 | /* Prune all but the selected function from the original overload |
12233 | set so that we can avoid some duplicate work at instantiation time. */ |
12234 | if (really_overloaded_fn (fns)) |
12235 | { |
12236 | if (DECL_TEMPLATE_INFO (fn) |
12237 | && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn))) |
12238 | { |
12239 | /* Use the selected template, not the specialization, so that |
12240 | this looks like an actual lookup result for sake of |
12241 | filter_memfn_lookup. */ |
12242 | |
12243 | if (OVL_SINGLE_P (fns)) |
12244 | /* If the original overload set consists of a single function |
12245 | template, this isn't beneficial. */ |
12246 | goto skip_prune; |
12247 | |
12248 | fn = ovl_make (DECL_TI_TEMPLATE (fn)); |
12249 | if (template_only) |
12250 | fn = lookup_template_function (fn, explicit_targs); |
12251 | } |
12252 | orig_fns = copy_node (orig_fns); |
12253 | BASELINK_FUNCTIONS (orig_fns) = fn; |
12254 | BASELINK_FUNCTIONS_MAYBE_INCOMPLETE_P (orig_fns) = true; |
12255 | } |
12256 | |
12257 | skip_prune: |
12258 | call = (build_min_non_dep_call_vec |
12259 | (call, |
12260 | build_min (COMPONENT_REF, TREE_TYPE (CALL_EXPR_FN (call)), |
12261 | orig_instance, orig_fns, NULL_TREE), |
12262 | orig_args)); |
12263 | SET_EXPR_LOCATION (call, input_location); |
12264 | call = convert_from_reference (call); |
12265 | if (cast_to_void) |
12266 | call = build_nop (void_type_node, call); |
12267 | } |
12268 | |
12269 | if (orig_args != NULL) |
12270 | release_tree_vector (orig_args); |
12271 | |
12272 | return call; |
12273 | } |
12274 | |
12275 | /* Returns true iff standard conversion sequence ICS1 is a proper |
12276 | subsequence of ICS2. */ |
12277 | |
12278 | static bool |
12279 | is_subseq (conversion *ics1, conversion *ics2) |
12280 | { |
12281 | /* We can assume that a conversion of the same code |
12282 | between the same types indicates a subsequence since we only get |
12283 | here if the types we are converting from are the same. */ |
12284 | |
12285 | while (ics1->kind == ck_rvalue |
12286 | || ics1->kind == ck_lvalue) |
12287 | ics1 = next_conversion (conv: ics1); |
12288 | |
12289 | while (1) |
12290 | { |
12291 | while (ics2->kind == ck_rvalue |
12292 | || ics2->kind == ck_lvalue) |
12293 | ics2 = next_conversion (conv: ics2); |
12294 | |
12295 | if (ics2->kind == ck_user |
12296 | || !has_next (code: ics2->kind)) |
12297 | /* At this point, ICS1 cannot be a proper subsequence of |
12298 | ICS2. We can get a USER_CONV when we are comparing the |
12299 | second standard conversion sequence of two user conversion |
12300 | sequences. */ |
12301 | return false; |
12302 | |
12303 | ics2 = next_conversion (conv: ics2); |
12304 | |
12305 | while (ics2->kind == ck_rvalue |
12306 | || ics2->kind == ck_lvalue) |
12307 | ics2 = next_conversion (conv: ics2); |
12308 | |
12309 | if (ics2->kind == ics1->kind |
12310 | && same_type_p (ics2->type, ics1->type) |
12311 | && (ics1->kind == ck_identity |
12312 | || same_type_p (next_conversion (ics2)->type, |
12313 | next_conversion (ics1)->type))) |
12314 | return true; |
12315 | } |
12316 | } |
12317 | |
12318 | /* Returns nonzero iff DERIVED is derived from BASE. The inputs may |
12319 | be any _TYPE nodes. */ |
12320 | |
12321 | bool |
12322 | is_properly_derived_from (tree derived, tree base) |
12323 | { |
12324 | if (!CLASS_TYPE_P (derived) || !CLASS_TYPE_P (base)) |
12325 | return false; |
12326 | |
12327 | /* We only allow proper derivation here. The DERIVED_FROM_P macro |
12328 | considers every class derived from itself. */ |
12329 | return (!same_type_ignoring_top_level_qualifiers_p (derived, base) |
12330 | && DERIVED_FROM_P (base, derived)); |
12331 | } |
12332 | |
12333 | /* We build the ICS for an implicit object parameter as a pointer |
12334 | conversion sequence. However, such a sequence should be compared |
12335 | as if it were a reference conversion sequence. If ICS is the |
12336 | implicit conversion sequence for an implicit object parameter, |
12337 | modify it accordingly. */ |
12338 | |
12339 | static void |
12340 | maybe_handle_implicit_object (conversion **ics) |
12341 | { |
12342 | if ((*ics)->this_p) |
12343 | { |
12344 | /* [over.match.funcs] |
12345 | |
12346 | For non-static member functions, the type of the |
12347 | implicit object parameter is "reference to cv X" |
12348 | where X is the class of which the function is a |
12349 | member and cv is the cv-qualification on the member |
12350 | function declaration. */ |
12351 | conversion *t = *ics; |
12352 | tree reference_type; |
12353 | |
12354 | /* The `this' parameter is a pointer to a class type. Make the |
12355 | implicit conversion talk about a reference to that same class |
12356 | type. */ |
12357 | reference_type = TREE_TYPE (t->type); |
12358 | reference_type = build_reference_type (reference_type); |
12359 | |
12360 | if (t->kind == ck_qual) |
12361 | t = next_conversion (conv: t); |
12362 | if (t->kind == ck_ptr) |
12363 | t = next_conversion (conv: t); |
12364 | t = build_identity_conv (TREE_TYPE (t->type), NULL_TREE); |
12365 | t = direct_reference_binding (type: reference_type, conv: t); |
12366 | t->this_p = 1; |
12367 | t->rvaluedness_matches_p = 0; |
12368 | *ics = t; |
12369 | } |
12370 | } |
12371 | |
12372 | /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion, |
12373 | and return the initial reference binding conversion. Otherwise, |
12374 | leave *ICS unchanged and return NULL. */ |
12375 | |
12376 | static conversion * |
12377 | maybe_handle_ref_bind (conversion **ics) |
12378 | { |
12379 | if ((*ics)->kind == ck_ref_bind) |
12380 | { |
12381 | conversion *old_ics = *ics; |
12382 | *ics = next_conversion (conv: old_ics); |
12383 | (*ics)->user_conv_p = old_ics->user_conv_p; |
12384 | return old_ics; |
12385 | } |
12386 | |
12387 | return NULL; |
12388 | } |
12389 | |
12390 | /* Get the expression at the beginning of the conversion chain C. */ |
12391 | |
12392 | static tree |
12393 | conv_get_original_expr (conversion *c) |
12394 | { |
12395 | for (; c; c = next_conversion (conv: c)) |
12396 | if (c->kind == ck_identity || c->kind == ck_ambig || c->kind == ck_aggr) |
12397 | return c->u.expr; |
12398 | return NULL_TREE; |
12399 | } |
12400 | |
12401 | /* Return a tree representing the number of elements initialized by the |
12402 | list-initialization C. The caller must check that C converts to an |
12403 | array type. */ |
12404 | |
12405 | static tree |
12406 | nelts_initialized_by_list_init (conversion *c) |
12407 | { |
12408 | /* If the array we're converting to has a dimension, we'll use that. */ |
12409 | if (TYPE_DOMAIN (c->type)) |
12410 | return array_type_nelts_top (c->type); |
12411 | else |
12412 | { |
12413 | /* Otherwise, we look at how many elements the constructor we're |
12414 | initializing from has. */ |
12415 | tree ctor = conv_get_original_expr (c); |
12416 | return size_int (CONSTRUCTOR_NELTS (ctor)); |
12417 | } |
12418 | } |
12419 | |
12420 | /* True iff C is a conversion that binds a reference or a pointer to |
12421 | an array of unknown bound. */ |
12422 | |
12423 | static inline bool |
12424 | conv_binds_to_array_of_unknown_bound (conversion *c) |
12425 | { |
12426 | /* ck_ref_bind won't have the reference stripped. */ |
12427 | tree type = non_reference (c->type); |
12428 | /* ck_qual won't have the pointer stripped. */ |
12429 | type = strip_pointer_operator (type); |
12430 | return (TREE_CODE (type) == ARRAY_TYPE |
12431 | && TYPE_DOMAIN (type) == NULL_TREE); |
12432 | } |
12433 | |
12434 | /* Compare two implicit conversion sequences according to the rules set out in |
12435 | [over.ics.rank]. Return values: |
12436 | |
12437 | 1: ics1 is better than ics2 |
12438 | -1: ics2 is better than ics1 |
12439 | 0: ics1 and ics2 are indistinguishable */ |
12440 | |
12441 | static int |
12442 | compare_ics (conversion *ics1, conversion *ics2) |
12443 | { |
12444 | tree from_type1; |
12445 | tree from_type2; |
12446 | tree to_type1; |
12447 | tree to_type2; |
12448 | tree deref_from_type1 = NULL_TREE; |
12449 | tree deref_from_type2 = NULL_TREE; |
12450 | tree deref_to_type1 = NULL_TREE; |
12451 | tree deref_to_type2 = NULL_TREE; |
12452 | conversion_rank rank1, rank2; |
12453 | |
12454 | /* REF_BINDING is nonzero if the result of the conversion sequence |
12455 | is a reference type. In that case REF_CONV is the reference |
12456 | binding conversion. */ |
12457 | conversion *ref_conv1; |
12458 | conversion *ref_conv2; |
12459 | |
12460 | /* Compare badness before stripping the reference conversion. */ |
12461 | if (ics1->bad_p > ics2->bad_p) |
12462 | return -1; |
12463 | else if (ics1->bad_p < ics2->bad_p) |
12464 | return 1; |
12465 | |
12466 | /* Handle implicit object parameters. */ |
12467 | maybe_handle_implicit_object (ics: &ics1); |
12468 | maybe_handle_implicit_object (ics: &ics2); |
12469 | |
12470 | /* Handle reference parameters. */ |
12471 | ref_conv1 = maybe_handle_ref_bind (ics: &ics1); |
12472 | ref_conv2 = maybe_handle_ref_bind (ics: &ics2); |
12473 | |
12474 | /* List-initialization sequence L1 is a better conversion sequence than |
12475 | list-initialization sequence L2 if L1 converts to |
12476 | std::initializer_list<X> for some X and L2 does not. */ |
12477 | if (ics1->kind == ck_list && ics2->kind != ck_list) |
12478 | return 1; |
12479 | if (ics2->kind == ck_list && ics1->kind != ck_list) |
12480 | return -1; |
12481 | |
12482 | /* [over.ics.rank] |
12483 | |
12484 | When comparing the basic forms of implicit conversion sequences (as |
12485 | defined in _over.best.ics_) |
12486 | |
12487 | --a standard conversion sequence (_over.ics.scs_) is a better |
12488 | conversion sequence than a user-defined conversion sequence |
12489 | or an ellipsis conversion sequence, and |
12490 | |
12491 | --a user-defined conversion sequence (_over.ics.user_) is a |
12492 | better conversion sequence than an ellipsis conversion sequence |
12493 | (_over.ics.ellipsis_). */ |
12494 | /* Use BAD_CONVERSION_RANK because we already checked for a badness |
12495 | mismatch. If both ICS are bad, we try to make a decision based on |
12496 | what would have happened if they'd been good. This is not an |
12497 | extension, we'll still give an error when we build up the call; this |
12498 | just helps us give a more helpful error message. */ |
12499 | rank1 = BAD_CONVERSION_RANK (ics1); |
12500 | rank2 = BAD_CONVERSION_RANK (ics2); |
12501 | |
12502 | if (rank1 > rank2) |
12503 | return -1; |
12504 | else if (rank1 < rank2) |
12505 | return 1; |
12506 | |
12507 | if (ics1->ellipsis_p) |
12508 | /* Both conversions are ellipsis conversions. */ |
12509 | return 0; |
12510 | |
12511 | /* User-defined conversion sequence U1 is a better conversion sequence |
12512 | than another user-defined conversion sequence U2 if they contain the |
12513 | same user-defined conversion operator or constructor and if the sec- |
12514 | ond standard conversion sequence of U1 is better than the second |
12515 | standard conversion sequence of U2. */ |
12516 | |
12517 | /* Handle list-conversion with the same code even though it isn't always |
12518 | ranked as a user-defined conversion and it doesn't have a second |
12519 | standard conversion sequence; it will still have the desired effect. |
12520 | Specifically, we need to do the reference binding comparison at the |
12521 | end of this function. */ |
12522 | |
12523 | if (ics1->user_conv_p || ics1->kind == ck_list |
12524 | || ics1->kind == ck_aggr || ics2->kind == ck_aggr) |
12525 | { |
12526 | conversion *t1 = strip_standard_conversion (conv: ics1); |
12527 | conversion *t2 = strip_standard_conversion (conv: ics2); |
12528 | |
12529 | if (!t1 || !t2 || t1->kind != t2->kind) |
12530 | return 0; |
12531 | else if (t1->kind == ck_user) |
12532 | { |
12533 | tree f1 = t1->cand ? t1->cand->fn : t1->type; |
12534 | tree f2 = t2->cand ? t2->cand->fn : t2->type; |
12535 | if (f1 != f2) |
12536 | return 0; |
12537 | } |
12538 | /* List-initialization sequence L1 is a better conversion sequence than |
12539 | list-initialization sequence L2 if |
12540 | |
12541 | -- L1 and L2 convert to arrays of the same element type, and either |
12542 | the number of elements n1 initialized by L1 is less than the number |
12543 | of elements n2 initialized by L2, or n1=n2 and L2 converts to an array |
12544 | of unknown bound and L1 does not. (Added in CWG 1307 and extended by |
12545 | P0388R4.) */ |
12546 | else if (t1->kind == ck_aggr |
12547 | && TREE_CODE (t1->type) == ARRAY_TYPE |
12548 | && TREE_CODE (t2->type) == ARRAY_TYPE |
12549 | && same_type_p (TREE_TYPE (t1->type), TREE_TYPE (t2->type))) |
12550 | { |
12551 | tree n1 = nelts_initialized_by_list_init (c: t1); |
12552 | tree n2 = nelts_initialized_by_list_init (c: t2); |
12553 | if (tree_int_cst_lt (t1: n1, t2: n2)) |
12554 | return 1; |
12555 | else if (tree_int_cst_lt (t1: n2, t2: n1)) |
12556 | return -1; |
12557 | /* The n1 == n2 case. */ |
12558 | bool c1 = conv_binds_to_array_of_unknown_bound (c: t1); |
12559 | bool c2 = conv_binds_to_array_of_unknown_bound (c: t2); |
12560 | if (c1 && !c2) |
12561 | return -1; |
12562 | else if (!c1 && c2) |
12563 | return 1; |
12564 | else |
12565 | return 0; |
12566 | } |
12567 | else |
12568 | { |
12569 | /* For ambiguous or aggregate conversions, use the target type as |
12570 | a proxy for the conversion function. */ |
12571 | if (!same_type_ignoring_top_level_qualifiers_p (t1->type, t2->type)) |
12572 | return 0; |
12573 | } |
12574 | |
12575 | /* We can just fall through here, after setting up |
12576 | FROM_TYPE1 and FROM_TYPE2. */ |
12577 | from_type1 = t1->type; |
12578 | from_type2 = t2->type; |
12579 | } |
12580 | else |
12581 | { |
12582 | conversion *t1; |
12583 | conversion *t2; |
12584 | |
12585 | /* We're dealing with two standard conversion sequences. |
12586 | |
12587 | [over.ics.rank] |
12588 | |
12589 | Standard conversion sequence S1 is a better conversion |
12590 | sequence than standard conversion sequence S2 if |
12591 | |
12592 | --S1 is a proper subsequence of S2 (comparing the conversion |
12593 | sequences in the canonical form defined by _over.ics.scs_, |
12594 | excluding any Lvalue Transformation; the identity |
12595 | conversion sequence is considered to be a subsequence of |
12596 | any non-identity conversion sequence */ |
12597 | |
12598 | t1 = ics1; |
12599 | while (t1->kind != ck_identity) |
12600 | t1 = next_conversion (conv: t1); |
12601 | from_type1 = t1->type; |
12602 | |
12603 | t2 = ics2; |
12604 | while (t2->kind != ck_identity) |
12605 | t2 = next_conversion (conv: t2); |
12606 | from_type2 = t2->type; |
12607 | } |
12608 | |
12609 | /* One sequence can only be a subsequence of the other if they start with |
12610 | the same type. They can start with different types when comparing the |
12611 | second standard conversion sequence in two user-defined conversion |
12612 | sequences. */ |
12613 | if (same_type_p (from_type1, from_type2)) |
12614 | { |
12615 | if (is_subseq (ics1, ics2)) |
12616 | return 1; |
12617 | if (is_subseq (ics1: ics2, ics2: ics1)) |
12618 | return -1; |
12619 | } |
12620 | |
12621 | /* [over.ics.rank] |
12622 | |
12623 | Or, if not that, |
12624 | |
12625 | --the rank of S1 is better than the rank of S2 (by the rules |
12626 | defined below): |
12627 | |
12628 | Standard conversion sequences are ordered by their ranks: an Exact |
12629 | Match is a better conversion than a Promotion, which is a better |
12630 | conversion than a Conversion. |
12631 | |
12632 | Two conversion sequences with the same rank are indistinguishable |
12633 | unless one of the following rules applies: |
12634 | |
12635 | --A conversion that does not a convert a pointer, pointer to member, |
12636 | or std::nullptr_t to bool is better than one that does. |
12637 | |
12638 | The ICS_STD_RANK automatically handles the pointer-to-bool rule, |
12639 | so that we do not have to check it explicitly. */ |
12640 | if (ics1->rank < ics2->rank) |
12641 | return 1; |
12642 | else if (ics2->rank < ics1->rank) |
12643 | return -1; |
12644 | |
12645 | to_type1 = ics1->type; |
12646 | to_type2 = ics2->type; |
12647 | |
12648 | /* A conversion from scalar arithmetic type to complex is worse than a |
12649 | conversion between scalar arithmetic types. */ |
12650 | if (same_type_p (from_type1, from_type2) |
12651 | && ARITHMETIC_TYPE_P (from_type1) |
12652 | && ARITHMETIC_TYPE_P (to_type1) |
12653 | && ARITHMETIC_TYPE_P (to_type2) |
12654 | && ((TREE_CODE (to_type1) == COMPLEX_TYPE) |
12655 | != (TREE_CODE (to_type2) == COMPLEX_TYPE))) |
12656 | { |
12657 | if (TREE_CODE (to_type1) == COMPLEX_TYPE) |
12658 | return -1; |
12659 | else |
12660 | return 1; |
12661 | } |
12662 | |
12663 | { |
12664 | /* A conversion in either direction between floating-point type FP1 and |
12665 | floating-point type FP2 is better than a conversion in the same |
12666 | direction between FP1 and arithmetic type T3 if |
12667 | - the floating-point conversion rank of FP1 is equal to the rank of |
12668 | FP2, and |
12669 | - T3 is not a floating-point type, or T3 is a floating-point type |
12670 | whose rank is not equal to the rank of FP1, or the floating-point |
12671 | conversion subrank of FP2 is greater than the subrank of T3. */ |
12672 | tree fp1 = from_type1; |
12673 | tree fp2 = to_type1; |
12674 | tree fp3 = from_type2; |
12675 | tree t3 = to_type2; |
12676 | int ret = 1; |
12677 | if (TYPE_MAIN_VARIANT (fp2) == TYPE_MAIN_VARIANT (t3)) |
12678 | { |
12679 | std::swap (a&: fp1, b&: fp2); |
12680 | std::swap (a&: fp3, b&: t3); |
12681 | } |
12682 | if (TYPE_MAIN_VARIANT (fp1) == TYPE_MAIN_VARIANT (fp3) |
12683 | && SCALAR_FLOAT_TYPE_P (fp1) |
12684 | /* Only apply this rule if at least one of the 3 types is |
12685 | extended floating-point type, otherwise keep them as |
12686 | before for compatibility reasons with types like __float128. |
12687 | float, double and long double alone have different conversion |
12688 | ranks and so when just those 3 types are involved, this |
12689 | rule doesn't trigger. */ |
12690 | && (extended_float_type_p (type: fp1) |
12691 | || (SCALAR_FLOAT_TYPE_P (fp2) && extended_float_type_p (type: fp2)) |
12692 | || (SCALAR_FLOAT_TYPE_P (t3) && extended_float_type_p (type: t3)))) |
12693 | { |
12694 | if (TREE_CODE (fp2) != REAL_TYPE) |
12695 | { |
12696 | ret = -ret; |
12697 | std::swap (a&: fp2, b&: t3); |
12698 | } |
12699 | if (SCALAR_FLOAT_TYPE_P (fp2)) |
12700 | { |
12701 | /* cp_compare_floating_point_conversion_ranks returns -1, 0 or 1 |
12702 | if the conversion rank is equal (-1 or 1 if the subrank is |
12703 | different). */ |
12704 | if (IN_RANGE (cp_compare_floating_point_conversion_ranks (fp1, |
12705 | fp2), |
12706 | -1, 1)) |
12707 | { |
12708 | /* Conversion ranks of FP1 and FP2 are equal. */ |
12709 | if (TREE_CODE (t3) != REAL_TYPE |
12710 | || !IN_RANGE (cp_compare_floating_point_conversion_ranks |
12711 | (fp1, t3), |
12712 | -1, 1)) |
12713 | /* FP1 <-> FP2 conversion is better. */ |
12714 | return ret; |
12715 | int c = cp_compare_floating_point_conversion_ranks (fp2, t3); |
12716 | gcc_assert (IN_RANGE (c, -1, 1)); |
12717 | if (c == 1) |
12718 | /* Conversion subrank of FP2 is greater than subrank of T3. |
12719 | FP1 <-> FP2 conversion is better. */ |
12720 | return ret; |
12721 | else if (c == -1) |
12722 | /* Conversion subrank of FP2 is less than subrank of T3. |
12723 | FP1 <-> T3 conversion is better. */ |
12724 | return -ret; |
12725 | } |
12726 | else if (SCALAR_FLOAT_TYPE_P (t3) |
12727 | && IN_RANGE (cp_compare_floating_point_conversion_ranks |
12728 | (fp1, t3), |
12729 | -1, 1)) |
12730 | /* Conversion ranks of FP1 and FP2 are not equal, conversion |
12731 | ranks of FP1 and T3 are equal. |
12732 | FP1 <-> T3 conversion is better. */ |
12733 | return -ret; |
12734 | } |
12735 | } |
12736 | } |
12737 | |
12738 | if (TYPE_PTR_P (from_type1) |
12739 | && TYPE_PTR_P (from_type2) |
12740 | && TYPE_PTR_P (to_type1) |
12741 | && TYPE_PTR_P (to_type2)) |
12742 | { |
12743 | deref_from_type1 = TREE_TYPE (from_type1); |
12744 | deref_from_type2 = TREE_TYPE (from_type2); |
12745 | deref_to_type1 = TREE_TYPE (to_type1); |
12746 | deref_to_type2 = TREE_TYPE (to_type2); |
12747 | } |
12748 | /* The rules for pointers to members A::* are just like the rules |
12749 | for pointers A*, except opposite: if B is derived from A then |
12750 | A::* converts to B::*, not vice versa. For that reason, we |
12751 | switch the from_ and to_ variables here. */ |
12752 | else if ((TYPE_PTRDATAMEM_P (from_type1) && TYPE_PTRDATAMEM_P (from_type2) |
12753 | && TYPE_PTRDATAMEM_P (to_type1) && TYPE_PTRDATAMEM_P (to_type2)) |
12754 | || (TYPE_PTRMEMFUNC_P (from_type1) |
12755 | && TYPE_PTRMEMFUNC_P (from_type2) |
12756 | && TYPE_PTRMEMFUNC_P (to_type1) |
12757 | && TYPE_PTRMEMFUNC_P (to_type2))) |
12758 | { |
12759 | deref_to_type1 = TYPE_PTRMEM_CLASS_TYPE (from_type1); |
12760 | deref_to_type2 = TYPE_PTRMEM_CLASS_TYPE (from_type2); |
12761 | deref_from_type1 = TYPE_PTRMEM_CLASS_TYPE (to_type1); |
12762 | deref_from_type2 = TYPE_PTRMEM_CLASS_TYPE (to_type2); |
12763 | } |
12764 | |
12765 | if (deref_from_type1 != NULL_TREE |
12766 | && RECORD_OR_UNION_CODE_P (TREE_CODE (deref_from_type1)) |
12767 | && RECORD_OR_UNION_CODE_P (TREE_CODE (deref_from_type2))) |
12768 | { |
12769 | /* This was one of the pointer or pointer-like conversions. |
12770 | |
12771 | [over.ics.rank] |
12772 | |
12773 | --If class B is derived directly or indirectly from class A, |
12774 | conversion of B* to A* is better than conversion of B* to |
12775 | void*, and conversion of A* to void* is better than |
12776 | conversion of B* to void*. */ |
12777 | if (VOID_TYPE_P (deref_to_type1) |
12778 | && VOID_TYPE_P (deref_to_type2)) |
12779 | { |
12780 | if (is_properly_derived_from (derived: deref_from_type1, |
12781 | base: deref_from_type2)) |
12782 | return -1; |
12783 | else if (is_properly_derived_from (derived: deref_from_type2, |
12784 | base: deref_from_type1)) |
12785 | return 1; |
12786 | } |
12787 | else if (VOID_TYPE_P (deref_to_type1) |
12788 | || VOID_TYPE_P (deref_to_type2)) |
12789 | { |
12790 | if (same_type_p (deref_from_type1, deref_from_type2)) |
12791 | { |
12792 | if (VOID_TYPE_P (deref_to_type2)) |
12793 | { |
12794 | if (is_properly_derived_from (derived: deref_from_type1, |
12795 | base: deref_to_type1)) |
12796 | return 1; |
12797 | } |
12798 | /* We know that DEREF_TO_TYPE1 is `void' here. */ |
12799 | else if (is_properly_derived_from (derived: deref_from_type1, |
12800 | base: deref_to_type2)) |
12801 | return -1; |
12802 | } |
12803 | } |
12804 | else if (RECORD_OR_UNION_CODE_P (TREE_CODE (deref_to_type1)) |
12805 | && RECORD_OR_UNION_CODE_P (TREE_CODE (deref_to_type2))) |
12806 | { |
12807 | /* [over.ics.rank] |
12808 | |
12809 | --If class B is derived directly or indirectly from class A |
12810 | and class C is derived directly or indirectly from B, |
12811 | |
12812 | --conversion of C* to B* is better than conversion of C* to |
12813 | A*, |
12814 | |
12815 | --conversion of B* to A* is better than conversion of C* to |
12816 | A* */ |
12817 | if (same_type_p (deref_from_type1, deref_from_type2)) |
12818 | { |
12819 | if (is_properly_derived_from (derived: deref_to_type1, |
12820 | base: deref_to_type2)) |
12821 | return 1; |
12822 | else if (is_properly_derived_from (derived: deref_to_type2, |
12823 | base: deref_to_type1)) |
12824 | return -1; |
12825 | } |
12826 | else if (same_type_p (deref_to_type1, deref_to_type2)) |
12827 | { |
12828 | if (is_properly_derived_from (derived: deref_from_type2, |
12829 | base: deref_from_type1)) |
12830 | return 1; |
12831 | else if (is_properly_derived_from (derived: deref_from_type1, |
12832 | base: deref_from_type2)) |
12833 | return -1; |
12834 | } |
12835 | } |
12836 | } |
12837 | else if (CLASS_TYPE_P (non_reference (from_type1)) |
12838 | && same_type_p (from_type1, from_type2)) |
12839 | { |
12840 | tree from = non_reference (from_type1); |
12841 | |
12842 | /* [over.ics.rank] |
12843 | |
12844 | --binding of an expression of type C to a reference of type |
12845 | B& is better than binding an expression of type C to a |
12846 | reference of type A& |
12847 | |
12848 | --conversion of C to B is better than conversion of C to A, */ |
12849 | if (is_properly_derived_from (derived: from, base: to_type1) |
12850 | && is_properly_derived_from (derived: from, base: to_type2)) |
12851 | { |
12852 | if (is_properly_derived_from (derived: to_type1, base: to_type2)) |
12853 | return 1; |
12854 | else if (is_properly_derived_from (derived: to_type2, base: to_type1)) |
12855 | return -1; |
12856 | } |
12857 | } |
12858 | else if (CLASS_TYPE_P (non_reference (to_type1)) |
12859 | && same_type_p (to_type1, to_type2)) |
12860 | { |
12861 | tree to = non_reference (to_type1); |
12862 | |
12863 | /* [over.ics.rank] |
12864 | |
12865 | --binding of an expression of type B to a reference of type |
12866 | A& is better than binding an expression of type C to a |
12867 | reference of type A&, |
12868 | |
12869 | --conversion of B to A is better than conversion of C to A */ |
12870 | if (is_properly_derived_from (derived: from_type1, base: to) |
12871 | && is_properly_derived_from (derived: from_type2, base: to)) |
12872 | { |
12873 | if (is_properly_derived_from (derived: from_type2, base: from_type1)) |
12874 | return 1; |
12875 | else if (is_properly_derived_from (derived: from_type1, base: from_type2)) |
12876 | return -1; |
12877 | } |
12878 | } |
12879 | |
12880 | /* [over.ics.rank] |
12881 | |
12882 | --S1 and S2 differ only in their qualification conversion and yield |
12883 | similar types T1 and T2 (_conv.qual_), respectively, and the cv- |
12884 | qualification signature of type T1 is a proper subset of the cv- |
12885 | qualification signature of type T2 */ |
12886 | if (ics1->kind == ck_qual |
12887 | && ics2->kind == ck_qual |
12888 | && same_type_p (from_type1, from_type2)) |
12889 | { |
12890 | int result = comp_cv_qual_signature (to_type1, to_type2); |
12891 | if (result != 0) |
12892 | return result; |
12893 | } |
12894 | |
12895 | /* [over.ics.rank] |
12896 | |
12897 | --S1 and S2 are reference bindings (_dcl.init.ref_) and neither refers |
12898 | to an implicit object parameter of a non-static member function |
12899 | declared without a ref-qualifier, and either S1 binds an lvalue |
12900 | reference to an lvalue and S2 binds an rvalue reference or S1 binds an |
12901 | rvalue reference to an rvalue and S2 binds an lvalue reference (C++0x |
12902 | draft standard, 13.3.3.2) |
12903 | |
12904 | --S1 and S2 are reference bindings (_dcl.init.ref_), and the |
12905 | types to which the references refer are the same type except for |
12906 | top-level cv-qualifiers, and the type to which the reference |
12907 | initialized by S2 refers is more cv-qualified than the type to |
12908 | which the reference initialized by S1 refers. |
12909 | |
12910 | DR 1328 [over.match.best]: the context is an initialization by |
12911 | conversion function for direct reference binding (13.3.1.6) of a |
12912 | reference to function type, the return type of F1 is the same kind of |
12913 | reference (i.e. lvalue or rvalue) as the reference being initialized, |
12914 | and the return type of F2 is not. */ |
12915 | |
12916 | if (ref_conv1 && ref_conv2) |
12917 | { |
12918 | if (!ref_conv1->this_p && !ref_conv2->this_p |
12919 | && (ref_conv1->rvaluedness_matches_p |
12920 | != ref_conv2->rvaluedness_matches_p) |
12921 | && (same_type_p (ref_conv1->type, ref_conv2->type) |
12922 | || (TYPE_REF_IS_RVALUE (ref_conv1->type) |
12923 | != TYPE_REF_IS_RVALUE (ref_conv2->type)))) |
12924 | { |
12925 | if (ref_conv1->bad_p |
12926 | && !same_type_p (TREE_TYPE (ref_conv1->type), |
12927 | TREE_TYPE (ref_conv2->type))) |
12928 | /* Don't prefer a bad conversion that drops cv-quals to a bad |
12929 | conversion with the wrong rvalueness. */ |
12930 | return 0; |
12931 | return (ref_conv1->rvaluedness_matches_p |
12932 | - ref_conv2->rvaluedness_matches_p); |
12933 | } |
12934 | |
12935 | if (same_type_ignoring_top_level_qualifiers_p (to_type1, to_type2)) |
12936 | { |
12937 | /* Per P0388R4: |
12938 | |
12939 | void f (int(&)[]), // (1) |
12940 | f (int(&)[1]), // (2) |
12941 | f (int*); // (3) |
12942 | |
12943 | (2) is better than (1), but (3) should be equal to (1) and to |
12944 | (2). For that reason we don't use ck_qual for (1) which would |
12945 | give it the cr_exact rank while (3) remains ck_identity. |
12946 | Therefore we compare (1) and (2) here. For (1) we'll have |
12947 | |
12948 | ck_ref_bind <- ck_identity |
12949 | int[] & int[1] |
12950 | |
12951 | so to handle this we must look at ref_conv. */ |
12952 | bool c1 = conv_binds_to_array_of_unknown_bound (c: ref_conv1); |
12953 | bool c2 = conv_binds_to_array_of_unknown_bound (c: ref_conv2); |
12954 | if (c1 && !c2) |
12955 | return -1; |
12956 | else if (!c1 && c2) |
12957 | return 1; |
12958 | |
12959 | int q1 = cp_type_quals (TREE_TYPE (ref_conv1->type)); |
12960 | int q2 = cp_type_quals (TREE_TYPE (ref_conv2->type)); |
12961 | if (ref_conv1->bad_p) |
12962 | { |
12963 | /* Prefer the one that drops fewer cv-quals. */ |
12964 | tree ftype = next_conversion (conv: ref_conv1)->type; |
12965 | int fquals = cp_type_quals (ftype); |
12966 | q1 ^= fquals; |
12967 | q2 ^= fquals; |
12968 | } |
12969 | return comp_cv_qualification (q2, q1); |
12970 | } |
12971 | } |
12972 | |
12973 | /* [over.ics.rank] |
12974 | |
12975 | Per CWG 1601: |
12976 | -- A conversion that promotes an enumeration whose underlying type |
12977 | is fixed to its underlying type is better than one that promotes to |
12978 | the promoted underlying type, if the two are different. */ |
12979 | if (ics1->rank == cr_promotion |
12980 | && ics2->rank == cr_promotion |
12981 | && UNSCOPED_ENUM_P (from_type1) |
12982 | && ENUM_FIXED_UNDERLYING_TYPE_P (from_type1) |
12983 | && same_type_p (from_type1, from_type2)) |
12984 | { |
12985 | tree utype = ENUM_UNDERLYING_TYPE (from_type1); |
12986 | tree prom = type_promotes_to (from_type1); |
12987 | if (!same_type_p (utype, prom)) |
12988 | { |
12989 | if (same_type_p (to_type1, utype) |
12990 | && same_type_p (to_type2, prom)) |
12991 | return 1; |
12992 | else if (same_type_p (to_type2, utype) |
12993 | && same_type_p (to_type1, prom)) |
12994 | return -1; |
12995 | } |
12996 | } |
12997 | |
12998 | /* Neither conversion sequence is better than the other. */ |
12999 | return 0; |
13000 | } |
13001 | |
13002 | /* The source type for this standard conversion sequence. */ |
13003 | |
13004 | static tree |
13005 | source_type (conversion *t) |
13006 | { |
13007 | return strip_standard_conversion (conv: t)->type; |
13008 | } |
13009 | |
13010 | /* Note a warning about preferring WINNER to LOSER. We do this by storing |
13011 | a pointer to LOSER and re-running joust to produce the warning if WINNER |
13012 | is actually used. */ |
13013 | |
13014 | static void |
13015 | add_warning (struct z_candidate *winner, struct z_candidate *loser) |
13016 | { |
13017 | candidate_warning *cw = (candidate_warning *) |
13018 | conversion_obstack_alloc (n: sizeof (candidate_warning)); |
13019 | cw->loser = loser; |
13020 | cw->next = winner->warnings; |
13021 | winner->warnings = cw; |
13022 | } |
13023 | |
13024 | /* CAND is a constructor candidate in joust in C++17 and up. If it copies a |
13025 | prvalue returned from a conversion function, return true. Otherwise, return |
13026 | false. */ |
13027 | |
13028 | static bool |
13029 | joust_maybe_elide_copy (z_candidate *cand) |
13030 | { |
13031 | tree fn = cand->fn; |
13032 | if (!DECL_COPY_CONSTRUCTOR_P (fn) && !DECL_MOVE_CONSTRUCTOR_P (fn)) |
13033 | return false; |
13034 | conversion *conv = cand->convs[0]; |
13035 | if (conv->kind == ck_ambig) |
13036 | return false; |
13037 | gcc_checking_assert (conv->kind == ck_ref_bind); |
13038 | conv = next_conversion (conv); |
13039 | if (conv->kind == ck_user && !TYPE_REF_P (conv->type)) |
13040 | { |
13041 | gcc_checking_assert (same_type_ignoring_top_level_qualifiers_p |
13042 | (conv->type, DECL_CONTEXT (fn))); |
13043 | z_candidate *uc = conv->cand; |
13044 | if (DECL_CONV_FN_P (uc->fn)) |
13045 | return true; |
13046 | } |
13047 | return false; |
13048 | } |
13049 | |
13050 | /* Return the class that CAND's implicit object parameter refers to. */ |
13051 | |
13052 | static tree |
13053 | class_of_implicit_object (z_candidate *cand) |
13054 | { |
13055 | if (!DECL_IOBJ_MEMBER_FUNCTION_P (cand->fn)) |
13056 | return NULL_TREE; |
13057 | |
13058 | /* "For conversion functions that are implicit object member functions, |
13059 | the function is considered to be a member of the class of the implied |
13060 | object argument for the purpose of defining the type of the implicit |
13061 | object parameter." */ |
13062 | if (DECL_CONV_FN_P (cand->fn)) |
13063 | return TYPE_MAIN_VARIANT (TREE_TYPE (cand->first_arg)); |
13064 | |
13065 | /* "For non-conversion functions that are implicit object member |
13066 | functions nominated by a using-declaration in a derived class, the |
13067 | function is considered to be a member of the derived class for the |
13068 | purpose of defining the type of the implicit object parameter." |
13069 | |
13070 | That derived class is reflected in the conversion_path binfo. */ |
13071 | return BINFO_TYPE (cand->conversion_path); |
13072 | } |
13073 | |
13074 | /* Return whether the first parameter of C1 matches the second parameter |
13075 | of C2. */ |
13076 | |
13077 | static bool |
13078 | reversed_match (z_candidate *c1, z_candidate *c2) |
13079 | { |
13080 | tree fn1 = c1->fn; |
13081 | tree parms2 = TYPE_ARG_TYPES (TREE_TYPE (c2->fn)); |
13082 | tree parm2 = TREE_VALUE (TREE_CHAIN (parms2)); |
13083 | if (DECL_IOBJ_MEMBER_FUNCTION_P (fn1)) |
13084 | { |
13085 | tree ctx = class_of_implicit_object (cand: c1); |
13086 | return iobj_parm_corresponds_to (fn1, parm2, ctx); |
13087 | } |
13088 | else |
13089 | { |
13090 | tree parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn1)); |
13091 | tree parm1 = TREE_VALUE (parms1); |
13092 | return same_type_p (parm1, parm2); |
13093 | } |
13094 | } |
13095 | |
13096 | /* True if the defining declarations of the two candidates have equivalent |
13097 | parameters. MATCH_KIND controls whether we're trying to compare the |
13098 | original declarations (for a warning) or the actual candidates. */ |
13099 | |
13100 | enum class pmatch { original, current }; |
13101 | |
13102 | static bool |
13103 | cand_parms_match (z_candidate *c1, z_candidate *c2, pmatch match_kind) |
13104 | { |
13105 | tree fn1 = c1->fn; |
13106 | tree fn2 = c2->fn; |
13107 | bool reversed = (match_kind == pmatch::current |
13108 | && c1->reversed () != c2->reversed ()); |
13109 | if (fn1 == fn2 && !reversed) |
13110 | return true; |
13111 | if (identifier_p (t: fn1) || identifier_p (t: fn2)) |
13112 | return false; |
13113 | if (match_kind == pmatch::original) |
13114 | { |
13115 | /* We don't look at c1->template_decl because that's only set for |
13116 | primary templates, not e.g. non-template member functions of |
13117 | class templates. */ |
13118 | tree t1 = most_general_template (fn1); |
13119 | tree t2 = most_general_template (fn2); |
13120 | if (t1 || t2) |
13121 | { |
13122 | if (!t1 || !t2) |
13123 | return false; |
13124 | if (t1 == t2) |
13125 | return true; |
13126 | fn1 = DECL_TEMPLATE_RESULT (t1); |
13127 | fn2 = DECL_TEMPLATE_RESULT (t2); |
13128 | } |
13129 | } |
13130 | |
13131 | tree parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn1)); |
13132 | tree parms2 = TYPE_ARG_TYPES (TREE_TYPE (fn2)); |
13133 | |
13134 | if (DECL_FUNCTION_MEMBER_P (fn1) |
13135 | && DECL_FUNCTION_MEMBER_P (fn2)) |
13136 | { |
13137 | tree base1 = DECL_CONTEXT (strip_inheriting_ctors (fn1)); |
13138 | tree base2 = DECL_CONTEXT (strip_inheriting_ctors (fn2)); |
13139 | if (base1 != base2) |
13140 | return false; |
13141 | |
13142 | if (reversed) |
13143 | return (reversed_match (c1, c2) |
13144 | && reversed_match (c1: c2, c2: c1)); |
13145 | |
13146 | /* Use object_parms_correspond to simplify comparing iobj/xobj/static |
13147 | member functions. */ |
13148 | if (!object_parms_correspond (fn1, fn2, base1)) |
13149 | return false; |
13150 | |
13151 | /* We just compared the object parameters, if they don't correspond |
13152 | we already returned false. */ |
13153 | auto skip_parms = [] (tree fn, tree parms) |
13154 | { |
13155 | if (DECL_XOBJ_MEMBER_FUNCTION_P (fn)) |
13156 | return TREE_CHAIN (parms); |
13157 | else |
13158 | return skip_artificial_parms_for (fn, parms); |
13159 | }; |
13160 | parms1 = skip_parms (fn1, parms1); |
13161 | parms2 = skip_parms (fn2, parms2); |
13162 | } |
13163 | else if (reversed) |
13164 | return (reversed_match (c1, c2) |
13165 | && reversed_match (c1: c2, c2: c1)); |
13166 | return compparms (parms1, parms2); |
13167 | } |
13168 | |
13169 | /* True iff FN is a copy or move constructor or assignment operator. */ |
13170 | |
13171 | static bool |
13172 | sfk_copy_or_move (tree fn) |
13173 | { |
13174 | if (TREE_CODE (fn) != FUNCTION_DECL) |
13175 | return false; |
13176 | special_function_kind sfk = special_function_p (fn); |
13177 | return sfk >= sfk_copy_constructor && sfk <= sfk_move_assignment; |
13178 | } |
13179 | |
13180 | /* Compare two candidates for overloading as described in |
13181 | [over.match.best]. Return values: |
13182 | |
13183 | 1: cand1 is better than cand2 |
13184 | -1: cand2 is better than cand1 |
13185 | 0: cand1 and cand2 are indistinguishable */ |
13186 | |
13187 | static int |
13188 | joust (struct z_candidate *cand1, struct z_candidate *cand2, bool warn, |
13189 | tsubst_flags_t complain) |
13190 | { |
13191 | int winner = 0; |
13192 | int off1 = 0, off2 = 0; |
13193 | size_t i; |
13194 | size_t len; |
13195 | |
13196 | /* Candidates that involve bad conversions are always worse than those |
13197 | that don't. */ |
13198 | if (cand1->viable > cand2->viable) |
13199 | return 1; |
13200 | if (cand1->viable < cand2->viable) |
13201 | return -1; |
13202 | |
13203 | /* If we have two pseudo-candidates for conversions to the same type, |
13204 | or two candidates for the same function, arbitrarily pick one. */ |
13205 | if (cand1->fn == cand2->fn |
13206 | && cand1->reversed () == cand2->reversed () |
13207 | && (IS_TYPE_OR_DECL_P (cand1->fn))) |
13208 | return 1; |
13209 | |
13210 | /* Prefer a non-deleted function over an implicitly deleted move |
13211 | constructor or assignment operator. This differs slightly from the |
13212 | wording for issue 1402 (which says the move op is ignored by overload |
13213 | resolution), but this way produces better error messages. */ |
13214 | if (TREE_CODE (cand1->fn) == FUNCTION_DECL |
13215 | && TREE_CODE (cand2->fn) == FUNCTION_DECL |
13216 | && DECL_DELETED_FN (cand1->fn) != DECL_DELETED_FN (cand2->fn)) |
13217 | { |
13218 | if (DECL_DELETED_FN (cand1->fn) && DECL_DEFAULTED_FN (cand1->fn) |
13219 | && move_fn_p (cand1->fn)) |
13220 | return -1; |
13221 | if (DECL_DELETED_FN (cand2->fn) && DECL_DEFAULTED_FN (cand2->fn) |
13222 | && move_fn_p (cand2->fn)) |
13223 | return 1; |
13224 | } |
13225 | |
13226 | /* a viable function F1 |
13227 | is defined to be a better function than another viable function F2 if |
13228 | for all arguments i, ICSi(F1) is not a worse conversion sequence than |
13229 | ICSi(F2), and then */ |
13230 | |
13231 | /* for some argument j, ICSj(F1) is a better conversion sequence than |
13232 | ICSj(F2) */ |
13233 | |
13234 | /* For comparing static and non-static member functions, we ignore |
13235 | the implicit object parameter of the non-static function. The |
13236 | standard says to pretend that the static function has an object |
13237 | parm, but that won't work with operator overloading. */ |
13238 | len = cand1->num_convs; |
13239 | if (len != cand2->num_convs) |
13240 | { |
13241 | int static_1 = (TREE_CODE (cand1->fn) == FUNCTION_DECL |
13242 | && DECL_STATIC_FUNCTION_P (cand1->fn)); |
13243 | int static_2 = (TREE_CODE (cand2->fn) == FUNCTION_DECL |
13244 | && DECL_STATIC_FUNCTION_P (cand2->fn)); |
13245 | |
13246 | if (TREE_CODE (cand1->fn) == FUNCTION_DECL |
13247 | && TREE_CODE (cand2->fn) == FUNCTION_DECL |
13248 | && DECL_CONSTRUCTOR_P (cand1->fn) |
13249 | && is_list_ctor (cand1->fn) != is_list_ctor (cand2->fn)) |
13250 | /* We're comparing a near-match list constructor and a near-match |
13251 | non-list constructor. Just treat them as unordered. */ |
13252 | return 0; |
13253 | |
13254 | gcc_assert (static_1 != static_2); |
13255 | |
13256 | if (static_1) |
13257 | { |
13258 | /* C++23 [over.best.ics.general] says: |
13259 | When the parameter is the implicit object parameter of a static |
13260 | member function, the implicit conversion sequence is a standard |
13261 | conversion sequence that is neither better nor worse than any |
13262 | other standard conversion sequence. */ |
13263 | if (CONVERSION_RANK (cand2->convs[0]) >= cr_user) |
13264 | winner = 1; |
13265 | off2 = 1; |
13266 | } |
13267 | else |
13268 | { |
13269 | if (CONVERSION_RANK (cand1->convs[0]) >= cr_user) |
13270 | winner = -1; |
13271 | off1 = 1; |
13272 | --len; |
13273 | } |
13274 | } |
13275 | |
13276 | for (i = 0; i < len; ++i) |
13277 | { |
13278 | conversion *t1 = cand1->convs[i + off1]; |
13279 | conversion *t2 = cand2->convs[i + off2]; |
13280 | int comp = compare_ics (ics1: t1, ics2: t2); |
13281 | |
13282 | if (comp != 0) |
13283 | { |
13284 | if ((complain & tf_warning) |
13285 | && warn_sign_promo |
13286 | && (CONVERSION_RANK (t1) + CONVERSION_RANK (t2) |
13287 | == cr_std + cr_promotion) |
13288 | && t1->kind == ck_std |
13289 | && t2->kind == ck_std |
13290 | && TREE_CODE (t1->type) == INTEGER_TYPE |
13291 | && TREE_CODE (t2->type) == INTEGER_TYPE |
13292 | && (TYPE_PRECISION (t1->type) |
13293 | == TYPE_PRECISION (t2->type)) |
13294 | && (TYPE_UNSIGNED (next_conversion (t1)->type) |
13295 | || (TREE_CODE (next_conversion (t1)->type) |
13296 | == ENUMERAL_TYPE))) |
13297 | { |
13298 | tree type = next_conversion (conv: t1)->type; |
13299 | tree type1, type2; |
13300 | struct z_candidate *w, *l; |
13301 | if (comp > 0) |
13302 | type1 = t1->type, type2 = t2->type, |
13303 | w = cand1, l = cand2; |
13304 | else |
13305 | type1 = t2->type, type2 = t1->type, |
13306 | w = cand2, l = cand1; |
13307 | |
13308 | if (warn) |
13309 | { |
13310 | warning (OPT_Wsign_promo, "passing %qT chooses %qT over %qT" , |
13311 | type, type1, type2); |
13312 | warning (OPT_Wsign_promo, " in call to %qD" , w->fn); |
13313 | } |
13314 | else |
13315 | add_warning (winner: w, loser: l); |
13316 | } |
13317 | |
13318 | if (winner && comp != winner) |
13319 | { |
13320 | /* Ambiguity between normal and reversed comparison operators |
13321 | with the same parameter types. P2468 decided not to go with |
13322 | this approach to resolving the ambiguity, so pedwarn. */ |
13323 | if ((complain & tf_warning_or_error) |
13324 | && (cand1->reversed () != cand2->reversed ()) |
13325 | && cand_parms_match (c1: cand1, c2: cand2, match_kind: pmatch::original)) |
13326 | { |
13327 | struct z_candidate *w, *l; |
13328 | if (cand2->reversed ()) |
13329 | winner = 1, w = cand1, l = cand2; |
13330 | else |
13331 | winner = -1, w = cand2, l = cand1; |
13332 | if (warn) |
13333 | { |
13334 | auto_diagnostic_group d; |
13335 | if (pedwarn (input_location, 0, |
13336 | "C++20 says that these are ambiguous, " |
13337 | "even though the second is reversed:" )) |
13338 | { |
13339 | print_z_candidate (loc: input_location, |
13340 | N_("candidate 1:" ), candidate: w); |
13341 | print_z_candidate (loc: input_location, |
13342 | N_("candidate 2:" ), candidate: l); |
13343 | if (w->fn == l->fn |
13344 | && DECL_IOBJ_MEMBER_FUNCTION_P (w->fn) |
13345 | && (type_memfn_quals (TREE_TYPE (w->fn)) |
13346 | & TYPE_QUAL_CONST) == 0) |
13347 | { |
13348 | /* Suggest adding const to |
13349 | struct A { bool operator==(const A&); }; */ |
13350 | tree parmtype |
13351 | = FUNCTION_FIRST_USER_PARMTYPE (w->fn); |
13352 | parmtype = TREE_VALUE (parmtype); |
13353 | if (TYPE_REF_P (parmtype) |
13354 | && TYPE_READONLY (TREE_TYPE (parmtype)) |
13355 | && (same_type_ignoring_top_level_qualifiers_p |
13356 | (TREE_TYPE (parmtype), |
13357 | DECL_CONTEXT (w->fn)))) |
13358 | inform (DECL_SOURCE_LOCATION (w->fn), |
13359 | "try making the operator a %<const%> " |
13360 | "member function" ); |
13361 | } |
13362 | } |
13363 | } |
13364 | else |
13365 | add_warning (winner: w, loser: l); |
13366 | return winner; |
13367 | } |
13368 | |
13369 | winner = 0; |
13370 | goto tweak; |
13371 | } |
13372 | winner = comp; |
13373 | } |
13374 | } |
13375 | |
13376 | /* warn about confusing overload resolution for user-defined conversions, |
13377 | either between a constructor and a conversion op, or between two |
13378 | conversion ops. */ |
13379 | if ((complain & tf_warning) |
13380 | /* In C++17, the constructor might have been elided, which means that |
13381 | an originally null ->second_conv could become non-null. */ |
13382 | && winner && warn_conversion && cand1->second_conv && cand2->second_conv |
13383 | && (!DECL_CONSTRUCTOR_P (cand1->fn) || !DECL_CONSTRUCTOR_P (cand2->fn)) |
13384 | && winner != compare_ics (ics1: cand1->second_conv, ics2: cand2->second_conv)) |
13385 | { |
13386 | struct z_candidate *w, *l; |
13387 | bool give_warning = false; |
13388 | |
13389 | if (winner == 1) |
13390 | w = cand1, l = cand2; |
13391 | else |
13392 | w = cand2, l = cand1; |
13393 | |
13394 | /* We don't want to complain about `X::operator T1 ()' |
13395 | beating `X::operator T2 () const', when T2 is a no less |
13396 | cv-qualified version of T1. */ |
13397 | if (DECL_CONTEXT (w->fn) == DECL_CONTEXT (l->fn) |
13398 | && !DECL_CONSTRUCTOR_P (w->fn) && !DECL_CONSTRUCTOR_P (l->fn)) |
13399 | { |
13400 | tree t = TREE_TYPE (TREE_TYPE (l->fn)); |
13401 | tree f = TREE_TYPE (TREE_TYPE (w->fn)); |
13402 | |
13403 | if (TREE_CODE (t) == TREE_CODE (f) && INDIRECT_TYPE_P (t)) |
13404 | { |
13405 | t = TREE_TYPE (t); |
13406 | f = TREE_TYPE (f); |
13407 | } |
13408 | if (!comp_ptr_ttypes (t, f)) |
13409 | give_warning = true; |
13410 | } |
13411 | else |
13412 | give_warning = true; |
13413 | |
13414 | if (!give_warning) |
13415 | /*NOP*/; |
13416 | else if (warn) |
13417 | { |
13418 | tree source = source_type (t: w->convs[0]); |
13419 | if (INDIRECT_TYPE_P (source)) |
13420 | source = TREE_TYPE (source); |
13421 | auto_diagnostic_group d; |
13422 | if (warning (OPT_Wconversion, "choosing %qD over %qD" , w->fn, l->fn) |
13423 | && warning (OPT_Wconversion, " for conversion from %qH to %qI" , |
13424 | source, w->second_conv->type)) |
13425 | { |
13426 | inform (input_location, " because conversion sequence " |
13427 | "for the argument is better" ); |
13428 | } |
13429 | } |
13430 | else |
13431 | add_warning (winner: w, loser: l); |
13432 | } |
13433 | |
13434 | if (winner) |
13435 | return winner; |
13436 | |
13437 | /* DR 495 moved this tiebreaker above the template ones. */ |
13438 | /* or, if not that, |
13439 | the context is an initialization by user-defined conversion (see |
13440 | _dcl.init_ and _over.match.user_) and the standard conversion |
13441 | sequence from the return type of F1 to the destination type (i.e., |
13442 | the type of the entity being initialized) is a better conversion |
13443 | sequence than the standard conversion sequence from the return type |
13444 | of F2 to the destination type. */ |
13445 | |
13446 | if (cand1->second_conv) |
13447 | { |
13448 | winner = compare_ics (ics1: cand1->second_conv, ics2: cand2->second_conv); |
13449 | if (winner) |
13450 | return winner; |
13451 | } |
13452 | |
13453 | /* CWG2735 (PR109247): A copy/move ctor/op= for which its operand uses an |
13454 | explicit conversion (due to list-initialization) is worse. */ |
13455 | { |
13456 | z_candidate *sp = nullptr; |
13457 | if (sfk_copy_or_move (fn: cand1->fn)) |
13458 | sp = cand1; |
13459 | if (sfk_copy_or_move (fn: cand2->fn)) |
13460 | sp = sp ? nullptr : cand2; |
13461 | if (sp) |
13462 | { |
13463 | conversion *conv = sp->convs[!DECL_CONSTRUCTOR_P (sp->fn)]; |
13464 | if (conv->user_conv_p) |
13465 | for (; conv; conv = next_conversion (conv)) |
13466 | if (conv->kind == ck_user |
13467 | && DECL_P (conv->cand->fn) |
13468 | && DECL_NONCONVERTING_P (conv->cand->fn)) |
13469 | return (sp == cand1) ? -1 : 1; |
13470 | } |
13471 | } |
13472 | |
13473 | /* DR2327: C++17 copy elision in [over.match.ctor] (direct-init) context. |
13474 | The standard currently says that only constructors are candidates, but if |
13475 | one copies a prvalue returned by a conversion function we prefer that. |
13476 | |
13477 | Clang does something similar, as discussed at |
13478 | http://lists.isocpp.org/core/2017/10/3166.php |
13479 | http://lists.isocpp.org/core/2019/03/5721.php */ |
13480 | if (len == 1 && cxx_dialect >= cxx17 |
13481 | && DECL_P (cand1->fn) |
13482 | && DECL_COMPLETE_CONSTRUCTOR_P (cand1->fn) |
13483 | && !(cand1->flags & LOOKUP_ONLYCONVERTING)) |
13484 | { |
13485 | bool elided1 = joust_maybe_elide_copy (cand: cand1); |
13486 | bool elided2 = joust_maybe_elide_copy (cand: cand2); |
13487 | winner = elided1 - elided2; |
13488 | if (winner) |
13489 | return winner; |
13490 | } |
13491 | |
13492 | /* or, if not that, |
13493 | F1 is a non-template function and F2 is a template function |
13494 | specialization. */ |
13495 | |
13496 | if (!cand1->template_decl && cand2->template_decl) |
13497 | return 1; |
13498 | else if (cand1->template_decl && !cand2->template_decl) |
13499 | return -1; |
13500 | |
13501 | /* or, if not that, |
13502 | F1 and F2 are template functions and the function template for F1 is |
13503 | more specialized than the template for F2 according to the partial |
13504 | ordering rules. */ |
13505 | |
13506 | if (cand1->template_decl && cand2->template_decl) |
13507 | { |
13508 | winner = more_specialized_fn |
13509 | (TI_TEMPLATE (cand1->template_decl), |
13510 | TI_TEMPLATE (cand2->template_decl), |
13511 | /* [temp.func.order]: The presence of unused ellipsis and default |
13512 | arguments has no effect on the partial ordering of function |
13513 | templates. add_function_candidate() will not have |
13514 | counted the "this" argument for constructors. */ |
13515 | cand1->num_convs + DECL_CONSTRUCTOR_P (cand1->fn)); |
13516 | if (winner) |
13517 | return winner; |
13518 | } |
13519 | |
13520 | /* F1 and F2 are non-template functions and |
13521 | - they have the same non-object-parameter-type-lists ([dcl.fct]), and |
13522 | - if they are member functions, both are direct members of the same |
13523 | class, and |
13524 | - if both are non-static member functions, they have the same types for |
13525 | their object parameters, and |
13526 | - F1 is more constrained than F2 according to the partial ordering of |
13527 | constraints described in [temp.constr.order]. */ |
13528 | if (flag_concepts && DECL_P (cand1->fn) && DECL_P (cand2->fn) |
13529 | && !cand1->template_decl && !cand2->template_decl |
13530 | && cand_parms_match (c1: cand1, c2: cand2, match_kind: pmatch::current)) |
13531 | { |
13532 | winner = more_constrained (cand1->fn, cand2->fn); |
13533 | if (winner) |
13534 | return winner; |
13535 | } |
13536 | |
13537 | /* F2 is a rewritten candidate (12.4.1.2) and F1 is not, or F1 and F2 are |
13538 | rewritten candidates, and F2 is a synthesized candidate with reversed |
13539 | order of parameters and F1 is not. */ |
13540 | if (cand1->rewritten ()) |
13541 | { |
13542 | if (!cand2->rewritten ()) |
13543 | return -1; |
13544 | if (!cand1->reversed () && cand2->reversed ()) |
13545 | return 1; |
13546 | if (cand1->reversed () && !cand2->reversed ()) |
13547 | return -1; |
13548 | } |
13549 | else if (cand2->rewritten ()) |
13550 | return 1; |
13551 | |
13552 | if (deduction_guide_p (cand1->fn)) |
13553 | { |
13554 | gcc_assert (deduction_guide_p (cand2->fn)); |
13555 | |
13556 | /* F1 and F2 are generated from class template argument deduction for a |
13557 | class D, and F2 is generated from inheriting constructors from a base |
13558 | class of D while F1 is not, and for each explicit function argument, |
13559 | the corresponding parameters of F1 and F2 are either both ellipses or |
13560 | have the same type. */ |
13561 | bool inherited1 = inherited_guide_p (cand1->fn); |
13562 | bool inherited2 = inherited_guide_p (cand2->fn); |
13563 | if (int diff = inherited2 - inherited1) |
13564 | { |
13565 | for (i = 0; i < len; ++i) |
13566 | { |
13567 | conversion *t1 = cand1->convs[i + off1]; |
13568 | conversion *t2 = cand2->convs[i + off2]; |
13569 | /* ??? It seems the ellipses part of this tiebreaker isn't |
13570 | needed since a mismatch should have broken the tie earlier |
13571 | during ICS comparison. */ |
13572 | gcc_checking_assert (t1->ellipsis_p == t2->ellipsis_p); |
13573 | if (!same_type_p (t1->type, t2->type)) |
13574 | break; |
13575 | } |
13576 | if (i == len) |
13577 | return diff; |
13578 | } |
13579 | |
13580 | /* F1 is generated from a deduction-guide (13.3.1.8) and F2 is not */ |
13581 | /* We distinguish between candidates from an explicit deduction guide and |
13582 | candidates built from a constructor based on DECL_ARTIFICIAL. */ |
13583 | int art1 = DECL_ARTIFICIAL (cand1->fn); |
13584 | int art2 = DECL_ARTIFICIAL (cand2->fn); |
13585 | if (art1 != art2) |
13586 | return art2 - art1; |
13587 | |
13588 | if (art1) |
13589 | { |
13590 | /* Prefer the special copy guide over a declared copy/move |
13591 | constructor. */ |
13592 | if (copy_guide_p (cand1->fn)) |
13593 | return 1; |
13594 | if (copy_guide_p (cand2->fn)) |
13595 | return -1; |
13596 | |
13597 | /* Prefer a candidate generated from a non-template constructor. */ |
13598 | int tg1 = template_guide_p (cand1->fn); |
13599 | int tg2 = template_guide_p (cand2->fn); |
13600 | if (tg1 != tg2) |
13601 | return tg2 - tg1; |
13602 | } |
13603 | } |
13604 | |
13605 | /* F1 is a constructor for a class D, F2 is a constructor for a base class B |
13606 | of D, and for all arguments the corresponding parameters of F1 and F2 have |
13607 | the same type (CWG 2273/2277). */ |
13608 | if (DECL_INHERITED_CTOR (cand1->fn) || DECL_INHERITED_CTOR (cand2->fn)) |
13609 | { |
13610 | tree base1 = DECL_CONTEXT (strip_inheriting_ctors (cand1->fn)); |
13611 | tree base2 = DECL_CONTEXT (strip_inheriting_ctors (cand2->fn)); |
13612 | |
13613 | bool used1 = false; |
13614 | bool used2 = false; |
13615 | if (base1 == base2) |
13616 | /* No difference. */; |
13617 | else if (DERIVED_FROM_P (base1, base2)) |
13618 | used1 = true; |
13619 | else if (DERIVED_FROM_P (base2, base1)) |
13620 | used2 = true; |
13621 | |
13622 | if (int diff = used2 - used1) |
13623 | { |
13624 | for (i = 0; i < len; ++i) |
13625 | { |
13626 | conversion *t1 = cand1->convs[i + off1]; |
13627 | conversion *t2 = cand2->convs[i + off2]; |
13628 | if (!same_type_p (t1->type, t2->type)) |
13629 | break; |
13630 | } |
13631 | if (i == len) |
13632 | return diff; |
13633 | } |
13634 | } |
13635 | |
13636 | /* Check whether we can discard a builtin candidate, either because we |
13637 | have two identical ones or matching builtin and non-builtin candidates. |
13638 | |
13639 | (Pedantically in the latter case the builtin which matched the user |
13640 | function should not be added to the overload set, but we spot it here. |
13641 | |
13642 | [over.match.oper] |
13643 | ... the builtin candidates include ... |
13644 | - do not have the same parameter type list as any non-template |
13645 | non-member candidate. */ |
13646 | |
13647 | if (identifier_p (t: cand1->fn) || identifier_p (t: cand2->fn)) |
13648 | { |
13649 | for (i = 0; i < len; ++i) |
13650 | if (!same_type_p (cand1->convs[i]->type, |
13651 | cand2->convs[i]->type)) |
13652 | break; |
13653 | if (i == cand1->num_convs) |
13654 | { |
13655 | if (cand1->fn == cand2->fn) |
13656 | /* Two built-in candidates; arbitrarily pick one. */ |
13657 | return 1; |
13658 | else if (identifier_p (t: cand1->fn)) |
13659 | /* cand1 is built-in; prefer cand2. */ |
13660 | return -1; |
13661 | else |
13662 | /* cand2 is built-in; prefer cand1. */ |
13663 | return 1; |
13664 | } |
13665 | } |
13666 | |
13667 | /* For candidates of a multi-versioned function, make the version with |
13668 | the highest priority win. This version will be checked for dispatching |
13669 | first. If this version can be inlined into the caller, the front-end |
13670 | will simply make a direct call to this function. */ |
13671 | |
13672 | if (TREE_CODE (cand1->fn) == FUNCTION_DECL |
13673 | && DECL_FUNCTION_VERSIONED (cand1->fn) |
13674 | && TREE_CODE (cand2->fn) == FUNCTION_DECL |
13675 | && DECL_FUNCTION_VERSIONED (cand2->fn)) |
13676 | { |
13677 | tree f1 = TREE_TYPE (cand1->fn); |
13678 | tree f2 = TREE_TYPE (cand2->fn); |
13679 | tree p1 = TYPE_ARG_TYPES (f1); |
13680 | tree p2 = TYPE_ARG_TYPES (f2); |
13681 | |
13682 | /* Check if cand1->fn and cand2->fn are versions of the same function. It |
13683 | is possible that cand1->fn and cand2->fn are function versions but of |
13684 | different functions. Check types to see if they are versions of the same |
13685 | function. */ |
13686 | if (compparms (p1, p2) |
13687 | && same_type_p (TREE_TYPE (f1), TREE_TYPE (f2))) |
13688 | { |
13689 | /* Always make the version with the higher priority, more |
13690 | specialized, win. */ |
13691 | gcc_assert (targetm.compare_version_priority); |
13692 | if (targetm.compare_version_priority (cand1->fn, cand2->fn) >= 0) |
13693 | return 1; |
13694 | else |
13695 | return -1; |
13696 | } |
13697 | } |
13698 | |
13699 | /* If the two function declarations represent the same function (this can |
13700 | happen with declarations in multiple scopes and arg-dependent lookup), |
13701 | arbitrarily choose one. But first make sure the default args we're |
13702 | using match. */ |
13703 | if (DECL_P (cand1->fn) && DECL_P (cand2->fn) |
13704 | && equal_functions (fn1: cand1->fn, fn2: cand2->fn)) |
13705 | { |
13706 | tree parms1 = TYPE_ARG_TYPES (TREE_TYPE (cand1->fn)); |
13707 | tree parms2 = TYPE_ARG_TYPES (TREE_TYPE (cand2->fn)); |
13708 | |
13709 | gcc_assert (!DECL_CONSTRUCTOR_P (cand1->fn)); |
13710 | |
13711 | for (i = 0; i < len; ++i) |
13712 | { |
13713 | /* Don't crash if the fn is variadic. */ |
13714 | if (!parms1) |
13715 | break; |
13716 | parms1 = TREE_CHAIN (parms1); |
13717 | parms2 = TREE_CHAIN (parms2); |
13718 | } |
13719 | |
13720 | if (off1) |
13721 | parms1 = TREE_CHAIN (parms1); |
13722 | else if (off2) |
13723 | parms2 = TREE_CHAIN (parms2); |
13724 | |
13725 | for (; parms1; ++i) |
13726 | { |
13727 | if (!cp_tree_equal (TREE_PURPOSE (parms1), |
13728 | TREE_PURPOSE (parms2))) |
13729 | { |
13730 | if (warn) |
13731 | { |
13732 | if (complain & tf_error) |
13733 | { |
13734 | auto_diagnostic_group d; |
13735 | if (permerror (input_location, |
13736 | "default argument mismatch in " |
13737 | "overload resolution" )) |
13738 | { |
13739 | inform (DECL_SOURCE_LOCATION (cand1->fn), |
13740 | " candidate 1: %q#F" , cand1->fn); |
13741 | inform (DECL_SOURCE_LOCATION (cand2->fn), |
13742 | " candidate 2: %q#F" , cand2->fn); |
13743 | } |
13744 | } |
13745 | else |
13746 | return 0; |
13747 | } |
13748 | else |
13749 | add_warning (winner: cand1, loser: cand2); |
13750 | break; |
13751 | } |
13752 | parms1 = TREE_CHAIN (parms1); |
13753 | parms2 = TREE_CHAIN (parms2); |
13754 | } |
13755 | |
13756 | return 1; |
13757 | } |
13758 | |
13759 | tweak: |
13760 | |
13761 | /* Extension: If the worst conversion for one candidate is better than the |
13762 | worst conversion for the other, take the first. */ |
13763 | if (!pedantic && (complain & tf_warning_or_error)) |
13764 | { |
13765 | conversion_rank rank1 = cr_identity, rank2 = cr_identity; |
13766 | struct z_candidate *w = 0, *l = 0; |
13767 | |
13768 | for (i = 0; i < len; ++i) |
13769 | { |
13770 | if (CONVERSION_RANK (cand1->convs[i+off1]) > rank1) |
13771 | rank1 = CONVERSION_RANK (cand1->convs[i+off1]); |
13772 | if (CONVERSION_RANK (cand2->convs[i + off2]) > rank2) |
13773 | rank2 = CONVERSION_RANK (cand2->convs[i + off2]); |
13774 | } |
13775 | if (rank1 < rank2) |
13776 | winner = 1, w = cand1, l = cand2; |
13777 | if (rank1 > rank2) |
13778 | winner = -1, w = cand2, l = cand1; |
13779 | if (winner) |
13780 | { |
13781 | /* Don't choose a deleted function over ambiguity. */ |
13782 | if (DECL_P (w->fn) && DECL_DELETED_FN (w->fn)) |
13783 | return 0; |
13784 | if (warn) |
13785 | { |
13786 | auto_diagnostic_group d; |
13787 | if (pedwarn (input_location, 0, |
13788 | "ISO C++ says that these are ambiguous, even " |
13789 | "though the worst conversion for the first is " |
13790 | "better than the worst conversion for the second:" )) |
13791 | { |
13792 | print_z_candidate (loc: input_location, N_("candidate 1:" ), candidate: w); |
13793 | print_z_candidate (loc: input_location, N_("candidate 2:" ), candidate: l); |
13794 | } |
13795 | } |
13796 | else |
13797 | add_warning (winner: w, loser: l); |
13798 | return winner; |
13799 | } |
13800 | } |
13801 | |
13802 | gcc_assert (!winner); |
13803 | return 0; |
13804 | } |
13805 | |
13806 | /* Given a list of candidates for overloading, find the best one, if any. |
13807 | This algorithm has a worst case of O(2n) (winner is last), and a best |
13808 | case of O(n/2) (totally ambiguous); much better than a sorting |
13809 | algorithm. The candidates list is assumed to be sorted according |
13810 | to viability (via splice_viable). */ |
13811 | |
13812 | static struct z_candidate * |
13813 | tourney (struct z_candidate *candidates, tsubst_flags_t complain) |
13814 | { |
13815 | struct z_candidate **champ = &candidates, **challenger; |
13816 | int fate; |
13817 | struct z_candidate *previous_worse_champ = nullptr; |
13818 | |
13819 | /* Walk through the list once, comparing each current champ to the next |
13820 | candidate, knocking out a candidate or two with each comparison. */ |
13821 | |
13822 | for (challenger = &candidates->next; *challenger && (*challenger)->viable; ) |
13823 | { |
13824 | fate = joust (cand1: *champ, cand2: *challenger, warn: 0, complain); |
13825 | if (fate == 1) |
13826 | challenger = &(*challenger)->next; |
13827 | else if (fate == -1) |
13828 | { |
13829 | previous_worse_champ = *champ; |
13830 | champ = challenger; |
13831 | challenger = &(*challenger)->next; |
13832 | } |
13833 | else |
13834 | { |
13835 | previous_worse_champ = nullptr; |
13836 | champ = &(*challenger)->next; |
13837 | if (!*champ || !(*champ)->viable |
13838 | || (*champ)->viable < (*challenger)->viable) |
13839 | { |
13840 | champ = nullptr; |
13841 | break; |
13842 | } |
13843 | challenger = &(*champ)->next; |
13844 | } |
13845 | } |
13846 | |
13847 | /* Make sure the champ is better than all the candidates it hasn't yet |
13848 | been compared to. */ |
13849 | |
13850 | if (champ) |
13851 | for (challenger = &candidates; |
13852 | challenger != champ; |
13853 | challenger = &(*challenger)->next) |
13854 | { |
13855 | if (*challenger == previous_worse_champ) |
13856 | /* We already know this candidate is worse than the champ. */ |
13857 | continue; |
13858 | fate = joust (cand1: *champ, cand2: *challenger, warn: 0, complain); |
13859 | if (fate != 1) |
13860 | { |
13861 | champ = nullptr; |
13862 | break; |
13863 | } |
13864 | } |
13865 | |
13866 | if (!champ) |
13867 | return nullptr; |
13868 | |
13869 | /* Move the champ to the front of the candidate list. */ |
13870 | |
13871 | if (champ != &candidates) |
13872 | { |
13873 | z_candidate *saved_champ = *champ; |
13874 | *champ = saved_champ->next; |
13875 | saved_champ->next = candidates; |
13876 | candidates = saved_champ; |
13877 | } |
13878 | |
13879 | return candidates; |
13880 | } |
13881 | |
13882 | /* Returns nonzero if things of type FROM can be converted to TO. */ |
13883 | |
13884 | bool |
13885 | can_convert (tree to, tree from, tsubst_flags_t complain) |
13886 | { |
13887 | tree arg = NULL_TREE; |
13888 | /* implicit_conversion only considers user-defined conversions |
13889 | if it has an expression for the call argument list. */ |
13890 | if (CLASS_TYPE_P (from) || CLASS_TYPE_P (to)) |
13891 | arg = build_stub_object (from); |
13892 | return can_convert_arg (to, from, arg, LOOKUP_IMPLICIT, complain); |
13893 | } |
13894 | |
13895 | /* Returns nonzero if things of type FROM can be converted to TO with a |
13896 | standard conversion. */ |
13897 | |
13898 | bool |
13899 | can_convert_standard (tree to, tree from, tsubst_flags_t complain) |
13900 | { |
13901 | return can_convert_arg (to, from, NULL_TREE, LOOKUP_IMPLICIT, complain); |
13902 | } |
13903 | |
13904 | /* Returns nonzero if ARG (of type FROM) can be converted to TO. */ |
13905 | |
13906 | bool |
13907 | can_convert_arg (tree to, tree from, tree arg, int flags, |
13908 | tsubst_flags_t complain) |
13909 | { |
13910 | conversion *t; |
13911 | bool ok_p; |
13912 | |
13913 | conversion_obstack_sentinel cos; |
13914 | /* We want to discard any access checks done for this test, |
13915 | as we might not be in the appropriate access context and |
13916 | we'll do the check again when we actually perform the |
13917 | conversion. */ |
13918 | push_deferring_access_checks (dk_deferred); |
13919 | |
13920 | /* Handle callers like check_local_shadow forgetting to |
13921 | convert_from_reference. */ |
13922 | if (TYPE_REF_P (from) && arg) |
13923 | { |
13924 | arg = convert_from_reference (arg); |
13925 | from = TREE_TYPE (arg); |
13926 | } |
13927 | |
13928 | t = implicit_conversion (to, from, expr: arg, /*c_cast_p=*/false, |
13929 | flags, complain); |
13930 | ok_p = (t && !t->bad_p); |
13931 | |
13932 | /* Discard the access checks now. */ |
13933 | pop_deferring_access_checks (); |
13934 | |
13935 | return ok_p; |
13936 | } |
13937 | |
13938 | /* Like can_convert_arg, but allows dubious conversions as well. */ |
13939 | |
13940 | bool |
13941 | can_convert_arg_bad (tree to, tree from, tree arg, int flags, |
13942 | tsubst_flags_t complain) |
13943 | { |
13944 | conversion *t; |
13945 | |
13946 | conversion_obstack_sentinel cos; |
13947 | /* Try to perform the conversion. */ |
13948 | t = implicit_conversion (to, from, expr: arg, /*c_cast_p=*/false, |
13949 | flags, complain); |
13950 | |
13951 | return t != NULL; |
13952 | } |
13953 | |
13954 | /* Return an IMPLICIT_CONV_EXPR from EXPR to TYPE with bits set from overload |
13955 | resolution FLAGS. */ |
13956 | |
13957 | tree |
13958 | build_implicit_conv_flags (tree type, tree expr, int flags) |
13959 | { |
13960 | /* In a template, we are only concerned about determining the |
13961 | type of non-dependent expressions, so we do not have to |
13962 | perform the actual conversion. But for initializers, we |
13963 | need to be able to perform it at instantiation |
13964 | (or instantiate_non_dependent_expr) time. */ |
13965 | expr = build1 (IMPLICIT_CONV_EXPR, type, expr); |
13966 | if (!(flags & LOOKUP_ONLYCONVERTING)) |
13967 | IMPLICIT_CONV_EXPR_DIRECT_INIT (expr) = true; |
13968 | if (flags & LOOKUP_NO_NARROWING) |
13969 | IMPLICIT_CONV_EXPR_BRACED_INIT (expr) = true; |
13970 | return expr; |
13971 | } |
13972 | |
13973 | /* Convert EXPR to TYPE. Return the converted expression. |
13974 | |
13975 | Note that we allow bad conversions here because by the time we get to |
13976 | this point we are committed to doing the conversion. If we end up |
13977 | doing a bad conversion, convert_like will complain. */ |
13978 | |
13979 | tree |
13980 | perform_implicit_conversion_flags (tree type, tree expr, |
13981 | tsubst_flags_t complain, int flags) |
13982 | { |
13983 | conversion *conv; |
13984 | location_t loc = cp_expr_loc_or_input_loc (t: expr); |
13985 | |
13986 | if (error_operand_p (t: expr)) |
13987 | return error_mark_node; |
13988 | |
13989 | conversion_obstack_sentinel cos; |
13990 | |
13991 | conv = implicit_conversion (to: type, TREE_TYPE (expr), expr, |
13992 | /*c_cast_p=*/false, |
13993 | flags, complain); |
13994 | |
13995 | if (!conv) |
13996 | { |
13997 | if (complain & tf_error) |
13998 | implicit_conversion_error (loc, type, expr); |
13999 | expr = error_mark_node; |
14000 | } |
14001 | else if (processing_template_decl && conv->kind != ck_identity) |
14002 | expr = build_implicit_conv_flags (type, expr, flags); |
14003 | else |
14004 | { |
14005 | /* Give a conversion call the same location as expr. */ |
14006 | iloc_sentinel il (loc); |
14007 | expr = convert_like (convs: conv, expr, complain); |
14008 | } |
14009 | |
14010 | return expr; |
14011 | } |
14012 | |
14013 | tree |
14014 | perform_implicit_conversion (tree type, tree expr, tsubst_flags_t complain) |
14015 | { |
14016 | return perform_implicit_conversion_flags (type, expr, complain, |
14017 | LOOKUP_IMPLICIT); |
14018 | } |
14019 | |
14020 | /* Convert EXPR to TYPE (as a direct-initialization) if that is |
14021 | permitted. If the conversion is valid, the converted expression is |
14022 | returned. Otherwise, NULL_TREE is returned, except in the case |
14023 | that TYPE is a class type; in that case, an error is issued. If |
14024 | C_CAST_P is true, then this direct-initialization is taking |
14025 | place as part of a static_cast being attempted as part of a C-style |
14026 | cast. */ |
14027 | |
14028 | tree |
14029 | perform_direct_initialization_if_possible (tree type, |
14030 | tree expr, |
14031 | bool c_cast_p, |
14032 | tsubst_flags_t complain) |
14033 | { |
14034 | conversion *conv; |
14035 | |
14036 | if (type == error_mark_node || error_operand_p (t: expr)) |
14037 | return error_mark_node; |
14038 | /* [dcl.init] |
14039 | |
14040 | If the destination type is a (possibly cv-qualified) class type: |
14041 | |
14042 | -- If the initialization is direct-initialization ..., |
14043 | constructors are considered. |
14044 | |
14045 | -- If overload resolution is successful, the selected constructor |
14046 | is called to initialize the object, with the initializer expression |
14047 | or expression-list as its argument(s). |
14048 | |
14049 | -- Otherwise, if no constructor is viable, the destination type is |
14050 | a (possibly cv-qualified) aggregate class A, and the initializer is |
14051 | a parenthesized expression-list, the object is initialized as |
14052 | follows... */ |
14053 | if (CLASS_TYPE_P (type)) |
14054 | { |
14055 | releasing_vec args (make_tree_vector_single (expr)); |
14056 | expr = build_special_member_call (NULL_TREE, complete_ctor_identifier, |
14057 | args: &args, binfo: type, LOOKUP_NORMAL, complain); |
14058 | return build_cplus_new (type, expr, complain); |
14059 | } |
14060 | |
14061 | conversion_obstack_sentinel cos; |
14062 | |
14063 | conv = implicit_conversion (to: type, TREE_TYPE (expr), expr, |
14064 | c_cast_p, |
14065 | LOOKUP_NORMAL, complain); |
14066 | if (!conv || conv->bad_p) |
14067 | expr = NULL_TREE; |
14068 | else if (processing_template_decl && conv->kind != ck_identity) |
14069 | { |
14070 | /* In a template, we are only concerned about determining the |
14071 | type of non-dependent expressions, so we do not have to |
14072 | perform the actual conversion. But for initializers, we |
14073 | need to be able to perform it at instantiation |
14074 | (or instantiate_non_dependent_expr) time. */ |
14075 | expr = build1 (IMPLICIT_CONV_EXPR, type, expr); |
14076 | IMPLICIT_CONV_EXPR_DIRECT_INIT (expr) = true; |
14077 | } |
14078 | else |
14079 | expr = convert_like (convs: conv, expr, NULL_TREE, argnum: 0, |
14080 | /*issue_conversion_warnings=*/false, |
14081 | c_cast_p, /*nested_p=*/false, complain); |
14082 | |
14083 | return expr; |
14084 | } |
14085 | |
14086 | /* When initializing a reference that lasts longer than a full-expression, |
14087 | this special rule applies: |
14088 | |
14089 | [class.temporary] |
14090 | |
14091 | The temporary to which the reference is bound or the temporary |
14092 | that is the complete object to which the reference is bound |
14093 | persists for the lifetime of the reference. |
14094 | |
14095 | The temporaries created during the evaluation of the expression |
14096 | initializing the reference, except the temporary to which the |
14097 | reference is bound, are destroyed at the end of the |
14098 | full-expression in which they are created. |
14099 | |
14100 | In that case, we store the converted expression into a new |
14101 | VAR_DECL in a new scope. |
14102 | |
14103 | However, we want to be careful not to create temporaries when |
14104 | they are not required. For example, given: |
14105 | |
14106 | struct B {}; |
14107 | struct D : public B {}; |
14108 | D f(); |
14109 | const B& b = f(); |
14110 | |
14111 | there is no need to copy the return value from "f"; we can just |
14112 | extend its lifetime. Similarly, given: |
14113 | |
14114 | struct S {}; |
14115 | struct T { operator S(); }; |
14116 | T t; |
14117 | const S& s = t; |
14118 | |
14119 | we can extend the lifetime of the return value of the conversion |
14120 | operator. |
14121 | |
14122 | The next several functions are involved in this lifetime extension. */ |
14123 | |
14124 | /* DECL is a VAR_DECL or FIELD_DECL whose type is a REFERENCE_TYPE. The |
14125 | reference is being bound to a temporary. Create and return a new |
14126 | VAR_DECL with the indicated TYPE; this variable will store the value to |
14127 | which the reference is bound. */ |
14128 | |
14129 | tree |
14130 | make_temporary_var_for_ref_to_temp (tree decl, tree type) |
14131 | { |
14132 | tree var = create_temporary_var (type); |
14133 | |
14134 | /* Register the variable. */ |
14135 | if (VAR_P (decl) |
14136 | && (TREE_STATIC (decl) || CP_DECL_THREAD_LOCAL_P (decl))) |
14137 | { |
14138 | /* Namespace-scope or local static; give it a mangled name. */ |
14139 | |
14140 | /* If an initializer is visible to multiple translation units, those |
14141 | translation units must agree on the addresses of the |
14142 | temporaries. Therefore the temporaries must be given a consistent name |
14143 | and vague linkage. The mangled name of a temporary is the name of the |
14144 | non-temporary object in whose initializer they appear, prefixed with |
14145 | GR and suffixed with a sequence number mangled using the usual rules |
14146 | for a seq-id. Temporaries are numbered with a pre-order, depth-first, |
14147 | left-to-right walk of the complete initializer. */ |
14148 | copy_linkage (var, decl); |
14149 | |
14150 | tree name = mangle_ref_init_variable (decl); |
14151 | DECL_NAME (var) = name; |
14152 | SET_DECL_ASSEMBLER_NAME (var, name); |
14153 | |
14154 | /* Set the context to make the variable mergeable in modules. */ |
14155 | DECL_CONTEXT (var) = current_scope (); |
14156 | } |
14157 | else |
14158 | /* Create a new cleanup level if necessary. */ |
14159 | maybe_push_cleanup_level (type); |
14160 | |
14161 | return pushdecl (var); |
14162 | } |
14163 | |
14164 | static tree extend_temps_r (tree *, int *, void *); |
14165 | |
14166 | /* EXPR is the initializer for a variable DECL of reference or |
14167 | std::initializer_list type. Create, push and return a new VAR_DECL |
14168 | for the initializer so that it will live as long as DECL. Any |
14169 | cleanup for the new variable is returned through CLEANUP, and the |
14170 | code to initialize the new variable is returned through INITP. */ |
14171 | |
14172 | static tree |
14173 | set_up_extended_ref_temp (tree decl, tree expr, vec<tree, va_gc> **cleanups, |
14174 | tree *initp, tree *cond_guard, |
14175 | void *walk_data) |
14176 | { |
14177 | tree init; |
14178 | tree type; |
14179 | tree var; |
14180 | |
14181 | /* Create the temporary variable. */ |
14182 | type = TREE_TYPE (expr); |
14183 | var = make_temporary_var_for_ref_to_temp (decl, type); |
14184 | layout_decl (var, 0); |
14185 | /* If the rvalue is the result of a function call it will be |
14186 | a TARGET_EXPR. If it is some other construct (such as a |
14187 | member access expression where the underlying object is |
14188 | itself the result of a function call), turn it into a |
14189 | TARGET_EXPR here. It is important that EXPR be a |
14190 | TARGET_EXPR below since otherwise the INIT_EXPR will |
14191 | attempt to make a bitwise copy of EXPR to initialize |
14192 | VAR. */ |
14193 | if (TREE_CODE (expr) != TARGET_EXPR) |
14194 | expr = get_target_expr (expr); |
14195 | else |
14196 | { |
14197 | if (TREE_ADDRESSABLE (expr)) |
14198 | TREE_ADDRESSABLE (var) = 1; |
14199 | if (DECL_MERGEABLE (TARGET_EXPR_SLOT (expr))) |
14200 | DECL_MERGEABLE (var) = true; |
14201 | } |
14202 | |
14203 | if (TREE_CODE (decl) == FIELD_DECL |
14204 | && extra_warnings && !warning_suppressed_p (decl)) |
14205 | { |
14206 | warning (OPT_Wextra, "a temporary bound to %qD only persists " |
14207 | "until the constructor exits" , decl); |
14208 | suppress_warning (decl); |
14209 | } |
14210 | |
14211 | /* Recursively extend temps in this initializer. The recursion needs to come |
14212 | after creating the variable to conform to the mangling ABI, and before |
14213 | maybe_constant_init because the extension might change its result. */ |
14214 | if (walk_data) |
14215 | cp_walk_tree (&TARGET_EXPR_INITIAL (expr), extend_temps_r, |
14216 | walk_data, nullptr); |
14217 | else |
14218 | TARGET_EXPR_INITIAL (expr) |
14219 | = extend_ref_init_temps (decl, TARGET_EXPR_INITIAL (expr), cleanups, |
14220 | cond_guard); |
14221 | |
14222 | /* Any reference temp has a non-trivial initializer. */ |
14223 | DECL_NONTRIVIALLY_INITIALIZED_P (var) = true; |
14224 | |
14225 | /* If the initializer is constant, put it in DECL_INITIAL so we get |
14226 | static initialization and use in constant expressions. */ |
14227 | init = maybe_constant_init (expr, var, /*manifestly_const_eval=*/true); |
14228 | /* As in store_init_value. */ |
14229 | init = cp_fully_fold (init); |
14230 | if (TREE_CONSTANT (init)) |
14231 | { |
14232 | if (literal_type_p (type) |
14233 | && CP_TYPE_CONST_NON_VOLATILE_P (type) |
14234 | && !TYPE_HAS_MUTABLE_P (type)) |
14235 | { |
14236 | /* 5.19 says that a constant expression can include an |
14237 | lvalue-rvalue conversion applied to "a glvalue of literal type |
14238 | that refers to a non-volatile temporary object initialized |
14239 | with a constant expression". Rather than try to communicate |
14240 | that this VAR_DECL is a temporary, just mark it constexpr. */ |
14241 | DECL_DECLARED_CONSTEXPR_P (var) = true; |
14242 | DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (var) = true; |
14243 | TREE_CONSTANT (var) = true; |
14244 | TREE_READONLY (var) = true; |
14245 | } |
14246 | DECL_INITIAL (var) = init; |
14247 | init = NULL_TREE; |
14248 | } |
14249 | else |
14250 | /* Create the INIT_EXPR that will initialize the temporary |
14251 | variable. */ |
14252 | init = split_nonconstant_init (var, expr); |
14253 | if (at_function_scope_p ()) |
14254 | { |
14255 | add_decl_expr (var); |
14256 | |
14257 | if (TREE_STATIC (var)) |
14258 | init = add_stmt_to_compound (init, register_dtor_fn (var)); |
14259 | else |
14260 | { |
14261 | /* ??? Instead of rebuilding the cleanup, we could replace the slot |
14262 | with var in TARGET_EXPR_CLEANUP (expr). */ |
14263 | tree cleanup = cxx_maybe_build_cleanup (var, tf_warning_or_error); |
14264 | if (cleanup) |
14265 | { |
14266 | if (cond_guard && cleanup != error_mark_node) |
14267 | { |
14268 | if (*cond_guard == NULL_TREE) |
14269 | { |
14270 | *cond_guard = build_local_temp (boolean_type_node); |
14271 | add_decl_expr (*cond_guard); |
14272 | tree set = cp_build_modify_expr (UNKNOWN_LOCATION, |
14273 | *cond_guard, NOP_EXPR, |
14274 | boolean_false_node, |
14275 | tf_warning_or_error); |
14276 | finish_expr_stmt (set); |
14277 | } |
14278 | cleanup = build3 (COND_EXPR, void_type_node, |
14279 | *cond_guard, cleanup, NULL_TREE); |
14280 | } |
14281 | if (flag_exceptions && TREE_CODE (TREE_TYPE (var)) != ARRAY_TYPE) |
14282 | { |
14283 | /* The normal cleanup for this extended variable isn't pushed |
14284 | until cp_finish_decl, so we need to retain a TARGET_EXPR |
14285 | to clean it up in case a later initializer throws |
14286 | (g++.dg/eh/ref-temp3.C). |
14287 | |
14288 | We don't do this for array temporaries because they have |
14289 | the array cleanup region from build_vec_init. |
14290 | |
14291 | Unlike maybe_push_temp_cleanup, we don't actually need a |
14292 | flag, but a TARGET_EXPR needs a TARGET_EXPR_SLOT. |
14293 | Perhaps this could use WITH_CLEANUP_EXPR instead, but |
14294 | gimplify.cc doesn't handle that, and front-end handling |
14295 | was removed in r8-1725 and r8-1818. |
14296 | |
14297 | Alternately it might be preferable to flatten an |
14298 | initialization with extended temps into a sequence of |
14299 | (non-full-expression) statements, so we could immediately |
14300 | push_cleanup here for only a single cleanup region, but we |
14301 | don't have a mechanism for that in the front-end, only the |
14302 | gimplifier. */ |
14303 | tree targ = get_internal_target_expr (boolean_true_node); |
14304 | TARGET_EXPR_CLEANUP (targ) = cleanup; |
14305 | CLEANUP_EH_ONLY (targ) = true; |
14306 | /* Don't actually initialize the bool. */ |
14307 | init = (!init ? void_node |
14308 | : convert_to_void (init, ICV_STATEMENT, tf_none)); |
14309 | TARGET_EXPR_INITIAL (targ) = init; |
14310 | init = targ; |
14311 | } |
14312 | vec_safe_push (v&: *cleanups, obj: cleanup); |
14313 | } |
14314 | } |
14315 | |
14316 | /* We must be careful to destroy the temporary only |
14317 | after its initialization has taken place. If the |
14318 | initialization throws an exception, then the |
14319 | destructor should not be run. We cannot simply |
14320 | transform INIT into something like: |
14321 | |
14322 | (INIT, ({ CLEANUP_STMT; })) |
14323 | |
14324 | because emit_local_var always treats the |
14325 | initializer as a full-expression. Thus, the |
14326 | destructor would run too early; it would run at the |
14327 | end of initializing the reference variable, rather |
14328 | than at the end of the block enclosing the |
14329 | reference variable. |
14330 | |
14331 | The solution is to pass back a cleanup expression |
14332 | which the caller is responsible for attaching to |
14333 | the statement tree. */ |
14334 | } |
14335 | else |
14336 | { |
14337 | rest_of_decl_compilation (var, /*toplev=*/1, at_eof); |
14338 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
14339 | { |
14340 | if (CP_DECL_THREAD_LOCAL_P (var)) |
14341 | tls_aggregates = tree_cons (NULL_TREE, var, |
14342 | tls_aggregates); |
14343 | else |
14344 | static_aggregates = tree_cons (NULL_TREE, var, |
14345 | static_aggregates); |
14346 | } |
14347 | else |
14348 | /* Check whether the dtor is callable. */ |
14349 | cxx_maybe_build_cleanup (var, tf_warning_or_error); |
14350 | } |
14351 | /* Avoid -Wunused-variable warning (c++/38958). */ |
14352 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) |
14353 | && VAR_P (decl)) |
14354 | TREE_USED (decl) = DECL_READ_P (decl) = true; |
14355 | |
14356 | *initp = init; |
14357 | return var; |
14358 | } |
14359 | |
14360 | /* Convert EXPR to the indicated reference TYPE, in a way suitable for |
14361 | initializing a variable of that TYPE. */ |
14362 | |
14363 | tree |
14364 | initialize_reference (tree type, tree expr, |
14365 | int flags, tsubst_flags_t complain) |
14366 | { |
14367 | conversion *conv; |
14368 | location_t loc = cp_expr_loc_or_input_loc (t: expr); |
14369 | |
14370 | if (type == error_mark_node || error_operand_p (t: expr)) |
14371 | return error_mark_node; |
14372 | |
14373 | conversion_obstack_sentinel cos; |
14374 | |
14375 | conv = reference_binding (rto: type, TREE_TYPE (expr), expr, /*c_cast_p=*/false, |
14376 | flags, complain); |
14377 | /* If this conversion failed, we're in C++20, and we have something like |
14378 | A& a(b) where A is an aggregate, try again, this time as A& a{b}. */ |
14379 | if ((!conv || conv->bad_p) |
14380 | && (flags & LOOKUP_AGGREGATE_PAREN_INIT)) |
14381 | { |
14382 | tree e = build_constructor_single (init_list_type_node, NULL_TREE, expr); |
14383 | CONSTRUCTOR_IS_DIRECT_INIT (e) = true; |
14384 | CONSTRUCTOR_IS_PAREN_INIT (e) = true; |
14385 | conversion *c = reference_binding (rto: type, TREE_TYPE (e), expr: e, |
14386 | /*c_cast_p=*/false, flags, complain); |
14387 | /* If this worked, use it. */ |
14388 | if (c && !c->bad_p) |
14389 | expr = e, conv = c; |
14390 | } |
14391 | if (!conv || conv->bad_p) |
14392 | { |
14393 | if (complain & tf_error) |
14394 | { |
14395 | if (conv) |
14396 | convert_like (convs: conv, expr, complain); |
14397 | else if (!CP_TYPE_CONST_P (TREE_TYPE (type)) |
14398 | && !TYPE_REF_IS_RVALUE (type) |
14399 | && !lvalue_p (expr)) |
14400 | error_at (loc, "invalid initialization of non-const reference of " |
14401 | "type %qH from an rvalue of type %qI" , |
14402 | type, TREE_TYPE (expr)); |
14403 | else |
14404 | error_at (loc, "invalid initialization of reference of type " |
14405 | "%qH from expression of type %qI" , type, |
14406 | TREE_TYPE (expr)); |
14407 | } |
14408 | return error_mark_node; |
14409 | } |
14410 | |
14411 | if (conv->kind == ck_ref_bind) |
14412 | /* Perform the conversion. */ |
14413 | expr = convert_like (convs: conv, expr, complain); |
14414 | else if (conv->kind == ck_ambig) |
14415 | /* We gave an error in build_user_type_conversion_1. */ |
14416 | expr = error_mark_node; |
14417 | else |
14418 | gcc_unreachable (); |
14419 | |
14420 | return expr; |
14421 | } |
14422 | |
14423 | /* Return true if T is std::pair<const T&, const T&>. */ |
14424 | |
14425 | static bool |
14426 | std_pair_ref_ref_p (tree t) |
14427 | { |
14428 | /* First, check if we have std::pair. */ |
14429 | if (!NON_UNION_CLASS_TYPE_P (t) |
14430 | || !CLASSTYPE_TEMPLATE_INSTANTIATION (t)) |
14431 | return false; |
14432 | tree tdecl = TYPE_NAME (TYPE_MAIN_VARIANT (t)); |
14433 | if (!decl_in_std_namespace_p (tdecl)) |
14434 | return false; |
14435 | tree name = DECL_NAME (tdecl); |
14436 | if (!name || !id_equal (id: name, str: "pair" )) |
14437 | return false; |
14438 | |
14439 | /* Now see if the template arguments are both const T&. */ |
14440 | tree args = CLASSTYPE_TI_ARGS (t); |
14441 | if (TREE_VEC_LENGTH (args) != 2) |
14442 | return false; |
14443 | for (int i = 0; i < 2; i++) |
14444 | if (!TYPE_REF_OBJ_P (TREE_VEC_ELT (args, i)) |
14445 | || !CP_TYPE_CONST_P (TREE_TYPE (TREE_VEC_ELT (args, i)))) |
14446 | return false; |
14447 | |
14448 | return true; |
14449 | } |
14450 | |
14451 | /* Return true if a class T has a reference member. */ |
14452 | |
14453 | static bool |
14454 | class_has_reference_member_p (tree t) |
14455 | { |
14456 | for (tree fields = TYPE_FIELDS (t); |
14457 | fields; |
14458 | fields = DECL_CHAIN (fields)) |
14459 | if (TREE_CODE (fields) == FIELD_DECL |
14460 | && !DECL_ARTIFICIAL (fields) |
14461 | && TYPE_REF_P (TREE_TYPE (fields))) |
14462 | return true; |
14463 | return false; |
14464 | } |
14465 | |
14466 | /* A wrapper for the above suitable as a callback for dfs_walk_once. */ |
14467 | |
14468 | static tree |
14469 | class_has_reference_member_p_r (tree binfo, void *) |
14470 | { |
14471 | return (class_has_reference_member_p (BINFO_TYPE (binfo)) |
14472 | ? integer_one_node : NULL_TREE); |
14473 | } |
14474 | |
14475 | |
14476 | /* Return true if T (either a class or a function) has been marked as |
14477 | not-dangling. */ |
14478 | |
14479 | static bool |
14480 | no_dangling_p (tree t) |
14481 | { |
14482 | t = lookup_attribute (attr_name: "no_dangling" , TYPE_ATTRIBUTES (t)); |
14483 | if (!t) |
14484 | return false; |
14485 | |
14486 | t = TREE_VALUE (t); |
14487 | if (!t) |
14488 | return true; |
14489 | |
14490 | t = build_converted_constant_bool_expr (TREE_VALUE (t), complain: tf_warning_or_error); |
14491 | t = cxx_constant_value (t); |
14492 | return t == boolean_true_node; |
14493 | } |
14494 | |
14495 | /* Return true if a class CTYPE is either std::reference_wrapper or |
14496 | std::ref_view, or a reference wrapper class. We consider a class |
14497 | a reference wrapper class if it has a reference member. We no |
14498 | longer check that it has a constructor taking the same reference type |
14499 | since that approach still generated too many false positives. */ |
14500 | |
14501 | static bool |
14502 | reference_like_class_p (tree ctype) |
14503 | { |
14504 | if (!CLASS_TYPE_P (ctype)) |
14505 | return false; |
14506 | |
14507 | if (no_dangling_p (t: ctype)) |
14508 | return true; |
14509 | |
14510 | /* Also accept a std::pair<const T&, const T&>. */ |
14511 | if (std_pair_ref_ref_p (t: ctype)) |
14512 | return true; |
14513 | |
14514 | tree tdecl = TYPE_NAME (TYPE_MAIN_VARIANT (ctype)); |
14515 | if (decl_in_std_namespace_p (tdecl)) |
14516 | { |
14517 | tree name = DECL_NAME (tdecl); |
14518 | if (name |
14519 | && (id_equal (id: name, str: "reference_wrapper" ) |
14520 | || id_equal (id: name, str: "span" ) |
14521 | || id_equal (id: name, str: "ref_view" ))) |
14522 | return true; |
14523 | } |
14524 | |
14525 | /* Avoid warning if CTYPE looks like std::span: it has a T* member and |
14526 | a trivial destructor. For example, |
14527 | |
14528 | template<typename T> |
14529 | struct Span { |
14530 | T* data_; |
14531 | std::size len_; |
14532 | }; |
14533 | |
14534 | is considered std::span-like. */ |
14535 | if (NON_UNION_CLASS_TYPE_P (ctype) && TYPE_HAS_TRIVIAL_DESTRUCTOR (ctype)) |
14536 | for (tree field = next_aggregate_field (TYPE_FIELDS (ctype)); |
14537 | field; field = next_aggregate_field (DECL_CHAIN (field))) |
14538 | if (TYPE_PTR_P (TREE_TYPE (field))) |
14539 | return true; |
14540 | |
14541 | /* Some classes, such as std::tuple, have the reference member in its |
14542 | (non-direct) base class. */ |
14543 | if (dfs_walk_once (TYPE_BINFO (ctype), class_has_reference_member_p_r, |
14544 | nullptr, nullptr)) |
14545 | return true; |
14546 | |
14547 | return false; |
14548 | } |
14549 | |
14550 | /* Helper for maybe_warn_dangling_reference to find a problematic temporary |
14551 | in EXPR (as outlined in maybe_warn_dangling_reference), or NULL_TREE |
14552 | if none found. For instance: |
14553 | |
14554 | const S& s = S().self(); // S() |
14555 | const int& r = (42, f(1)); // temporary for passing 1 to f |
14556 | const int& t = b ? f(1) : f(2); // temporary for 1 |
14557 | const int& u = b ? f(1) : f(g); // temporary for 1 |
14558 | const int& v = b ? f(g) : f(2); // temporary for 2 |
14559 | const int& w = b ? f(g) : f(g); // NULL_TREE |
14560 | const int& y = (f(1), 42); // NULL_TREE |
14561 | const int& z = f(f(1)); // temporary for 1 |
14562 | |
14563 | EXPR is the initializer. If ARG_P is true, we're processing an argument |
14564 | to a function; the point is to distinguish between, for example, |
14565 | |
14566 | Ref::inner (&TARGET_EXPR <D.2839, F::foo (fm)>) |
14567 | |
14568 | where we shouldn't warn, and |
14569 | |
14570 | Ref::inner (&TARGET_EXPR <D.2908, F::foo (&TARGET_EXPR <...>)>) |
14571 | |
14572 | where we should warn (Ref is a reference_like_class_p so we see through |
14573 | it. */ |
14574 | |
14575 | static tree |
14576 | do_warn_dangling_reference (tree expr, bool arg_p) |
14577 | { |
14578 | STRIP_NOPS (expr); |
14579 | |
14580 | if (arg_p && expr_represents_temporary_p (expr)) |
14581 | { |
14582 | /* An attempt to reduce the number of -Wdangling-reference |
14583 | false positives concerning reference wrappers (c++/107532). |
14584 | When we encounter a reference_like_class_p, we don't warn |
14585 | just yet; instead, we keep recursing to see if there were |
14586 | any temporaries behind the reference-wrapper class. */ |
14587 | tree e = expr; |
14588 | while (handled_component_p (t: e)) |
14589 | e = TREE_OPERAND (e, 0); |
14590 | tree type = TREE_TYPE (e); |
14591 | /* If the temporary represents a lambda, we don't really know |
14592 | what's going on here. */ |
14593 | if (!reference_like_class_p (ctype: type) && !LAMBDA_TYPE_P (type)) |
14594 | return expr; |
14595 | } |
14596 | |
14597 | switch (TREE_CODE (expr)) |
14598 | { |
14599 | case CALL_EXPR: |
14600 | { |
14601 | tree fndecl = cp_get_callee_fndecl_nofold (expr); |
14602 | if (!fndecl |
14603 | || warning_suppressed_p (fndecl, OPT_Wdangling_reference) |
14604 | || !warning_enabled_at (DECL_SOURCE_LOCATION (fndecl), |
14605 | option_id: OPT_Wdangling_reference) |
14606 | /* Don't emit a false positive for: |
14607 | std::vector<int> v = ...; |
14608 | std::vector<int>::const_iterator it = v.begin(); |
14609 | const int &r = *it++; |
14610 | because R refers to one of the int elements of V, not to |
14611 | a temporary object. Member operator* may return a reference |
14612 | but probably not to one of its arguments. */ |
14613 | || (DECL_OBJECT_MEMBER_FUNCTION_P (fndecl) |
14614 | && DECL_OVERLOADED_OPERATOR_P (fndecl) |
14615 | && DECL_OVERLOADED_OPERATOR_IS (fndecl, INDIRECT_REF)) |
14616 | || no_dangling_p (TREE_TYPE (fndecl))) |
14617 | return NULL_TREE; |
14618 | |
14619 | tree rettype = TREE_TYPE (TREE_TYPE (fndecl)); |
14620 | /* If the function doesn't return a reference, don't warn. This |
14621 | can be e.g. |
14622 | const int& z = std::min({1, 2, 3, 4, 5, 6, 7}); |
14623 | which doesn't dangle: std::min here returns an int. |
14624 | |
14625 | If the function returns a std::pair<const T&, const T&>, we |
14626 | warn, to detect e.g. |
14627 | std::pair<const int&, const int&> v = std::minmax(1, 2); |
14628 | which also creates a dangling reference, because std::minmax |
14629 | returns std::pair<const T&, const T&>(b, a). */ |
14630 | if (!(TYPE_REF_OBJ_P (rettype) || reference_like_class_p (ctype: rettype))) |
14631 | return NULL_TREE; |
14632 | |
14633 | /* Here we're looking to see if any of the arguments is a temporary |
14634 | initializing a reference parameter. */ |
14635 | for (int i = 0; i < call_expr_nargs (expr); ++i) |
14636 | { |
14637 | tree arg = CALL_EXPR_ARG (expr, i); |
14638 | /* Check that this argument initializes a reference, except for |
14639 | the argument initializing the object of a member function. */ |
14640 | if (!DECL_IOBJ_MEMBER_FUNCTION_P (fndecl) |
14641 | && !TYPE_REF_P (TREE_TYPE (arg))) |
14642 | continue; |
14643 | STRIP_NOPS (arg); |
14644 | if (TREE_CODE (arg) == ADDR_EXPR) |
14645 | arg = TREE_OPERAND (arg, 0); |
14646 | /* Recurse to see if the argument is a temporary. It could also |
14647 | be another call taking a temporary and returning it and |
14648 | initializing this reference parameter. */ |
14649 | if ((arg = do_warn_dangling_reference (expr: arg, /*arg_p=*/true))) |
14650 | { |
14651 | /* If we know the temporary could not bind to the return type, |
14652 | don't warn. This is for scalars and empty classes only |
14653 | because for other classes we can't be sure we are not |
14654 | returning its sub-object. */ |
14655 | if ((SCALAR_TYPE_P (TREE_TYPE (arg)) |
14656 | || is_empty_class (TREE_TYPE (arg))) |
14657 | && TYPE_REF_P (rettype) |
14658 | && !reference_related_p (TREE_TYPE (rettype), |
14659 | TREE_TYPE (arg))) |
14660 | continue; |
14661 | return arg; |
14662 | } |
14663 | /* Don't warn about member functions like: |
14664 | std::any a(...); |
14665 | S& s = a.emplace<S>({0}, 0); |
14666 | which construct a new object and return a reference to it, but |
14667 | we still want to detect: |
14668 | struct S { const S& self () { return *this; } }; |
14669 | const S& s = S().self(); |
14670 | where 's' dangles. If we've gotten here, the object this function |
14671 | is invoked on is not a temporary. */ |
14672 | if (DECL_OBJECT_MEMBER_FUNCTION_P (fndecl)) |
14673 | break; |
14674 | } |
14675 | return NULL_TREE; |
14676 | } |
14677 | case COMPOUND_EXPR: |
14678 | return do_warn_dangling_reference (TREE_OPERAND (expr, 1), arg_p); |
14679 | case COND_EXPR: |
14680 | if (tree t = do_warn_dangling_reference (TREE_OPERAND (expr, 1), arg_p)) |
14681 | return t; |
14682 | return do_warn_dangling_reference (TREE_OPERAND (expr, 2), arg_p); |
14683 | case PAREN_EXPR: |
14684 | return do_warn_dangling_reference (TREE_OPERAND (expr, 0), arg_p); |
14685 | case TARGET_EXPR: |
14686 | return do_warn_dangling_reference (TARGET_EXPR_INITIAL (expr), arg_p); |
14687 | default: |
14688 | return NULL_TREE; |
14689 | } |
14690 | } |
14691 | |
14692 | /* Implement -Wdangling-reference, to detect cases like |
14693 | |
14694 | int n = 1; |
14695 | const int& r = std::max(n - 1, n + 1); // r is dangling |
14696 | |
14697 | This creates temporaries from the arguments, returns a reference to |
14698 | one of the temporaries, but both temporaries are destroyed at the end |
14699 | of the full expression. |
14700 | |
14701 | This works by checking if a reference is initialized with a function |
14702 | that returns a reference, and at least one parameter of the function |
14703 | is a reference that is bound to a temporary. It assumes that such a |
14704 | function actually returns one of its arguments. |
14705 | |
14706 | DECL is the reference being initialized, INIT is the initializer. */ |
14707 | |
14708 | static void |
14709 | maybe_warn_dangling_reference (const_tree decl, tree init) |
14710 | { |
14711 | if (!warn_dangling_reference) |
14712 | return; |
14713 | tree type = TREE_TYPE (decl); |
14714 | /* Only warn if what we're initializing has type T&& or const T&, or |
14715 | std::pair<const T&, const T&>. (A non-const lvalue reference can't |
14716 | bind to a temporary.) */ |
14717 | if (!((TYPE_REF_OBJ_P (type) |
14718 | && (TYPE_REF_IS_RVALUE (type) |
14719 | || CP_TYPE_CONST_P (TREE_TYPE (type)))) |
14720 | || std_pair_ref_ref_p (t: type))) |
14721 | return; |
14722 | /* Don't suppress the diagnostic just because the call comes from |
14723 | a system header. If the DECL is not in a system header, or if |
14724 | -Wsystem-headers was provided, warn. */ |
14725 | auto wsh |
14726 | = make_temp_override (var&: global_dc->m_warn_system_headers, |
14727 | overrider: (!in_system_header_at (DECL_SOURCE_LOCATION (decl)) |
14728 | || global_dc->m_warn_system_headers)); |
14729 | if (tree call = do_warn_dangling_reference (expr: init, /*arg_p=*/false)) |
14730 | { |
14731 | auto_diagnostic_group d; |
14732 | if (warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wdangling_reference, |
14733 | "possibly dangling reference to a temporary" )) |
14734 | inform (EXPR_LOCATION (call), "%qT temporary created here" , |
14735 | TREE_TYPE (call)); |
14736 | } |
14737 | } |
14738 | |
14739 | /* If *P is an xvalue expression, prevent temporary lifetime extension if it |
14740 | gets used to initialize a reference. */ |
14741 | |
14742 | static tree |
14743 | prevent_lifetime_extension (tree t) |
14744 | { |
14745 | tree *p = &t; |
14746 | while (TREE_CODE (*p) == COMPOUND_EXPR) |
14747 | p = &TREE_OPERAND (*p, 1); |
14748 | while (handled_component_p (t: *p)) |
14749 | p = &TREE_OPERAND (*p, 0); |
14750 | /* Change a TARGET_EXPR from prvalue to xvalue. */ |
14751 | if (TREE_CODE (*p) == TARGET_EXPR) |
14752 | *p = build2 (COMPOUND_EXPR, TREE_TYPE (*p), *p, |
14753 | move (TARGET_EXPR_SLOT (*p))); |
14754 | return t; |
14755 | } |
14756 | |
14757 | /* Subroutine of extend_ref_init_temps. Possibly extend one initializer, |
14758 | which is bound either to a reference or a std::initializer_list. */ |
14759 | |
14760 | static tree |
14761 | extend_ref_init_temps_1 (tree decl, tree init, vec<tree, va_gc> **cleanups, |
14762 | tree *cond_guard) |
14763 | { |
14764 | /* CWG1299 (C++20): The temporary object to which the reference is bound or |
14765 | the temporary object that is the complete object of a subobject to which |
14766 | the reference is bound persists for the lifetime of the reference if the |
14767 | glvalue to which the reference is bound was obtained through one of the |
14768 | following: |
14769 | - a temporary materialization conversion ([conv.rval]), |
14770 | - ( expression ), where expression is one of these expressions, |
14771 | - subscripting ([expr.sub]) of an array operand, where that operand is one |
14772 | of these expressions, |
14773 | - a class member access ([expr.ref]) using the . operator where the left |
14774 | operand is one of these expressions and the right operand designates a |
14775 | non-static data member of non-reference type, |
14776 | - a pointer-to-member operation ([expr.mptr.oper]) using the .* operator |
14777 | where the left operand is one of these expressions and the right operand |
14778 | is a pointer to data member of non-reference type, |
14779 | - a const_cast ([expr.const.cast]), static_cast ([expr.static.cast]), |
14780 | dynamic_cast ([expr.dynamic.cast]), or reinterpret_cast |
14781 | ([expr.reinterpret.cast]) converting, without a user-defined conversion, |
14782 | a glvalue operand that is one of these expressions to a glvalue that |
14783 | refers to the object designated by the operand, or to its complete |
14784 | object or a subobject thereof, |
14785 | - a conditional expression ([expr.cond]) that is a glvalue where the |
14786 | second or third operand is one of these expressions, or |
14787 | - a comma expression ([expr.comma]) that is a glvalue where the right |
14788 | operand is one of these expressions. */ |
14789 | |
14790 | /* FIXME several cases are still handled wrong (101572, 81420). */ |
14791 | |
14792 | tree sub = init; |
14793 | tree *p; |
14794 | STRIP_NOPS (sub); |
14795 | if (TREE_CODE (sub) == COMPOUND_EXPR) |
14796 | { |
14797 | TREE_OPERAND (sub, 1) |
14798 | = extend_ref_init_temps_1 (decl, TREE_OPERAND (sub, 1), cleanups, |
14799 | cond_guard); |
14800 | return init; |
14801 | } |
14802 | if (TREE_CODE (sub) == POINTER_PLUS_EXPR |
14803 | && TYPE_PTRDATAMEM_P (TREE_TYPE (tree_strip_nop_conversions |
14804 | (TREE_OPERAND (sub, 1))))) |
14805 | { |
14806 | /* A pointer-to-member operation. */ |
14807 | TREE_OPERAND (sub, 0) |
14808 | = extend_ref_init_temps_1 (decl, TREE_OPERAND (sub, 0), cleanups, |
14809 | cond_guard); |
14810 | return init; |
14811 | } |
14812 | if (TREE_CODE (sub) == COND_EXPR) |
14813 | { |
14814 | tree cur_cond_guard = NULL_TREE; |
14815 | if (TREE_OPERAND (sub, 1)) |
14816 | TREE_OPERAND (sub, 1) |
14817 | = extend_ref_init_temps_1 (decl, TREE_OPERAND (sub, 1), cleanups, |
14818 | cond_guard: &cur_cond_guard); |
14819 | if (cur_cond_guard) |
14820 | { |
14821 | tree set = cp_build_modify_expr (UNKNOWN_LOCATION, cur_cond_guard, |
14822 | NOP_EXPR, boolean_true_node, |
14823 | tf_warning_or_error); |
14824 | TREE_OPERAND (sub, 1) |
14825 | = cp_build_compound_expr (set, TREE_OPERAND (sub, 1), |
14826 | tf_warning_or_error); |
14827 | } |
14828 | cur_cond_guard = NULL_TREE; |
14829 | if (TREE_OPERAND (sub, 2)) |
14830 | TREE_OPERAND (sub, 2) |
14831 | = extend_ref_init_temps_1 (decl, TREE_OPERAND (sub, 2), cleanups, |
14832 | cond_guard: &cur_cond_guard); |
14833 | if (cur_cond_guard) |
14834 | { |
14835 | tree set = cp_build_modify_expr (UNKNOWN_LOCATION, cur_cond_guard, |
14836 | NOP_EXPR, boolean_true_node, |
14837 | tf_warning_or_error); |
14838 | TREE_OPERAND (sub, 2) |
14839 | = cp_build_compound_expr (set, TREE_OPERAND (sub, 2), |
14840 | tf_warning_or_error); |
14841 | } |
14842 | return init; |
14843 | } |
14844 | if (TREE_CODE (sub) != ADDR_EXPR) |
14845 | return init; |
14846 | /* Deal with binding to a subobject. */ |
14847 | for (p = &TREE_OPERAND (sub, 0); |
14848 | TREE_CODE (*p) == COMPONENT_REF || TREE_CODE (*p) == ARRAY_REF; ) |
14849 | p = &TREE_OPERAND (*p, 0); |
14850 | if (TREE_CODE (*p) == TARGET_EXPR) |
14851 | { |
14852 | tree subinit = NULL_TREE; |
14853 | *p = set_up_extended_ref_temp (decl, expr: *p, cleanups, initp: &subinit, |
14854 | cond_guard, walk_data: nullptr); |
14855 | recompute_tree_invariant_for_addr_expr (sub); |
14856 | if (init != sub) |
14857 | init = fold_convert (TREE_TYPE (init), sub); |
14858 | if (subinit) |
14859 | init = build2 (COMPOUND_EXPR, TREE_TYPE (init), subinit, init); |
14860 | } |
14861 | return init; |
14862 | } |
14863 | |
14864 | /* Data for extend_temps_r, mostly matching the parameters of |
14865 | extend_ref_init_temps. */ |
14866 | |
14867 | struct extend_temps_data |
14868 | { |
14869 | tree decl; |
14870 | tree init; |
14871 | vec<tree, va_gc> **cleanups; |
14872 | tree* cond_guard; |
14873 | hash_set<tree> *pset; // For avoiding redundant walk_tree. |
14874 | hash_map<tree, tree> *var_map; // For remapping extended temps. |
14875 | }; |
14876 | |
14877 | /* Tree walk function for extend_all_temps. Generally parallel to |
14878 | extend_ref_init_temps_1, but adapted for walk_tree. */ |
14879 | |
14880 | tree |
14881 | extend_temps_r (tree *tp, int *walk_subtrees, void *data) |
14882 | { |
14883 | extend_temps_data *d = (extend_temps_data *)data; |
14884 | |
14885 | if (TREE_CODE (*tp) == VAR_DECL) |
14886 | { |
14887 | if (tree *r = d->var_map->get (k: *tp)) |
14888 | *tp = *r; |
14889 | return NULL_TREE; |
14890 | } |
14891 | |
14892 | if (TYPE_P (*tp) || TREE_CODE (*tp) == CLEANUP_POINT_EXPR |
14893 | || d->pset->add (k: *tp)) |
14894 | { |
14895 | *walk_subtrees = 0; |
14896 | return NULL_TREE; |
14897 | } |
14898 | |
14899 | if (TREE_CODE (*tp) == COND_EXPR) |
14900 | { |
14901 | cp_walk_tree (&TREE_OPERAND (*tp, 0), extend_temps_r, d, nullptr); |
14902 | |
14903 | auto walk_arm = [d](tree &op) |
14904 | { |
14905 | tree cur_cond_guard = NULL_TREE; |
14906 | auto ov = make_temp_override (var&: d->cond_guard, overrider: &cur_cond_guard); |
14907 | cp_walk_tree (&op, extend_temps_r, d, nullptr); |
14908 | if (cur_cond_guard) |
14909 | { |
14910 | tree set = build2 (MODIFY_EXPR, boolean_type_node, |
14911 | cur_cond_guard, boolean_true_node); |
14912 | op = cp_build_compound_expr (set, op, tf_none); |
14913 | } |
14914 | }; |
14915 | walk_arm (TREE_OPERAND (*tp, 1)); |
14916 | walk_arm (TREE_OPERAND (*tp, 2)); |
14917 | |
14918 | *walk_subtrees = 0; |
14919 | return NULL_TREE; |
14920 | } |
14921 | |
14922 | tree *p = tp; |
14923 | |
14924 | if (TREE_CODE (*tp) == ADDR_EXPR) |
14925 | for (p = &TREE_OPERAND (*tp, 0); |
14926 | TREE_CODE (*p) == COMPONENT_REF || TREE_CODE (*p) == ARRAY_REF; ) |
14927 | p = &TREE_OPERAND (*p, 0); |
14928 | |
14929 | if (TREE_CODE (*p) == TARGET_EXPR |
14930 | /* An eliding TARGET_EXPR isn't a temporary at all. */ |
14931 | && !TARGET_EXPR_ELIDING_P (*p) |
14932 | /* A TARGET_EXPR with TARGET_EXPR_INTERNAL_P is an artificial variable |
14933 | used during initialization that need not be extended. */ |
14934 | && !TARGET_EXPR_INTERNAL_P (*p)) |
14935 | { |
14936 | /* A CLEANUP_EH_ONLY expr should also have TARGET_EXPR_INTERNAL_P. */ |
14937 | gcc_checking_assert (!CLEANUP_EH_ONLY (*p)); |
14938 | |
14939 | tree subinit = NULL_TREE; |
14940 | tree slot = TARGET_EXPR_SLOT (*p); |
14941 | *p = set_up_extended_ref_temp (decl: d->decl, expr: *p, cleanups: d->cleanups, initp: &subinit, |
14942 | cond_guard: d->cond_guard, walk_data: d); |
14943 | if (TREE_CODE (*tp) == ADDR_EXPR) |
14944 | recompute_tree_invariant_for_addr_expr (*tp); |
14945 | if (subinit) |
14946 | *tp = cp_build_compound_expr (subinit, *tp, tf_none); |
14947 | d->var_map->put (k: slot, v: *p); |
14948 | } |
14949 | |
14950 | return NULL_TREE; |
14951 | } |
14952 | |
14953 | /* Extend all the temporaries in a for-range-initializer. */ |
14954 | |
14955 | static tree |
14956 | extend_all_temps (tree decl, tree init, vec<tree, va_gc> **cleanups) |
14957 | { |
14958 | hash_set<tree> pset; |
14959 | hash_map<tree, tree> map; |
14960 | gcc_assert (!TREE_STATIC (decl)); |
14961 | extend_temps_data d = { .decl: decl, .init: init, .cleanups: cleanups, .cond_guard: nullptr, .pset: &pset, .var_map: &map }; |
14962 | cp_walk_tree (&init, extend_temps_r, &d, nullptr); |
14963 | return init; |
14964 | } |
14965 | |
14966 | /* INIT is part of the initializer for DECL. If there are any |
14967 | reference or initializer lists being initialized, extend their |
14968 | lifetime to match that of DECL. */ |
14969 | |
14970 | tree |
14971 | extend_ref_init_temps (tree decl, tree init, vec<tree, va_gc> **cleanups, |
14972 | tree *cond_guard) |
14973 | { |
14974 | tree type = TREE_TYPE (init); |
14975 | if (processing_template_decl) |
14976 | return init; |
14977 | |
14978 | /* P2718R0 - in C++23 for-range-initializer, extend all temps. */ |
14979 | if (DECL_NAME (decl) == for_range__identifier |
14980 | && flag_range_for_ext_temps) |
14981 | { |
14982 | gcc_checking_assert (!cond_guard); |
14983 | return extend_all_temps (decl, init, cleanups); |
14984 | } |
14985 | |
14986 | maybe_warn_dangling_reference (decl, init); |
14987 | |
14988 | if (TYPE_REF_P (type)) |
14989 | init = extend_ref_init_temps_1 (decl, init, cleanups, cond_guard); |
14990 | else |
14991 | { |
14992 | tree ctor = init; |
14993 | if (TREE_CODE (ctor) == TARGET_EXPR) |
14994 | ctor = TARGET_EXPR_INITIAL (ctor); |
14995 | if (TREE_CODE (ctor) == CONSTRUCTOR) |
14996 | { |
14997 | /* [dcl.init] When initializing an aggregate from a parenthesized list |
14998 | of values... a temporary object bound to a reference does not have |
14999 | its lifetime extended. */ |
15000 | if (CONSTRUCTOR_IS_PAREN_INIT (ctor)) |
15001 | return init; |
15002 | |
15003 | if (is_std_init_list (type)) |
15004 | { |
15005 | /* The temporary array underlying a std::initializer_list |
15006 | is handled like a reference temporary. */ |
15007 | tree array = CONSTRUCTOR_ELT (ctor, 0)->value; |
15008 | array = extend_ref_init_temps_1 (decl, init: array, cleanups, |
15009 | cond_guard); |
15010 | CONSTRUCTOR_ELT (ctor, 0)->value = array; |
15011 | } |
15012 | else |
15013 | { |
15014 | unsigned i; |
15015 | constructor_elt *p; |
15016 | vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (ctor); |
15017 | FOR_EACH_VEC_SAFE_ELT (elts, i, p) |
15018 | p->value = extend_ref_init_temps (decl, init: p->value, cleanups, |
15019 | cond_guard); |
15020 | } |
15021 | recompute_constructor_flags (ctor); |
15022 | if (decl_maybe_constant_var_p (decl) && TREE_CONSTANT (ctor)) |
15023 | DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true; |
15024 | } |
15025 | } |
15026 | |
15027 | return init; |
15028 | } |
15029 | |
15030 | /* Returns true iff an initializer for TYPE could contain temporaries that |
15031 | need to be extended because they are bound to references or |
15032 | std::initializer_list. */ |
15033 | |
15034 | bool |
15035 | type_has_extended_temps (tree type) |
15036 | { |
15037 | type = strip_array_types (type); |
15038 | if (TYPE_REF_P (type)) |
15039 | return true; |
15040 | if (CLASS_TYPE_P (type)) |
15041 | { |
15042 | if (is_std_init_list (type)) |
15043 | return true; |
15044 | for (tree f = next_aggregate_field (TYPE_FIELDS (type)); |
15045 | f; f = next_aggregate_field (DECL_CHAIN (f))) |
15046 | if (type_has_extended_temps (TREE_TYPE (f))) |
15047 | return true; |
15048 | } |
15049 | return false; |
15050 | } |
15051 | |
15052 | /* Returns true iff TYPE is some variant of std::initializer_list. */ |
15053 | |
15054 | bool |
15055 | is_std_init_list (tree type) |
15056 | { |
15057 | if (!TYPE_P (type)) |
15058 | return false; |
15059 | if (cxx_dialect == cxx98) |
15060 | return false; |
15061 | /* Look through typedefs. */ |
15062 | type = TYPE_MAIN_VARIANT (type); |
15063 | return (CLASS_TYPE_P (type) |
15064 | && CP_TYPE_CONTEXT (type) == std_node |
15065 | && init_list_identifier == DECL_NAME (TYPE_NAME (type))); |
15066 | } |
15067 | |
15068 | /* Returns true iff DECL is a list constructor: i.e. a constructor which |
15069 | will accept an argument list of a single std::initializer_list<T>. */ |
15070 | |
15071 | bool |
15072 | is_list_ctor (tree decl) |
15073 | { |
15074 | tree args = FUNCTION_FIRST_USER_PARMTYPE (decl); |
15075 | tree arg; |
15076 | |
15077 | if (!args || args == void_list_node) |
15078 | return false; |
15079 | |
15080 | arg = non_reference (TREE_VALUE (args)); |
15081 | if (!is_std_init_list (type: arg)) |
15082 | return false; |
15083 | |
15084 | args = TREE_CHAIN (args); |
15085 | |
15086 | if (args && args != void_list_node && !TREE_PURPOSE (args)) |
15087 | /* There are more non-defaulted parms. */ |
15088 | return false; |
15089 | |
15090 | return true; |
15091 | } |
15092 | |
15093 | /* We know that can_convert_arg_bad already said "no" when trying to convert |
15094 | FROM to TO with ARG and FLAGS. Try to figure out if it was because |
15095 | an explicit conversion function was skipped when looking for a way to |
15096 | perform the conversion. At this point we've already printed an error. */ |
15097 | |
15098 | void |
15099 | maybe_show_nonconverting_candidate (tree to, tree from, tree arg, int flags) |
15100 | { |
15101 | if (!(flags & LOOKUP_ONLYCONVERTING)) |
15102 | return; |
15103 | |
15104 | conversion_obstack_sentinel cos; |
15105 | conversion *c = implicit_conversion (to, from, expr: arg, /*c_cast_p=*/false, |
15106 | flags: flags & ~LOOKUP_ONLYCONVERTING, complain: tf_none); |
15107 | if (c && !c->bad_p && c->user_conv_p) |
15108 | /* Ay, the conversion would have worked in direct-init context. */ |
15109 | for (; c; c = next_conversion (conv: c)) |
15110 | if (c->kind == ck_user |
15111 | && DECL_P (c->cand->fn) |
15112 | && DECL_NONCONVERTING_P (c->cand->fn)) |
15113 | inform (DECL_SOURCE_LOCATION (c->cand->fn), "explicit conversion " |
15114 | "function was not considered" ); |
15115 | } |
15116 | |
15117 | /* We're converting EXPR to TYPE. If that conversion involves a conversion |
15118 | function and we're binding EXPR to a reference parameter of that function, |
15119 | return true. */ |
15120 | |
15121 | bool |
15122 | conv_binds_to_reference_parm_p (tree type, tree expr) |
15123 | { |
15124 | conversion_obstack_sentinel cos; |
15125 | conversion *c = implicit_conversion (to: type, TREE_TYPE (expr), expr, |
15126 | /*c_cast_p=*/false, LOOKUP_NORMAL, |
15127 | complain: tf_none); |
15128 | if (c && !c->bad_p && c->user_conv_p) |
15129 | for (; c; c = next_conversion (conv: c)) |
15130 | if (c->kind == ck_user) |
15131 | for (z_candidate *cand = c->cand; cand; cand = cand->next) |
15132 | if (cand->viable == 1) |
15133 | for (size_t i = 0; i < cand->num_convs; ++i) |
15134 | if (cand->convs[i]->kind == ck_ref_bind |
15135 | && conv_get_original_expr (c: cand->convs[i]) == expr) |
15136 | return true; |
15137 | |
15138 | return false; |
15139 | } |
15140 | |
15141 | #include "gt-cp-call.h" |
15142 | |