1 | /* Handle initialization things in -*- C++ -*- |
---|---|
2 | Copyright (C) 1987-2025 Free Software Foundation, Inc. |
3 | Contributed by Michael Tiemann (tiemann@cygnus.com) |
4 | |
5 | This file is part of GCC. |
6 | |
7 | GCC is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation; either version 3, or (at your option) |
10 | any later version. |
11 | |
12 | GCC is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with GCC; see the file COPYING3. If not see |
19 | <http://www.gnu.org/licenses/>. */ |
20 | |
21 | /* High-level class interface. */ |
22 | |
23 | #include "config.h" |
24 | #include "system.h" |
25 | #include "coretypes.h" |
26 | #include "target.h" |
27 | #include "cp-tree.h" |
28 | #include "stringpool.h" |
29 | #include "varasm.h" |
30 | #include "gimplify.h" |
31 | #include "c-family/c-ubsan.h" |
32 | #include "intl.h" |
33 | #include "stringpool.h" |
34 | #include "attribs.h" |
35 | #include "asan.h" |
36 | #include "stor-layout.h" |
37 | #include "pointer-query.h" |
38 | |
39 | static bool begin_init_stmts (tree *, tree *); |
40 | static tree finish_init_stmts (bool, tree, tree); |
41 | static void construct_virtual_base (tree, tree); |
42 | static bool expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t); |
43 | static bool expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t); |
44 | static int member_init_ok_or_else (tree, tree, tree); |
45 | static void expand_virtual_init (tree, tree); |
46 | static tree sort_mem_initializers (tree, tree); |
47 | static tree initializing_context (tree); |
48 | static void expand_cleanup_for_base (tree, tree); |
49 | static tree dfs_initialize_vtbl_ptrs (tree, void *); |
50 | static tree build_field_list (tree, tree, int *); |
51 | static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool); |
52 | |
53 | static GTY(()) tree fn; |
54 | |
55 | /* We are about to generate some complex initialization code. |
56 | Conceptually, it is all a single expression. However, we may want |
57 | to include conditionals, loops, and other such statement-level |
58 | constructs. Therefore, we build the initialization code inside a |
59 | statement-expression. This function starts such an expression. |
60 | STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function; |
61 | pass them back to finish_init_stmts when the expression is |
62 | complete. */ |
63 | |
64 | static bool |
65 | begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p) |
66 | { |
67 | bool is_global = !building_stmt_list_p (); |
68 | |
69 | *stmt_expr_p = begin_stmt_expr (); |
70 | *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE); |
71 | |
72 | return is_global; |
73 | } |
74 | |
75 | /* Finish out the statement-expression begun by the previous call to |
76 | begin_init_stmts. Returns the statement-expression itself. */ |
77 | |
78 | static tree |
79 | finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt) |
80 | { |
81 | finish_compound_stmt (compound_stmt); |
82 | |
83 | stmt_expr = finish_stmt_expr (stmt_expr, true); |
84 | |
85 | gcc_assert (!building_stmt_list_p () == is_global); |
86 | |
87 | return stmt_expr; |
88 | } |
89 | |
90 | /* Constructors */ |
91 | |
92 | /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base |
93 | which we want to initialize the vtable pointer for, DATA is |
94 | TREE_LIST whose TREE_VALUE is the this ptr expression. */ |
95 | |
96 | static tree |
97 | dfs_initialize_vtbl_ptrs (tree binfo, void *data) |
98 | { |
99 | if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo))) |
100 | return dfs_skip_bases; |
101 | |
102 | if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo)) |
103 | { |
104 | tree base_ptr = TREE_VALUE ((tree) data); |
105 | |
106 | base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1, |
107 | tf_warning_or_error); |
108 | |
109 | expand_virtual_init (binfo, base_ptr); |
110 | } |
111 | |
112 | return NULL_TREE; |
113 | } |
114 | |
115 | /* Initialize all the vtable pointers in the object pointed to by |
116 | ADDR. */ |
117 | |
118 | void |
119 | initialize_vtbl_ptrs (tree addr) |
120 | { |
121 | tree list; |
122 | tree type; |
123 | |
124 | type = TREE_TYPE (TREE_TYPE (addr)); |
125 | list = build_tree_list (type, addr); |
126 | |
127 | /* Walk through the hierarchy, initializing the vptr in each base |
128 | class. We do these in pre-order because we can't find the virtual |
129 | bases for a class until we've initialized the vtbl for that |
130 | class. */ |
131 | dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list); |
132 | } |
133 | |
134 | /* Return an expression for the zero-initialization of an object with |
135 | type T. This expression will either be a constant (in the case |
136 | that T is a scalar), or a CONSTRUCTOR (in the case that T is an |
137 | aggregate), or NULL (in the case that T does not require |
138 | initialization). In either case, the value can be used as |
139 | DECL_INITIAL for a decl of the indicated TYPE; it is a valid static |
140 | initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS |
141 | is the number of elements in the array. If STATIC_STORAGE_P is |
142 | TRUE, initializers are only generated for entities for which |
143 | zero-initialization does not simply mean filling the storage with |
144 | zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field, |
145 | subfields with bit positions at or above that bit size shouldn't |
146 | be added. Note that this only works when the result is assigned |
147 | to a base COMPONENT_REF; if we only have a pointer to the base subobject, |
148 | expand_assignment will end up clearing the full size of TYPE. */ |
149 | |
150 | static tree |
151 | build_zero_init_1 (tree type, tree nelts, bool static_storage_p, |
152 | tree field_size) |
153 | { |
154 | tree init = NULL_TREE; |
155 | |
156 | /* [dcl.init] |
157 | |
158 | To zero-initialize an object of type T means: |
159 | |
160 | -- if T is a scalar type, the storage is set to the value of zero |
161 | converted to T. |
162 | |
163 | -- if T is a non-union class type, the storage for each non-static |
164 | data member and each base-class subobject is zero-initialized. |
165 | |
166 | -- if T is a union type, the storage for its first data member is |
167 | zero-initialized. |
168 | |
169 | -- if T is an array type, the storage for each element is |
170 | zero-initialized. |
171 | |
172 | -- if T is a reference type, no initialization is performed. */ |
173 | |
174 | gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST); |
175 | |
176 | /* An initializer is unqualified. */ |
177 | type = cv_unqualified (type); |
178 | |
179 | if (type == error_mark_node) |
180 | ; |
181 | else if (static_storage_p && zero_init_p (type)) |
182 | /* In order to save space, we do not explicitly build initializers |
183 | for items that do not need them. GCC's semantics are that |
184 | items with static storage duration that are not otherwise |
185 | initialized are initialized to zero. */ |
186 | ; |
187 | else if (TYPE_PTR_OR_PTRMEM_P (type)) |
188 | init = fold (convert (type, nullptr_node)); |
189 | else if (NULLPTR_TYPE_P (type)) |
190 | init = build_int_cst (type, 0); |
191 | else if (SCALAR_TYPE_P (type)) |
192 | init = build_zero_cst (type); |
193 | else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type))) |
194 | { |
195 | tree field, next; |
196 | vec<constructor_elt, va_gc> *v = NULL; |
197 | |
198 | /* Iterate over the fields, building initializations. */ |
199 | for (field = TYPE_FIELDS (type); field; field = next) |
200 | { |
201 | next = DECL_CHAIN (field); |
202 | |
203 | if (TREE_CODE (field) != FIELD_DECL) |
204 | continue; |
205 | |
206 | /* For unions, only the first field is initialized. */ |
207 | if (TREE_CODE (type) == UNION_TYPE) |
208 | next = NULL_TREE; |
209 | |
210 | if (TREE_TYPE (field) == error_mark_node) |
211 | continue; |
212 | |
213 | /* Don't add virtual bases for base classes if they are beyond |
214 | the size of the current field, that means it is present |
215 | somewhere else in the object. */ |
216 | if (field_size) |
217 | { |
218 | tree bitpos = bit_position (field); |
219 | if (TREE_CODE (bitpos) == INTEGER_CST |
220 | && !tree_int_cst_lt (t1: bitpos, t2: field_size)) |
221 | continue; |
222 | } |
223 | |
224 | /* Don't add zero width bitfields. */ |
225 | if (DECL_C_BIT_FIELD (field) |
226 | && integer_zerop (DECL_SIZE (field))) |
227 | continue; |
228 | |
229 | /* Note that for class types there will be FIELD_DECLs |
230 | corresponding to base classes as well. Thus, iterating |
231 | over TYPE_FIELDs will result in correct initialization of |
232 | all of the subobjects. */ |
233 | if (!static_storage_p || !zero_init_p (TREE_TYPE (field))) |
234 | { |
235 | tree new_field_size |
236 | = (DECL_FIELD_IS_BASE (field) |
237 | && DECL_SIZE (field) |
238 | && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST) |
239 | ? DECL_SIZE (field) : NULL_TREE; |
240 | tree value = build_zero_init_1 (TREE_TYPE (field), |
241 | /*nelts=*/NULL_TREE, |
242 | static_storage_p, |
243 | field_size: new_field_size); |
244 | if (value) |
245 | CONSTRUCTOR_APPEND_ELT(v, field, value); |
246 | } |
247 | } |
248 | |
249 | /* Build a constructor to contain the initializations. */ |
250 | init = build_constructor (type, v); |
251 | CONSTRUCTOR_ZERO_PADDING_BITS (init) = 1; |
252 | } |
253 | else if (TREE_CODE (type) == ARRAY_TYPE) |
254 | { |
255 | tree max_index; |
256 | vec<constructor_elt, va_gc> *v = NULL; |
257 | |
258 | /* Iterate over the array elements, building initializations. */ |
259 | if (nelts) |
260 | max_index = fold_build2_loc (input_location, MINUS_EXPR, |
261 | TREE_TYPE (nelts), nelts, |
262 | build_one_cst (TREE_TYPE (nelts))); |
263 | /* Treat flexible array members like [0] arrays. */ |
264 | else if (TYPE_DOMAIN (type) == NULL_TREE) |
265 | return NULL_TREE; |
266 | else |
267 | max_index = array_type_nelts_minus_one (type); |
268 | |
269 | /* If we have an error_mark here, we should just return error mark |
270 | as we don't know the size of the array yet. */ |
271 | if (max_index == error_mark_node) |
272 | return error_mark_node; |
273 | gcc_assert (TREE_CODE (max_index) == INTEGER_CST); |
274 | |
275 | /* A zero-sized array, which is accepted as an extension, will |
276 | have an upper bound of -1. */ |
277 | if (!integer_minus_onep (max_index)) |
278 | { |
279 | constructor_elt ce; |
280 | |
281 | /* If this is a one element array, we just use a regular init. */ |
282 | if (integer_zerop (max_index)) |
283 | ce.index = size_zero_node; |
284 | else |
285 | ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, |
286 | max_index); |
287 | |
288 | ce.value = build_zero_init_1 (TREE_TYPE (type), /*nelts=*/NULL_TREE, |
289 | static_storage_p, NULL_TREE); |
290 | if (ce.value) |
291 | { |
292 | vec_alloc (v, nelems: 1); |
293 | v->quick_push (obj: ce); |
294 | } |
295 | } |
296 | |
297 | /* Build a constructor to contain the initializations. */ |
298 | init = build_constructor (type, v); |
299 | } |
300 | else if (VECTOR_TYPE_P (type)) |
301 | init = build_zero_cst (type); |
302 | else |
303 | gcc_assert (TYPE_REF_P (type)); |
304 | |
305 | /* In all cases, the initializer is a constant. */ |
306 | if (init) |
307 | TREE_CONSTANT (init) = 1; |
308 | |
309 | return init; |
310 | } |
311 | |
312 | /* Return an expression for the zero-initialization of an object with |
313 | type T. This expression will either be a constant (in the case |
314 | that T is a scalar), or a CONSTRUCTOR (in the case that T is an |
315 | aggregate), or NULL (in the case that T does not require |
316 | initialization). In either case, the value can be used as |
317 | DECL_INITIAL for a decl of the indicated TYPE; it is a valid static |
318 | initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS |
319 | is the number of elements in the array. If STATIC_STORAGE_P is |
320 | TRUE, initializers are only generated for entities for which |
321 | zero-initialization does not simply mean filling the storage with |
322 | zero bytes. */ |
323 | |
324 | tree |
325 | build_zero_init (tree type, tree nelts, bool static_storage_p) |
326 | { |
327 | return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE); |
328 | } |
329 | |
330 | /* Return a suitable initializer for value-initializing an object of type |
331 | TYPE, as described in [dcl.init]. */ |
332 | |
333 | tree |
334 | build_value_init (tree type, tsubst_flags_t complain) |
335 | { |
336 | /* [dcl.init] |
337 | |
338 | To value-initialize an object of type T means: |
339 | |
340 | - if T is a class type (clause 9) with either no default constructor |
341 | (12.1) or a default constructor that is user-provided or deleted, |
342 | then the object is default-initialized; |
343 | |
344 | - if T is a (possibly cv-qualified) class type without a user-provided |
345 | or deleted default constructor, then the object is zero-initialized |
346 | and the semantic constraints for default-initialization are checked, |
347 | and if T has a non-trivial default constructor, the object is |
348 | default-initialized; |
349 | |
350 | - if T is an array type, then each element is value-initialized; |
351 | |
352 | - otherwise, the object is zero-initialized. |
353 | |
354 | A program that calls for default-initialization or |
355 | value-initialization of an entity of reference type is ill-formed. */ |
356 | |
357 | if (CLASS_TYPE_P (type) && type_build_ctor_call (type)) |
358 | { |
359 | tree ctor |
360 | = build_special_member_call (NULL_TREE, complete_ctor_identifier, |
361 | NULL, type, LOOKUP_NORMAL, complain); |
362 | if (ctor == error_mark_node || TREE_CONSTANT (ctor)) |
363 | return ctor; |
364 | if (processing_template_decl) |
365 | /* The AGGR_INIT_EXPR tweaking below breaks in templates. */ |
366 | return build_min (CAST_EXPR, type, NULL_TREE); |
367 | tree fn = NULL_TREE; |
368 | if (TREE_CODE (ctor) == CALL_EXPR) |
369 | fn = get_callee_fndecl (ctor); |
370 | ctor = build_aggr_init_expr (type, ctor); |
371 | if (fn && user_provided_p (fn)) |
372 | return ctor; |
373 | else if (TYPE_HAS_COMPLEX_DFLT (type)) |
374 | { |
375 | /* This is a class that needs constructing, but doesn't have |
376 | a user-provided constructor. So we need to zero-initialize |
377 | the object and then call the implicitly defined ctor. |
378 | This will be handled in simplify_aggr_init_expr. */ |
379 | AGGR_INIT_ZERO_FIRST (ctor) = 1; |
380 | return ctor; |
381 | } |
382 | } |
383 | |
384 | /* Discard any access checking during subobject initialization; |
385 | the checks are implied by the call to the ctor which we have |
386 | verified is OK (cpp0x/defaulted46.C). */ |
387 | push_deferring_access_checks (dk_deferred); |
388 | tree r = build_value_init_noctor (type, complain); |
389 | pop_deferring_access_checks (); |
390 | return r; |
391 | } |
392 | |
393 | /* Like build_value_init, but don't call the constructor for TYPE. Used |
394 | for base initializers. */ |
395 | |
396 | tree |
397 | build_value_init_noctor (tree type, tsubst_flags_t complain) |
398 | { |
399 | if (!COMPLETE_TYPE_P (type)) |
400 | { |
401 | if (complain & tf_error) |
402 | error ("value-initialization of incomplete type %qT", type); |
403 | return error_mark_node; |
404 | } |
405 | /* FIXME the class and array cases should just use digest_init once it is |
406 | SFINAE-enabled. */ |
407 | if (CLASS_TYPE_P (type)) |
408 | { |
409 | gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type) |
410 | || errorcount != 0); |
411 | |
412 | if (TREE_CODE (type) != UNION_TYPE) |
413 | { |
414 | tree field; |
415 | vec<constructor_elt, va_gc> *v = NULL; |
416 | |
417 | /* Iterate over the fields, building initializations. */ |
418 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
419 | { |
420 | tree ftype, value; |
421 | |
422 | if (TREE_CODE (field) != FIELD_DECL) |
423 | continue; |
424 | |
425 | ftype = TREE_TYPE (field); |
426 | |
427 | if (ftype == error_mark_node) |
428 | continue; |
429 | |
430 | /* Ignore flexible array members for value initialization. */ |
431 | if (TREE_CODE (ftype) == ARRAY_TYPE |
432 | && !COMPLETE_TYPE_P (ftype) |
433 | && !TYPE_DOMAIN (ftype) |
434 | && COMPLETE_TYPE_P (TREE_TYPE (ftype)) |
435 | && (next_aggregate_field (DECL_CHAIN (field)) |
436 | == NULL_TREE)) |
437 | continue; |
438 | |
439 | /* Ignore unnamed zero-width bitfields. */ |
440 | if (DECL_UNNAMED_BIT_FIELD (field) |
441 | && integer_zerop (DECL_SIZE (field))) |
442 | continue; |
443 | |
444 | /* We could skip vfields and fields of types with |
445 | user-defined constructors, but I think that won't improve |
446 | performance at all; it should be simpler in general just |
447 | to zero out the entire object than try to only zero the |
448 | bits that actually need it. */ |
449 | |
450 | /* Note that for class types there will be FIELD_DECLs |
451 | corresponding to base classes as well. Thus, iterating |
452 | over TYPE_FIELDs will result in correct initialization of |
453 | all of the subobjects. */ |
454 | value = build_value_init (type: ftype, complain); |
455 | value = maybe_constant_init (value); |
456 | |
457 | if (value == error_mark_node) |
458 | return error_mark_node; |
459 | |
460 | CONSTRUCTOR_APPEND_ELT(v, field, value); |
461 | |
462 | /* We shouldn't have gotten here for anything that would need |
463 | non-trivial initialization, and gimplify_init_ctor_preeval |
464 | would need to be fixed to allow it. */ |
465 | gcc_assert (TREE_CODE (value) != TARGET_EXPR |
466 | && TREE_CODE (value) != AGGR_INIT_EXPR); |
467 | } |
468 | |
469 | /* Build a constructor to contain the zero- initializations. */ |
470 | tree ret = build_constructor (type, v); |
471 | CONSTRUCTOR_ZERO_PADDING_BITS (ret) = 1; |
472 | return ret; |
473 | } |
474 | } |
475 | else if (TREE_CODE (type) == ARRAY_TYPE) |
476 | { |
477 | vec<constructor_elt, va_gc> *v = NULL; |
478 | |
479 | /* Iterate over the array elements, building initializations. */ |
480 | tree max_index = array_type_nelts_minus_one (type); |
481 | |
482 | /* If we have an error_mark here, we should just return error mark |
483 | as we don't know the size of the array yet. */ |
484 | if (max_index == error_mark_node) |
485 | { |
486 | if (complain & tf_error) |
487 | error ("cannot value-initialize array of unknown bound %qT", |
488 | type); |
489 | return error_mark_node; |
490 | } |
491 | gcc_assert (TREE_CODE (max_index) == INTEGER_CST); |
492 | |
493 | /* A zero-sized array, which is accepted as an extension, will |
494 | have an upper bound of -1. */ |
495 | if (!tree_int_cst_equal (max_index, integer_minus_one_node)) |
496 | { |
497 | constructor_elt ce; |
498 | |
499 | /* If this is a one element array, we just use a regular init. */ |
500 | if (tree_int_cst_equal (size_zero_node, max_index)) |
501 | ce.index = size_zero_node; |
502 | else |
503 | ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index); |
504 | |
505 | ce.value = build_value_init (TREE_TYPE (type), complain); |
506 | ce.value = maybe_constant_init (ce.value); |
507 | if (ce.value == error_mark_node) |
508 | return error_mark_node; |
509 | |
510 | vec_alloc (v, nelems: 1); |
511 | v->quick_push (obj: ce); |
512 | |
513 | /* We shouldn't have gotten here for anything that would need |
514 | non-trivial initialization, and gimplify_init_ctor_preeval |
515 | would need to be fixed to allow it. */ |
516 | gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR |
517 | && TREE_CODE (ce.value) != AGGR_INIT_EXPR); |
518 | } |
519 | |
520 | /* Build a constructor to contain the initializations. */ |
521 | return build_constructor (type, v); |
522 | } |
523 | else if (TREE_CODE (type) == FUNCTION_TYPE) |
524 | { |
525 | if (complain & tf_error) |
526 | error ("value-initialization of function type %qT", type); |
527 | return error_mark_node; |
528 | } |
529 | else if (TYPE_REF_P (type)) |
530 | { |
531 | if (complain & tf_error) |
532 | error ("value-initialization of reference type %qT", type); |
533 | return error_mark_node; |
534 | } |
535 | |
536 | return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false); |
537 | } |
538 | |
539 | /* Initialize current class with INIT, a TREE_LIST of arguments for |
540 | a target constructor. If TREE_LIST is void_type_node, an empty |
541 | initializer list was given. Return the target constructor. */ |
542 | |
543 | static tree |
544 | perform_target_ctor (tree init) |
545 | { |
546 | tree decl = current_class_ref; |
547 | tree type = current_class_type; |
548 | |
549 | init = build_aggr_init (decl, init, LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS, |
550 | tf_warning_or_error); |
551 | finish_expr_stmt (init); |
552 | if (type_build_dtor_call (type)) |
553 | { |
554 | tree expr = build_delete (input_location, |
555 | type, decl, sfk_complete_destructor, |
556 | LOOKUP_NORMAL |
557 | |LOOKUP_NONVIRTUAL |
558 | |LOOKUP_DESTRUCTOR, |
559 | 0, tf_warning_or_error); |
560 | if (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl)) |
561 | { |
562 | tree base = build_delete (input_location, |
563 | type, decl, sfk_base_destructor, |
564 | LOOKUP_NORMAL |
565 | |LOOKUP_NONVIRTUAL |
566 | |LOOKUP_DESTRUCTOR, |
567 | 0, tf_warning_or_error); |
568 | expr = build_if_in_charge (true_stmt: expr, false_stmt: base); |
569 | } |
570 | if (expr != error_mark_node |
571 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
572 | finish_eh_cleanup (expr); |
573 | } |
574 | return init; |
575 | } |
576 | |
577 | /* Instantiate the default member initializer of MEMBER, if needed. |
578 | Only get_nsdmi should use the return value of this function. */ |
579 | |
580 | tree |
581 | maybe_instantiate_nsdmi_init (tree member, tsubst_flags_t complain) |
582 | { |
583 | tree init = DECL_INITIAL (member); |
584 | |
585 | /* tsubst_decl uses void_node to indicate an uninstantiated DMI. */ |
586 | if (init == void_node) |
587 | { |
588 | /* Clear any special tsubst flags; the result of NSDMI instantiation |
589 | should be independent of the substitution context. */ |
590 | complain &= tf_warning_or_error; |
591 | |
592 | init = DECL_INITIAL (DECL_TI_TEMPLATE (member)); |
593 | location_t expr_loc |
594 | = cp_expr_loc_or_loc (t: init, DECL_SOURCE_LOCATION (member)); |
595 | if (TREE_CODE (init) == DEFERRED_PARSE) |
596 | /* Unparsed. */; |
597 | /* Check recursive instantiation. */ |
598 | else if (DECL_INSTANTIATING_NSDMI_P (member)) |
599 | { |
600 | if (complain & tf_error) |
601 | error_at (expr_loc, "recursive instantiation of default member " |
602 | "initializer for %qD", member); |
603 | init = error_mark_node; |
604 | } |
605 | else |
606 | { |
607 | cp_evaluated ev; |
608 | |
609 | location_t sloc = input_location; |
610 | input_location = expr_loc; |
611 | |
612 | DECL_INSTANTIATING_NSDMI_P (member) = 1; |
613 | |
614 | bool pushed = false; |
615 | tree ctx = type_context_for_name_lookup (member); |
616 | |
617 | bool push_to_top = maybe_push_to_top_level (member); |
618 | if (!currently_open_class (ctx)) |
619 | { |
620 | push_nested_class (ctx); |
621 | push_deferring_access_checks (dk_no_deferred); |
622 | pushed = true; |
623 | } |
624 | |
625 | inject_this_parameter (ctx, TYPE_UNQUALIFIED); |
626 | |
627 | start_lambda_scope (decl: member); |
628 | |
629 | /* Do deferred instantiation of the NSDMI. */ |
630 | init = tsubst_expr (init, DECL_TI_ARGS (member), complain, member); |
631 | init = digest_nsdmi_init (member, init, complain); |
632 | |
633 | finish_lambda_scope (); |
634 | |
635 | DECL_INSTANTIATING_NSDMI_P (member) = 0; |
636 | |
637 | if (init != error_mark_node) |
638 | DECL_INITIAL (member) = init; |
639 | |
640 | if (pushed) |
641 | { |
642 | pop_deferring_access_checks (); |
643 | pop_nested_class (); |
644 | } |
645 | maybe_pop_from_top_level (push_to_top); |
646 | |
647 | input_location = sloc; |
648 | } |
649 | } |
650 | |
651 | return init; |
652 | } |
653 | |
654 | /* Return the non-static data initializer for FIELD_DECL MEMBER. */ |
655 | |
656 | tree |
657 | get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain) |
658 | { |
659 | tree save_ccp = current_class_ptr; |
660 | tree save_ccr = current_class_ref; |
661 | |
662 | tree init = maybe_instantiate_nsdmi_init (member, complain); |
663 | |
664 | if (init && TREE_CODE (init) == DEFERRED_PARSE) |
665 | { |
666 | if (complain & tf_error) |
667 | { |
668 | auto_diagnostic_group d; |
669 | error ("default member initializer for %qD required before the end " |
670 | "of its enclosing class", member); |
671 | inform (location_of (init), "defined here"); |
672 | DECL_INITIAL (member) = error_mark_node; |
673 | } |
674 | init = error_mark_node; |
675 | } |
676 | |
677 | if (in_ctor) |
678 | { |
679 | current_class_ptr = save_ccp; |
680 | current_class_ref = save_ccr; |
681 | } |
682 | else |
683 | { |
684 | /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to |
685 | refer to; constexpr evaluation knows what to do with it. */ |
686 | current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member)); |
687 | current_class_ptr = build_address (current_class_ref); |
688 | } |
689 | |
690 | /* Clear processing_template_decl for sake of break_out_target_exprs; |
691 | INIT is always non-templated. */ |
692 | processing_template_decl_sentinel ptds; |
693 | |
694 | /* Strip redundant TARGET_EXPR so we don't need to remap it, and |
695 | so the aggregate init code below will see a CONSTRUCTOR. */ |
696 | bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init)); |
697 | if (simple_target) |
698 | init = TARGET_EXPR_INITIAL (init); |
699 | init = break_out_target_exprs (init, /*loc*/true); |
700 | if (init && TREE_CODE (init) == TARGET_EXPR) |
701 | /* In a constructor, this expresses the full initialization, prevent |
702 | perform_member_init from calling another constructor (58162). */ |
703 | TARGET_EXPR_DIRECT_INIT_P (init) = in_ctor; |
704 | if (simple_target && TREE_CODE (init) != CONSTRUCTOR) |
705 | /* Now put it back so C++17 copy elision works. */ |
706 | init = get_target_expr (init); |
707 | |
708 | set_target_expr_eliding (init); |
709 | |
710 | current_class_ptr = save_ccp; |
711 | current_class_ref = save_ccr; |
712 | return init; |
713 | } |
714 | |
715 | /* Diagnose the flexible array MEMBER if its INITializer is non-null |
716 | and return true if so. Otherwise return false. */ |
717 | |
718 | bool |
719 | maybe_reject_flexarray_init (tree member, tree init) |
720 | { |
721 | tree type = TREE_TYPE (member); |
722 | |
723 | if (!init |
724 | || TREE_CODE (type) != ARRAY_TYPE |
725 | || TYPE_DOMAIN (type)) |
726 | return false; |
727 | |
728 | /* Point at the flexible array member declaration if it's initialized |
729 | in-class, and at the ctor if it's initialized in a ctor member |
730 | initializer list. */ |
731 | location_t loc; |
732 | if (DECL_INITIAL (member) == init |
733 | || !current_function_decl |
734 | || DECL_DEFAULTED_FN (current_function_decl)) |
735 | loc = DECL_SOURCE_LOCATION (member); |
736 | else |
737 | loc = DECL_SOURCE_LOCATION (current_function_decl); |
738 | |
739 | error_at (loc, "initializer for flexible array member %q#D", member); |
740 | return true; |
741 | } |
742 | |
743 | /* If INIT's value can come from a call to std::initializer_list<T>::begin, |
744 | return that function. Otherwise, NULL_TREE. */ |
745 | |
746 | static tree |
747 | find_list_begin (tree init) |
748 | { |
749 | STRIP_NOPS (init); |
750 | while (TREE_CODE (init) == COMPOUND_EXPR) |
751 | init = TREE_OPERAND (init, 1); |
752 | STRIP_NOPS (init); |
753 | if (TREE_CODE (init) == COND_EXPR) |
754 | { |
755 | tree left = TREE_OPERAND (init, 1); |
756 | if (!left) |
757 | left = TREE_OPERAND (init, 0); |
758 | left = find_list_begin (init: left); |
759 | if (left) |
760 | return left; |
761 | return find_list_begin (TREE_OPERAND (init, 2)); |
762 | } |
763 | if (TREE_CODE (init) == CALL_EXPR) |
764 | if (tree fn = get_callee_fndecl (init)) |
765 | if (id_equal (DECL_NAME (fn), str: "begin") |
766 | && is_std_init_list (DECL_CONTEXT (fn))) |
767 | return fn; |
768 | return NULL_TREE; |
769 | } |
770 | |
771 | /* If INIT initializing MEMBER is copying the address of the underlying array |
772 | of an initializer_list, warn. */ |
773 | |
774 | static void |
775 | maybe_warn_list_ctor (tree member, tree init) |
776 | { |
777 | tree memtype = TREE_TYPE (member); |
778 | if (!init || !TYPE_PTR_P (memtype) |
779 | || !is_list_ctor (current_function_decl)) |
780 | return; |
781 | |
782 | tree parm = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl); |
783 | parm = TREE_VALUE (parm); |
784 | tree initlist = non_reference (parm); |
785 | |
786 | /* Do not warn if the parameter is an lvalue reference to non-const. */ |
787 | if (TYPE_REF_P (parm) && !TYPE_REF_IS_RVALUE (parm) |
788 | && !CP_TYPE_CONST_P (initlist)) |
789 | return; |
790 | |
791 | tree targs = CLASSTYPE_TI_ARGS (initlist); |
792 | tree elttype = TREE_VEC_ELT (targs, 0); |
793 | |
794 | if (!same_type_ignoring_top_level_qualifiers_p |
795 | (TREE_TYPE (memtype), elttype)) |
796 | return; |
797 | |
798 | tree begin = find_list_begin (init); |
799 | if (!begin) |
800 | return; |
801 | |
802 | location_t loc = cp_expr_loc_or_input_loc (t: init); |
803 | warning_at (loc, OPT_Winit_list_lifetime, |
804 | "initializing %qD from %qE does not extend the lifetime " |
805 | "of the underlying array", member, begin); |
806 | } |
807 | |
808 | /* Data structure for find_uninit_fields_r, below. */ |
809 | |
810 | struct find_uninit_data { |
811 | /* The set tracking the yet-uninitialized members. */ |
812 | hash_set<tree> *uninitialized; |
813 | /* The data member we are currently initializing. It can be either |
814 | a type (initializing a base class/delegating constructors), or |
815 | a COMPONENT_REF. */ |
816 | tree member; |
817 | }; |
818 | |
819 | /* walk_tree callback that warns about using uninitialized data in |
820 | a member-initializer-list. */ |
821 | |
822 | static tree |
823 | find_uninit_fields_r (tree *tp, int *walk_subtrees, void *data) |
824 | { |
825 | find_uninit_data *d = static_cast<find_uninit_data *>(data); |
826 | hash_set<tree> *uninitialized = d->uninitialized; |
827 | tree init = *tp; |
828 | const tree_code code = TREE_CODE (init); |
829 | |
830 | /* No need to look into types or unevaluated operands. */ |
831 | if (TYPE_P (init) || unevaluated_p (code)) |
832 | { |
833 | *walk_subtrees = false; |
834 | return NULL_TREE; |
835 | } |
836 | |
837 | switch (code) |
838 | { |
839 | /* We'd need data flow info to avoid false positives. */ |
840 | case COND_EXPR: |
841 | case VEC_COND_EXPR: |
842 | case BIND_EXPR: |
843 | /* We might see a MODIFY_EXPR in cases like S() : a((b = 42)), c(b) { } |
844 | where the initializer for 'a' surreptitiously initializes 'b'. Let's |
845 | not bother with these complicated scenarios in the front end. */ |
846 | case MODIFY_EXPR: |
847 | /* Don't attempt to handle statement-expressions, either. */ |
848 | case STATEMENT_LIST: |
849 | uninitialized->empty (); |
850 | gcc_fallthrough (); |
851 | /* If we're just taking the address of an object, it doesn't matter |
852 | whether it's been initialized. */ |
853 | case ADDR_EXPR: |
854 | *walk_subtrees = false; |
855 | return NULL_TREE; |
856 | default: |
857 | break; |
858 | } |
859 | |
860 | /* We'd need data flow info to avoid false positives. */ |
861 | if (truth_value_p (code)) |
862 | goto give_up; |
863 | /* Attempt to handle a simple a{b}, but no more. */ |
864 | else if (BRACE_ENCLOSED_INITIALIZER_P (init)) |
865 | { |
866 | if (CONSTRUCTOR_NELTS (init) == 1 |
867 | && !BRACE_ENCLOSED_INITIALIZER_P (CONSTRUCTOR_ELT (init, 0)->value)) |
868 | init = CONSTRUCTOR_ELT (init, 0)->value; |
869 | else |
870 | goto give_up; |
871 | } |
872 | /* Warn about uninitialized 'this'. */ |
873 | else if (code == CALL_EXPR) |
874 | { |
875 | tree fn = get_callee_fndecl (init); |
876 | if (fn && DECL_IOBJ_MEMBER_FUNCTION_P (fn)) |
877 | { |
878 | tree op = CALL_EXPR_ARG (init, 0); |
879 | if (TREE_CODE (op) == ADDR_EXPR) |
880 | op = TREE_OPERAND (op, 0); |
881 | temp_override<tree> ovr (d->member, DECL_ARGUMENTS (fn)); |
882 | cp_walk_tree_without_duplicates (&op, find_uninit_fields_r, data); |
883 | } |
884 | /* Functions (whether static or nonstatic member) may have side effects |
885 | and initialize other members; it's not the front end's job to try to |
886 | figure it out. But don't give up for constructors: we still want to |
887 | warn when initializing base classes: |
888 | |
889 | struct D : public B { |
890 | int x; |
891 | D() : B(x) {} |
892 | }; |
893 | |
894 | so carry on to detect that 'x' is used uninitialized. */ |
895 | if (!fn || !DECL_CONSTRUCTOR_P (fn)) |
896 | goto give_up; |
897 | } |
898 | |
899 | /* If we find FIELD in the uninitialized set, we warn. */ |
900 | if (code == COMPONENT_REF) |
901 | { |
902 | tree field = TREE_OPERAND (init, 1); |
903 | tree type = TYPE_P (d->member) ? d->member : TREE_TYPE (d->member); |
904 | |
905 | /* We're initializing a reference member with itself. */ |
906 | if (TYPE_REF_P (type) && cp_tree_equal (d->member, init)) |
907 | warning_at (EXPR_LOCATION (init), OPT_Winit_self, |
908 | "%qD is initialized with itself", field); |
909 | else if (cp_tree_equal (TREE_OPERAND (init, 0), current_class_ref) |
910 | && uninitialized->contains (k: field)) |
911 | { |
912 | if (TYPE_REF_P (TREE_TYPE (field))) |
913 | warning_at (EXPR_LOCATION (init), OPT_Wuninitialized, |
914 | "reference %qD is not yet bound to a value when used " |
915 | "here", field); |
916 | else if ((!INDIRECT_TYPE_P (type) || is_this_parameter (d->member)) |
917 | && !conv_binds_to_reference_parm_p (type, init)) |
918 | warning_at (EXPR_LOCATION (init), OPT_Wuninitialized, |
919 | "member %qD is used uninitialized", field); |
920 | *walk_subtrees = false; |
921 | } |
922 | } |
923 | |
924 | return NULL_TREE; |
925 | |
926 | give_up: |
927 | *walk_subtrees = false; |
928 | uninitialized->empty (); |
929 | return integer_zero_node; |
930 | } |
931 | |
932 | /* Wrapper around find_uninit_fields_r above. */ |
933 | |
934 | static void |
935 | find_uninit_fields (tree *t, hash_set<tree> *uninitialized, tree member) |
936 | { |
937 | if (!uninitialized->is_empty ()) |
938 | { |
939 | find_uninit_data data = { .uninitialized: uninitialized, .member: member }; |
940 | cp_walk_tree_without_duplicates (t, find_uninit_fields_r, &data); |
941 | } |
942 | } |
943 | |
944 | /* Return true if it's OK to initialize an array TYPE from INIT. Mere mortals |
945 | can't copy arrays, but the compiler can do so with a VEC_INIT_EXPR in |
946 | certain cases. */ |
947 | |
948 | static bool |
949 | can_init_array_with_p (tree type, tree init) |
950 | { |
951 | if (!init) |
952 | /* Value-init, OK. */ |
953 | return true; |
954 | if (!same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (init))) |
955 | return false; |
956 | /* We're called from synthesize_method, and we're processing the |
957 | mem-initializers of a constructor. */ |
958 | if (DECL_DEFAULTED_FN (current_function_decl)) |
959 | return true; |
960 | if (TREE_CODE (init) == TARGET_EXPR) |
961 | { |
962 | init = TARGET_EXPR_INITIAL (init); |
963 | /* As an extension, we allow copying from a compound literal. */ |
964 | if (TREE_CODE (init) == CONSTRUCTOR) |
965 | return CONSTRUCTOR_C99_COMPOUND_LITERAL (init); |
966 | /* VEC_INIT_EXPR is used for non-constant initialization of trailing |
967 | elements with no explicit initializers. */ |
968 | else if (TREE_CODE (init) == VEC_INIT_EXPR) |
969 | return true; |
970 | } |
971 | |
972 | permerror (input_location, "array must be initialized " |
973 | "with a brace-enclosed initializer"); |
974 | return true; |
975 | } |
976 | |
977 | /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of |
978 | arguments. If TREE_LIST is void_type_node, an empty initializer |
979 | list was given; if NULL_TREE no initializer was given. UNINITIALIZED |
980 | is the hash set that tracks uninitialized fields. */ |
981 | |
982 | static void |
983 | perform_member_init (tree member, tree init, hash_set<tree> &uninitialized) |
984 | { |
985 | tree decl; |
986 | tree type = TREE_TYPE (member); |
987 | |
988 | /* Use the non-static data member initializer if there was no |
989 | mem-initializer for this field. */ |
990 | if (init == NULL_TREE) |
991 | init = get_nsdmi (member, /*ctor*/in_ctor: true, complain: tf_warning_or_error); |
992 | |
993 | if (init == error_mark_node) |
994 | return; |
995 | |
996 | /* Effective C++ rule 12 requires that all data members be |
997 | initialized. */ |
998 | if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE) |
999 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__, |
1000 | "%qD should be initialized in the member initialization list", |
1001 | member); |
1002 | |
1003 | /* Get an lvalue for the data member. */ |
1004 | decl = build_class_member_access_expr (current_class_ref, member, |
1005 | /*access_path=*/NULL_TREE, |
1006 | /*preserve_reference=*/true, |
1007 | tf_warning_or_error); |
1008 | if (decl == error_mark_node) |
1009 | return; |
1010 | |
1011 | if ((warn_init_self || warn_uninitialized || warn_self_move) |
1012 | && init |
1013 | && TREE_CODE (init) == TREE_LIST |
1014 | && TREE_CHAIN (init) == NULL_TREE) |
1015 | { |
1016 | tree val = TREE_VALUE (init); |
1017 | /* Handle references. */ |
1018 | if (REFERENCE_REF_P (val)) |
1019 | val = TREE_OPERAND (val, 0); |
1020 | if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member |
1021 | && TREE_OPERAND (val, 0) == current_class_ref) |
1022 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), |
1023 | OPT_Winit_self, "%qD is initialized with itself", |
1024 | member); |
1025 | else if (!maybe_warn_self_move (input_location, member, |
1026 | TREE_VALUE (init))) |
1027 | find_uninit_fields (t: &val, uninitialized: &uninitialized, member: decl); |
1028 | } |
1029 | |
1030 | if (array_of_unknown_bound_p (type)) |
1031 | { |
1032 | maybe_reject_flexarray_init (member, init); |
1033 | return; |
1034 | } |
1035 | |
1036 | if (init && TREE_CODE (init) == TREE_LIST) |
1037 | { |
1038 | /* A(): a{e} */ |
1039 | if (DIRECT_LIST_INIT_P (TREE_VALUE (init))) |
1040 | init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, |
1041 | tf_warning_or_error); |
1042 | /* We are trying to initialize an array from a ()-list. If we |
1043 | should attempt to do so, conjure up a CONSTRUCTOR. */ |
1044 | else if (TREE_CODE (type) == ARRAY_TYPE |
1045 | /* P0960 is a C++20 feature. */ |
1046 | && cxx_dialect >= cxx20) |
1047 | init = do_aggregate_paren_init (init, type); |
1048 | else if (!CLASS_TYPE_P (type)) |
1049 | init = build_x_compound_expr_from_list (init, ELK_MEM_INIT, |
1050 | tf_warning_or_error); |
1051 | /* If we're initializing a class from a ()-list, leave the TREE_LIST |
1052 | alone: we might call an appropriate constructor, or (in C++20) |
1053 | do aggregate-initialization. */ |
1054 | } |
1055 | |
1056 | /* Assume we are initializing the member. */ |
1057 | bool member_initialized_p = true; |
1058 | |
1059 | if (init == void_type_node) |
1060 | { |
1061 | /* mem() means value-initialization. */ |
1062 | if (TREE_CODE (type) == ARRAY_TYPE) |
1063 | { |
1064 | init = build_vec_init_expr (type, init, tf_warning_or_error); |
1065 | init = cp_build_init_expr (t: decl, i: init); |
1066 | finish_expr_stmt (init); |
1067 | } |
1068 | else |
1069 | { |
1070 | tree value = build_value_init (type, complain: tf_warning_or_error); |
1071 | if (value == error_mark_node) |
1072 | return; |
1073 | init = cp_build_init_expr (t: decl, i: value); |
1074 | finish_expr_stmt (init); |
1075 | } |
1076 | } |
1077 | /* Deal with this here, as we will get confused if we try to call the |
1078 | assignment op for an anonymous union. This can happen in a |
1079 | synthesized copy constructor. */ |
1080 | else if (ANON_AGGR_TYPE_P (type)) |
1081 | { |
1082 | if (init) |
1083 | { |
1084 | init = cp_build_init_expr (t: decl, TREE_VALUE (init)); |
1085 | finish_expr_stmt (init); |
1086 | } |
1087 | } |
1088 | else if (init |
1089 | && (TYPE_REF_P (type) |
1090 | || (TREE_CODE (init) == CONSTRUCTOR |
1091 | && (CP_AGGREGATE_TYPE_P (type) |
1092 | || is_std_init_list (type))))) |
1093 | { |
1094 | /* With references and list-initialization, we need to deal with |
1095 | extending temporary lifetimes. 12.2p5: "A temporary bound to a |
1096 | reference member in a constructor's ctor-initializer (12.6.2) |
1097 | persists until the constructor exits." */ |
1098 | unsigned i; tree t; |
1099 | releasing_vec cleanups; |
1100 | if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type)) |
1101 | { |
1102 | if (BRACE_ENCLOSED_INITIALIZER_P (init) |
1103 | && CP_AGGREGATE_TYPE_P (type)) |
1104 | init = reshape_init (type, init, tf_warning_or_error); |
1105 | init = digest_init (type, init, tf_warning_or_error); |
1106 | } |
1107 | if (init == error_mark_node) |
1108 | return; |
1109 | if (is_empty_field (member) |
1110 | && !TREE_SIDE_EFFECTS (init)) |
1111 | /* Don't add trivial initialization of an empty base/field, as they |
1112 | might not be ordered the way the back-end expects. */ |
1113 | return; |
1114 | /* A FIELD_DECL doesn't really have a suitable lifetime, but |
1115 | make_temporary_var_for_ref_to_temp will treat it as automatic and |
1116 | set_up_extended_ref_temp wants to use the decl in a warning. */ |
1117 | init = extend_ref_init_temps (member, init, &cleanups); |
1118 | if (TREE_CODE (type) == ARRAY_TYPE |
1119 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type))) |
1120 | init = build_vec_init_expr (type, init, tf_warning_or_error); |
1121 | init = cp_build_init_expr (t: decl, i: init); |
1122 | finish_expr_stmt (init); |
1123 | FOR_EACH_VEC_ELT (*cleanups, i, t) |
1124 | push_cleanup (NULL_TREE, t, false); |
1125 | } |
1126 | else if (type_build_ctor_call (type) |
1127 | || (init && CLASS_TYPE_P (strip_array_types (type)))) |
1128 | { |
1129 | if (TREE_CODE (type) == ARRAY_TYPE) |
1130 | { |
1131 | if (can_init_array_with_p (type, init)) |
1132 | { |
1133 | if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type))) |
1134 | { |
1135 | /* Initialize the array only if it's not a flexible |
1136 | array member (i.e., if it has an upper bound). */ |
1137 | init = build_vec_init_expr (type, init, tf_warning_or_error); |
1138 | init = cp_build_init_expr (t: decl, i: init); |
1139 | finish_expr_stmt (init); |
1140 | } |
1141 | } |
1142 | else |
1143 | error ("invalid initializer for array member %q#D", member); |
1144 | } |
1145 | else |
1146 | { |
1147 | int flags = LOOKUP_NORMAL; |
1148 | if (DECL_DEFAULTED_FN (current_function_decl)) |
1149 | flags |= LOOKUP_DEFAULTED; |
1150 | if (CP_TYPE_CONST_P (type) |
1151 | && init == NULL_TREE |
1152 | && default_init_uninitialized_part (type)) |
1153 | { |
1154 | /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a |
1155 | vtable; still give this diagnostic. */ |
1156 | auto_diagnostic_group d; |
1157 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), |
1158 | "uninitialized const member in %q#T", type)) |
1159 | inform (DECL_SOURCE_LOCATION (member), |
1160 | "%q#D should be initialized", member ); |
1161 | } |
1162 | finish_expr_stmt (build_aggr_init (decl, init, flags, |
1163 | tf_warning_or_error)); |
1164 | } |
1165 | } |
1166 | else |
1167 | { |
1168 | if (init == NULL_TREE) |
1169 | { |
1170 | tree core_type; |
1171 | /* member traversal: note it leaves init NULL */ |
1172 | if (TYPE_REF_P (type)) |
1173 | { |
1174 | auto_diagnostic_group d; |
1175 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), |
1176 | "uninitialized reference member in %q#T", type)) |
1177 | inform (DECL_SOURCE_LOCATION (member), |
1178 | "%q#D should be initialized", member); |
1179 | } |
1180 | else if (CP_TYPE_CONST_P (type)) |
1181 | { |
1182 | auto_diagnostic_group d; |
1183 | if (permerror (DECL_SOURCE_LOCATION (current_function_decl), |
1184 | "uninitialized const member in %q#T", type)) |
1185 | inform (DECL_SOURCE_LOCATION (member), |
1186 | "%q#D should be initialized", member ); |
1187 | } |
1188 | |
1189 | core_type = strip_array_types (type); |
1190 | |
1191 | if (CLASS_TYPE_P (core_type) |
1192 | && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type) |
1193 | || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type))) |
1194 | diagnose_uninitialized_cst_or_ref_member (core_type, |
1195 | /*using_new=*/false, |
1196 | /*complain=*/true); |
1197 | |
1198 | /* We left the member uninitialized. */ |
1199 | member_initialized_p = false; |
1200 | } |
1201 | |
1202 | maybe_warn_list_ctor (member, init); |
1203 | |
1204 | if (init) |
1205 | finish_expr_stmt (cp_build_modify_expr (input_location, decl, |
1206 | INIT_EXPR, init, |
1207 | tf_warning_or_error)); |
1208 | } |
1209 | |
1210 | if (member_initialized_p && warn_uninitialized) |
1211 | /* This member is now initialized, remove it from the uninitialized |
1212 | set. */ |
1213 | uninitialized.remove (k: member); |
1214 | |
1215 | if (type_build_dtor_call (type)) |
1216 | { |
1217 | tree expr; |
1218 | |
1219 | expr = build_class_member_access_expr (current_class_ref, member, |
1220 | /*access_path=*/NULL_TREE, |
1221 | /*preserve_reference=*/false, |
1222 | tf_warning_or_error); |
1223 | expr = build_delete (input_location, |
1224 | type, expr, sfk_complete_destructor, |
1225 | LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0, |
1226 | tf_warning_or_error); |
1227 | |
1228 | if (expr != error_mark_node |
1229 | && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)) |
1230 | finish_eh_cleanup (expr); |
1231 | } |
1232 | } |
1233 | |
1234 | /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all |
1235 | the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */ |
1236 | |
1237 | static tree |
1238 | build_field_list (tree t, tree list, int *uses_unions_or_anon_p) |
1239 | { |
1240 | tree fields; |
1241 | |
1242 | /* Note whether or not T is a union. */ |
1243 | if (TREE_CODE (t) == UNION_TYPE) |
1244 | *uses_unions_or_anon_p = 1; |
1245 | |
1246 | for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields)) |
1247 | { |
1248 | tree fieldtype; |
1249 | |
1250 | /* Skip CONST_DECLs for enumeration constants and so forth. */ |
1251 | if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields)) |
1252 | continue; |
1253 | |
1254 | fieldtype = TREE_TYPE (fields); |
1255 | |
1256 | /* For an anonymous struct or union, we must recursively |
1257 | consider the fields of the anonymous type. They can be |
1258 | directly initialized from the constructor. */ |
1259 | if (ANON_AGGR_TYPE_P (fieldtype)) |
1260 | { |
1261 | /* Add this field itself. Synthesized copy constructors |
1262 | initialize the entire aggregate. */ |
1263 | list = tree_cons (fields, NULL_TREE, list); |
1264 | /* And now add the fields in the anonymous aggregate. */ |
1265 | list = build_field_list (t: fieldtype, list, uses_unions_or_anon_p); |
1266 | *uses_unions_or_anon_p = 1; |
1267 | } |
1268 | /* Add this field. */ |
1269 | else if (DECL_NAME (fields)) |
1270 | list = tree_cons (fields, NULL_TREE, list); |
1271 | } |
1272 | |
1273 | return list; |
1274 | } |
1275 | |
1276 | /* Return the innermost aggregate scope for FIELD, whether that is |
1277 | the enclosing class or an anonymous aggregate within it. */ |
1278 | |
1279 | static tree |
1280 | innermost_aggr_scope (tree field) |
1281 | { |
1282 | if (ANON_AGGR_TYPE_P (TREE_TYPE (field))) |
1283 | return TREE_TYPE (field); |
1284 | else |
1285 | return DECL_CONTEXT (field); |
1286 | } |
1287 | |
1288 | /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives |
1289 | a FIELD_DECL or BINFO in T that needs initialization. The |
1290 | TREE_VALUE gives the initializer, or list of initializer arguments. |
1291 | |
1292 | Return a TREE_LIST containing all of the initializations required |
1293 | for T, in the order in which they should be performed. The output |
1294 | list has the same format as the input. */ |
1295 | |
1296 | static tree |
1297 | sort_mem_initializers (tree t, tree mem_inits) |
1298 | { |
1299 | tree init; |
1300 | tree base, binfo, base_binfo; |
1301 | tree sorted_inits; |
1302 | tree next_subobject; |
1303 | vec<tree, va_gc> *vbases; |
1304 | int i; |
1305 | int uses_unions_or_anon_p = 0; |
1306 | |
1307 | /* Build up a list of initializations. The TREE_PURPOSE of entry |
1308 | will be the subobject (a FIELD_DECL or BINFO) to initialize. The |
1309 | TREE_VALUE will be the constructor arguments, or NULL if no |
1310 | explicit initialization was provided. */ |
1311 | sorted_inits = NULL_TREE; |
1312 | |
1313 | /* Process the virtual bases. */ |
1314 | for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0; |
1315 | vec_safe_iterate (v: vbases, ix: i, ptr: &base); i++) |
1316 | sorted_inits = tree_cons (base, NULL_TREE, sorted_inits); |
1317 | |
1318 | /* Process the direct bases. */ |
1319 | for (binfo = TYPE_BINFO (t), i = 0; |
1320 | BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i) |
1321 | if (!BINFO_VIRTUAL_P (base_binfo)) |
1322 | sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits); |
1323 | |
1324 | /* Process the non-static data members. */ |
1325 | sorted_inits = build_field_list (t, list: sorted_inits, uses_unions_or_anon_p: &uses_unions_or_anon_p); |
1326 | /* Reverse the entire list of initializations, so that they are in |
1327 | the order that they will actually be performed. */ |
1328 | sorted_inits = nreverse (sorted_inits); |
1329 | |
1330 | /* If the user presented the initializers in an order different from |
1331 | that in which they will actually occur, we issue a warning. Keep |
1332 | track of the next subobject which can be explicitly initialized |
1333 | without issuing a warning. */ |
1334 | next_subobject = sorted_inits; |
1335 | |
1336 | /* Go through the explicit initializers, filling in TREE_PURPOSE in |
1337 | the SORTED_INITS. */ |
1338 | for (init = mem_inits; init; init = TREE_CHAIN (init)) |
1339 | { |
1340 | tree subobject; |
1341 | tree subobject_init; |
1342 | |
1343 | subobject = TREE_PURPOSE (init); |
1344 | |
1345 | /* If the explicit initializers are in sorted order, then |
1346 | SUBOBJECT will be NEXT_SUBOBJECT, or something following |
1347 | it. */ |
1348 | for (subobject_init = next_subobject; |
1349 | subobject_init; |
1350 | subobject_init = TREE_CHAIN (subobject_init)) |
1351 | if (TREE_PURPOSE (subobject_init) == subobject) |
1352 | break; |
1353 | |
1354 | /* Issue a warning if the explicit initializer order does not |
1355 | match that which will actually occur. |
1356 | ??? Are all these on the correct lines? */ |
1357 | if (warn_reorder && !subobject_init) |
1358 | { |
1359 | if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL) |
1360 | warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)), |
1361 | OPT_Wreorder, "%qD will be initialized after", |
1362 | TREE_PURPOSE (next_subobject)); |
1363 | else |
1364 | warning (OPT_Wreorder, "base %qT will be initialized after", |
1365 | TREE_PURPOSE (next_subobject)); |
1366 | if (TREE_CODE (subobject) == FIELD_DECL) |
1367 | warning_at (DECL_SOURCE_LOCATION (subobject), |
1368 | OPT_Wreorder, " %q#D", subobject); |
1369 | else |
1370 | warning (OPT_Wreorder, " base %qT", subobject); |
1371 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), |
1372 | OPT_Wreorder, " when initialized here"); |
1373 | } |
1374 | |
1375 | /* Look again, from the beginning of the list. */ |
1376 | if (!subobject_init) |
1377 | { |
1378 | subobject_init = sorted_inits; |
1379 | while (TREE_PURPOSE (subobject_init) != subobject) |
1380 | subobject_init = TREE_CHAIN (subobject_init); |
1381 | } |
1382 | |
1383 | /* It is invalid to initialize the same subobject more than |
1384 | once. */ |
1385 | if (TREE_VALUE (subobject_init)) |
1386 | { |
1387 | if (TREE_CODE (subobject) == FIELD_DECL) |
1388 | error_at (DECL_SOURCE_LOCATION (current_function_decl), |
1389 | "multiple initializations given for %qD", |
1390 | subobject); |
1391 | else |
1392 | error_at (DECL_SOURCE_LOCATION (current_function_decl), |
1393 | "multiple initializations given for base %qT", |
1394 | subobject); |
1395 | } |
1396 | |
1397 | /* Record the initialization. */ |
1398 | TREE_VALUE (subobject_init) = TREE_VALUE (init); |
1399 | /* Carry over the dummy TREE_TYPE node containing the source location. */ |
1400 | TREE_TYPE (subobject_init) = TREE_TYPE (init); |
1401 | next_subobject = subobject_init; |
1402 | } |
1403 | |
1404 | /* [class.base.init] |
1405 | |
1406 | If a ctor-initializer specifies more than one mem-initializer for |
1407 | multiple members of the same union (including members of |
1408 | anonymous unions), the ctor-initializer is ill-formed. |
1409 | |
1410 | Here we also splice out uninitialized union members. */ |
1411 | if (uses_unions_or_anon_p) |
1412 | { |
1413 | tree *last_p = NULL; |
1414 | tree *p; |
1415 | for (p = &sorted_inits; *p; ) |
1416 | { |
1417 | tree field; |
1418 | tree ctx; |
1419 | |
1420 | init = *p; |
1421 | |
1422 | field = TREE_PURPOSE (init); |
1423 | |
1424 | /* Skip base classes. */ |
1425 | if (TREE_CODE (field) != FIELD_DECL) |
1426 | goto next; |
1427 | |
1428 | /* If this is an anonymous aggregate with no explicit initializer, |
1429 | splice it out. */ |
1430 | if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field))) |
1431 | goto splice; |
1432 | |
1433 | /* See if this field is a member of a union, or a member of a |
1434 | structure contained in a union, etc. */ |
1435 | ctx = innermost_aggr_scope (field); |
1436 | |
1437 | /* If this field is not a member of a union, skip it. */ |
1438 | if (TREE_CODE (ctx) != UNION_TYPE |
1439 | && !ANON_AGGR_TYPE_P (ctx)) |
1440 | goto next; |
1441 | |
1442 | /* If this union member has no explicit initializer and no NSDMI, |
1443 | splice it out. */ |
1444 | if (TREE_VALUE (init) || DECL_INITIAL (field)) |
1445 | /* OK. */; |
1446 | else |
1447 | goto splice; |
1448 | |
1449 | /* It's only an error if we have two initializers for the same |
1450 | union type. */ |
1451 | if (!last_p) |
1452 | { |
1453 | last_p = p; |
1454 | goto next; |
1455 | } |
1456 | |
1457 | /* See if LAST_FIELD and the field initialized by INIT are |
1458 | members of the same union (or the union itself). If so, there's |
1459 | a problem, unless they're actually members of the same structure |
1460 | which is itself a member of a union. For example, given: |
1461 | |
1462 | union { struct { int i; int j; }; }; |
1463 | |
1464 | initializing both `i' and `j' makes sense. */ |
1465 | ctx = common_enclosing_class |
1466 | (innermost_aggr_scope (field), |
1467 | innermost_aggr_scope (TREE_PURPOSE (*last_p))); |
1468 | |
1469 | if (ctx && (TREE_CODE (ctx) == UNION_TYPE |
1470 | || ctx == TREE_TYPE (TREE_PURPOSE (*last_p)))) |
1471 | { |
1472 | /* A mem-initializer hides an NSDMI. */ |
1473 | if (TREE_VALUE (init) && !TREE_VALUE (*last_p)) |
1474 | *last_p = TREE_CHAIN (*last_p); |
1475 | else if (TREE_VALUE (*last_p) && !TREE_VALUE (init)) |
1476 | goto splice; |
1477 | else |
1478 | { |
1479 | error_at (DECL_SOURCE_LOCATION (current_function_decl), |
1480 | "initializations for multiple members of %qT", |
1481 | ctx); |
1482 | goto splice; |
1483 | } |
1484 | } |
1485 | |
1486 | last_p = p; |
1487 | |
1488 | next: |
1489 | p = &TREE_CHAIN (*p); |
1490 | continue; |
1491 | splice: |
1492 | *p = TREE_CHAIN (*p); |
1493 | } |
1494 | } |
1495 | |
1496 | return sorted_inits; |
1497 | } |
1498 | |
1499 | /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */ |
1500 | |
1501 | static tree |
1502 | mark_exp_read_r (tree *tp, int *, void *) |
1503 | { |
1504 | tree t = *tp; |
1505 | if (TREE_CODE (t) == PARM_DECL) |
1506 | mark_exp_read (t); |
1507 | return NULL_TREE; |
1508 | } |
1509 | |
1510 | /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS |
1511 | is a TREE_LIST giving the explicit mem-initializer-list for the |
1512 | constructor. The TREE_PURPOSE of each entry is a subobject (a |
1513 | FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE |
1514 | is a TREE_LIST giving the arguments to the constructor or |
1515 | void_type_node for an empty list of arguments. */ |
1516 | |
1517 | void |
1518 | emit_mem_initializers (tree mem_inits) |
1519 | { |
1520 | int flags = LOOKUP_NORMAL; |
1521 | |
1522 | /* We will already have issued an error message about the fact that |
1523 | the type is incomplete. */ |
1524 | if (!COMPLETE_TYPE_P (current_class_type)) |
1525 | return; |
1526 | |
1527 | /* Keep a set holding fields that are not initialized. */ |
1528 | hash_set<tree> uninitialized; |
1529 | |
1530 | /* Initially that is all of them. */ |
1531 | if (warn_uninitialized) |
1532 | for (tree f = next_aggregate_field (TYPE_FIELDS (current_class_type)); |
1533 | f != NULL_TREE; |
1534 | f = next_aggregate_field (DECL_CHAIN (f))) |
1535 | if (!DECL_ARTIFICIAL (f) |
1536 | && !is_really_empty_class (TREE_TYPE (f), /*ignore_vptr*/false)) |
1537 | uninitialized.add (k: f); |
1538 | |
1539 | if (mem_inits |
1540 | && TYPE_P (TREE_PURPOSE (mem_inits)) |
1541 | && same_type_p (TREE_PURPOSE (mem_inits), current_class_type)) |
1542 | { |
1543 | /* Delegating constructor. */ |
1544 | gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE); |
1545 | tree ctor = perform_target_ctor (TREE_VALUE (mem_inits)); |
1546 | find_uninit_fields (t: &ctor, uninitialized: &uninitialized, current_class_type); |
1547 | return; |
1548 | } |
1549 | |
1550 | if (DECL_DEFAULTED_FN (current_function_decl) |
1551 | && ! DECL_INHERITED_CTOR (current_function_decl)) |
1552 | flags |= LOOKUP_DEFAULTED; |
1553 | |
1554 | /* Sort the mem-initializers into the order in which the |
1555 | initializations should be performed. */ |
1556 | mem_inits = sort_mem_initializers (current_class_type, mem_inits); |
1557 | |
1558 | in_base_initializer = 1; |
1559 | |
1560 | /* Initialize base classes. */ |
1561 | for (; (mem_inits |
1562 | && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL); |
1563 | mem_inits = TREE_CHAIN (mem_inits)) |
1564 | { |
1565 | tree subobject = TREE_PURPOSE (mem_inits); |
1566 | tree arguments = TREE_VALUE (mem_inits); |
1567 | |
1568 | /* We already have issued an error message. */ |
1569 | if (arguments == error_mark_node) |
1570 | continue; |
1571 | |
1572 | /* Suppress access control when calling the inherited ctor. */ |
1573 | bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl) |
1574 | && flag_new_inheriting_ctors |
1575 | && arguments); |
1576 | if (inherited_base) |
1577 | push_deferring_access_checks (dk_deferred); |
1578 | |
1579 | if (arguments == NULL_TREE) |
1580 | { |
1581 | /* If these initializations are taking place in a copy constructor, |
1582 | the base class should probably be explicitly initialized if there |
1583 | is a user-defined constructor in the base class (other than the |
1584 | default constructor, which will be called anyway). */ |
1585 | if (extra_warnings |
1586 | && DECL_COPY_CONSTRUCTOR_P (current_function_decl) |
1587 | && type_has_user_nondefault_constructor (BINFO_TYPE (subobject))) |
1588 | warning_at (DECL_SOURCE_LOCATION (current_function_decl), |
1589 | OPT_Wextra, "base class %q#T should be explicitly " |
1590 | "initialized in the copy constructor", |
1591 | BINFO_TYPE (subobject)); |
1592 | } |
1593 | |
1594 | /* Initialize the base. */ |
1595 | if (!BINFO_VIRTUAL_P (subobject)) |
1596 | { |
1597 | tree base_addr; |
1598 | |
1599 | base_addr = build_base_path (PLUS_EXPR, current_class_ptr, |
1600 | subobject, 1, tf_warning_or_error); |
1601 | expand_aggr_init_1 (subobject, NULL_TREE, |
1602 | cp_build_fold_indirect_ref (base_addr), |
1603 | arguments, |
1604 | flags, |
1605 | tf_warning_or_error); |
1606 | expand_cleanup_for_base (subobject, NULL_TREE); |
1607 | if (STATEMENT_LIST_TAIL (cur_stmt_list)) |
1608 | find_uninit_fields (t: &STATEMENT_LIST_TAIL (cur_stmt_list)->stmt, |
1609 | uninitialized: &uninitialized, BINFO_TYPE (subobject)); |
1610 | } |
1611 | else if (!ABSTRACT_CLASS_TYPE_P (current_class_type)) |
1612 | /* C++14 DR1658 Means we do not have to construct vbases of |
1613 | abstract classes. */ |
1614 | construct_virtual_base (subobject, arguments); |
1615 | else |
1616 | /* When not constructing vbases of abstract classes, at least mark |
1617 | the arguments expressions as read to avoid |
1618 | -Wunused-but-set-parameter false positives. */ |
1619 | cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL); |
1620 | |
1621 | if (inherited_base) |
1622 | pop_deferring_access_checks (); |
1623 | } |
1624 | in_base_initializer = 0; |
1625 | |
1626 | /* Initialize the vptrs. */ |
1627 | initialize_vtbl_ptrs (current_class_ptr); |
1628 | |
1629 | /* Initialize the data members. */ |
1630 | while (mem_inits) |
1631 | { |
1632 | /* If this initializer was explicitly provided, then the dummy TREE_TYPE |
1633 | node contains the source location. */ |
1634 | iloc_sentinel ils (EXPR_LOCATION (TREE_TYPE (mem_inits))); |
1635 | |
1636 | perform_member_init (TREE_PURPOSE (mem_inits), |
1637 | TREE_VALUE (mem_inits), |
1638 | uninitialized); |
1639 | |
1640 | mem_inits = TREE_CHAIN (mem_inits); |
1641 | } |
1642 | } |
1643 | |
1644 | /* Returns the address of the vtable (i.e., the value that should be |
1645 | assigned to the vptr) for BINFO. */ |
1646 | |
1647 | tree |
1648 | build_vtbl_address (tree binfo) |
1649 | { |
1650 | tree binfo_for = binfo; |
1651 | tree vtbl; |
1652 | |
1653 | if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo)) |
1654 | /* If this is a virtual primary base, then the vtable we want to store |
1655 | is that for the base this is being used as the primary base of. We |
1656 | can't simply skip the initialization, because we may be expanding the |
1657 | inits of a subobject constructor where the virtual base layout |
1658 | can be different. */ |
1659 | while (BINFO_PRIMARY_P (binfo_for)) |
1660 | binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for); |
1661 | |
1662 | /* Figure out what vtable BINFO's vtable is based on, and mark it as |
1663 | used. */ |
1664 | vtbl = get_vtbl_decl_for_binfo (binfo_for); |
1665 | TREE_USED (vtbl) = true; |
1666 | |
1667 | /* Now compute the address to use when initializing the vptr. */ |
1668 | vtbl = unshare_expr (BINFO_VTABLE (binfo_for)); |
1669 | if (VAR_P (vtbl)) |
1670 | vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl); |
1671 | |
1672 | return vtbl; |
1673 | } |
1674 | |
1675 | /* This code sets up the virtual function tables appropriate for |
1676 | the pointer DECL. It is a one-ply initialization. |
1677 | |
1678 | BINFO is the exact type that DECL is supposed to be. In |
1679 | multiple inheritance, this might mean "C's A" if C : A, B. */ |
1680 | |
1681 | static void |
1682 | expand_virtual_init (tree binfo, tree decl) |
1683 | { |
1684 | tree vtbl, vtbl_ptr; |
1685 | tree vtt_index; |
1686 | |
1687 | /* Compute the initializer for vptr. */ |
1688 | vtbl = build_vtbl_address (binfo); |
1689 | |
1690 | /* We may get this vptr from a VTT, if this is a subobject |
1691 | constructor or subobject destructor. */ |
1692 | vtt_index = BINFO_VPTR_INDEX (binfo); |
1693 | if (vtt_index) |
1694 | { |
1695 | tree vtbl2; |
1696 | tree vtt_parm; |
1697 | |
1698 | /* Compute the value to use, when there's a VTT. */ |
1699 | vtt_parm = current_vtt_parm; |
1700 | vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index); |
1701 | vtbl2 = cp_build_fold_indirect_ref (vtbl2); |
1702 | vtbl2 = convert (TREE_TYPE (vtbl), vtbl2); |
1703 | |
1704 | /* The actual initializer is the VTT value only in the subobject |
1705 | constructor. In maybe_clone_body we'll substitute NULL for |
1706 | the vtt_parm in the case of the non-subobject constructor. */ |
1707 | vtbl = build_if_in_charge (true_stmt: vtbl, false_stmt: vtbl2); |
1708 | } |
1709 | |
1710 | /* Compute the location of the vtpr. */ |
1711 | vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl), |
1712 | TREE_TYPE (binfo)); |
1713 | gcc_assert (vtbl_ptr != error_mark_node); |
1714 | |
1715 | /* Assign the vtable to the vptr. */ |
1716 | vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error); |
1717 | finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR, |
1718 | vtbl, tf_warning_or_error)); |
1719 | } |
1720 | |
1721 | /* If an exception is thrown in a constructor, those base classes already |
1722 | constructed must be destroyed. This function creates the cleanup |
1723 | for BINFO, which has just been constructed. If FLAG is non-NULL, |
1724 | it is a DECL which is nonzero when this base needs to be |
1725 | destroyed. */ |
1726 | |
1727 | static void |
1728 | expand_cleanup_for_base (tree binfo, tree flag) |
1729 | { |
1730 | tree expr; |
1731 | |
1732 | if (!type_build_dtor_call (BINFO_TYPE (binfo))) |
1733 | return; |
1734 | |
1735 | /* Call the destructor. */ |
1736 | expr = build_special_member_call (current_class_ref, |
1737 | base_dtor_identifier, |
1738 | NULL, |
1739 | binfo, |
1740 | LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, |
1741 | tf_warning_or_error); |
1742 | |
1743 | if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo))) |
1744 | return; |
1745 | |
1746 | if (flag) |
1747 | expr = fold_build3_loc (input_location, |
1748 | COND_EXPR, void_type_node, |
1749 | c_common_truthvalue_conversion (input_location, flag), |
1750 | expr, integer_zero_node); |
1751 | |
1752 | finish_eh_cleanup (expr); |
1753 | } |
1754 | |
1755 | /* Construct the virtual base-class VBASE passing the ARGUMENTS to its |
1756 | constructor. */ |
1757 | |
1758 | static void |
1759 | construct_virtual_base (tree vbase, tree arguments) |
1760 | { |
1761 | tree inner_if_stmt; |
1762 | tree exp; |
1763 | tree flag; |
1764 | |
1765 | /* If there are virtual base classes with destructors, we need to |
1766 | emit cleanups to destroy them if an exception is thrown during |
1767 | the construction process. These exception regions (i.e., the |
1768 | period during which the cleanups must occur) begin from the time |
1769 | the construction is complete to the end of the function. If we |
1770 | create a conditional block in which to initialize the |
1771 | base-classes, then the cleanup region for the virtual base begins |
1772 | inside a block, and ends outside of that block. This situation |
1773 | confuses the sjlj exception-handling code. Therefore, we do not |
1774 | create a single conditional block, but one for each |
1775 | initialization. (That way the cleanup regions always begin |
1776 | in the outer block.) We trust the back end to figure out |
1777 | that the FLAG will not change across initializations, and |
1778 | avoid doing multiple tests. */ |
1779 | flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl)); |
1780 | inner_if_stmt = begin_if_stmt (); |
1781 | finish_if_stmt_cond (flag, inner_if_stmt); |
1782 | |
1783 | /* Compute the location of the virtual base. If we're |
1784 | constructing virtual bases, then we must be the most derived |
1785 | class. Therefore, we don't have to look up the virtual base; |
1786 | we already know where it is. */ |
1787 | exp = convert_to_base_statically (current_class_ref, vbase); |
1788 | |
1789 | expand_aggr_init_1 (vbase, current_class_ref, exp, arguments, |
1790 | 0, tf_warning_or_error); |
1791 | finish_then_clause (inner_if_stmt); |
1792 | finish_if_stmt (inner_if_stmt); |
1793 | |
1794 | expand_cleanup_for_base (binfo: vbase, flag); |
1795 | } |
1796 | |
1797 | /* Find the context in which this FIELD can be initialized. */ |
1798 | |
1799 | static tree |
1800 | initializing_context (tree field) |
1801 | { |
1802 | tree t = DECL_CONTEXT (field); |
1803 | |
1804 | /* Anonymous union members can be initialized in the first enclosing |
1805 | non-anonymous union context. */ |
1806 | while (t && ANON_AGGR_TYPE_P (t)) |
1807 | t = TYPE_CONTEXT (t); |
1808 | return t; |
1809 | } |
1810 | |
1811 | /* Function to give error message if member initialization specification |
1812 | is erroneous. FIELD is the member we decided to initialize. |
1813 | TYPE is the type for which the initialization is being performed. |
1814 | FIELD must be a member of TYPE. |
1815 | |
1816 | MEMBER_NAME is the name of the member. */ |
1817 | |
1818 | static int |
1819 | member_init_ok_or_else (tree field, tree type, tree member_name) |
1820 | { |
1821 | if (field == error_mark_node) |
1822 | return 0; |
1823 | if (!field) |
1824 | { |
1825 | error ("class %qT does not have any field named %qD", type, |
1826 | member_name); |
1827 | return 0; |
1828 | } |
1829 | if (VAR_P (field)) |
1830 | { |
1831 | error ("%q#D is a static data member; it can only be " |
1832 | "initialized at its definition", |
1833 | field); |
1834 | return 0; |
1835 | } |
1836 | if (TREE_CODE (field) != FIELD_DECL) |
1837 | { |
1838 | error ("%q#D is not a non-static data member of %qT", |
1839 | field, type); |
1840 | return 0; |
1841 | } |
1842 | if (initializing_context (field) != type) |
1843 | { |
1844 | error ("class %qT does not have any field named %qD", type, |
1845 | member_name); |
1846 | return 0; |
1847 | } |
1848 | |
1849 | return 1; |
1850 | } |
1851 | |
1852 | /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it |
1853 | is a _TYPE node or TYPE_DECL which names a base for that type. |
1854 | Check the validity of NAME, and return either the base _TYPE, base |
1855 | binfo, or the FIELD_DECL of the member. If NAME is invalid, return |
1856 | NULL_TREE and issue a diagnostic. |
1857 | |
1858 | An old style unnamed direct single base construction is permitted, |
1859 | where NAME is NULL. */ |
1860 | |
1861 | tree |
1862 | expand_member_init (tree name) |
1863 | { |
1864 | tree basetype; |
1865 | tree field; |
1866 | |
1867 | if (!current_class_ref) |
1868 | return NULL_TREE; |
1869 | |
1870 | if (!name) |
1871 | { |
1872 | /* This is an obsolete unnamed base class initializer. The |
1873 | parser will already have warned about its use. */ |
1874 | switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type))) |
1875 | { |
1876 | case 0: |
1877 | error ("unnamed initializer for %qT, which has no base classes", |
1878 | current_class_type); |
1879 | return NULL_TREE; |
1880 | case 1: |
1881 | basetype = BINFO_TYPE |
1882 | (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0)); |
1883 | break; |
1884 | default: |
1885 | error ("unnamed initializer for %qT, which uses multiple inheritance", |
1886 | current_class_type); |
1887 | return NULL_TREE; |
1888 | } |
1889 | } |
1890 | else if (TYPE_P (name)) |
1891 | { |
1892 | basetype = TYPE_MAIN_VARIANT (name); |
1893 | name = TYPE_NAME (name); |
1894 | } |
1895 | else if (TREE_CODE (name) == TYPE_DECL) |
1896 | basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name)); |
1897 | else |
1898 | basetype = NULL_TREE; |
1899 | |
1900 | if (basetype) |
1901 | { |
1902 | tree class_binfo; |
1903 | tree direct_binfo; |
1904 | tree virtual_binfo; |
1905 | int i; |
1906 | |
1907 | if (current_template_parms |
1908 | || same_type_p (basetype, current_class_type)) |
1909 | return basetype; |
1910 | |
1911 | class_binfo = TYPE_BINFO (current_class_type); |
1912 | direct_binfo = NULL_TREE; |
1913 | virtual_binfo = NULL_TREE; |
1914 | |
1915 | /* Look for a direct base. */ |
1916 | for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i) |
1917 | if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype)) |
1918 | break; |
1919 | |
1920 | /* Look for a virtual base -- unless the direct base is itself |
1921 | virtual. */ |
1922 | if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo)) |
1923 | virtual_binfo = binfo_for_vbase (basetype, current_class_type); |
1924 | |
1925 | /* [class.base.init] |
1926 | |
1927 | If a mem-initializer-id is ambiguous because it designates |
1928 | both a direct non-virtual base class and an inherited virtual |
1929 | base class, the mem-initializer is ill-formed. */ |
1930 | if (direct_binfo && virtual_binfo) |
1931 | { |
1932 | error ("%qD is both a direct base and an indirect virtual base", |
1933 | basetype); |
1934 | return NULL_TREE; |
1935 | } |
1936 | |
1937 | if (!direct_binfo && !virtual_binfo) |
1938 | { |
1939 | if (CLASSTYPE_VBASECLASSES (current_class_type)) |
1940 | error ("type %qT is not a direct or virtual base of %qT", |
1941 | basetype, current_class_type); |
1942 | else |
1943 | error ("type %qT is not a direct base of %qT", |
1944 | basetype, current_class_type); |
1945 | return NULL_TREE; |
1946 | } |
1947 | |
1948 | return direct_binfo ? direct_binfo : virtual_binfo; |
1949 | } |
1950 | else |
1951 | { |
1952 | if (identifier_p (t: name)) |
1953 | field = lookup_field (current_class_type, name, 1, false); |
1954 | else |
1955 | field = name; |
1956 | |
1957 | if (member_init_ok_or_else (field, current_class_type, member_name: name)) |
1958 | return field; |
1959 | } |
1960 | |
1961 | return NULL_TREE; |
1962 | } |
1963 | |
1964 | /* This is like `expand_member_init', only it stores one aggregate |
1965 | value into another. |
1966 | |
1967 | INIT comes in two flavors: it is either a value which |
1968 | is to be stored in EXP, or it is a parameter list |
1969 | to go to a constructor, which will operate on EXP. |
1970 | If INIT is not a parameter list for a constructor, then set |
1971 | LOOKUP_ONLYCONVERTING. |
1972 | If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of |
1973 | the initializer, if FLAGS is 0, then it is the (init) form. |
1974 | If `init' is a CONSTRUCTOR, then we emit a warning message, |
1975 | explaining that such initializations are invalid. |
1976 | |
1977 | If INIT resolves to a CALL_EXPR which happens to return |
1978 | something of the type we are looking for, then we know |
1979 | that we can safely use that call to perform the |
1980 | initialization. |
1981 | |
1982 | The virtual function table pointer cannot be set up here, because |
1983 | we do not really know its type. |
1984 | |
1985 | This never calls operator=(). |
1986 | |
1987 | When initializing, nothing is CONST. |
1988 | |
1989 | A default copy constructor may have to be used to perform the |
1990 | initialization. |
1991 | |
1992 | A constructor or a conversion operator may have to be used to |
1993 | perform the initialization, but not both, as it would be ambiguous. */ |
1994 | |
1995 | tree |
1996 | build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain) |
1997 | { |
1998 | tree stmt_expr; |
1999 | tree compound_stmt; |
2000 | int destroy_temps; |
2001 | tree type = TREE_TYPE (exp); |
2002 | int was_const = TREE_READONLY (exp); |
2003 | int was_volatile = TREE_THIS_VOLATILE (exp); |
2004 | int is_global; |
2005 | |
2006 | if (init == error_mark_node) |
2007 | return error_mark_node; |
2008 | |
2009 | location_t init_loc = (init |
2010 | ? cp_expr_loc_or_input_loc (t: init) |
2011 | : location_of (exp)); |
2012 | |
2013 | TREE_READONLY (exp) = 0; |
2014 | TREE_THIS_VOLATILE (exp) = 0; |
2015 | |
2016 | if (TREE_CODE (type) == ARRAY_TYPE) |
2017 | { |
2018 | tree itype = init ? TREE_TYPE (init) : NULL_TREE; |
2019 | int from_array = 0; |
2020 | |
2021 | if (DECL_DECOMPOSITION_P (exp)) |
2022 | { |
2023 | from_array = 1; |
2024 | init = mark_rvalue_use (init); |
2025 | if (init |
2026 | && DECL_P (tree_strip_any_location_wrapper (init)) |
2027 | && !(flags & LOOKUP_ONLYCONVERTING)) |
2028 | { |
2029 | /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init |
2030 | recognizes it as direct-initialization. */ |
2031 | init = build_constructor_single (init_list_type_node, |
2032 | NULL_TREE, init); |
2033 | CONSTRUCTOR_IS_DIRECT_INIT (init) = true; |
2034 | } |
2035 | } |
2036 | else |
2037 | { |
2038 | /* Must arrange to initialize each element of EXP |
2039 | from elements of INIT. */ |
2040 | if (cv_qualified_p (type)) |
2041 | TREE_TYPE (exp) = cv_unqualified (type); |
2042 | if (itype && cv_qualified_p (itype)) |
2043 | TREE_TYPE (init) = cv_unqualified (itype); |
2044 | from_array = (itype && same_type_p (TREE_TYPE (init), |
2045 | TREE_TYPE (exp))); |
2046 | |
2047 | if (init && !BRACE_ENCLOSED_INITIALIZER_P (init) |
2048 | && (!from_array |
2049 | || (TREE_CODE (init) != CONSTRUCTOR |
2050 | /* Can happen, eg, handling the compound-literals |
2051 | extension (ext/complit12.C). */ |
2052 | && TREE_CODE (init) != TARGET_EXPR))) |
2053 | { |
2054 | if (complain & tf_error) |
2055 | error_at (init_loc, "array must be initialized " |
2056 | "with a brace-enclosed initializer"); |
2057 | return error_mark_node; |
2058 | } |
2059 | } |
2060 | |
2061 | stmt_expr = build_vec_init (exp, NULL_TREE, init, |
2062 | /*explicit_value_init_p=*/false, |
2063 | from_array, |
2064 | complain); |
2065 | TREE_READONLY (exp) = was_const; |
2066 | TREE_THIS_VOLATILE (exp) = was_volatile; |
2067 | TREE_TYPE (exp) = type; |
2068 | /* Restore the type of init unless it was used directly. */ |
2069 | if (init && TREE_CODE (stmt_expr) != INIT_EXPR) |
2070 | TREE_TYPE (init) = itype; |
2071 | return stmt_expr; |
2072 | } |
2073 | |
2074 | if (is_copy_initialization (init)) |
2075 | flags |= LOOKUP_ONLYCONVERTING; |
2076 | |
2077 | is_global = begin_init_stmts (stmt_expr_p: &stmt_expr, compound_stmt_p: &compound_stmt); |
2078 | destroy_temps = stmts_are_full_exprs_p (); |
2079 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; |
2080 | bool ok = expand_aggr_init_1 (TYPE_BINFO (type), exp, exp, |
2081 | init, LOOKUP_NORMAL|flags, complain); |
2082 | stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); |
2083 | current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; |
2084 | TREE_READONLY (exp) = was_const; |
2085 | TREE_THIS_VOLATILE (exp) = was_volatile; |
2086 | if (!ok) |
2087 | return error_mark_node; |
2088 | |
2089 | if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL) |
2090 | && TREE_SIDE_EFFECTS (stmt_expr) |
2091 | && !lookup_attribute (attr_name: "warn_unused", TYPE_ATTRIBUTES (type))) |
2092 | /* Just know that we've seen something for this node. */ |
2093 | TREE_USED (exp) = 1; |
2094 | |
2095 | return stmt_expr; |
2096 | } |
2097 | |
2098 | static bool |
2099 | expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags, |
2100 | tsubst_flags_t complain) |
2101 | { |
2102 | tree type = TREE_TYPE (exp); |
2103 | |
2104 | /* It fails because there may not be a constructor which takes |
2105 | its own type as the first (or only parameter), but which does |
2106 | take other types via a conversion. So, if the thing initializing |
2107 | the expression is a unit element of type X, first try X(X&), |
2108 | followed by initialization by X. If neither of these work |
2109 | out, then look hard. */ |
2110 | tree rval; |
2111 | vec<tree, va_gc> *parms; |
2112 | |
2113 | /* If we have direct-initialization from an initializer list, pull |
2114 | it out of the TREE_LIST so the code below can see it. */ |
2115 | if (init && TREE_CODE (init) == TREE_LIST |
2116 | && DIRECT_LIST_INIT_P (TREE_VALUE (init))) |
2117 | { |
2118 | gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0 |
2119 | && TREE_CHAIN (init) == NULL_TREE); |
2120 | init = TREE_VALUE (init); |
2121 | /* Only call reshape_init if it has not been called earlier |
2122 | by the callers. */ |
2123 | if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type)) |
2124 | init = reshape_init (type, init, complain); |
2125 | } |
2126 | |
2127 | if (init && BRACE_ENCLOSED_INITIALIZER_P (init) |
2128 | && CP_AGGREGATE_TYPE_P (type)) |
2129 | /* A brace-enclosed initializer for an aggregate. In C++0x this can |
2130 | happen for direct-initialization, too. */ |
2131 | init = digest_init (type, init, complain); |
2132 | |
2133 | if (init == error_mark_node) |
2134 | return false; |
2135 | |
2136 | /* A CONSTRUCTOR of the target's type is a previously digested |
2137 | initializer, whether that happened just above or in |
2138 | cp_parser_late_parsing_nsdmi. |
2139 | |
2140 | A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P |
2141 | set represents the whole initialization, so we shouldn't build up |
2142 | another ctor call. */ |
2143 | if (init |
2144 | && (TREE_CODE (init) == CONSTRUCTOR |
2145 | || (TREE_CODE (init) == TARGET_EXPR |
2146 | && (TARGET_EXPR_DIRECT_INIT_P (init) |
2147 | || TARGET_EXPR_LIST_INIT_P (init)))) |
2148 | && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type)) |
2149 | { |
2150 | /* Early initialization via a TARGET_EXPR only works for |
2151 | complete objects. */ |
2152 | gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp); |
2153 | |
2154 | init = cp_build_init_expr (t: exp, i: init); |
2155 | TREE_SIDE_EFFECTS (init) = 1; |
2156 | finish_expr_stmt (init); |
2157 | return true; |
2158 | } |
2159 | |
2160 | if (init && TREE_CODE (init) != TREE_LIST |
2161 | && (flags & LOOKUP_ONLYCONVERTING) |
2162 | && !unsafe_return_slot_p (exp)) |
2163 | { |
2164 | /* Base subobjects should only get direct-initialization. */ |
2165 | gcc_assert (true_exp == exp); |
2166 | |
2167 | if (flags & DIRECT_BIND) |
2168 | /* Do nothing. We hit this in two cases: Reference initialization, |
2169 | where we aren't initializing a real variable, so we don't want |
2170 | to run a new constructor; and catching an exception, where we |
2171 | have already built up the constructor call so we could wrap it |
2172 | in an exception region. */; |
2173 | else |
2174 | { |
2175 | init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, |
2176 | flags, complain | tf_no_cleanup); |
2177 | if (init == error_mark_node) |
2178 | return false; |
2179 | } |
2180 | |
2181 | /* We need to protect the initialization of a catch parm with a |
2182 | call to terminate(), which shows up as a MUST_NOT_THROW_EXPR |
2183 | around the TARGET_EXPR for the copy constructor. See |
2184 | initialize_handler_parm. */ |
2185 | tree *p = &init; |
2186 | while (TREE_CODE (*p) == MUST_NOT_THROW_EXPR |
2187 | || TREE_CODE (*p) == CLEANUP_POINT_EXPR) |
2188 | { |
2189 | /* Avoid voidify_wrapper_expr making a temporary. */ |
2190 | TREE_TYPE (*p) = void_type_node; |
2191 | p = &TREE_OPERAND (*p, 0); |
2192 | } |
2193 | *p = cp_build_init_expr (t: exp, i: *p); |
2194 | finish_expr_stmt (init); |
2195 | return true; |
2196 | } |
2197 | |
2198 | if (init == NULL_TREE) |
2199 | parms = NULL; |
2200 | else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init)) |
2201 | { |
2202 | parms = make_tree_vector (); |
2203 | for (; init != NULL_TREE; init = TREE_CHAIN (init)) |
2204 | vec_safe_push (v&: parms, TREE_VALUE (init)); |
2205 | } |
2206 | else |
2207 | parms = make_tree_vector_single (init); |
2208 | |
2209 | if (exp == current_class_ref && current_function_decl |
2210 | && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl)) |
2211 | { |
2212 | /* Delegating constructor. */ |
2213 | tree complete; |
2214 | tree base; |
2215 | tree elt; unsigned i; |
2216 | |
2217 | /* Unshare the arguments for the second call. */ |
2218 | releasing_vec parms2; |
2219 | FOR_EACH_VEC_SAFE_ELT (parms, i, elt) |
2220 | { |
2221 | elt = break_out_target_exprs (elt); |
2222 | vec_safe_push (r&: parms2, t: elt); |
2223 | } |
2224 | complete = build_special_member_call (exp, complete_ctor_identifier, |
2225 | &parms2, binfo, flags, |
2226 | complain); |
2227 | complete = fold_build_cleanup_point_expr (void_type_node, expr: complete); |
2228 | |
2229 | base = build_special_member_call (exp, base_ctor_identifier, |
2230 | &parms, binfo, flags, |
2231 | complain); |
2232 | base = fold_build_cleanup_point_expr (void_type_node, expr: base); |
2233 | if (complete == error_mark_node || base == error_mark_node) |
2234 | return false; |
2235 | rval = build_if_in_charge (true_stmt: complete, false_stmt: base); |
2236 | } |
2237 | else |
2238 | { |
2239 | tree ctor_name = (true_exp == exp |
2240 | ? complete_ctor_identifier : base_ctor_identifier); |
2241 | |
2242 | rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags, |
2243 | complain); |
2244 | if (rval == error_mark_node) |
2245 | return false; |
2246 | } |
2247 | |
2248 | if (parms != NULL) |
2249 | release_tree_vector (parms); |
2250 | |
2251 | if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR) |
2252 | { |
2253 | tree fn = get_callee_fndecl (rval); |
2254 | if (fn && DECL_DECLARED_CONSTEXPR_P (fn)) |
2255 | { |
2256 | tree e = maybe_constant_init (rval, exp); |
2257 | if (TREE_CONSTANT (e)) |
2258 | rval = cp_build_init_expr (t: exp, i: e); |
2259 | } |
2260 | } |
2261 | |
2262 | /* FIXME put back convert_to_void? */ |
2263 | if (TREE_SIDE_EFFECTS (rval)) |
2264 | finish_expr_stmt (rval); |
2265 | |
2266 | return true; |
2267 | } |
2268 | |
2269 | /* This function is responsible for initializing EXP with INIT |
2270 | (if any). Returns true on success, false on failure. |
2271 | |
2272 | BINFO is the binfo of the type for who we are performing the |
2273 | initialization. For example, if W is a virtual base class of A and B, |
2274 | and C : A, B. |
2275 | If we are initializing B, then W must contain B's W vtable, whereas |
2276 | were we initializing C, W must contain C's W vtable. |
2277 | |
2278 | TRUE_EXP is nonzero if it is the true expression being initialized. |
2279 | In this case, it may be EXP, or may just contain EXP. The reason we |
2280 | need this is because if EXP is a base element of TRUE_EXP, we |
2281 | don't necessarily know by looking at EXP where its virtual |
2282 | baseclass fields should really be pointing. But we do know |
2283 | from TRUE_EXP. In constructors, we don't know anything about |
2284 | the value being initialized. |
2285 | |
2286 | FLAGS is just passed to `build_new_method_call'. See that function |
2287 | for its description. */ |
2288 | |
2289 | static bool |
2290 | expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags, |
2291 | tsubst_flags_t complain) |
2292 | { |
2293 | tree type = TREE_TYPE (exp); |
2294 | |
2295 | gcc_assert (init != error_mark_node && type != error_mark_node); |
2296 | gcc_assert (building_stmt_list_p ()); |
2297 | |
2298 | /* Use a function returning the desired type to initialize EXP for us. |
2299 | If the function is a constructor, and its first argument is |
2300 | NULL_TREE, know that it was meant for us--just slide exp on |
2301 | in and expand the constructor. Constructors now come |
2302 | as TARGET_EXPRs. */ |
2303 | |
2304 | if (init && VAR_P (exp) |
2305 | && COMPOUND_LITERAL_P (init)) |
2306 | { |
2307 | vec<tree, va_gc> *cleanups = NULL; |
2308 | /* If store_init_value returns NULL_TREE, the INIT has been |
2309 | recorded as the DECL_INITIAL for EXP. That means there's |
2310 | nothing more we have to do. */ |
2311 | init = store_init_value (exp, init, &cleanups, flags); |
2312 | if (init) |
2313 | finish_expr_stmt (init); |
2314 | gcc_assert (!cleanups); |
2315 | return true; |
2316 | } |
2317 | |
2318 | /* List-initialization from {} becomes value-initialization for non-aggregate |
2319 | classes with default constructors. Handle this here when we're |
2320 | initializing a base, so protected access works. */ |
2321 | if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST) |
2322 | { |
2323 | tree elt = TREE_VALUE (init); |
2324 | if (DIRECT_LIST_INIT_P (elt) |
2325 | && CONSTRUCTOR_ELTS (elt) == 0 |
2326 | && CLASSTYPE_NON_AGGREGATE (type) |
2327 | && TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) |
2328 | init = void_type_node; |
2329 | } |
2330 | |
2331 | /* If an explicit -- but empty -- initializer list was present, |
2332 | that's value-initialization. */ |
2333 | if (init == void_type_node) |
2334 | { |
2335 | /* If the type has data but no user-provided default ctor, we need to zero |
2336 | out the object. */ |
2337 | if (type_has_non_user_provided_default_constructor (type) |
2338 | && !is_really_empty_class (type, /*ignore_vptr*/true)) |
2339 | { |
2340 | tree field_size = NULL_TREE; |
2341 | if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type) |
2342 | /* Don't clobber already initialized virtual bases. */ |
2343 | field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type)); |
2344 | init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false, |
2345 | field_size); |
2346 | init = cp_build_init_expr (t: exp, i: init); |
2347 | finish_expr_stmt (init); |
2348 | } |
2349 | |
2350 | /* If we don't need to mess with the constructor at all, |
2351 | then we're done. */ |
2352 | if (! type_build_ctor_call (type)) |
2353 | return true; |
2354 | |
2355 | /* Otherwise fall through and call the constructor. */ |
2356 | init = NULL_TREE; |
2357 | } |
2358 | |
2359 | /* We know that expand_default_init can handle everything we want |
2360 | at this point. */ |
2361 | return expand_default_init (binfo, true_exp, exp, init, flags, complain); |
2362 | } |
2363 | |
2364 | /* Report an error if TYPE is not a user-defined, class type. If |
2365 | OR_ELSE is nonzero, give an error message. */ |
2366 | |
2367 | int |
2368 | is_class_type (tree type, int or_else) |
2369 | { |
2370 | if (type == error_mark_node) |
2371 | return 0; |
2372 | |
2373 | if (! CLASS_TYPE_P (type)) |
2374 | { |
2375 | if (or_else) |
2376 | error ("%qT is not a class type", type); |
2377 | return 0; |
2378 | } |
2379 | return 1; |
2380 | } |
2381 | |
2382 | /* Returns true iff the initializer INIT represents copy-initialization |
2383 | (and therefore we must set LOOKUP_ONLYCONVERTING when processing it). */ |
2384 | |
2385 | bool |
2386 | is_copy_initialization (tree init) |
2387 | { |
2388 | return (init && init != void_type_node |
2389 | && TREE_CODE (init) != TREE_LIST |
2390 | && !(TREE_CODE (init) == TARGET_EXPR |
2391 | && TARGET_EXPR_DIRECT_INIT_P (init)) |
2392 | && !DIRECT_LIST_INIT_P (init)); |
2393 | } |
2394 | |
2395 | /* Build a reference to a member of an aggregate. This is not a C++ |
2396 | `&', but really something which can have its address taken, and |
2397 | then act as a pointer to member, for example TYPE :: FIELD can have |
2398 | its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if |
2399 | this expression is the operand of "&". |
2400 | |
2401 | @@ Prints out lousy diagnostics for operator <typename> |
2402 | @@ fields. |
2403 | |
2404 | @@ This function should be rewritten and placed in search.cc. */ |
2405 | |
2406 | tree |
2407 | build_offset_ref (tree type, tree member, bool address_p, |
2408 | tsubst_flags_t complain) |
2409 | { |
2410 | tree decl; |
2411 | tree basebinfo = NULL_TREE; |
2412 | |
2413 | /* class templates can come in as TEMPLATE_DECLs here. */ |
2414 | if (TREE_CODE (member) == TEMPLATE_DECL) |
2415 | return member; |
2416 | |
2417 | if (dependent_scope_p (type) || type_dependent_expression_p (member)) |
2418 | return build_qualified_name (NULL_TREE, type, member, |
2419 | /*template_p=*/false); |
2420 | |
2421 | gcc_assert (TYPE_P (type)); |
2422 | if (! is_class_type (type, or_else: 1)) |
2423 | return error_mark_node; |
2424 | |
2425 | gcc_assert (DECL_P (member) || BASELINK_P (member)); |
2426 | /* Callers should call mark_used before this point, except for functions. */ |
2427 | gcc_assert (!DECL_P (member) || TREE_USED (member) |
2428 | || TREE_CODE (member) == FUNCTION_DECL); |
2429 | |
2430 | type = TYPE_MAIN_VARIANT (type); |
2431 | if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type))) |
2432 | { |
2433 | if (complain & tf_error) |
2434 | error ("incomplete type %qT does not have member %qD", type, member); |
2435 | return error_mark_node; |
2436 | } |
2437 | |
2438 | /* Entities other than non-static members need no further |
2439 | processing. */ |
2440 | if (TREE_CODE (member) == TYPE_DECL) |
2441 | return member; |
2442 | if (VAR_P (member) || TREE_CODE (member) == CONST_DECL) |
2443 | return convert_from_reference (member); |
2444 | |
2445 | if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member)) |
2446 | { |
2447 | if (complain & tf_error) |
2448 | error ("invalid pointer to bit-field %qD", member); |
2449 | return error_mark_node; |
2450 | } |
2451 | |
2452 | /* Set up BASEBINFO for member lookup. */ |
2453 | decl = maybe_dummy_object (type, &basebinfo); |
2454 | |
2455 | /* A lot of this logic is now handled in lookup_member. */ |
2456 | if (BASELINK_P (member)) |
2457 | { |
2458 | /* Go from the TREE_BASELINK to the member function info. */ |
2459 | tree t = BASELINK_FUNCTIONS (member); |
2460 | |
2461 | if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t)) |
2462 | { |
2463 | /* Get rid of a potential OVERLOAD around it. */ |
2464 | t = OVL_FIRST (t); |
2465 | |
2466 | /* Unique functions are handled easily. */ |
2467 | |
2468 | /* For non-static member of base class, we need a special rule |
2469 | for access checking [class.protected]: |
2470 | |
2471 | If the access is to form a pointer to member, the |
2472 | nested-name-specifier shall name the derived class |
2473 | (or any class derived from that class). */ |
2474 | bool ok; |
2475 | if (address_p && DECL_P (t) |
2476 | && DECL_NONSTATIC_MEMBER_P (t)) |
2477 | ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t, |
2478 | complain); |
2479 | else |
2480 | ok = perform_or_defer_access_check (basebinfo, t, t, |
2481 | complain); |
2482 | if (!ok) |
2483 | return error_mark_node; |
2484 | if (DECL_STATIC_FUNCTION_P (t)) |
2485 | return member; |
2486 | member = t; |
2487 | } |
2488 | else |
2489 | TREE_TYPE (member) = unknown_type_node; |
2490 | } |
2491 | else if (address_p && TREE_CODE (member) == FIELD_DECL) |
2492 | { |
2493 | /* We need additional test besides the one in |
2494 | check_accessibility_of_qualified_id in case it is |
2495 | a pointer to non-static member. */ |
2496 | if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member, |
2497 | complain)) |
2498 | return error_mark_node; |
2499 | } |
2500 | |
2501 | if (!address_p) |
2502 | { |
2503 | /* If MEMBER is non-static, then the program has fallen afoul of |
2504 | [expr.prim]: |
2505 | |
2506 | An id-expression that denotes a non-static data member or |
2507 | non-static member function of a class can only be used: |
2508 | |
2509 | -- as part of a class member access (_expr.ref_) in which the |
2510 | object-expression refers to the member's class or a class |
2511 | derived from that class, or |
2512 | |
2513 | -- to form a pointer to member (_expr.unary.op_), or |
2514 | |
2515 | -- in the body of a non-static member function of that class or |
2516 | of a class derived from that class (_class.mfct.non-static_), or |
2517 | |
2518 | -- in a mem-initializer for a constructor for that class or for |
2519 | a class derived from that class (_class.base.init_). */ |
2520 | if (DECL_OBJECT_MEMBER_FUNCTION_P (member)) |
2521 | { |
2522 | /* Build a representation of the qualified name suitable |
2523 | for use as the operand to "&" -- even though the "&" is |
2524 | not actually present. */ |
2525 | member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); |
2526 | /* In Microsoft mode, treat a non-static member function as if |
2527 | it were a pointer-to-member. */ |
2528 | if (flag_ms_extensions) |
2529 | { |
2530 | PTRMEM_OK_P (member) = 1; |
2531 | return cp_build_addr_expr (member, complain); |
2532 | } |
2533 | if (complain & tf_error) |
2534 | error ("invalid use of non-static member function %qD", |
2535 | TREE_OPERAND (member, 1)); |
2536 | return error_mark_node; |
2537 | } |
2538 | else if (TREE_CODE (member) == FIELD_DECL) |
2539 | { |
2540 | if (complain & tf_error) |
2541 | error ("invalid use of non-static data member %qD", member); |
2542 | return error_mark_node; |
2543 | } |
2544 | return member; |
2545 | } |
2546 | |
2547 | member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member); |
2548 | PTRMEM_OK_P (member) = 1; |
2549 | return member; |
2550 | } |
2551 | |
2552 | /* If DECL is a scalar enumeration constant or variable with a |
2553 | constant initializer, return the initializer (or, its initializers, |
2554 | recursively); otherwise, return DECL. If STRICT_P, the |
2555 | initializer is only returned if DECL is a |
2556 | constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to |
2557 | return an aggregate constant. If UNSHARE_P, return an unshared |
2558 | copy of the initializer. */ |
2559 | |
2560 | static tree |
2561 | constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p, |
2562 | bool unshare_p) |
2563 | { |
2564 | while (TREE_CODE (decl) == CONST_DECL |
2565 | || decl_constant_var_p (decl) |
2566 | || (!strict_p && VAR_P (decl) |
2567 | && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))) |
2568 | { |
2569 | tree init; |
2570 | /* If DECL is a static data member in a template |
2571 | specialization, we must instantiate it here. The |
2572 | initializer for the static data member is not processed |
2573 | until needed; we need it now. */ |
2574 | mark_used (decl, tf_none); |
2575 | init = DECL_INITIAL (decl); |
2576 | if (init == error_mark_node) |
2577 | { |
2578 | if (TREE_CODE (decl) == CONST_DECL |
2579 | || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) |
2580 | /* Treat the error as a constant to avoid cascading errors on |
2581 | excessively recursive template instantiation (c++/9335). */ |
2582 | return init; |
2583 | else |
2584 | return decl; |
2585 | } |
2586 | /* Initializers in templates are generally expanded during |
2587 | instantiation, so before that for const int i(2) |
2588 | INIT is a TREE_LIST with the actual initializer as |
2589 | TREE_VALUE. */ |
2590 | if (processing_template_decl |
2591 | && init |
2592 | && TREE_CODE (init) == TREE_LIST |
2593 | && TREE_CHAIN (init) == NULL_TREE) |
2594 | init = TREE_VALUE (init); |
2595 | /* Instantiate a non-dependent initializer for user variables. We |
2596 | mustn't do this for the temporary for an array compound literal; |
2597 | trying to instatiate the initializer will keep creating new |
2598 | temporaries until we crash. Probably it's not useful to do it for |
2599 | other artificial variables, either. */ |
2600 | if (!DECL_ARTIFICIAL (decl)) |
2601 | init = instantiate_non_dependent_or_null (init); |
2602 | if (!init |
2603 | || !TREE_TYPE (init) |
2604 | || !TREE_CONSTANT (init) |
2605 | || (!return_aggregate_cst_ok_p |
2606 | /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not |
2607 | return an aggregate constant (of which string |
2608 | literals are a special case), as we do not want |
2609 | to make inadvertent copies of such entities, and |
2610 | we must be sure that their addresses are the |
2611 | same everywhere. */ |
2612 | && (TREE_CODE (init) == CONSTRUCTOR |
2613 | || TREE_CODE (init) == STRING_CST))) |
2614 | break; |
2615 | /* Don't return a CONSTRUCTOR for a variable with partial run-time |
2616 | initialization, since it doesn't represent the entire value. |
2617 | Similarly for VECTOR_CSTs created by cp_folding those |
2618 | CONSTRUCTORs. */ |
2619 | if ((TREE_CODE (init) == CONSTRUCTOR |
2620 | || TREE_CODE (init) == VECTOR_CST) |
2621 | && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)) |
2622 | break; |
2623 | /* If the variable has a dynamic initializer, don't use its |
2624 | DECL_INITIAL which doesn't reflect the real value. */ |
2625 | if (VAR_P (decl) |
2626 | && TREE_STATIC (decl) |
2627 | && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) |
2628 | && DECL_NONTRIVIALLY_INITIALIZED_P (decl)) |
2629 | break; |
2630 | decl = init; |
2631 | } |
2632 | return unshare_p ? unshare_expr (decl) : decl; |
2633 | } |
2634 | |
2635 | /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant |
2636 | of integral or enumeration type, or a constexpr variable of scalar type, |
2637 | then return that value. These are those variables permitted in constant |
2638 | expressions by [5.19/1]. */ |
2639 | |
2640 | tree |
2641 | scalar_constant_value (tree decl) |
2642 | { |
2643 | return constant_value_1 (decl, /*strict_p=*/true, |
2644 | /*return_aggregate_cst_ok_p=*/false, |
2645 | /*unshare_p=*/true); |
2646 | } |
2647 | |
2648 | /* Like scalar_constant_value, but can also return aggregate initializers. |
2649 | If UNSHARE_P, return an unshared copy of the initializer. */ |
2650 | |
2651 | tree |
2652 | decl_really_constant_value (tree decl, bool unshare_p /*= true*/) |
2653 | { |
2654 | return constant_value_1 (decl, /*strict_p=*/true, |
2655 | /*return_aggregate_cst_ok_p=*/true, |
2656 | /*unshare_p=*/unshare_p); |
2657 | } |
2658 | |
2659 | /* A more relaxed version of decl_really_constant_value, used by the |
2660 | common C/C++ code. */ |
2661 | |
2662 | tree |
2663 | decl_constant_value (tree decl, bool unshare_p) |
2664 | { |
2665 | return constant_value_1 (decl, /*strict_p=*/processing_template_decl, |
2666 | /*return_aggregate_cst_ok_p=*/true, |
2667 | /*unshare_p=*/unshare_p); |
2668 | } |
2669 | |
2670 | tree |
2671 | decl_constant_value (tree decl) |
2672 | { |
2673 | return decl_constant_value (decl, /*unshare_p=*/true); |
2674 | } |
2675 | |
2676 | /* Common subroutines of build_new and build_vec_delete. */ |
2677 | |
2678 | /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is |
2679 | the type of the object being allocated; otherwise, it's just TYPE. |
2680 | INIT is the initializer, if any. USE_GLOBAL_NEW is true if the |
2681 | user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is |
2682 | a vector of arguments to be provided as arguments to a placement |
2683 | new operator. This routine performs no semantic checks; it just |
2684 | creates and returns a NEW_EXPR. */ |
2685 | |
2686 | static tree |
2687 | build_raw_new_expr (location_t loc, vec<tree, va_gc> *placement, tree type, |
2688 | tree nelts, vec<tree, va_gc> *init, int use_global_new) |
2689 | { |
2690 | tree init_list; |
2691 | tree new_expr; |
2692 | |
2693 | /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR. |
2694 | If INIT is not NULL, then we want to store VOID_ZERO_NODE. This |
2695 | permits us to distinguish the case of a missing initializer "new |
2696 | int" from an empty initializer "new int()". */ |
2697 | if (init == NULL) |
2698 | init_list = NULL_TREE; |
2699 | else if (init->is_empty ()) |
2700 | init_list = void_node; |
2701 | else |
2702 | init_list = build_tree_list_vec (init); |
2703 | |
2704 | new_expr = build4_loc (loc, code: NEW_EXPR, type: build_pointer_type (type), |
2705 | arg0: build_tree_list_vec (placement), arg1: type, arg2: nelts, |
2706 | arg3: init_list); |
2707 | NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new; |
2708 | TREE_SIDE_EFFECTS (new_expr) = 1; |
2709 | |
2710 | return new_expr; |
2711 | } |
2712 | |
2713 | /* Diagnose uninitialized const members or reference members of type |
2714 | TYPE. USING_NEW is used to disambiguate the diagnostic between a |
2715 | new expression without a new-initializer and a declaration. Returns |
2716 | the error count. */ |
2717 | |
2718 | static int |
2719 | diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin, |
2720 | bool using_new, bool complain) |
2721 | { |
2722 | tree field; |
2723 | int error_count = 0; |
2724 | |
2725 | if (type_has_user_provided_constructor (type)) |
2726 | return 0; |
2727 | |
2728 | for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) |
2729 | { |
2730 | tree field_type; |
2731 | |
2732 | if (TREE_CODE (field) != FIELD_DECL) |
2733 | continue; |
2734 | |
2735 | field_type = strip_array_types (TREE_TYPE (field)); |
2736 | |
2737 | if (type_has_user_provided_constructor (field_type)) |
2738 | continue; |
2739 | |
2740 | if (TYPE_REF_P (field_type)) |
2741 | { |
2742 | ++ error_count; |
2743 | if (complain) |
2744 | { |
2745 | auto_diagnostic_group d; |
2746 | if (DECL_CONTEXT (field) == origin) |
2747 | { |
2748 | if (using_new) |
2749 | error ("uninitialized reference member in %q#T " |
2750 | "using %<new%> without new-initializer", origin); |
2751 | else |
2752 | error ("uninitialized reference member in %q#T", origin); |
2753 | } |
2754 | else |
2755 | { |
2756 | if (using_new) |
2757 | error ("uninitialized reference member in base %q#T " |
2758 | "of %q#T using %<new%> without new-initializer", |
2759 | DECL_CONTEXT (field), origin); |
2760 | else |
2761 | error ("uninitialized reference member in base %q#T " |
2762 | "of %q#T", DECL_CONTEXT (field), origin); |
2763 | } |
2764 | inform (DECL_SOURCE_LOCATION (field), |
2765 | "%q#D should be initialized", field); |
2766 | } |
2767 | } |
2768 | |
2769 | if (CP_TYPE_CONST_P (field_type)) |
2770 | { |
2771 | ++ error_count; |
2772 | if (complain) |
2773 | { |
2774 | auto_diagnostic_group d; |
2775 | if (DECL_CONTEXT (field) == origin) |
2776 | { |
2777 | if (using_new) |
2778 | error ("uninitialized const member in %q#T " |
2779 | "using %<new%> without new-initializer", origin); |
2780 | else |
2781 | error ("uninitialized const member in %q#T", origin); |
2782 | } |
2783 | else |
2784 | { |
2785 | if (using_new) |
2786 | error ("uninitialized const member in base %q#T " |
2787 | "of %q#T using %<new%> without new-initializer", |
2788 | DECL_CONTEXT (field), origin); |
2789 | else |
2790 | error ("uninitialized const member in base %q#T " |
2791 | "of %q#T", DECL_CONTEXT (field), origin); |
2792 | } |
2793 | inform (DECL_SOURCE_LOCATION (field), |
2794 | "%q#D should be initialized", field); |
2795 | } |
2796 | } |
2797 | |
2798 | if (CLASS_TYPE_P (field_type)) |
2799 | error_count |
2800 | += diagnose_uninitialized_cst_or_ref_member_1 (type: field_type, origin, |
2801 | using_new, complain); |
2802 | } |
2803 | return error_count; |
2804 | } |
2805 | |
2806 | int |
2807 | diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain) |
2808 | { |
2809 | return diagnose_uninitialized_cst_or_ref_member_1 (type, origin: type, using_new, complain); |
2810 | } |
2811 | |
2812 | /* Call __cxa_bad_array_new_length to indicate that the size calculation |
2813 | overflowed. */ |
2814 | |
2815 | tree |
2816 | throw_bad_array_new_length (void) |
2817 | { |
2818 | if (!fn) |
2819 | { |
2820 | tree name = get_identifier ("__cxa_throw_bad_array_new_length"); |
2821 | |
2822 | fn = get_global_binding (id: name); |
2823 | if (!fn) |
2824 | fn = push_throw_library_fn |
2825 | (name, build_function_type_list (void_type_node, NULL_TREE)); |
2826 | } |
2827 | |
2828 | return build_cxx_call (fn, 0, NULL, tf_warning_or_error); |
2829 | } |
2830 | |
2831 | /* Attempt to verify that the argument, OPER, of a placement new expression |
2832 | refers to an object sufficiently large for an object of TYPE or an array |
2833 | of NELTS of such objects when NELTS is non-null, and issue a warning when |
2834 | it does not. SIZE specifies the size needed to construct the object or |
2835 | array and captures the result of NELTS * sizeof (TYPE). (SIZE could be |
2836 | greater when the array under construction requires a cookie to store |
2837 | NELTS. GCC's placement new expression stores the cookie when invoking |
2838 | a user-defined placement new operator function but not the default one. |
2839 | Placement new expressions with user-defined placement new operator are |
2840 | not diagnosed since we don't know how they use the buffer (this could |
2841 | be a future extension). */ |
2842 | static void |
2843 | warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper) |
2844 | { |
2845 | location_t loc = cp_expr_loc_or_input_loc (t: oper); |
2846 | |
2847 | STRIP_NOPS (oper); |
2848 | |
2849 | /* Using a function argument or a (non-array) variable as an argument |
2850 | to placement new is not checked since it's unknown what it might |
2851 | point to. */ |
2852 | if (TREE_CODE (oper) == PARM_DECL |
2853 | || VAR_P (oper) |
2854 | || TREE_CODE (oper) == COMPONENT_REF) |
2855 | return; |
2856 | |
2857 | /* Evaluate any constant expressions. */ |
2858 | size = fold_non_dependent_expr (size); |
2859 | |
2860 | access_ref ref; |
2861 | ref.eval = [](tree x){ return fold_non_dependent_expr (x); }; |
2862 | ref.trail1special = warn_placement_new < 2; |
2863 | tree objsize = compute_objsize (ptr: oper, ostype: 1, pref: &ref); |
2864 | if (!objsize) |
2865 | return; |
2866 | |
2867 | /* We can only draw conclusions if ref.deref == -1, |
2868 | i.e. oper is the address of the object. */ |
2869 | if (ref.deref != -1) |
2870 | return; |
2871 | |
2872 | offset_int bytes_avail = wi::to_offset (t: objsize); |
2873 | offset_int bytes_need; |
2874 | |
2875 | if (CONSTANT_CLASS_P (size)) |
2876 | bytes_need = wi::to_offset (t: size); |
2877 | else if (nelts && CONSTANT_CLASS_P (nelts)) |
2878 | bytes_need = (wi::to_offset (t: nelts) |
2879 | * wi::to_offset (TYPE_SIZE_UNIT (type))); |
2880 | else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))) |
2881 | bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type)); |
2882 | else |
2883 | { |
2884 | /* The type is a VLA. */ |
2885 | return; |
2886 | } |
2887 | |
2888 | if (bytes_avail >= bytes_need) |
2889 | return; |
2890 | |
2891 | /* True when the size to mention in the warning is exact as opposed |
2892 | to "at least N". */ |
2893 | const bool exact_size = (ref.offrng[0] == ref.offrng[1] |
2894 | || ref.sizrng[1] - ref.offrng[0] == 0); |
2895 | |
2896 | tree opertype = ref.ref ? TREE_TYPE (ref.ref) : TREE_TYPE (oper); |
2897 | bool warned = false; |
2898 | if (nelts) |
2899 | nelts = fold_for_warn (nelts); |
2900 | |
2901 | auto_diagnostic_group d; |
2902 | if (nelts) |
2903 | if (CONSTANT_CLASS_P (nelts)) |
2904 | warned = warning_at (loc, OPT_Wplacement_new_, |
2905 | (exact_size |
2906 | ? G_("placement new constructing an object " |
2907 | "of type %<%T [%wu]%> and size %qwu " |
2908 | "in a region of type %qT and size %qwi") |
2909 | : G_("placement new constructing an object " |
2910 | "of type %<%T [%wu]%> and size %qwu " |
2911 | "in a region of type %qT and size " |
2912 | "at most %qwu")), |
2913 | type, tree_to_uhwi (nelts), |
2914 | bytes_need.to_uhwi (), |
2915 | opertype, bytes_avail.to_uhwi ()); |
2916 | else |
2917 | warned = warning_at (loc, OPT_Wplacement_new_, |
2918 | (exact_size |
2919 | ? G_("placement new constructing an array " |
2920 | "of objects of type %qT and size %qwu " |
2921 | "in a region of type %qT and size %qwi") |
2922 | : G_("placement new constructing an array " |
2923 | "of objects of type %qT and size %qwu " |
2924 | "in a region of type %qT and size " |
2925 | "at most %qwu")), |
2926 | type, bytes_need.to_uhwi (), opertype, |
2927 | bytes_avail.to_uhwi ()); |
2928 | else |
2929 | warned = warning_at (loc, OPT_Wplacement_new_, |
2930 | (exact_size |
2931 | ? G_("placement new constructing an object " |
2932 | "of type %qT and size %qwu in a region " |
2933 | "of type %qT and size %qwi") |
2934 | : G_("placement new constructing an object " |
2935 | "of type %qT " |
2936 | "and size %qwu in a region of type %qT " |
2937 | "and size at most %qwu")), |
2938 | type, bytes_need.to_uhwi (), opertype, |
2939 | bytes_avail.to_uhwi ()); |
2940 | |
2941 | if (!warned || !ref.ref) |
2942 | return; |
2943 | |
2944 | if (ref.offrng[0] == 0 || !ref.offset_bounded ()) |
2945 | /* Avoid mentioning the offset when its lower bound is zero |
2946 | or when it's impossibly large. */ |
2947 | inform (DECL_SOURCE_LOCATION (ref.ref), |
2948 | "%qD declared here", ref.ref); |
2949 | else if (ref.offrng[0] == ref.offrng[1]) |
2950 | inform (DECL_SOURCE_LOCATION (ref.ref), |
2951 | "at offset %wi from %qD declared here", |
2952 | ref.offrng[0].to_shwi (), ref.ref); |
2953 | else |
2954 | inform (DECL_SOURCE_LOCATION (ref.ref), |
2955 | "at offset [%wi, %wi] from %qD declared here", |
2956 | ref.offrng[0].to_shwi (), ref.offrng[1].to_shwi (), ref.ref); |
2957 | } |
2958 | |
2959 | /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */ |
2960 | |
2961 | bool |
2962 | type_has_new_extended_alignment (tree t) |
2963 | { |
2964 | return (aligned_new_threshold |
2965 | && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold); |
2966 | } |
2967 | |
2968 | /* Return the alignment we expect malloc to guarantee. This should just be |
2969 | MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some |
2970 | reason, so don't let the threshold be smaller than max_align_t_align. */ |
2971 | |
2972 | unsigned |
2973 | malloc_alignment () |
2974 | { |
2975 | return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT); |
2976 | } |
2977 | |
2978 | /* Determine whether an allocation function is a namespace-scope |
2979 | non-replaceable placement new function. See DR 1748. */ |
2980 | bool |
2981 | std_placement_new_fn_p (tree alloc_fn) |
2982 | { |
2983 | if (DECL_NAMESPACE_SCOPE_P (alloc_fn) |
2984 | && IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_fn)) |
2985 | && !DECL_IS_REPLACEABLE_OPERATOR_NEW_P (alloc_fn)) |
2986 | { |
2987 | tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn))); |
2988 | if (first_arg |
2989 | && (TREE_VALUE (first_arg) == ptr_type_node) |
2990 | && (TREE_CHAIN (first_arg) == void_list_node)) |
2991 | return true; |
2992 | } |
2993 | return false; |
2994 | } |
2995 | |
2996 | /* For element type ELT_TYPE, return the appropriate type of the heap object |
2997 | containing such element(s). COOKIE_SIZE is the size of cookie in bytes. |
2998 | Return |
2999 | struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; } |
3000 | where N is nothing (flexible array member) if ITYPE2 is NULL, otherwise |
3001 | the array has ITYPE2 as its TYPE_DOMAIN. */ |
3002 | |
3003 | tree |
3004 | build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree itype2) |
3005 | { |
3006 | gcc_assert (tree_fits_uhwi_p (cookie_size)); |
3007 | unsigned HOST_WIDE_INT csz = tree_to_uhwi (cookie_size); |
3008 | csz /= int_size_in_bytes (sizetype); |
3009 | tree itype1 = build_index_type (size_int (csz - 1)); |
3010 | tree atype1 = build_cplus_array_type (sizetype, itype1); |
3011 | tree atype2 = build_cplus_array_type (elt_type, itype2); |
3012 | tree rtype = cxx_make_type (RECORD_TYPE); |
3013 | TYPE_NAME (rtype) = heap_identifier; |
3014 | tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1); |
3015 | tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2); |
3016 | DECL_FIELD_CONTEXT (fld1) = rtype; |
3017 | DECL_FIELD_CONTEXT (fld2) = rtype; |
3018 | DECL_ARTIFICIAL (fld1) = true; |
3019 | DECL_ARTIFICIAL (fld2) = true; |
3020 | TYPE_FIELDS (rtype) = fld1; |
3021 | DECL_CHAIN (fld1) = fld2; |
3022 | layout_type (rtype); |
3023 | return rtype; |
3024 | } |
3025 | |
3026 | /* Help the constexpr code to find the right type for the heap variable |
3027 | by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size. |
3028 | Return ALLOC_CALL or ALLOC_CALL cast to a pointer to |
3029 | struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */ |
3030 | |
3031 | static tree |
3032 | maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size) |
3033 | { |
3034 | if (cxx_dialect < cxx20) |
3035 | return alloc_call; |
3036 | |
3037 | if (current_function_decl != NULL_TREE |
3038 | && !DECL_DECLARED_CONSTEXPR_P (current_function_decl)) |
3039 | return alloc_call; |
3040 | |
3041 | tree call_expr = extract_call_expr (alloc_call); |
3042 | if (call_expr == error_mark_node) |
3043 | return alloc_call; |
3044 | |
3045 | tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr); |
3046 | if (alloc_call_fndecl == NULL_TREE |
3047 | || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl)) |
3048 | || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace) |
3049 | return alloc_call; |
3050 | |
3051 | tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size, |
3052 | NULL_TREE); |
3053 | return build_nop (build_pointer_type (rtype), alloc_call); |
3054 | } |
3055 | |
3056 | /* Generate code for a new-expression, including calling the "operator |
3057 | new" function, initializing the object, and, if an exception occurs |
3058 | during construction, cleaning up. The arguments are as for |
3059 | build_raw_new_expr. This may change PLACEMENT and INIT. |
3060 | TYPE is the type of the object being constructed, possibly an array |
3061 | of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may |
3062 | be an array of the form U[inner], with the whole expression being |
3063 | "new U[NELTS][inner]"). */ |
3064 | |
3065 | static tree |
3066 | build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts, |
3067 | vec<tree, va_gc> **init, bool globally_qualified_p, |
3068 | tsubst_flags_t complain) |
3069 | { |
3070 | tree size, rval; |
3071 | /* True iff this is a call to "operator new[]" instead of just |
3072 | "operator new". */ |
3073 | bool array_p = false; |
3074 | /* If ARRAY_P is true, the element type of the array. This is never |
3075 | an ARRAY_TYPE; for something like "new int[3][4]", the |
3076 | ELT_TYPE is "int". If ARRAY_P is false, this is the same type as |
3077 | TYPE. */ |
3078 | tree elt_type; |
3079 | /* The type of the new-expression. (This type is always a pointer |
3080 | type.) */ |
3081 | tree pointer_type; |
3082 | tree non_const_pointer_type; |
3083 | /* The most significant array bound in int[OUTER_NELTS][inner]. */ |
3084 | tree outer_nelts = NULL_TREE; |
3085 | /* For arrays with a non-constant number of elements, a bounds checks |
3086 | on the NELTS parameter to avoid integer overflow at runtime. */ |
3087 | tree outer_nelts_check = NULL_TREE; |
3088 | bool outer_nelts_from_type = false; |
3089 | /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */ |
3090 | offset_int inner_nelts_count = 1; |
3091 | tree alloc_call, alloc_expr; |
3092 | /* Size of the inner array elements (those with constant dimensions). */ |
3093 | offset_int inner_size; |
3094 | /* The address returned by the call to "operator new". This node is |
3095 | a VAR_DECL and is therefore reusable. */ |
3096 | tree alloc_node; |
3097 | tree alloc_fn; |
3098 | tree cookie_expr, init_expr; |
3099 | int nothrow, check_new; |
3100 | /* If non-NULL, the number of extra bytes to allocate at the |
3101 | beginning of the storage allocated for an array-new expression in |
3102 | order to store the number of elements. */ |
3103 | tree cookie_size = NULL_TREE; |
3104 | tree placement_first; |
3105 | tree placement_expr = NULL_TREE; |
3106 | /* True if the function we are calling is a placement allocation |
3107 | function. */ |
3108 | bool placement_allocation_fn_p; |
3109 | /* True if the storage must be initialized, either by a constructor |
3110 | or due to an explicit new-initializer. */ |
3111 | bool is_initialized; |
3112 | /* The address of the thing allocated, not including any cookie. In |
3113 | particular, if an array cookie is in use, DATA_ADDR is the |
3114 | address of the first array element. This node is a VAR_DECL, and |
3115 | is therefore reusable. */ |
3116 | tree data_addr; |
3117 | tree orig_type = type; |
3118 | |
3119 | if (nelts) |
3120 | { |
3121 | outer_nelts = nelts; |
3122 | array_p = true; |
3123 | } |
3124 | else if (TREE_CODE (type) == ARRAY_TYPE) |
3125 | { |
3126 | /* Transforms new (T[N]) to new T[N]. The former is a GNU |
3127 | extension for variable N. (This also covers new T where T is |
3128 | a VLA typedef.) */ |
3129 | array_p = true; |
3130 | nelts = array_type_nelts_top (type); |
3131 | outer_nelts = nelts; |
3132 | type = TREE_TYPE (type); |
3133 | outer_nelts_from_type = true; |
3134 | } |
3135 | |
3136 | /* Lots of logic below depends on whether we have a constant number of |
3137 | elements, so go ahead and fold it now. */ |
3138 | const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain); |
3139 | |
3140 | /* If our base type is an array, then make sure we know how many elements |
3141 | it has. */ |
3142 | for (elt_type = type; |
3143 | TREE_CODE (elt_type) == ARRAY_TYPE; |
3144 | elt_type = TREE_TYPE (elt_type)) |
3145 | { |
3146 | tree inner_nelts = array_type_nelts_top (elt_type); |
3147 | tree inner_nelts_cst = maybe_constant_value (inner_nelts); |
3148 | if (TREE_CODE (inner_nelts_cst) == INTEGER_CST) |
3149 | { |
3150 | wi::overflow_type overflow; |
3151 | offset_int result = wi::mul (x: wi::to_offset (t: inner_nelts_cst), |
3152 | y: inner_nelts_count, sgn: SIGNED, overflow: &overflow); |
3153 | if (overflow) |
3154 | { |
3155 | if (complain & tf_error) |
3156 | error ("integer overflow in array size"); |
3157 | nelts = error_mark_node; |
3158 | } |
3159 | inner_nelts_count = result; |
3160 | } |
3161 | else |
3162 | { |
3163 | if (complain & tf_error) |
3164 | { |
3165 | error_at (cp_expr_loc_or_input_loc (t: inner_nelts), |
3166 | "array size in new-expression must be constant"); |
3167 | cxx_constant_value(inner_nelts); |
3168 | } |
3169 | nelts = error_mark_node; |
3170 | } |
3171 | if (nelts != error_mark_node) |
3172 | nelts = cp_build_binary_op (input_location, |
3173 | MULT_EXPR, nelts, |
3174 | inner_nelts_cst, |
3175 | complain); |
3176 | } |
3177 | |
3178 | if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type, |
3179 | !(complain & tf_error))) |
3180 | return error_mark_node; |
3181 | |
3182 | if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error)) |
3183 | { |
3184 | error ("variably modified type not allowed in new-expression"); |
3185 | return error_mark_node; |
3186 | } |
3187 | |
3188 | if (nelts == error_mark_node) |
3189 | return error_mark_node; |
3190 | |
3191 | /* Warn if we performed the (T[N]) to T[N] transformation and N is |
3192 | variable. */ |
3193 | if (outer_nelts_from_type |
3194 | && !TREE_CONSTANT (cst_outer_nelts)) |
3195 | { |
3196 | if (complain & tf_warning_or_error) |
3197 | { |
3198 | pedwarn (cp_expr_loc_or_input_loc (t: outer_nelts), OPT_Wvla, |
3199 | typedef_variant_p (type: orig_type) |
3200 | ? G_("non-constant array new length must be specified " |
3201 | "directly, not by %<typedef%>") |
3202 | : G_("non-constant array new length must be specified " |
3203 | "without parentheses around the type-id")); |
3204 | } |
3205 | else |
3206 | return error_mark_node; |
3207 | } |
3208 | |
3209 | if (VOID_TYPE_P (elt_type)) |
3210 | { |
3211 | if (complain & tf_error) |
3212 | error ("invalid type %<void%> for %<new%>"); |
3213 | return error_mark_node; |
3214 | } |
3215 | |
3216 | if (is_std_init_list (elt_type) && !cp_unevaluated_operand) |
3217 | warning (OPT_Winit_list_lifetime, |
3218 | "%<new%> of %<initializer_list%> does not " |
3219 | "extend the lifetime of the underlying array"); |
3220 | |
3221 | if (abstract_virtuals_error (ACU_NEW, elt_type, complain)) |
3222 | return error_mark_node; |
3223 | |
3224 | is_initialized = (type_build_ctor_call (elt_type) || *init != NULL); |
3225 | |
3226 | if (*init == NULL && cxx_dialect < cxx11) |
3227 | { |
3228 | bool maybe_uninitialized_error = false; |
3229 | /* A program that calls for default-initialization [...] of an |
3230 | entity of reference type is ill-formed. */ |
3231 | if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type)) |
3232 | maybe_uninitialized_error = true; |
3233 | |
3234 | /* A new-expression that creates an object of type T initializes |
3235 | that object as follows: |
3236 | - If the new-initializer is omitted: |
3237 | -- If T is a (possibly cv-qualified) non-POD class type |
3238 | (or array thereof), the object is default-initialized (8.5). |
3239 | [...] |
3240 | -- Otherwise, the object created has indeterminate |
3241 | value. If T is a const-qualified type, or a (possibly |
3242 | cv-qualified) POD class type (or array thereof) |
3243 | containing (directly or indirectly) a member of |
3244 | const-qualified type, the program is ill-formed; */ |
3245 | |
3246 | if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type)) |
3247 | maybe_uninitialized_error = true; |
3248 | |
3249 | if (maybe_uninitialized_error |
3250 | && diagnose_uninitialized_cst_or_ref_member (type: elt_type, |
3251 | /*using_new=*/true, |
3252 | complain: complain & tf_error)) |
3253 | return error_mark_node; |
3254 | } |
3255 | |
3256 | if (CP_TYPE_CONST_P (elt_type) && *init == NULL |
3257 | && default_init_uninitialized_part (elt_type)) |
3258 | { |
3259 | if (complain & tf_error) |
3260 | error ("uninitialized const in %<new%> of %q#T", elt_type); |
3261 | return error_mark_node; |
3262 | } |
3263 | |
3264 | size = size_in_bytes (t: elt_type); |
3265 | if (array_p) |
3266 | { |
3267 | /* Maximum available size in bytes. Half of the address space |
3268 | minus the cookie size. */ |
3269 | offset_int max_size |
3270 | = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1); |
3271 | /* Maximum number of outer elements which can be allocated. */ |
3272 | offset_int max_outer_nelts; |
3273 | tree max_outer_nelts_tree; |
3274 | |
3275 | gcc_assert (TREE_CODE (size) == INTEGER_CST); |
3276 | cookie_size = targetm.cxx.get_cookie_size (elt_type); |
3277 | gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST); |
3278 | gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size)); |
3279 | /* Unconditionally subtract the cookie size. This decreases the |
3280 | maximum object size and is safe even if we choose not to use |
3281 | a cookie after all. */ |
3282 | max_size -= wi::to_offset (t: cookie_size); |
3283 | wi::overflow_type overflow; |
3284 | inner_size = wi::mul (x: wi::to_offset (t: size), y: inner_nelts_count, sgn: SIGNED, |
3285 | overflow: &overflow); |
3286 | if (overflow || wi::gtu_p (x: inner_size, y: max_size)) |
3287 | { |
3288 | if (complain & tf_error) |
3289 | { |
3290 | cst_size_error error; |
3291 | if (overflow) |
3292 | error = cst_size_overflow; |
3293 | else |
3294 | { |
3295 | error = cst_size_too_big; |
3296 | size = size_binop (MULT_EXPR, size, |
3297 | wide_int_to_tree (sizetype, |
3298 | inner_nelts_count)); |
3299 | size = cp_fully_fold (size); |
3300 | } |
3301 | invalid_array_size_error (input_location, error, size, |
3302 | /*name=*/NULL_TREE); |
3303 | } |
3304 | return error_mark_node; |
3305 | } |
3306 | |
3307 | max_outer_nelts = wi::udiv_trunc (x: max_size, y: inner_size); |
3308 | max_outer_nelts_tree = wide_int_to_tree (sizetype, cst: max_outer_nelts); |
3309 | |
3310 | size = build2 (MULT_EXPR, sizetype, size, nelts); |
3311 | |
3312 | if (TREE_CODE (cst_outer_nelts) == INTEGER_CST) |
3313 | { |
3314 | if (tree_int_cst_lt (t1: max_outer_nelts_tree, t2: cst_outer_nelts)) |
3315 | { |
3316 | /* When the array size is constant, check it at compile time |
3317 | to make sure it doesn't exceed the implementation-defined |
3318 | maximum, as required by C++ 14 (in C++ 11 this requirement |
3319 | isn't explicitly stated but it's enforced anyway -- see |
3320 | grokdeclarator in cp/decl.cc). */ |
3321 | if (complain & tf_error) |
3322 | { |
3323 | size = cp_fully_fold (size); |
3324 | invalid_array_size_error (input_location, cst_size_too_big, |
3325 | size, NULL_TREE); |
3326 | } |
3327 | return error_mark_node; |
3328 | } |
3329 | } |
3330 | else |
3331 | { |
3332 | /* When a runtime check is necessary because the array size |
3333 | isn't constant, keep only the top-most seven bits (starting |
3334 | with the most significant non-zero bit) of the maximum size |
3335 | to compare the array size against, to simplify encoding the |
3336 | constant maximum size in the instruction stream. */ |
3337 | |
3338 | unsigned shift = (max_outer_nelts.get_precision ()) - 7 |
3339 | - wi::clz (max_outer_nelts); |
3340 | max_outer_nelts = (max_outer_nelts >> shift) << shift; |
3341 | |
3342 | outer_nelts_check = build2 (LE_EXPR, boolean_type_node, |
3343 | outer_nelts, |
3344 | max_outer_nelts_tree); |
3345 | } |
3346 | } |
3347 | |
3348 | tree align_arg = NULL_TREE; |
3349 | if (type_has_new_extended_alignment (t: elt_type)) |
3350 | { |
3351 | unsigned align = TYPE_ALIGN_UNIT (elt_type); |
3352 | /* Also consider the alignment of the cookie, if any. */ |
3353 | if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)) |
3354 | align = MAX (align, TYPE_ALIGN_UNIT (size_type_node)); |
3355 | align_arg = build_int_cst (align_type_node, align); |
3356 | } |
3357 | |
3358 | alloc_fn = NULL_TREE; |
3359 | |
3360 | /* If PLACEMENT is a single simple pointer type not passed by |
3361 | reference, prepare to capture it in a temporary variable. Do |
3362 | this now, since PLACEMENT will change in the calls below. */ |
3363 | placement_first = NULL_TREE; |
3364 | if (vec_safe_length (v: *placement) == 1 |
3365 | && (TYPE_PTR_P (TREE_TYPE ((**placement)[0])))) |
3366 | placement_first = (**placement)[0]; |
3367 | |
3368 | bool member_new_p = false; |
3369 | |
3370 | /* Allocate the object. */ |
3371 | tree fnname; |
3372 | tree fns; |
3373 | |
3374 | fnname = ovl_op_identifier (isass: false, code: array_p ? VEC_NEW_EXPR : NEW_EXPR); |
3375 | |
3376 | member_new_p = !globally_qualified_p |
3377 | && CLASS_TYPE_P (elt_type) |
3378 | && (array_p |
3379 | ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type) |
3380 | : TYPE_HAS_NEW_OPERATOR (elt_type)); |
3381 | |
3382 | bool member_delete_p = (!globally_qualified_p |
3383 | && CLASS_TYPE_P (elt_type) |
3384 | && (array_p |
3385 | ? TYPE_GETS_VEC_DELETE (elt_type) |
3386 | : TYPE_GETS_REG_DELETE (elt_type))); |
3387 | |
3388 | if (member_new_p) |
3389 | { |
3390 | /* Use a class-specific operator new. */ |
3391 | /* If a cookie is required, add some extra space. */ |
3392 | if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)) |
3393 | size = build2 (PLUS_EXPR, sizetype, size, cookie_size); |
3394 | else |
3395 | { |
3396 | cookie_size = NULL_TREE; |
3397 | /* No size arithmetic necessary, so the size check is |
3398 | not needed. */ |
3399 | if (outer_nelts_check != NULL && inner_size == 1) |
3400 | outer_nelts_check = NULL_TREE; |
3401 | } |
3402 | /* Perform the overflow check. */ |
3403 | tree errval = TYPE_MAX_VALUE (sizetype); |
3404 | if (cxx_dialect >= cxx11 && flag_exceptions) |
3405 | errval = throw_bad_array_new_length (); |
3406 | if (outer_nelts_check != NULL_TREE) |
3407 | size = build3 (COND_EXPR, sizetype, outer_nelts_check, size, errval); |
3408 | size = fold_to_constant (size); |
3409 | /* Create the argument list. */ |
3410 | vec_safe_insert (v&: *placement, ix: 0, obj: size); |
3411 | /* Do name-lookup to find the appropriate operator. */ |
3412 | fns = lookup_fnfields (elt_type, fnname, /*protect=*/2, complain); |
3413 | if (fns == NULL_TREE) |
3414 | { |
3415 | if (complain & tf_error) |
3416 | error ("no suitable %qD found in class %qT", fnname, elt_type); |
3417 | return error_mark_node; |
3418 | } |
3419 | if (TREE_CODE (fns) == TREE_LIST) |
3420 | { |
3421 | if (complain & tf_error) |
3422 | { |
3423 | auto_diagnostic_group d; |
3424 | error ("request for member %qD is ambiguous", fnname); |
3425 | print_candidates (fns); |
3426 | } |
3427 | return error_mark_node; |
3428 | } |
3429 | tree dummy = build_dummy_object (elt_type); |
3430 | alloc_call = NULL_TREE; |
3431 | if (align_arg) |
3432 | { |
3433 | vec<tree, va_gc> *align_args |
3434 | = vec_copy_and_insert (*placement, align_arg, 1); |
3435 | alloc_call |
3436 | = build_new_method_call (dummy, fns, &align_args, |
3437 | /*conversion_path=*/NULL_TREE, |
3438 | LOOKUP_NORMAL, &alloc_fn, tf_none); |
3439 | /* If no matching function is found and the allocated object type |
3440 | has new-extended alignment, the alignment argument is removed |
3441 | from the argument list, and overload resolution is performed |
3442 | again. */ |
3443 | if (alloc_call == error_mark_node) |
3444 | alloc_call = NULL_TREE; |
3445 | } |
3446 | if (!alloc_call) |
3447 | alloc_call = build_new_method_call (dummy, fns, placement, |
3448 | /*conversion_path=*/NULL_TREE, |
3449 | LOOKUP_NORMAL, |
3450 | &alloc_fn, complain); |
3451 | } |
3452 | else |
3453 | { |
3454 | /* Use a global operator new. */ |
3455 | /* See if a cookie might be required. */ |
3456 | if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))) |
3457 | { |
3458 | cookie_size = NULL_TREE; |
3459 | /* No size arithmetic necessary, so the size check is |
3460 | not needed. */ |
3461 | if (outer_nelts_check != NULL && inner_size == 1) |
3462 | outer_nelts_check = NULL_TREE; |
3463 | } |
3464 | |
3465 | size = fold_to_constant (size); |
3466 | /* If size is zero e.g. due to type having zero size, try to |
3467 | preserve outer_nelts for constant expression evaluation |
3468 | purposes. */ |
3469 | if (integer_zerop (size) && outer_nelts) |
3470 | size = build2 (MULT_EXPR, TREE_TYPE (size), size, outer_nelts); |
3471 | |
3472 | alloc_call = build_operator_new_call (fnname, placement, |
3473 | &size, &cookie_size, |
3474 | align_arg, outer_nelts_check, |
3475 | &alloc_fn, complain); |
3476 | } |
3477 | |
3478 | if (alloc_call == error_mark_node) |
3479 | return error_mark_node; |
3480 | |
3481 | gcc_assert (alloc_fn != NULL_TREE); |
3482 | |
3483 | /* Now, check to see if this function is actually a placement |
3484 | allocation function. This can happen even when PLACEMENT is NULL |
3485 | because we might have something like: |
3486 | |
3487 | struct S { void* operator new (size_t, int i = 0); }; |
3488 | |
3489 | A call to `new S' will get this allocation function, even though |
3490 | there is no explicit placement argument. If there is more than |
3491 | one argument, or there are variable arguments, then this is a |
3492 | placement allocation function. */ |
3493 | placement_allocation_fn_p |
3494 | = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1 |
3495 | || varargs_function_p (alloc_fn)); |
3496 | |
3497 | if (complain & tf_warning_or_error |
3498 | && warn_aligned_new |
3499 | && !placement_allocation_fn_p |
3500 | && TYPE_ALIGN (elt_type) > malloc_alignment () |
3501 | && (warn_aligned_new > 1 |
3502 | || CP_DECL_CONTEXT (alloc_fn) == global_namespace) |
3503 | && !aligned_allocation_fn_p (alloc_fn)) |
3504 | { |
3505 | auto_diagnostic_group d; |
3506 | if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended " |
3507 | "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type))) |
3508 | { |
3509 | inform (input_location, "uses %qD, which does not have an alignment " |
3510 | "parameter", alloc_fn); |
3511 | if (!aligned_new_threshold) |
3512 | inform (input_location, "use %<-faligned-new%> to enable C++17 " |
3513 | "over-aligned new support"); |
3514 | } |
3515 | } |
3516 | |
3517 | /* If we found a simple case of PLACEMENT_EXPR above, then copy it |
3518 | into a temporary variable. */ |
3519 | if (!processing_template_decl |
3520 | && TREE_CODE (alloc_call) == CALL_EXPR |
3521 | && call_expr_nargs (alloc_call) == 2 |
3522 | && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE |
3523 | && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))) |
3524 | { |
3525 | tree placement = CALL_EXPR_ARG (alloc_call, 1); |
3526 | |
3527 | if (placement_first != NULL_TREE |
3528 | && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement))) |
3529 | || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement))))) |
3530 | { |
3531 | placement_expr = get_internal_target_expr (placement_first); |
3532 | CALL_EXPR_ARG (alloc_call, 1) |
3533 | = fold_convert (TREE_TYPE (placement), placement_expr); |
3534 | } |
3535 | |
3536 | if (!member_new_p |
3537 | && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))) |
3538 | { |
3539 | /* Attempt to make the warning point at the operator new argument. */ |
3540 | if (placement_first) |
3541 | placement = placement_first; |
3542 | |
3543 | warn_placement_new_too_small (type: orig_type, nelts, size, oper: placement); |
3544 | } |
3545 | } |
3546 | |
3547 | alloc_expr = alloc_call; |
3548 | if (cookie_size) |
3549 | alloc_expr = maybe_wrap_new_for_constexpr (alloc_call: alloc_expr, elt_type: type, |
3550 | cookie_size); |
3551 | |
3552 | /* In the simple case, we can stop now. */ |
3553 | pointer_type = build_pointer_type (type); |
3554 | if (!cookie_size && !is_initialized && !member_delete_p) |
3555 | return build_nop (pointer_type, alloc_expr); |
3556 | |
3557 | /* Store the result of the allocation call in a variable so that we can |
3558 | use it more than once. */ |
3559 | alloc_expr = get_internal_target_expr (alloc_expr); |
3560 | alloc_node = TARGET_EXPR_SLOT (alloc_expr); |
3561 | |
3562 | /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */ |
3563 | while (TREE_CODE (alloc_call) == COMPOUND_EXPR) |
3564 | alloc_call = TREE_OPERAND (alloc_call, 1); |
3565 | |
3566 | /* Preevaluate the placement args so that we don't reevaluate them for a |
3567 | placement delete. */ |
3568 | if (placement_allocation_fn_p) |
3569 | { |
3570 | tree inits; |
3571 | stabilize_call (alloc_call, &inits); |
3572 | if (inits) |
3573 | alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits, |
3574 | alloc_expr); |
3575 | } |
3576 | |
3577 | /* unless an allocation function is declared with an empty excep- |
3578 | tion-specification (_except.spec_), throw(), it indicates failure to |
3579 | allocate storage by throwing a bad_alloc exception (clause _except_, |
3580 | _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo- |
3581 | cation function is declared with an empty exception-specification, |
3582 | throw(), it returns null to indicate failure to allocate storage and a |
3583 | non-null pointer otherwise. |
3584 | |
3585 | So check for a null exception spec on the op new we just called. */ |
3586 | |
3587 | nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn)); |
3588 | check_new |
3589 | = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn)); |
3590 | |
3591 | if (cookie_size) |
3592 | { |
3593 | tree cookie; |
3594 | tree cookie_ptr; |
3595 | tree size_ptr_type; |
3596 | |
3597 | /* Adjust so we're pointing to the start of the object. */ |
3598 | data_addr = fold_build_pointer_plus (alloc_node, cookie_size); |
3599 | |
3600 | /* Store the number of bytes allocated so that we can know how |
3601 | many elements to destroy later. We use the last sizeof |
3602 | (size_t) bytes to store the number of elements. */ |
3603 | cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype)); |
3604 | cookie_ptr = fold_build_pointer_plus_loc (loc: input_location, |
3605 | ptr: alloc_node, off: cookie_ptr); |
3606 | size_ptr_type = build_pointer_type (sizetype); |
3607 | cookie_ptr = fold_convert (size_ptr_type, cookie_ptr); |
3608 | cookie = cp_build_fold_indirect_ref (cookie_ptr); |
3609 | |
3610 | cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts); |
3611 | |
3612 | if (targetm.cxx.cookie_has_size ()) |
3613 | { |
3614 | /* Also store the element size. */ |
3615 | cookie_ptr = fold_build_pointer_plus (cookie_ptr, |
3616 | fold_build1_loc (input_location, |
3617 | NEGATE_EXPR, sizetype, |
3618 | size_in_bytes (sizetype))); |
3619 | |
3620 | cookie = cp_build_fold_indirect_ref (cookie_ptr); |
3621 | cookie = build2 (MODIFY_EXPR, sizetype, cookie, |
3622 | size_in_bytes (t: elt_type)); |
3623 | cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr), |
3624 | cookie, cookie_expr); |
3625 | } |
3626 | } |
3627 | else |
3628 | { |
3629 | cookie_expr = NULL_TREE; |
3630 | data_addr = alloc_node; |
3631 | } |
3632 | |
3633 | /* Now use a pointer to the type we've actually allocated. */ |
3634 | |
3635 | /* But we want to operate on a non-const version to start with, |
3636 | since we'll be modifying the elements. */ |
3637 | non_const_pointer_type = build_pointer_type |
3638 | (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST)); |
3639 | |
3640 | data_addr = fold_convert (non_const_pointer_type, data_addr); |
3641 | /* Any further uses of alloc_node will want this type, too. */ |
3642 | alloc_node = fold_convert (non_const_pointer_type, alloc_node); |
3643 | |
3644 | /* Now initialize the allocated object. Note that we preevaluate the |
3645 | initialization expression, apart from the actual constructor call or |
3646 | assignment--we do this because we want to delay the allocation as long |
3647 | as possible in order to minimize the size of the exception region for |
3648 | placement delete. */ |
3649 | if (is_initialized) |
3650 | { |
3651 | bool explicit_value_init_p = false; |
3652 | |
3653 | if (*init != NULL && (*init)->is_empty ()) |
3654 | { |
3655 | *init = NULL; |
3656 | explicit_value_init_p = true; |
3657 | } |
3658 | |
3659 | if (processing_template_decl) |
3660 | { |
3661 | /* Avoid an ICE when converting to a base in build_simple_base_path. |
3662 | We'll throw this all away anyway, and build_new will create |
3663 | a NEW_EXPR. */ |
3664 | tree t = fold_convert (build_pointer_type (elt_type), data_addr); |
3665 | /* build_value_init doesn't work in templates, and we don't need |
3666 | the initializer anyway since we're going to throw it away and |
3667 | rebuild it at instantiation time, so just build up a single |
3668 | constructor call to get any appropriate diagnostics. */ |
3669 | init_expr = cp_build_fold_indirect_ref (t); |
3670 | if (type_build_ctor_call (elt_type)) |
3671 | init_expr = build_special_member_call (init_expr, |
3672 | complete_ctor_identifier, |
3673 | init, elt_type, |
3674 | LOOKUP_NORMAL, |
3675 | complain); |
3676 | } |
3677 | else if (array_p) |
3678 | { |
3679 | tree vecinit = NULL_TREE; |
3680 | const size_t len = vec_safe_length (v: *init); |
3681 | if (len == 1 && DIRECT_LIST_INIT_P ((**init)[0])) |
3682 | { |
3683 | vecinit = (**init)[0]; |
3684 | if (CONSTRUCTOR_NELTS (vecinit) == 0) |
3685 | /* List-value-initialization, leave it alone. */; |
3686 | else |
3687 | { |
3688 | tree arraytype, domain; |
3689 | if (TREE_CONSTANT (nelts)) |
3690 | domain = compute_array_index_type (NULL_TREE, nelts, |
3691 | complain); |
3692 | else |
3693 | /* We'll check the length at runtime. */ |
3694 | domain = NULL_TREE; |
3695 | arraytype = build_cplus_array_type (type, domain); |
3696 | /* If we have new char[4]{"foo"}, we have to reshape |
3697 | so that the STRING_CST isn't wrapped in { }. */ |
3698 | vecinit = reshape_init (arraytype, vecinit, complain); |
3699 | /* The middle end doesn't cope with the location wrapper |
3700 | around a STRING_CST. */ |
3701 | STRIP_ANY_LOCATION_WRAPPER (vecinit); |
3702 | vecinit = digest_init (arraytype, vecinit, complain); |
3703 | } |
3704 | } |
3705 | else if (*init) |
3706 | { |
3707 | if (complain & tf_error) |
3708 | error ("parenthesized initializer in array new"); |
3709 | return error_mark_node; |
3710 | } |
3711 | |
3712 | /* Collect flags for disabling subobject cleanups once the complete |
3713 | object is fully constructed. */ |
3714 | vec<tree, va_gc> *flags = make_tree_vector (); |
3715 | |
3716 | init_expr |
3717 | = build_vec_init (data_addr, |
3718 | cp_build_binary_op (input_location, |
3719 | MINUS_EXPR, outer_nelts, |
3720 | integer_one_node, |
3721 | complain), |
3722 | vecinit, |
3723 | explicit_value_init_p, |
3724 | /*from_array=*/0, |
3725 | complain, |
3726 | &flags); |
3727 | |
3728 | for (tree f : flags) |
3729 | { |
3730 | tree cl = build_disable_temp_cleanup (f); |
3731 | cl = convert_to_void (cl, ICV_STATEMENT, complain); |
3732 | init_expr = build2 (COMPOUND_EXPR, void_type_node, |
3733 | init_expr, cl); |
3734 | } |
3735 | release_tree_vector (flags); |
3736 | } |
3737 | else |
3738 | { |
3739 | init_expr = cp_build_fold_indirect_ref (data_addr); |
3740 | |
3741 | if (type_build_ctor_call (type) && !explicit_value_init_p) |
3742 | { |
3743 | init_expr = build_special_member_call (init_expr, |
3744 | complete_ctor_identifier, |
3745 | init, elt_type, |
3746 | LOOKUP_NORMAL, |
3747 | complain|tf_no_cleanup); |
3748 | } |
3749 | else if (explicit_value_init_p) |
3750 | { |
3751 | /* Something like `new int()'. NO_CLEANUP is needed so |
3752 | we don't try and build a (possibly ill-formed) |
3753 | destructor. */ |
3754 | tree val = build_value_init (type, complain: complain | tf_no_cleanup); |
3755 | if (val == error_mark_node) |
3756 | return error_mark_node; |
3757 | init_expr = cp_build_init_expr (t: init_expr, i: val); |
3758 | } |
3759 | else |
3760 | { |
3761 | tree ie; |
3762 | |
3763 | /* We are processing something like `new int (10)', which |
3764 | means allocate an int, and initialize it with 10. |
3765 | |
3766 | In C++20, also handle `new A(1, 2)'. */ |
3767 | if (cxx_dialect >= cxx20 |
3768 | && AGGREGATE_TYPE_P (type) |
3769 | && (*init)->length () > 1) |
3770 | { |
3771 | ie = build_constructor_from_vec (init_list_type_node, *init); |
3772 | CONSTRUCTOR_IS_DIRECT_INIT (ie) = true; |
3773 | CONSTRUCTOR_IS_PAREN_INIT (ie) = true; |
3774 | ie = digest_init (type, ie, complain); |
3775 | } |
3776 | else |
3777 | ie = build_x_compound_expr_from_vec (*init, "new initializer", |
3778 | complain); |
3779 | init_expr = cp_build_modify_expr (input_location, init_expr, |
3780 | INIT_EXPR, ie, complain); |
3781 | } |
3782 | /* If the initializer uses C++14 aggregate NSDMI that refer to the |
3783 | object being initialized, replace them now and don't try to |
3784 | preevaluate. */ |
3785 | bool had_placeholder = false; |
3786 | if (!processing_template_decl |
3787 | && TREE_CODE (init_expr) == INIT_EXPR) |
3788 | TREE_OPERAND (init_expr, 1) |
3789 | = replace_placeholders (TREE_OPERAND (init_expr, 1), |
3790 | TREE_OPERAND (init_expr, 0), |
3791 | &had_placeholder); |
3792 | } |
3793 | |
3794 | if (init_expr == error_mark_node) |
3795 | return error_mark_node; |
3796 | } |
3797 | else |
3798 | init_expr = NULL_TREE; |
3799 | |
3800 | /* If any part of the object initialization terminates by throwing an |
3801 | exception and a suitable deallocation function can be found, the |
3802 | deallocation function is called to free the memory in which the |
3803 | object was being constructed, after which the exception continues |
3804 | to propagate in the context of the new-expression. If no |
3805 | unambiguous matching deallocation function can be found, |
3806 | propagating the exception does not cause the object's memory to be |
3807 | freed. */ |
3808 | if (flag_exceptions && (init_expr || member_delete_p)) |
3809 | { |
3810 | enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR; |
3811 | tree cleanup; |
3812 | |
3813 | /* The Standard is unclear here, but the right thing to do |
3814 | is to use the same method for finding deallocation |
3815 | functions that we use for finding allocation functions. */ |
3816 | cleanup = (build_op_delete_call |
3817 | (dcode, |
3818 | alloc_node, |
3819 | size, |
3820 | globally_qualified_p, |
3821 | placement_allocation_fn_p ? alloc_call : NULL_TREE, |
3822 | alloc_fn, |
3823 | complain)); |
3824 | |
3825 | if (cleanup && init_expr && !processing_template_decl) |
3826 | /* Ack! First we allocate the memory. Then we set our sentry |
3827 | variable to true, and expand a cleanup that deletes the |
3828 | memory if sentry is true. Then we run the constructor, and |
3829 | finally clear the sentry. |
3830 | |
3831 | We need to do this because we allocate the space first, so |
3832 | if there are any temporaries with cleanups in the |
3833 | constructor args, we need this EH region to extend until |
3834 | end of full-expression to preserve nesting. |
3835 | |
3836 | We used to try to evaluate the args first to avoid this, but |
3837 | since C++17 [expr.new] says that "The invocation of the |
3838 | allocation function is sequenced before the evaluations of |
3839 | expressions in the new-initializer." */ |
3840 | { |
3841 | tree end, sentry, begin; |
3842 | |
3843 | begin = get_internal_target_expr (boolean_true_node); |
3844 | |
3845 | sentry = TARGET_EXPR_SLOT (begin); |
3846 | |
3847 | /* CLEANUP is compiler-generated, so no diagnostics. */ |
3848 | suppress_warning (cleanup); |
3849 | |
3850 | TARGET_EXPR_CLEANUP (begin) |
3851 | = build3 (COND_EXPR, void_type_node, sentry, |
3852 | cleanup, void_node); |
3853 | |
3854 | end = build2 (MODIFY_EXPR, TREE_TYPE (sentry), |
3855 | sentry, boolean_false_node); |
3856 | |
3857 | init_expr |
3858 | = build2 (COMPOUND_EXPR, void_type_node, begin, |
3859 | build2 (COMPOUND_EXPR, void_type_node, init_expr, |
3860 | end)); |
3861 | /* Likewise, this is compiler-generated. */ |
3862 | suppress_warning (init_expr); |
3863 | } |
3864 | } |
3865 | |
3866 | /* Now build up the return value in reverse order. */ |
3867 | |
3868 | rval = data_addr; |
3869 | |
3870 | if (init_expr) |
3871 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval); |
3872 | if (cookie_expr) |
3873 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval); |
3874 | |
3875 | suppress_warning (rval, OPT_Wunused_value); |
3876 | |
3877 | if (rval == data_addr && TREE_CODE (alloc_expr) == TARGET_EXPR) |
3878 | /* If we don't have an initializer or a cookie, strip the TARGET_EXPR |
3879 | and return the call (which doesn't need to be adjusted). */ |
3880 | rval = TARGET_EXPR_INITIAL (alloc_expr); |
3881 | else |
3882 | { |
3883 | if (check_new) |
3884 | { |
3885 | tree ifexp = cp_build_binary_op (input_location, |
3886 | NE_EXPR, alloc_node, |
3887 | nullptr_node, |
3888 | complain); |
3889 | rval = build_conditional_expr (input_location, ifexp, rval, |
3890 | alloc_node, complain); |
3891 | } |
3892 | |
3893 | /* Perform the allocation before anything else, so that ALLOC_NODE |
3894 | has been initialized before we start using it. */ |
3895 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval); |
3896 | } |
3897 | |
3898 | /* A new-expression is never an lvalue. */ |
3899 | gcc_assert (!obvalue_p (rval)); |
3900 | |
3901 | return convert (pointer_type, rval); |
3902 | } |
3903 | |
3904 | /* Generate a representation for a C++ "new" expression. *PLACEMENT |
3905 | is a vector of placement-new arguments (or NULL if none). If NELTS |
3906 | is NULL, TYPE is the type of the storage to be allocated. If NELTS |
3907 | is not NULL, then this is an array-new allocation; TYPE is the type |
3908 | of the elements in the array and NELTS is the number of elements in |
3909 | the array. *INIT, if non-NULL, is the initializer for the new |
3910 | object, or an empty vector to indicate an initializer of "()". If |
3911 | USE_GLOBAL_NEW is true, then the user explicitly wrote "::new" |
3912 | rather than just "new". This may change PLACEMENT and INIT. */ |
3913 | |
3914 | tree |
3915 | build_new (location_t loc, vec<tree, va_gc> **placement, tree type, |
3916 | tree nelts, vec<tree, va_gc> **init, int use_global_new, |
3917 | tsubst_flags_t complain) |
3918 | { |
3919 | tree rval; |
3920 | vec<tree, va_gc> *orig_placement = NULL; |
3921 | tree orig_nelts = NULL_TREE; |
3922 | vec<tree, va_gc> *orig_init = NULL; |
3923 | |
3924 | if (type == error_mark_node) |
3925 | return error_mark_node; |
3926 | |
3927 | if (nelts == NULL_TREE |
3928 | /* Don't do auto deduction where it might affect mangling. */ |
3929 | && (!processing_template_decl || at_function_scope_p ())) |
3930 | { |
3931 | tree auto_node = type_uses_auto (type); |
3932 | if (auto_node) |
3933 | { |
3934 | tree d_init = NULL_TREE; |
3935 | const size_t len = vec_safe_length (v: *init); |
3936 | /* E.g. new auto(x) must have exactly one element, or |
3937 | a {} initializer will have one element. */ |
3938 | if (len == 1) |
3939 | { |
3940 | d_init = (**init)[0]; |
3941 | d_init = resolve_nondeduced_context (d_init, complain); |
3942 | } |
3943 | /* For the rest, e.g. new A(1, 2, 3), create a list. */ |
3944 | else if (len > 1) |
3945 | { |
3946 | unsigned int n; |
3947 | tree t; |
3948 | tree *pp = &d_init; |
3949 | FOR_EACH_VEC_ELT (**init, n, t) |
3950 | { |
3951 | t = resolve_nondeduced_context (t, complain); |
3952 | *pp = build_tree_list (NULL_TREE, t); |
3953 | pp = &TREE_CHAIN (*pp); |
3954 | } |
3955 | } |
3956 | type = do_auto_deduction (type, d_init, auto_node, complain); |
3957 | } |
3958 | } |
3959 | |
3960 | if (processing_template_decl) |
3961 | { |
3962 | if (dependent_type_p (type) |
3963 | || any_type_dependent_arguments_p (*placement) |
3964 | || (nelts && type_dependent_expression_p (nelts)) |
3965 | || (nelts && *init) |
3966 | || any_type_dependent_arguments_p (*init)) |
3967 | return build_raw_new_expr (loc, placement: *placement, type, nelts, init: *init, |
3968 | use_global_new); |
3969 | |
3970 | orig_placement = make_tree_vector_copy (*placement); |
3971 | orig_nelts = nelts; |
3972 | if (*init) |
3973 | { |
3974 | orig_init = make_tree_vector_copy (*init); |
3975 | /* Also copy any CONSTRUCTORs in *init, since reshape_init and |
3976 | digest_init clobber them in place. */ |
3977 | for (unsigned i = 0; i < orig_init->length(); ++i) |
3978 | { |
3979 | tree e = (**init)[i]; |
3980 | if (TREE_CODE (e) == CONSTRUCTOR) |
3981 | (**init)[i] = copy_node (e); |
3982 | } |
3983 | } |
3984 | } |
3985 | |
3986 | if (nelts) |
3987 | { |
3988 | location_t nelts_loc = cp_expr_loc_or_loc (t: nelts, or_loc: loc); |
3989 | if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false)) |
3990 | { |
3991 | if (complain & tf_error) |
3992 | permerror (nelts_loc, |
3993 | "size in array new must have integral type"); |
3994 | else |
3995 | return error_mark_node; |
3996 | } |
3997 | |
3998 | /* Try to determine the constant value only for the purposes |
3999 | of the diagnostic below but continue to use the original |
4000 | value and handle const folding later. */ |
4001 | const_tree cst_nelts = fold_non_dependent_expr (nelts, complain); |
4002 | |
4003 | /* The expression in a noptr-new-declarator is erroneous if it's of |
4004 | non-class type and its value before converting to std::size_t is |
4005 | less than zero. ... If the expression is a constant expression, |
4006 | the program is ill-fomed. */ |
4007 | if (TREE_CODE (cst_nelts) == INTEGER_CST |
4008 | && !valid_array_size_p (nelts_loc, cst_nelts, NULL_TREE, |
4009 | complain & tf_error)) |
4010 | return error_mark_node; |
4011 | |
4012 | nelts = mark_rvalue_use (nelts); |
4013 | nelts = cp_save_expr (cp_convert (sizetype, nelts, complain)); |
4014 | } |
4015 | |
4016 | /* ``A reference cannot be created by the new operator. A reference |
4017 | is not an object (8.2.2, 8.4.3), so a pointer to it could not be |
4018 | returned by new.'' ARM 5.3.3 */ |
4019 | if (TYPE_REF_P (type)) |
4020 | { |
4021 | if (complain & tf_error) |
4022 | error_at (loc, "new cannot be applied to a reference type"); |
4023 | else |
4024 | return error_mark_node; |
4025 | type = TREE_TYPE (type); |
4026 | } |
4027 | |
4028 | if (TREE_CODE (type) == FUNCTION_TYPE) |
4029 | { |
4030 | if (complain & tf_error) |
4031 | error_at (loc, "new cannot be applied to a function type"); |
4032 | return error_mark_node; |
4033 | } |
4034 | |
4035 | /* P1009: Array size deduction in new-expressions. */ |
4036 | const bool array_p = TREE_CODE (type) == ARRAY_TYPE; |
4037 | if (*init |
4038 | /* If the array didn't specify its bound, we have to deduce it. */ |
4039 | && ((array_p && !TYPE_DOMAIN (type)) |
4040 | /* For C++20 array with parenthesized-init, we have to process |
4041 | the parenthesized-list. But don't do it for (), which is |
4042 | value-initialization, and INIT should stay empty. */ |
4043 | || (cxx_dialect >= cxx20 |
4044 | && (array_p || nelts) |
4045 | && !(*init)->is_empty ()))) |
4046 | { |
4047 | /* This means we have 'new T[]()'. */ |
4048 | if ((*init)->is_empty ()) |
4049 | { |
4050 | tree ctor = build_constructor (init_list_type_node, NULL); |
4051 | CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true; |
4052 | vec_safe_push (v&: *init, obj: ctor); |
4053 | } |
4054 | tree &elt = (**init)[0]; |
4055 | /* The C++20 'new T[](e_0, ..., e_k)' case allowed by P0960. */ |
4056 | if (!DIRECT_LIST_INIT_P (elt) && cxx_dialect >= cxx20) |
4057 | { |
4058 | tree ctor = build_constructor_from_vec (init_list_type_node, *init); |
4059 | CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true; |
4060 | CONSTRUCTOR_IS_PAREN_INIT (ctor) = true; |
4061 | elt = ctor; |
4062 | /* We've squashed all the vector elements into the first one; |
4063 | truncate the rest. */ |
4064 | (*init)->truncate (size: 1); |
4065 | } |
4066 | /* Otherwise we should have 'new T[]{e_0, ..., e_k}'. */ |
4067 | if (array_p && !TYPE_DOMAIN (type)) |
4068 | { |
4069 | /* We need to reshape before deducing the bounds to handle code like |
4070 | |
4071 | struct S { int x, y; }; |
4072 | new S[]{1, 2, 3, 4}; |
4073 | |
4074 | which should deduce S[2]. But don't change ELT itself: we want to |
4075 | pass a list-initializer to build_new_1, even for STRING_CSTs. */ |
4076 | tree e = elt; |
4077 | if (BRACE_ENCLOSED_INITIALIZER_P (e)) |
4078 | e = reshape_init (type, e, complain); |
4079 | cp_complete_array_type (&type, e, /*do_default*/false); |
4080 | } |
4081 | } |
4082 | |
4083 | /* The type allocated must be complete. If the new-type-id was |
4084 | "T[N]" then we are just checking that "T" is complete here, but |
4085 | that is equivalent, since the value of "N" doesn't matter. */ |
4086 | if (!complete_type_or_maybe_complain (type, NULL_TREE, complain)) |
4087 | return error_mark_node; |
4088 | |
4089 | rval = build_new_1 (placement, type, nelts, init, globally_qualified_p: use_global_new, complain); |
4090 | if (rval == error_mark_node) |
4091 | return error_mark_node; |
4092 | |
4093 | if (processing_template_decl) |
4094 | { |
4095 | tree ret = build_raw_new_expr (loc, placement: orig_placement, type, nelts: orig_nelts, |
4096 | init: orig_init, use_global_new); |
4097 | release_tree_vector (orig_placement); |
4098 | release_tree_vector (orig_init); |
4099 | return ret; |
4100 | } |
4101 | |
4102 | /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */ |
4103 | rval = build1_loc (loc, code: NOP_EXPR, TREE_TYPE (rval), arg1: rval); |
4104 | suppress_warning (rval, OPT_Wunused_value); |
4105 | |
4106 | return rval; |
4107 | } |
4108 | |
4109 | static tree |
4110 | build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type, |
4111 | special_function_kind auto_delete_vec, |
4112 | int use_global_delete, tsubst_flags_t complain, |
4113 | bool in_cleanup = false) |
4114 | { |
4115 | tree virtual_size; |
4116 | tree ptype = build_pointer_type (type = complete_type (type)); |
4117 | tree size_exp; |
4118 | |
4119 | /* Temporary variables used by the loop. */ |
4120 | tree tbase, tbase_init; |
4121 | |
4122 | /* This is the body of the loop that implements the deletion of a |
4123 | single element, and moves temp variables to next elements. */ |
4124 | tree body; |
4125 | |
4126 | /* This is the LOOP_EXPR that governs the deletion of the elements. */ |
4127 | tree loop = 0; |
4128 | |
4129 | /* This is the thing that governs what to do after the loop has run. */ |
4130 | tree deallocate_expr = 0; |
4131 | |
4132 | /* This is the BIND_EXPR which holds the outermost iterator of the |
4133 | loop. It is convenient to set this variable up and test it before |
4134 | executing any other code in the loop. |
4135 | This is also the containing expression returned by this function. */ |
4136 | tree controller = NULL_TREE; |
4137 | tree tmp; |
4138 | |
4139 | /* We should only have 1-D arrays here. */ |
4140 | gcc_assert (TREE_CODE (type) != ARRAY_TYPE); |
4141 | |
4142 | if (base == error_mark_node || maxindex == error_mark_node) |
4143 | return error_mark_node; |
4144 | |
4145 | if (!verify_type_context (loc, TCTX_DEALLOCATION, type, |
4146 | !(complain & tf_error))) |
4147 | return error_mark_node; |
4148 | |
4149 | if (!COMPLETE_TYPE_P (type)) |
4150 | { |
4151 | if (cxx_dialect > cxx23) |
4152 | { |
4153 | if (complain & tf_error) |
4154 | { |
4155 | auto_diagnostic_group d; |
4156 | int saved_errorcount = errorcount; |
4157 | if (permerror_opt (loc, OPT_Wdelete_incomplete, |
4158 | "operator %<delete []%> used on " |
4159 | "incomplete type")) |
4160 | { |
4161 | cxx_incomplete_type_inform (type); |
4162 | if (errorcount != saved_errorcount) |
4163 | return error_mark_node; |
4164 | } |
4165 | } |
4166 | else |
4167 | return error_mark_node; |
4168 | } |
4169 | else if (complain & tf_warning) |
4170 | { |
4171 | auto_diagnostic_group d; |
4172 | if (warning_at (loc, OPT_Wdelete_incomplete, |
4173 | "possible problem detected in invocation of " |
4174 | "operator %<delete []%>")) |
4175 | { |
4176 | cxx_incomplete_type_diagnostic (value: base, type, diag_kind: DK_WARNING); |
4177 | inform (loc, "neither the destructor nor the " |
4178 | "class-specific operator %<delete []%> will be called, " |
4179 | "even if they are declared when the class is defined"); |
4180 | } |
4181 | } |
4182 | /* This size won't actually be used. */ |
4183 | size_exp = size_one_node; |
4184 | goto no_destructor; |
4185 | } |
4186 | |
4187 | size_exp = size_in_bytes (t: type); |
4188 | |
4189 | if (! MAYBE_CLASS_TYPE_P (type)) |
4190 | goto no_destructor; |
4191 | else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type)) |
4192 | { |
4193 | /* Make sure the destructor is callable. */ |
4194 | if (type_build_dtor_call (type)) |
4195 | { |
4196 | tmp = build_delete (loc, ptype, base, sfk_complete_destructor, |
4197 | LOOKUP_NORMAL|LOOKUP_DESTRUCTOR|LOOKUP_NONVIRTUAL, |
4198 | 1, complain); |
4199 | if (tmp == error_mark_node) |
4200 | return error_mark_node; |
4201 | } |
4202 | goto no_destructor; |
4203 | } |
4204 | |
4205 | /* The below is short by the cookie size. */ |
4206 | virtual_size = size_binop (MULT_EXPR, size_exp, |
4207 | fold_convert (sizetype, maxindex)); |
4208 | |
4209 | tbase = create_temporary_var (ptype); |
4210 | DECL_INITIAL (tbase) |
4211 | = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base), |
4212 | off: virtual_size); |
4213 | tbase_init = build_stmt (loc, DECL_EXPR, tbase); |
4214 | controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE); |
4215 | TREE_SIDE_EFFECTS (controller) = 1; |
4216 | BIND_EXPR_VEC_DTOR (controller) = true; |
4217 | |
4218 | body = build1 (EXIT_EXPR, void_type_node, |
4219 | build2 (EQ_EXPR, boolean_type_node, tbase, |
4220 | fold_convert (ptype, base))); |
4221 | tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp); |
4222 | tmp = fold_build_pointer_plus (tbase, tmp); |
4223 | tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain); |
4224 | if (tmp == error_mark_node) |
4225 | return error_mark_node; |
4226 | body = build_compound_expr (loc, body, tmp); |
4227 | /* [expr.delete]/3: "In an array delete expression, if the dynamic type of |
4228 | the object to be deleted is not similar to its static type, the behavior |
4229 | is undefined." So we can set LOOKUP_NONVIRTUAL. */ |
4230 | tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor, |
4231 | LOOKUP_NORMAL|LOOKUP_DESTRUCTOR|LOOKUP_NONVIRTUAL, |
4232 | 1, complain); |
4233 | if (tmp == error_mark_node) |
4234 | return error_mark_node; |
4235 | body = build_compound_expr (loc, body, tmp); |
4236 | |
4237 | loop = build1 (LOOP_EXPR, void_type_node, body); |
4238 | |
4239 | /* If one destructor throws, keep trying to clean up the rest, unless we're |
4240 | already in a build_vec_init cleanup. */ |
4241 | if (flag_exceptions && !in_cleanup && !processing_template_decl |
4242 | && !expr_noexcept_p (tmp, tf_none)) |
4243 | { |
4244 | loop = build2 (TRY_CATCH_EXPR, void_type_node, loop, |
4245 | unshare_expr (loop)); |
4246 | /* Tell honor_protect_cleanup_actions to discard this on the |
4247 | exceptional path. */ |
4248 | TRY_CATCH_IS_CLEANUP (loop) = true; |
4249 | } |
4250 | |
4251 | loop = build_compound_expr (loc, tbase_init, loop); |
4252 | |
4253 | no_destructor: |
4254 | /* Delete the storage if appropriate. */ |
4255 | if (auto_delete_vec == sfk_deleting_destructor) |
4256 | { |
4257 | tree base_tbd; |
4258 | |
4259 | /* The below is short by the cookie size. */ |
4260 | virtual_size = size_binop (MULT_EXPR, size_exp, |
4261 | fold_convert (sizetype, maxindex)); |
4262 | |
4263 | if (! TYPE_VEC_NEW_USES_COOKIE (type)) |
4264 | /* no header */ |
4265 | base_tbd = base; |
4266 | else |
4267 | { |
4268 | tree cookie_size; |
4269 | |
4270 | cookie_size = targetm.cxx.get_cookie_size (type); |
4271 | base_tbd = cp_build_binary_op (loc, |
4272 | MINUS_EXPR, |
4273 | cp_convert (string_type_node, |
4274 | base, complain), |
4275 | cookie_size, |
4276 | complain); |
4277 | if (base_tbd == error_mark_node) |
4278 | return error_mark_node; |
4279 | base_tbd = cp_convert (ptype, base_tbd, complain); |
4280 | /* True size with header. */ |
4281 | virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size); |
4282 | } |
4283 | |
4284 | deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR, |
4285 | base_tbd, virtual_size, |
4286 | use_global_delete & 1, |
4287 | /*placement=*/NULL_TREE, |
4288 | /*alloc_fn=*/NULL_TREE, |
4289 | complain); |
4290 | } |
4291 | |
4292 | body = loop; |
4293 | if (deallocate_expr == error_mark_node) |
4294 | return error_mark_node; |
4295 | else if (!deallocate_expr) |
4296 | ; |
4297 | else if (!body) |
4298 | body = deallocate_expr; |
4299 | else |
4300 | /* The delete operator must be called, even if a destructor |
4301 | throws. */ |
4302 | body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr); |
4303 | |
4304 | if (!body) |
4305 | body = integer_zero_node; |
4306 | |
4307 | /* Outermost wrapper: If pointer is null, punt. */ |
4308 | tree cond = build2_loc (loc, code: NE_EXPR, boolean_type_node, arg0: base, |
4309 | fold_convert (TREE_TYPE (base), nullptr_node)); |
4310 | /* This is a compiler generated comparison, don't emit |
4311 | e.g. -Wnonnull-compare warning for it. */ |
4312 | suppress_warning (cond, OPT_Wnonnull_compare); |
4313 | body = build3_loc (loc, code: COND_EXPR, void_type_node, |
4314 | arg0: cond, arg1: body, integer_zero_node); |
4315 | COND_EXPR_IS_VEC_DELETE (body) = true; |
4316 | body = build1 (NOP_EXPR, void_type_node, body); |
4317 | |
4318 | if (controller) |
4319 | { |
4320 | TREE_OPERAND (controller, 1) = body; |
4321 | body = controller; |
4322 | } |
4323 | |
4324 | if (TREE_CODE (base) == SAVE_EXPR) |
4325 | /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */ |
4326 | body = build2 (COMPOUND_EXPR, void_type_node, base, body); |
4327 | |
4328 | return convert_to_void (body, ICV_CAST, complain); |
4329 | } |
4330 | |
4331 | /* Create an unnamed variable of the indicated TYPE. */ |
4332 | |
4333 | tree |
4334 | create_temporary_var (tree type) |
4335 | { |
4336 | tree decl; |
4337 | |
4338 | decl = build_decl (input_location, |
4339 | VAR_DECL, NULL_TREE, type); |
4340 | TREE_USED (decl) = 1; |
4341 | DECL_ARTIFICIAL (decl) = 1; |
4342 | DECL_IGNORED_P (decl) = 1; |
4343 | DECL_CONTEXT (decl) = current_function_decl; |
4344 | |
4345 | return decl; |
4346 | } |
4347 | |
4348 | /* Create a new temporary variable of the indicated TYPE, initialized |
4349 | to INIT. |
4350 | |
4351 | It is not entered into current_binding_level, because that breaks |
4352 | things when it comes time to do final cleanups (which take place |
4353 | "outside" the binding contour of the function). */ |
4354 | |
4355 | tree |
4356 | get_temp_regvar (tree type, tree init) |
4357 | { |
4358 | tree decl; |
4359 | |
4360 | decl = create_temporary_var (type); |
4361 | add_decl_expr (decl); |
4362 | |
4363 | finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR, |
4364 | init, tf_warning_or_error)); |
4365 | |
4366 | return decl; |
4367 | } |
4368 | |
4369 | /* Subroutine of build_vec_init. Returns true if assigning to an array of |
4370 | INNER_ELT_TYPE from INIT is trivial. */ |
4371 | |
4372 | static bool |
4373 | vec_copy_assign_is_trivial (tree inner_elt_type, tree init) |
4374 | { |
4375 | tree fromtype = inner_elt_type; |
4376 | if (lvalue_p (init)) |
4377 | fromtype = cp_build_reference_type (fromtype, /*rval*/false); |
4378 | return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype); |
4379 | } |
4380 | |
4381 | /* Subroutine of build_vec_init: Check that the array has at least N |
4382 | elements. Other parameters are local variables in build_vec_init. */ |
4383 | |
4384 | void |
4385 | finish_length_check (tree atype, tree iterator, tree obase, unsigned n) |
4386 | { |
4387 | tree nelts = build_int_cst (ptrdiff_type_node, n - 1); |
4388 | if (TREE_CODE (atype) != ARRAY_TYPE) |
4389 | { |
4390 | if (flag_exceptions) |
4391 | { |
4392 | tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator, |
4393 | nelts); |
4394 | c = build3 (COND_EXPR, void_type_node, c, |
4395 | throw_bad_array_new_length (), void_node); |
4396 | finish_expr_stmt (c); |
4397 | } |
4398 | /* Don't check an array new when -fno-exceptions. */ |
4399 | } |
4400 | else if (sanitize_flags_p (flag: SANITIZE_BOUNDS) |
4401 | && current_function_decl != NULL_TREE) |
4402 | { |
4403 | /* Make sure the last element of the initializer is in bounds. */ |
4404 | finish_expr_stmt |
4405 | (ubsan_instrument_bounds |
4406 | (input_location, obase, &nelts, /*ignore_off_by_one*/false)); |
4407 | } |
4408 | } |
4409 | |
4410 | /* walk_tree callback to collect temporaries in an expression. */ |
4411 | |
4412 | tree |
4413 | find_temps_r (tree *tp, int *walk_subtrees, void *data) |
4414 | { |
4415 | vec<tree*> &temps = *static_cast<auto_vec<tree*> *>(data); |
4416 | tree t = *tp; |
4417 | if (TREE_CODE (t) == TARGET_EXPR |
4418 | && !TARGET_EXPR_ELIDING_P (t)) |
4419 | temps.safe_push (obj: tp); |
4420 | else if (TYPE_P (t)) |
4421 | *walk_subtrees = 0; |
4422 | |
4423 | return NULL_TREE; |
4424 | } |
4425 | |
4426 | /* walk_tree callback to collect temporaries in an expression that |
4427 | are allocator arguments to standard library classes. */ |
4428 | |
4429 | static tree |
4430 | find_allocator_temps_r (tree *tp, int *walk_subtrees, void *data) |
4431 | { |
4432 | vec<tree*> &temps = *static_cast<auto_vec<tree*> *>(data); |
4433 | tree t = *tp; |
4434 | if (TYPE_P (t)) |
4435 | { |
4436 | *walk_subtrees = 0; |
4437 | return NULL_TREE; |
4438 | } |
4439 | |
4440 | /* If this is a call to a constructor for a std:: class, look for |
4441 | a reference-to-allocator argument. */ |
4442 | tree fn = cp_get_callee_fndecl_nofold (t); |
4443 | if (fn && DECL_CONSTRUCTOR_P (fn) |
4444 | && decl_in_std_namespace_p (TYPE_NAME (DECL_CONTEXT (fn)))) |
4445 | { |
4446 | int nargs = call_expr_nargs (t); |
4447 | for (int i = 1; i < nargs; ++i) |
4448 | { |
4449 | tree arg = get_nth_callarg (t, n: i); |
4450 | tree atype = TREE_TYPE (arg); |
4451 | if (TREE_CODE (atype) == REFERENCE_TYPE |
4452 | && is_std_allocator (TREE_TYPE (atype))) |
4453 | { |
4454 | STRIP_NOPS (arg); |
4455 | if (TREE_CODE (arg) == ADDR_EXPR) |
4456 | { |
4457 | tree *ap = &TREE_OPERAND (arg, 0); |
4458 | if (TREE_CODE (*ap) == TARGET_EXPR) |
4459 | temps.safe_push (obj: ap); |
4460 | } |
4461 | } |
4462 | } |
4463 | } |
4464 | |
4465 | return NULL_TREE; |
4466 | } |
4467 | |
4468 | /* If INIT initializes a standard library class, and involves a temporary |
4469 | std::allocator<T>, use ALLOC_OBJ for all such temporaries. |
4470 | |
4471 | Note that this can clobber the input to build_vec_init; no unsharing is |
4472 | done. To make this safe we use the TARGET_EXPR in all places rather than |
4473 | pulling out the TARGET_EXPR_SLOT. |
4474 | |
4475 | Used by build_vec_init when initializing an array of e.g. strings to reuse |
4476 | the same temporary allocator for all of the strings. We can do this because |
4477 | std::allocator has no data and the standard library doesn't care about the |
4478 | address of allocator objects. |
4479 | |
4480 | ??? Add an attribute to allow users to assert the same property for other |
4481 | classes, i.e. one object of the type is interchangeable with any other? */ |
4482 | |
4483 | static void |
4484 | combine_allocator_temps (tree &init, tree &alloc_obj) |
4485 | { |
4486 | auto_vec<tree*> temps; |
4487 | cp_walk_tree_without_duplicates (&init, find_allocator_temps_r, &temps); |
4488 | for (tree *p : temps) |
4489 | { |
4490 | if (!alloc_obj) |
4491 | alloc_obj = *p; |
4492 | else |
4493 | *p = alloc_obj; |
4494 | } |
4495 | } |
4496 | |
4497 | /* `build_vec_init' returns tree structure that performs |
4498 | initialization of a vector of aggregate types. |
4499 | |
4500 | BASE is a reference to the vector, of ARRAY_TYPE, or a pointer |
4501 | to the first element, of POINTER_TYPE. |
4502 | MAXINDEX is the maximum index of the array (one less than the |
4503 | number of elements). It is only used if BASE is a pointer or |
4504 | TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE. |
4505 | |
4506 | INIT is the (possibly NULL) initializer. |
4507 | |
4508 | If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All |
4509 | elements in the array are value-initialized. |
4510 | |
4511 | FROM_ARRAY is 0 if we should init everything with INIT |
4512 | (i.e., every element initialized from INIT). |
4513 | FROM_ARRAY is 1 if we should index into INIT in parallel |
4514 | with initialization of DECL. |
4515 | FROM_ARRAY is 2 if we should index into INIT in parallel, |
4516 | but use assignment instead of initialization. */ |
4517 | |
4518 | tree |
4519 | build_vec_init (tree base, tree maxindex, tree init, |
4520 | bool explicit_value_init_p, |
4521 | int from_array, |
4522 | tsubst_flags_t complain, |
4523 | vec<tree, va_gc>** cleanup_flags /* = nullptr */) |
4524 | { |
4525 | tree rval; |
4526 | tree base2 = NULL_TREE; |
4527 | tree itype = NULL_TREE; |
4528 | tree iterator; |
4529 | /* The type of BASE. */ |
4530 | tree atype = TREE_TYPE (base); |
4531 | /* The type of an element in the array. */ |
4532 | tree type = TREE_TYPE (atype); |
4533 | /* The element type reached after removing all outer array |
4534 | types. */ |
4535 | tree inner_elt_type; |
4536 | /* The type of a pointer to an element in the array. */ |
4537 | tree ptype; |
4538 | tree stmt_expr; |
4539 | tree compound_stmt; |
4540 | int destroy_temps; |
4541 | HOST_WIDE_INT num_initialized_elts = 0; |
4542 | bool is_global; |
4543 | tree obase = base; |
4544 | bool xvalue = false; |
4545 | bool errors = false; |
4546 | location_t loc = (init ? cp_expr_loc_or_input_loc (t: init) |
4547 | : location_of (base)); |
4548 | |
4549 | if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype)) |
4550 | maxindex = array_type_nelts_minus_one (atype); |
4551 | |
4552 | if (maxindex == NULL_TREE || maxindex == error_mark_node) |
4553 | return error_mark_node; |
4554 | |
4555 | maxindex = maybe_constant_value (maxindex); |
4556 | if (explicit_value_init_p) |
4557 | gcc_assert (!init); |
4558 | |
4559 | inner_elt_type = strip_array_types (type); |
4560 | |
4561 | /* Look through the TARGET_EXPR around a compound literal. */ |
4562 | if (init && TREE_CODE (init) == TARGET_EXPR |
4563 | && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR |
4564 | && from_array != 2 |
4565 | && (same_type_ignoring_top_level_qualifiers_p |
4566 | (TREE_TYPE (init), atype))) |
4567 | init = TARGET_EXPR_INITIAL (init); |
4568 | |
4569 | if (tree vi = get_vec_init_expr (t: init)) |
4570 | init = VEC_INIT_EXPR_INIT (vi); |
4571 | |
4572 | bool direct_init = false; |
4573 | if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init) |
4574 | && CONSTRUCTOR_NELTS (init) == 1) |
4575 | { |
4576 | tree elt = CONSTRUCTOR_ELT (init, 0)->value; |
4577 | if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE |
4578 | && TREE_CODE (elt) != VEC_INIT_EXPR) |
4579 | { |
4580 | direct_init = DIRECT_LIST_INIT_P (init); |
4581 | init = elt; |
4582 | } |
4583 | } |
4584 | |
4585 | /* from_array doesn't apply to initialization from CONSTRUCTOR. */ |
4586 | if (init && TREE_CODE (init) == CONSTRUCTOR) |
4587 | from_array = 0; |
4588 | |
4589 | /* If we have a braced-init-list or string constant, make sure that the array |
4590 | is big enough for all the initializers. */ |
4591 | bool length_check = (init |
4592 | && (TREE_CODE (init) == STRING_CST |
4593 | || (TREE_CODE (init) == CONSTRUCTOR |
4594 | && CONSTRUCTOR_NELTS (init) > 0)) |
4595 | && !TREE_CONSTANT (maxindex)); |
4596 | |
4597 | if (init |
4598 | && TREE_CODE (atype) == ARRAY_TYPE |
4599 | && TREE_CONSTANT (maxindex) |
4600 | && !vla_type_p (type) |
4601 | && (from_array == 2 |
4602 | ? vec_copy_assign_is_trivial (inner_elt_type, init) |
4603 | : !TYPE_NEEDS_CONSTRUCTING (type)) |
4604 | && ((TREE_CODE (init) == CONSTRUCTOR |
4605 | && (BRACE_ENCLOSED_INITIALIZER_P (init) |
4606 | || (same_type_ignoring_top_level_qualifiers_p |
4607 | (atype, TREE_TYPE (init)))) |
4608 | /* Don't do this if the CONSTRUCTOR might contain something |
4609 | that might throw and require us to clean up. */ |
4610 | && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init)) |
4611 | || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type))) |
4612 | || from_array)) |
4613 | { |
4614 | /* Do non-default initialization of trivial arrays resulting from |
4615 | brace-enclosed initializers. In this case, digest_init and |
4616 | store_constructor will handle the semantics for us. */ |
4617 | |
4618 | if (BRACE_ENCLOSED_INITIALIZER_P (init)) |
4619 | init = digest_init (atype, init, complain); |
4620 | stmt_expr = cp_build_init_expr (t: base, i: init); |
4621 | return stmt_expr; |
4622 | } |
4623 | |
4624 | maxindex = cp_convert (ptrdiff_type_node, maxindex, complain); |
4625 | maxindex = fold_simple (maxindex); |
4626 | |
4627 | if (TREE_CODE (atype) == ARRAY_TYPE) |
4628 | { |
4629 | ptype = build_pointer_type (type); |
4630 | base = decay_conversion (base, complain); |
4631 | if (base == error_mark_node) |
4632 | return error_mark_node; |
4633 | base = cp_convert (ptype, base, complain); |
4634 | } |
4635 | else |
4636 | ptype = atype; |
4637 | |
4638 | if (integer_all_onesp (maxindex)) |
4639 | { |
4640 | /* Shortcut zero element case to avoid unneeded constructor synthesis. */ |
4641 | if (init && TREE_SIDE_EFFECTS (init)) |
4642 | base = build2 (COMPOUND_EXPR, ptype, init, base); |
4643 | return base; |
4644 | } |
4645 | |
4646 | /* The code we are generating looks like: |
4647 | ({ |
4648 | T* t1 = (T*) base; |
4649 | T* rval = t1; |
4650 | ptrdiff_t iterator = maxindex; |
4651 | try { |
4652 | for (; iterator != -1; --iterator) { |
4653 | ... initialize *t1 ... |
4654 | ++t1; |
4655 | } |
4656 | } catch (...) { |
4657 | ... destroy elements that were constructed ... |
4658 | } |
4659 | rval; |
4660 | }) |
4661 | |
4662 | We can omit the try and catch blocks if we know that the |
4663 | initialization will never throw an exception, or if the array |
4664 | elements do not have destructors. We can omit the loop completely if |
4665 | the elements of the array do not have constructors. |
4666 | |
4667 | We actually wrap the entire body of the above in a STMT_EXPR, for |
4668 | tidiness. |
4669 | |
4670 | When copying from array to another, when the array elements have |
4671 | only trivial copy constructors, we should use __builtin_memcpy |
4672 | rather than generating a loop. That way, we could take advantage |
4673 | of whatever cleverness the back end has for dealing with copies |
4674 | of blocks of memory. */ |
4675 | |
4676 | is_global = begin_init_stmts (stmt_expr_p: &stmt_expr, compound_stmt_p: &compound_stmt); |
4677 | destroy_temps = stmts_are_full_exprs_p (); |
4678 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; |
4679 | rval = get_temp_regvar (type: ptype, init: base); |
4680 | base = get_temp_regvar (type: ptype, init: rval); |
4681 | tree iterator_targ = get_internal_target_expr (maxindex); |
4682 | add_stmt (iterator_targ); |
4683 | iterator = TARGET_EXPR_SLOT (iterator_targ); |
4684 | |
4685 | /* If initializing one array from another, initialize element by |
4686 | element. We rely upon the below calls to do the argument |
4687 | checking. Evaluate the initializer before entering the try block. */ |
4688 | if (from_array) |
4689 | { |
4690 | if (lvalue_kind (init) & clk_rvalueref) |
4691 | xvalue = true; |
4692 | if (TREE_CODE (init) == TARGET_EXPR) |
4693 | { |
4694 | /* Avoid error in decay_conversion. */ |
4695 | base2 = decay_conversion (TARGET_EXPR_SLOT (init), complain); |
4696 | base2 = cp_build_compound_expr (init, base2, tf_none); |
4697 | } |
4698 | else |
4699 | base2 = decay_conversion (init, complain); |
4700 | if (base2 == error_mark_node) |
4701 | return error_mark_node; |
4702 | itype = TREE_TYPE (base2); |
4703 | base2 = get_temp_regvar (type: itype, init: base2); |
4704 | itype = TREE_TYPE (itype); |
4705 | } |
4706 | |
4707 | /* Protect the entire array initialization so that we can destroy |
4708 | the partially constructed array if an exception is thrown. |
4709 | But don't do this if we're assigning. */ |
4710 | if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type) |
4711 | && from_array != 2) |
4712 | { |
4713 | tree e; |
4714 | tree m = cp_build_binary_op (input_location, |
4715 | MINUS_EXPR, maxindex, iterator, |
4716 | complain); |
4717 | |
4718 | /* Flatten multi-dimensional array since build_vec_delete only |
4719 | expects one-dimensional array. */ |
4720 | if (TREE_CODE (type) == ARRAY_TYPE) |
4721 | m = cp_build_binary_op (input_location, |
4722 | MULT_EXPR, m, |
4723 | /* Avoid mixing signed and unsigned. */ |
4724 | convert (TREE_TYPE (m), |
4725 | array_type_nelts_total (type)), |
4726 | complain); |
4727 | |
4728 | e = build_vec_delete_1 (loc: input_location, base: rval, maxindex: m, |
4729 | type: inner_elt_type, auto_delete_vec: sfk_complete_destructor, |
4730 | /*use_global_delete=*/0, complain, |
4731 | /*in_cleanup*/true); |
4732 | if (e == error_mark_node) |
4733 | errors = true; |
4734 | TARGET_EXPR_CLEANUP (iterator_targ) = e; |
4735 | CLEANUP_EH_ONLY (iterator_targ) = true; |
4736 | |
4737 | /* Since we push this cleanup before doing any initialization, cleanups |
4738 | for any temporaries in the initialization are naturally within our |
4739 | cleanup region, so we don't want wrap_temporary_cleanups to do |
4740 | anything for arrays. But if the array is a subobject, we need to |
4741 | tell split_nonconstant_init or cp_genericize_target_expr how to turn |
4742 | off this cleanup in favor of the cleanup for the complete object. |
4743 | |
4744 | ??? For an array temporary such as an initializer_list backing array, |
4745 | it would avoid redundancy to leave this cleanup active, clear |
4746 | CLEANUP_EH_ONLY, and not build another cleanup for the temporary |
4747 | itself. But that breaks when gimplify_target_expr adds a clobber |
4748 | cleanup that runs before the build_vec_init cleanup. */ |
4749 | if (cleanup_flags) |
4750 | vec_safe_push (v&: *cleanup_flags, |
4751 | obj: build_tree_list (rval, build_zero_cst (ptype))); |
4752 | } |
4753 | |
4754 | /* Should we try to create a constant initializer? */ |
4755 | bool try_const = (TREE_CODE (atype) == ARRAY_TYPE |
4756 | && TREE_CONSTANT (maxindex) |
4757 | && (init ? TREE_CODE (init) == CONSTRUCTOR |
4758 | : (type_has_constexpr_default_constructor |
4759 | (inner_elt_type) |
4760 | /* Value-initialization of scalars is constexpr. */ |
4761 | || (explicit_value_init_p |
4762 | && SCALAR_TYPE_P (inner_elt_type)))) |
4763 | && (literal_type_p (inner_elt_type) |
4764 | || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type))); |
4765 | vec<constructor_elt, va_gc> *const_vec = NULL; |
4766 | bool saw_non_const = false; |
4767 | /* If we're initializing a static array, we want to do static |
4768 | initialization of any elements with constant initializers even if |
4769 | some are non-constant. */ |
4770 | bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase)); |
4771 | |
4772 | bool empty_list = false; |
4773 | if (init && BRACE_ENCLOSED_INITIALIZER_P (init) |
4774 | && CONSTRUCTOR_NELTS (init) == 0) |
4775 | /* Skip over the handling of non-empty init lists. */ |
4776 | empty_list = true; |
4777 | |
4778 | /* Maybe pull out constant value when from_array? */ |
4779 | |
4780 | else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR) |
4781 | { |
4782 | /* Do non-default initialization of non-trivial arrays resulting from |
4783 | brace-enclosed initializers. */ |
4784 | unsigned HOST_WIDE_INT idx; |
4785 | tree field, elt; |
4786 | /* If the constructor already has the array type, it's been through |
4787 | digest_init, so we shouldn't try to do anything more. */ |
4788 | bool digested = (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE |
4789 | && same_type_p (type, TREE_TYPE (TREE_TYPE (init)))); |
4790 | from_array = 0; |
4791 | |
4792 | if (length_check) |
4793 | finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init)); |
4794 | |
4795 | if (try_const) |
4796 | vec_alloc (v&: const_vec, CONSTRUCTOR_NELTS (init)); |
4797 | |
4798 | tree alloc_obj = NULL_TREE; |
4799 | |
4800 | FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt) |
4801 | { |
4802 | tree baseref = build1 (INDIRECT_REF, type, base); |
4803 | tree one_init; |
4804 | |
4805 | if (field && TREE_CODE (field) == RANGE_EXPR) |
4806 | num_initialized_elts += range_expr_nelts (field); |
4807 | else |
4808 | num_initialized_elts++; |
4809 | |
4810 | /* We need to see sub-array TARGET_EXPR before cp_fold_r so we can |
4811 | handle cleanup flags properly. */ |
4812 | gcc_checking_assert (!target_expr_needs_replace (elt)); |
4813 | |
4814 | if (digested) |
4815 | one_init = cp_build_init_expr (t: baseref, i: elt); |
4816 | else if (tree vi = get_vec_init_expr (t: elt)) |
4817 | one_init = expand_vec_init_expr (baseref, vi, complain, |
4818 | cleanup_flags); |
4819 | else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE) |
4820 | one_init = build_aggr_init (exp: baseref, init: elt, flags: 0, complain); |
4821 | else |
4822 | one_init = cp_build_modify_expr (input_location, baseref, |
4823 | NOP_EXPR, elt, complain); |
4824 | if (one_init == error_mark_node) |
4825 | errors = true; |
4826 | if (try_const) |
4827 | { |
4828 | if (!field) |
4829 | field = size_int (idx); |
4830 | tree e = maybe_constant_init (one_init); |
4831 | if (reduced_constant_expression_p (e)) |
4832 | { |
4833 | CONSTRUCTOR_APPEND_ELT (const_vec, field, e); |
4834 | if (do_static_init) |
4835 | one_init = NULL_TREE; |
4836 | else |
4837 | one_init = cp_build_init_expr (t: baseref, i: e); |
4838 | } |
4839 | else |
4840 | { |
4841 | if (do_static_init) |
4842 | { |
4843 | tree value = build_zero_init (TREE_TYPE (e), NULL_TREE, |
4844 | static_storage_p: true); |
4845 | if (value) |
4846 | CONSTRUCTOR_APPEND_ELT (const_vec, field, value); |
4847 | } |
4848 | saw_non_const = true; |
4849 | } |
4850 | } |
4851 | |
4852 | if (one_init) |
4853 | { |
4854 | /* Only create one std::allocator temporary. */ |
4855 | combine_allocator_temps (init&: one_init, alloc_obj); |
4856 | finish_expr_stmt (one_init); |
4857 | } |
4858 | |
4859 | one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false, |
4860 | complain); |
4861 | if (one_init == error_mark_node) |
4862 | errors = true; |
4863 | else |
4864 | finish_expr_stmt (one_init); |
4865 | |
4866 | one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false, |
4867 | complain); |
4868 | if (one_init == error_mark_node) |
4869 | errors = true; |
4870 | else |
4871 | finish_expr_stmt (one_init); |
4872 | } |
4873 | |
4874 | /* Any elements without explicit initializers get T{}. */ |
4875 | empty_list = true; |
4876 | } |
4877 | else if (init && TREE_CODE (init) == STRING_CST) |
4878 | { |
4879 | /* Check that the array is at least as long as the string. */ |
4880 | if (length_check) |
4881 | finish_length_check (atype, iterator, obase, |
4882 | TREE_STRING_LENGTH (init)); |
4883 | tree length = build_int_cst (ptrdiff_type_node, |
4884 | TREE_STRING_LENGTH (init)); |
4885 | |
4886 | /* Copy the string to the first part of the array. */ |
4887 | tree alias_set = build_int_cst (build_pointer_type (type), 0); |
4888 | tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set); |
4889 | tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init); |
4890 | finish_expr_stmt (stmt); |
4891 | |
4892 | /* Adjust the counter and pointer. */ |
4893 | stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain); |
4894 | stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt); |
4895 | finish_expr_stmt (stmt); |
4896 | |
4897 | stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain); |
4898 | stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt); |
4899 | finish_expr_stmt (stmt); |
4900 | |
4901 | /* And set the rest of the array to NUL. */ |
4902 | from_array = 0; |
4903 | explicit_value_init_p = true; |
4904 | } |
4905 | else if (from_array) |
4906 | { |
4907 | if (init) |
4908 | /* OK, we set base2 above. */; |
4909 | else if (CLASS_TYPE_P (type) |
4910 | && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) |
4911 | { |
4912 | if (complain & tf_error) |
4913 | error ("initializer ends prematurely"); |
4914 | errors = true; |
4915 | } |
4916 | } |
4917 | |
4918 | /* Now, default-initialize any remaining elements. We don't need to |
4919 | do that if a) the type does not need constructing, or b) we've |
4920 | already initialized all the elements. |
4921 | |
4922 | We do need to keep going if we're copying an array. */ |
4923 | |
4924 | if (try_const && !init |
4925 | && (cxx_dialect < cxx20 |
4926 | || !default_init_uninitialized_part (inner_elt_type))) |
4927 | /* With a constexpr default constructor, which we checked for when |
4928 | setting try_const above, default-initialization is equivalent to |
4929 | value-initialization, and build_value_init gives us something more |
4930 | friendly to maybe_constant_init. Except in C++20 and up a constexpr |
4931 | constructor need not initialize all the members. */ |
4932 | explicit_value_init_p = true; |
4933 | if (from_array |
4934 | || ((type_build_ctor_call (type) || init || explicit_value_init_p) |
4935 | && ! (tree_fits_shwi_p (maxindex) |
4936 | && (num_initialized_elts |
4937 | == tree_to_shwi (maxindex) + 1)))) |
4938 | { |
4939 | /* If the ITERATOR is lesser or equal to -1, then we don't have to loop; |
4940 | we've already initialized all the elements. */ |
4941 | tree for_stmt; |
4942 | tree elt_init; |
4943 | tree to; |
4944 | |
4945 | for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE); |
4946 | finish_init_stmt (for_stmt); |
4947 | finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator, |
4948 | build_int_cst (TREE_TYPE (iterator), -1)), |
4949 | for_stmt, false, 0, false); |
4950 | /* We used to pass this decrement to finish_for_expr; now we add it to |
4951 | elt_init below so it's part of the same full-expression as the |
4952 | initialization, and thus happens before any potentially throwing |
4953 | temporary cleanups. */ |
4954 | tree decr = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false, |
4955 | complain); |
4956 | |
4957 | |
4958 | to = build1 (INDIRECT_REF, type, base); |
4959 | |
4960 | /* If the initializer is {}, then all elements are initialized from T{}. |
4961 | But for non-classes, that's the same as value-initialization. */ |
4962 | if (empty_list) |
4963 | { |
4964 | if (cxx_dialect >= cxx11 |
4965 | && (CLASS_TYPE_P (type) |
4966 | || TREE_CODE (type) == ARRAY_TYPE)) |
4967 | { |
4968 | init = build_constructor (init_list_type_node, NULL); |
4969 | } |
4970 | else |
4971 | { |
4972 | init = NULL_TREE; |
4973 | explicit_value_init_p = true; |
4974 | } |
4975 | } |
4976 | |
4977 | if (from_array) |
4978 | { |
4979 | tree from; |
4980 | |
4981 | if (base2) |
4982 | { |
4983 | from = build1 (INDIRECT_REF, itype, base2); |
4984 | if (xvalue) |
4985 | from = move (from); |
4986 | if (direct_init) |
4987 | { |
4988 | /* Wrap the initializer in a CONSTRUCTOR so that |
4989 | build_vec_init recognizes it as direct-initialization. */ |
4990 | from = build_constructor_single (init_list_type_node, |
4991 | NULL_TREE, from); |
4992 | CONSTRUCTOR_IS_DIRECT_INIT (from) = true; |
4993 | } |
4994 | } |
4995 | else |
4996 | from = NULL_TREE; |
4997 | |
4998 | if (TREE_CODE (type) == ARRAY_TYPE) |
4999 | elt_init = build_vec_init (base: to, NULL_TREE, init: from, /*val_init*/explicit_value_init_p: false, |
5000 | from_array, complain); |
5001 | else if (from_array == 2) |
5002 | elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, |
5003 | from, complain); |
5004 | else if (type_build_ctor_call (type)) |
5005 | elt_init = build_aggr_init (exp: to, init: from, flags: 0, complain); |
5006 | else if (from) |
5007 | elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from, |
5008 | complain); |
5009 | else |
5010 | gcc_unreachable (); |
5011 | } |
5012 | else if (TREE_CODE (type) == ARRAY_TYPE) |
5013 | { |
5014 | if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)) |
5015 | { |
5016 | if ((complain & tf_error)) |
5017 | error_at (loc, "array must be initialized " |
5018 | "with a brace-enclosed initializer"); |
5019 | elt_init = error_mark_node; |
5020 | } |
5021 | else |
5022 | elt_init = build_vec_init (base: build1 (INDIRECT_REF, type, base), |
5023 | maxindex: 0, init, |
5024 | explicit_value_init_p, |
5025 | from_array: 0, complain); |
5026 | } |
5027 | else if (explicit_value_init_p) |
5028 | { |
5029 | elt_init = build_value_init (type, complain); |
5030 | if (elt_init != error_mark_node) |
5031 | elt_init = cp_build_init_expr (t: to, i: elt_init); |
5032 | } |
5033 | else |
5034 | { |
5035 | gcc_assert (type_build_ctor_call (type) || init); |
5036 | if (CLASS_TYPE_P (type)) |
5037 | elt_init = build_aggr_init (exp: to, init, flags: 0, complain); |
5038 | else |
5039 | { |
5040 | if (TREE_CODE (init) == TREE_LIST) |
5041 | init = build_x_compound_expr_from_list (init, ELK_INIT, |
5042 | complain); |
5043 | elt_init = (init == error_mark_node |
5044 | ? error_mark_node |
5045 | : build2 (INIT_EXPR, type, to, init)); |
5046 | } |
5047 | } |
5048 | |
5049 | if (elt_init == error_mark_node) |
5050 | errors = true; |
5051 | |
5052 | if (try_const) |
5053 | { |
5054 | /* FIXME refs to earlier elts */ |
5055 | tree e = maybe_constant_init (elt_init); |
5056 | if (reduced_constant_expression_p (e)) |
5057 | { |
5058 | if (initializer_zerop (e)) |
5059 | /* Don't fill the CONSTRUCTOR with zeros. */ |
5060 | e = NULL_TREE; |
5061 | if (do_static_init) |
5062 | elt_init = NULL_TREE; |
5063 | } |
5064 | else |
5065 | { |
5066 | saw_non_const = true; |
5067 | if (do_static_init) |
5068 | e = build_zero_init (TREE_TYPE (e), NULL_TREE, static_storage_p: true); |
5069 | else |
5070 | e = NULL_TREE; |
5071 | } |
5072 | |
5073 | if (e) |
5074 | { |
5075 | HOST_WIDE_INT last = tree_to_shwi (maxindex); |
5076 | if (num_initialized_elts <= last) |
5077 | { |
5078 | tree field = size_int (num_initialized_elts); |
5079 | if (num_initialized_elts != last) |
5080 | field = build2 (RANGE_EXPR, sizetype, field, |
5081 | size_int (last)); |
5082 | CONSTRUCTOR_APPEND_ELT (const_vec, field, e); |
5083 | } |
5084 | } |
5085 | } |
5086 | |
5087 | /* [class.temporary]: "There are three contexts in which temporaries are |
5088 | destroyed at a different point than the end of the full- |
5089 | expression. The first context is when a default constructor is called |
5090 | to initialize an element of an array with no corresponding |
5091 | initializer. The second context is when a copy constructor is called |
5092 | to copy an element of an array while the entire array is copied. In |
5093 | either case, if the constructor has one or more default arguments, the |
5094 | destruction of every temporary created in a default argument is |
5095 | sequenced before the construction of the next array element, if any." |
5096 | |
5097 | So, for this loop, statements are full-expressions. */ |
5098 | current_stmt_tree ()->stmts_are_full_exprs_p = 1; |
5099 | if (elt_init && !errors) |
5100 | elt_init = build2 (COMPOUND_EXPR, void_type_node, elt_init, decr); |
5101 | else |
5102 | elt_init = decr; |
5103 | finish_expr_stmt (elt_init); |
5104 | current_stmt_tree ()->stmts_are_full_exprs_p = 0; |
5105 | |
5106 | finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false, |
5107 | complain)); |
5108 | if (base2) |
5109 | finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false, |
5110 | complain)); |
5111 | |
5112 | finish_for_stmt (for_stmt); |
5113 | } |
5114 | |
5115 | /* The value of the array initialization is the array itself, RVAL |
5116 | is a pointer to the first element. */ |
5117 | finish_stmt_expr_expr (rval, stmt_expr); |
5118 | |
5119 | stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt); |
5120 | |
5121 | current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps; |
5122 | |
5123 | if (errors) |
5124 | return error_mark_node; |
5125 | |
5126 | if (try_const) |
5127 | { |
5128 | if (!saw_non_const) |
5129 | { |
5130 | /* If we're not generating the loop, we don't need to reset the |
5131 | iterator. */ |
5132 | if (cleanup_flags |
5133 | && !vec_safe_is_empty (v: *cleanup_flags)) |
5134 | { |
5135 | auto l = (*cleanup_flags)->last (); |
5136 | gcc_assert (TREE_PURPOSE (l) == iterator); |
5137 | (*cleanup_flags)->pop (); |
5138 | } |
5139 | tree const_init = build_constructor (atype, const_vec); |
5140 | return build2 (INIT_EXPR, atype, obase, const_init); |
5141 | } |
5142 | else if (do_static_init && !vec_safe_is_empty (v: const_vec)) |
5143 | DECL_INITIAL (obase) = build_constructor (atype, const_vec); |
5144 | else |
5145 | vec_free (v&: const_vec); |
5146 | } |
5147 | |
5148 | /* Now make the result have the correct type. */ |
5149 | if (TREE_CODE (atype) == ARRAY_TYPE) |
5150 | { |
5151 | atype = build_reference_type (atype); |
5152 | stmt_expr = build1 (NOP_EXPR, atype, stmt_expr); |
5153 | stmt_expr = convert_from_reference (stmt_expr); |
5154 | } |
5155 | |
5156 | return stmt_expr; |
5157 | } |
5158 | |
5159 | /* Call the DTOR_KIND destructor for EXP. FLAGS are as for |
5160 | build_delete. */ |
5161 | |
5162 | static tree |
5163 | build_dtor_call (tree exp, special_function_kind dtor_kind, int flags, |
5164 | tsubst_flags_t complain) |
5165 | { |
5166 | tree name; |
5167 | switch (dtor_kind) |
5168 | { |
5169 | case sfk_complete_destructor: |
5170 | name = complete_dtor_identifier; |
5171 | break; |
5172 | |
5173 | case sfk_base_destructor: |
5174 | name = base_dtor_identifier; |
5175 | break; |
5176 | |
5177 | case sfk_deleting_destructor: |
5178 | name = deleting_dtor_identifier; |
5179 | break; |
5180 | |
5181 | default: |
5182 | gcc_unreachable (); |
5183 | } |
5184 | |
5185 | return build_special_member_call (exp, name, |
5186 | /*args=*/NULL, |
5187 | /*binfo=*/TREE_TYPE (exp), |
5188 | flags, |
5189 | complain); |
5190 | } |
5191 | |
5192 | /* Generate a call to a destructor. TYPE is the type to cast ADDR to. |
5193 | ADDR is an expression which yields the store to be destroyed. |
5194 | AUTO_DELETE is the name of the destructor to call, i.e., either |
5195 | sfk_complete_destructor, sfk_base_destructor, or |
5196 | sfk_deleting_destructor. |
5197 | |
5198 | FLAGS is the logical disjunction of zero or more LOOKUP_ |
5199 | flags. See cp-tree.h for more info. */ |
5200 | |
5201 | tree |
5202 | build_delete (location_t loc, tree otype, tree addr, |
5203 | special_function_kind auto_delete, |
5204 | int flags, int use_global_delete, tsubst_flags_t complain) |
5205 | { |
5206 | tree expr; |
5207 | |
5208 | if (addr == error_mark_node) |
5209 | return error_mark_node; |
5210 | |
5211 | tree type = TYPE_MAIN_VARIANT (otype); |
5212 | |
5213 | /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type |
5214 | set to `error_mark_node' before it gets properly cleaned up. */ |
5215 | if (type == error_mark_node) |
5216 | return error_mark_node; |
5217 | |
5218 | if (TYPE_PTR_P (type)) |
5219 | type = TYPE_MAIN_VARIANT (TREE_TYPE (type)); |
5220 | |
5221 | if (TREE_CODE (type) == ARRAY_TYPE) |
5222 | { |
5223 | if (TYPE_DOMAIN (type) == NULL_TREE) |
5224 | { |
5225 | if (complain & tf_error) |
5226 | error_at (loc, "unknown array size in delete"); |
5227 | return error_mark_node; |
5228 | } |
5229 | return build_vec_delete (loc, addr, array_type_nelts_minus_one (type), |
5230 | auto_delete, use_global_delete, complain); |
5231 | } |
5232 | |
5233 | bool deleting = (auto_delete == sfk_deleting_destructor); |
5234 | gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR)); |
5235 | |
5236 | if (TYPE_PTR_P (otype)) |
5237 | { |
5238 | addr = mark_rvalue_use (addr); |
5239 | |
5240 | /* We don't want to warn about delete of void*, only other |
5241 | incomplete types. Deleting other incomplete types |
5242 | invokes undefined behavior, but it is not ill-formed, so |
5243 | compile to something that would even do The Right Thing |
5244 | (TM) should the type have a trivial dtor and no delete |
5245 | operator. */ |
5246 | if (!VOID_TYPE_P (type)) |
5247 | { |
5248 | complete_type (type); |
5249 | if (deleting |
5250 | && !verify_type_context (loc, TCTX_DEALLOCATION, type, |
5251 | !(complain & tf_error))) |
5252 | return error_mark_node; |
5253 | |
5254 | if (!COMPLETE_TYPE_P (type)) |
5255 | { |
5256 | if (cxx_dialect > cxx23) |
5257 | { |
5258 | if (complain & tf_error) |
5259 | { |
5260 | auto_diagnostic_group d; |
5261 | int saved_errorcount = errorcount; |
5262 | if (permerror_opt (loc, OPT_Wdelete_incomplete, |
5263 | "operator %<delete%> used on " |
5264 | "incomplete type")) |
5265 | { |
5266 | cxx_incomplete_type_inform (type); |
5267 | if (errorcount != saved_errorcount) |
5268 | return error_mark_node; |
5269 | } |
5270 | } |
5271 | else |
5272 | return error_mark_node; |
5273 | } |
5274 | else if (complain & tf_warning) |
5275 | { |
5276 | auto_diagnostic_group d; |
5277 | if (warning_at (loc, OPT_Wdelete_incomplete, |
5278 | "possible problem detected in invocation of " |
5279 | "%<operator delete%>")) |
5280 | { |
5281 | cxx_incomplete_type_diagnostic (value: addr, type, diag_kind: DK_WARNING); |
5282 | inform (loc, |
5283 | "neither the destructor nor the class-specific " |
5284 | "%<operator delete%> will be called, even if " |
5285 | "they are declared when the class is defined"); |
5286 | } |
5287 | } |
5288 | } |
5289 | else if (deleting && warn_delnonvdtor |
5290 | && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type) |
5291 | && TYPE_POLYMORPHIC_P (type)) |
5292 | { |
5293 | tree dtor = CLASSTYPE_DESTRUCTOR (type); |
5294 | if (!dtor || !DECL_VINDEX (dtor)) |
5295 | { |
5296 | if (CLASSTYPE_PURE_VIRTUALS (type)) |
5297 | warning_at (loc, OPT_Wdelete_non_virtual_dtor, |
5298 | "deleting object of abstract class type %qT" |
5299 | " which has non-virtual destructor" |
5300 | " will cause undefined behavior", type); |
5301 | else |
5302 | warning_at (loc, OPT_Wdelete_non_virtual_dtor, |
5303 | "deleting object of polymorphic class type %qT" |
5304 | " which has non-virtual destructor" |
5305 | " might cause undefined behavior", type); |
5306 | } |
5307 | } |
5308 | } |
5309 | |
5310 | /* Throw away const and volatile on target type of addr. */ |
5311 | addr = convert_force (build_pointer_type (type), addr, 0, complain); |
5312 | } |
5313 | else |
5314 | { |
5315 | /* Don't check PROTECT here; leave that decision to the |
5316 | destructor. If the destructor is accessible, call it, |
5317 | else report error. */ |
5318 | addr = cp_build_addr_expr (addr, complain); |
5319 | if (addr == error_mark_node) |
5320 | return error_mark_node; |
5321 | |
5322 | addr = convert_force (build_pointer_type (type), addr, 0, complain); |
5323 | } |
5324 | |
5325 | tree addr_expr = NULL_TREE; |
5326 | if (deleting) |
5327 | /* We will use ADDR multiple times so we must save it. */ |
5328 | { |
5329 | addr_expr = get_internal_target_expr (addr); |
5330 | addr = TARGET_EXPR_SLOT (addr_expr); |
5331 | } |
5332 | |
5333 | bool virtual_p = false; |
5334 | if (type_build_dtor_call (type)) |
5335 | { |
5336 | if (CLASSTYPE_LAZY_DESTRUCTOR (type)) |
5337 | lazily_declare_fn (sfk_destructor, type); |
5338 | virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type)); |
5339 | } |
5340 | |
5341 | tree head = NULL_TREE; |
5342 | tree do_delete = NULL_TREE; |
5343 | bool destroying_delete = false; |
5344 | |
5345 | if (!deleting) |
5346 | { |
5347 | /* Leave do_delete null. */ |
5348 | } |
5349 | /* For `::delete x', we must not use the deleting destructor |
5350 | since then we would not be sure to get the global `operator |
5351 | delete'. */ |
5352 | else if (use_global_delete) |
5353 | { |
5354 | head = get_internal_target_expr (build_headof (addr)); |
5355 | /* Delete the object. */ |
5356 | do_delete = build_op_delete_call (DELETE_EXPR, |
5357 | head, |
5358 | cxx_sizeof_nowarn (type), |
5359 | /*global_p=*/true, |
5360 | /*placement=*/NULL_TREE, |
5361 | /*alloc_fn=*/NULL_TREE, |
5362 | complain); |
5363 | /* Otherwise, treat this like a complete object destructor |
5364 | call. */ |
5365 | auto_delete = sfk_complete_destructor; |
5366 | } |
5367 | /* If the destructor is non-virtual, there is no deleting |
5368 | variant. Instead, we must explicitly call the appropriate |
5369 | `operator delete' here. */ |
5370 | else if (!virtual_p) |
5371 | { |
5372 | /* Build the call. */ |
5373 | do_delete = build_op_delete_call (DELETE_EXPR, |
5374 | addr, |
5375 | cxx_sizeof_nowarn (type), |
5376 | /*global_p=*/false, |
5377 | /*placement=*/NULL_TREE, |
5378 | /*alloc_fn=*/NULL_TREE, |
5379 | complain); |
5380 | /* Call the complete object destructor. */ |
5381 | auto_delete = sfk_complete_destructor; |
5382 | if (do_delete != error_mark_node) |
5383 | { |
5384 | tree fn = get_callee_fndecl (do_delete); |
5385 | destroying_delete = destroying_delete_p (fn); |
5386 | } |
5387 | } |
5388 | else if (TYPE_GETS_REG_DELETE (type)) |
5389 | { |
5390 | /* Make sure we have access to the member op delete, even though |
5391 | we'll actually be calling it from the destructor. */ |
5392 | build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), |
5393 | /*global_p=*/false, |
5394 | /*placement=*/NULL_TREE, |
5395 | /*alloc_fn=*/NULL_TREE, |
5396 | complain); |
5397 | } |
5398 | |
5399 | if (destroying_delete) |
5400 | /* The operator delete will call the destructor. */ |
5401 | expr = addr; |
5402 | else if (type_build_dtor_call (type)) |
5403 | expr = build_dtor_call (exp: cp_build_fold_indirect_ref (addr), |
5404 | dtor_kind: auto_delete, flags, complain); |
5405 | else |
5406 | expr = build_trivial_dtor_call (addr); |
5407 | if (expr == error_mark_node) |
5408 | return error_mark_node; |
5409 | |
5410 | if (!deleting) |
5411 | { |
5412 | protected_set_expr_location (expr, loc); |
5413 | return expr; |
5414 | } |
5415 | |
5416 | if (do_delete == error_mark_node) |
5417 | return error_mark_node; |
5418 | |
5419 | if (do_delete && !TREE_SIDE_EFFECTS (expr)) |
5420 | expr = do_delete; |
5421 | else if (do_delete) |
5422 | /* The delete operator must be called, regardless of whether |
5423 | the destructor throws. |
5424 | |
5425 | [expr.delete]/7 The deallocation function is called |
5426 | regardless of whether the destructor for the object or some |
5427 | element of the array throws an exception. */ |
5428 | expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete); |
5429 | |
5430 | /* We need to calculate this before the dtor changes the vptr. */ |
5431 | if (head) |
5432 | expr = build2 (COMPOUND_EXPR, void_type_node, head, expr); |
5433 | |
5434 | /* Handle deleting a null pointer. */ |
5435 | warning_sentinel s (warn_address); |
5436 | tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr, |
5437 | nullptr_node, complain); |
5438 | ifexp = cp_fully_fold (ifexp); |
5439 | |
5440 | if (ifexp == error_mark_node) |
5441 | return error_mark_node; |
5442 | /* This is a compiler generated comparison, don't emit |
5443 | e.g. -Wnonnull-compare warning for it. */ |
5444 | else if (TREE_CODE (ifexp) == NE_EXPR) |
5445 | suppress_warning (ifexp, OPT_Wnonnull_compare); |
5446 | |
5447 | if (!integer_nonzerop (ifexp)) |
5448 | expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node); |
5449 | |
5450 | if (addr_expr) |
5451 | expr = cp_build_compound_expr (addr_expr, expr, tf_none); |
5452 | |
5453 | protected_set_expr_location (expr, loc); |
5454 | return expr; |
5455 | } |
5456 | |
5457 | /* At the beginning of a destructor, push cleanups that will call the |
5458 | destructors for our base classes and members. |
5459 | |
5460 | Called from begin_destructor_body. */ |
5461 | |
5462 | void |
5463 | push_base_cleanups (void) |
5464 | { |
5465 | tree binfo, base_binfo; |
5466 | int i; |
5467 | tree member; |
5468 | tree expr; |
5469 | vec<tree, va_gc> *vbases; |
5470 | |
5471 | /* Run destructors for all virtual baseclasses. */ |
5472 | if (!ABSTRACT_CLASS_TYPE_P (current_class_type) |
5473 | && CLASSTYPE_VBASECLASSES (current_class_type)) |
5474 | { |
5475 | tree cond = (condition_conversion |
5476 | (build2 (BIT_AND_EXPR, integer_type_node, |
5477 | current_in_charge_parm, |
5478 | integer_two_node))); |
5479 | |
5480 | /* The CLASSTYPE_VBASECLASSES vector is in initialization |
5481 | order, which is also the right order for pushing cleanups. */ |
5482 | for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0; |
5483 | vec_safe_iterate (v: vbases, ix: i, ptr: &base_binfo); i++) |
5484 | { |
5485 | if (type_build_dtor_call (BINFO_TYPE (base_binfo))) |
5486 | { |
5487 | expr = build_special_member_call (current_class_ref, |
5488 | base_dtor_identifier, |
5489 | NULL, |
5490 | base_binfo, |
5491 | (LOOKUP_NORMAL |
5492 | | LOOKUP_NONVIRTUAL), |
5493 | tf_warning_or_error); |
5494 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))) |
5495 | { |
5496 | expr = build3 (COND_EXPR, void_type_node, cond, |
5497 | expr, void_node); |
5498 | finish_decl_cleanup (NULL_TREE, expr); |
5499 | } |
5500 | } |
5501 | } |
5502 | } |
5503 | |
5504 | /* Take care of the remaining baseclasses. */ |
5505 | for (binfo = TYPE_BINFO (current_class_type), i = 0; |
5506 | BINFO_BASE_ITERATE (binfo, i, base_binfo); i++) |
5507 | { |
5508 | if (BINFO_VIRTUAL_P (base_binfo) |
5509 | || !type_build_dtor_call (BINFO_TYPE (base_binfo))) |
5510 | continue; |
5511 | |
5512 | expr = build_special_member_call (current_class_ref, |
5513 | base_dtor_identifier, |
5514 | NULL, base_binfo, |
5515 | LOOKUP_NORMAL | LOOKUP_NONVIRTUAL, |
5516 | tf_warning_or_error); |
5517 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))) |
5518 | finish_decl_cleanup (NULL_TREE, expr); |
5519 | } |
5520 | |
5521 | /* Don't automatically destroy union members. */ |
5522 | if (TREE_CODE (current_class_type) == UNION_TYPE) |
5523 | return; |
5524 | |
5525 | for (member = TYPE_FIELDS (current_class_type); member; |
5526 | member = DECL_CHAIN (member)) |
5527 | { |
5528 | tree this_type = TREE_TYPE (member); |
5529 | if (this_type == error_mark_node |
5530 | || TREE_CODE (member) != FIELD_DECL |
5531 | || DECL_ARTIFICIAL (member)) |
5532 | continue; |
5533 | if (ANON_AGGR_TYPE_P (this_type)) |
5534 | continue; |
5535 | if (type_build_dtor_call (this_type)) |
5536 | { |
5537 | tree this_member = (build_class_member_access_expr |
5538 | (current_class_ref, member, |
5539 | /*access_path=*/NULL_TREE, |
5540 | /*preserve_reference=*/false, |
5541 | tf_warning_or_error)); |
5542 | expr = build_delete (loc: input_location, otype: this_type, addr: this_member, |
5543 | auto_delete: sfk_complete_destructor, |
5544 | LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL, |
5545 | use_global_delete: 0, complain: tf_warning_or_error); |
5546 | if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type)) |
5547 | finish_decl_cleanup (NULL_TREE, expr); |
5548 | } |
5549 | } |
5550 | } |
5551 | |
5552 | /* Build a C++ vector delete expression. |
5553 | MAXINDEX is the number of elements to be deleted. |
5554 | ELT_SIZE is the nominal size of each element in the vector. |
5555 | BASE is the expression that should yield the store to be deleted. |
5556 | This function expands (or synthesizes) these calls itself. |
5557 | AUTO_DELETE_VEC says whether the container (vector) should be deallocated. |
5558 | |
5559 | This also calls delete for virtual baseclasses of elements of the vector. |
5560 | |
5561 | Update: MAXINDEX is no longer needed. The size can be extracted from the |
5562 | start of the vector for pointers, and from the type for arrays. We still |
5563 | use MAXINDEX for arrays because it happens to already have one of the |
5564 | values we'd have to extract. (We could use MAXINDEX with pointers to |
5565 | confirm the size, and trap if the numbers differ; not clear that it'd |
5566 | be worth bothering.) */ |
5567 | |
5568 | tree |
5569 | build_vec_delete (location_t loc, tree base, tree maxindex, |
5570 | special_function_kind auto_delete_vec, |
5571 | int use_global_delete, tsubst_flags_t complain) |
5572 | { |
5573 | tree type; |
5574 | tree rval; |
5575 | tree base_init = NULL_TREE; |
5576 | |
5577 | type = TREE_TYPE (base); |
5578 | |
5579 | if (TYPE_PTR_P (type)) |
5580 | { |
5581 | /* Step back one from start of vector, and read dimension. */ |
5582 | tree cookie_addr; |
5583 | tree size_ptr_type = build_pointer_type (sizetype); |
5584 | |
5585 | base = mark_rvalue_use (base); |
5586 | if (TREE_SIDE_EFFECTS (base)) |
5587 | { |
5588 | base_init = get_internal_target_expr (base); |
5589 | base = TARGET_EXPR_SLOT (base_init); |
5590 | } |
5591 | type = strip_array_types (TREE_TYPE (type)); |
5592 | cookie_addr = fold_build1_loc (loc, NEGATE_EXPR, |
5593 | sizetype, TYPE_SIZE_UNIT (sizetype)); |
5594 | cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base), |
5595 | cookie_addr); |
5596 | maxindex = cp_build_fold_indirect_ref (cookie_addr); |
5597 | } |
5598 | else if (TREE_CODE (type) == ARRAY_TYPE) |
5599 | { |
5600 | /* Get the total number of things in the array, maxindex is a |
5601 | bad name. */ |
5602 | maxindex = array_type_nelts_total (type); |
5603 | type = strip_array_types (type); |
5604 | base = decay_conversion (base, complain); |
5605 | if (base == error_mark_node) |
5606 | return error_mark_node; |
5607 | if (TREE_SIDE_EFFECTS (base)) |
5608 | { |
5609 | base_init = get_internal_target_expr (base); |
5610 | base = TARGET_EXPR_SLOT (base_init); |
5611 | } |
5612 | } |
5613 | else |
5614 | { |
5615 | if (base != error_mark_node && !(complain & tf_error)) |
5616 | error_at (loc, |
5617 | "type to vector delete is neither pointer or array type"); |
5618 | return error_mark_node; |
5619 | } |
5620 | |
5621 | rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec, |
5622 | use_global_delete, complain); |
5623 | if (base_init && rval != error_mark_node) |
5624 | rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval); |
5625 | |
5626 | protected_set_expr_location (rval, loc); |
5627 | return rval; |
5628 | } |
5629 | |
5630 | #include "gt-cp-init.h" |
5631 |
Definitions
- fn
- begin_init_stmts
- finish_init_stmts
- dfs_initialize_vtbl_ptrs
- initialize_vtbl_ptrs
- build_zero_init_1
- build_zero_init
- build_value_init
- build_value_init_noctor
- perform_target_ctor
- maybe_instantiate_nsdmi_init
- get_nsdmi
- maybe_reject_flexarray_init
- find_list_begin
- maybe_warn_list_ctor
- find_uninit_data
- find_uninit_fields_r
- find_uninit_fields
- can_init_array_with_p
- perform_member_init
- build_field_list
- innermost_aggr_scope
- sort_mem_initializers
- mark_exp_read_r
- emit_mem_initializers
- build_vtbl_address
- expand_virtual_init
- expand_cleanup_for_base
- construct_virtual_base
- initializing_context
- member_init_ok_or_else
- expand_member_init
- build_aggr_init
- expand_default_init
- expand_aggr_init_1
- is_class_type
- is_copy_initialization
- build_offset_ref
- constant_value_1
- scalar_constant_value
- decl_really_constant_value
- decl_constant_value
- decl_constant_value
- build_raw_new_expr
- diagnose_uninitialized_cst_or_ref_member_1
- diagnose_uninitialized_cst_or_ref_member
- throw_bad_array_new_length
- warn_placement_new_too_small
- type_has_new_extended_alignment
- malloc_alignment
- std_placement_new_fn_p
- build_new_constexpr_heap_type
- maybe_wrap_new_for_constexpr
- build_new_1
- build_new
- build_vec_delete_1
- create_temporary_var
- get_temp_regvar
- vec_copy_assign_is_trivial
- finish_length_check
- find_temps_r
- find_allocator_temps_r
- combine_allocator_temps
- build_vec_init
- build_dtor_call
- build_delete
- push_base_cleanups
Update your C++ knowledge – Modern C++11/14/17 Training
Find out more