| 1 | /* Constant folding for calls to built-in and internal functions. |
| 2 | Copyright (C) 1988-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "config.h" |
| 21 | #include "system.h" |
| 22 | #include "coretypes.h" |
| 23 | #include "realmpfr.h" |
| 24 | #include "tree.h" |
| 25 | #include "stor-layout.h" |
| 26 | #include "options.h" |
| 27 | #include "fold-const.h" |
| 28 | #include "fold-const-call.h" |
| 29 | #include "case-cfn-macros.h" |
| 30 | #include "tm.h" /* For C[LT]Z_DEFINED_VALUE_AT_ZERO. */ |
| 31 | #include "builtins.h" |
| 32 | #include "gimple-expr.h" |
| 33 | #include "tree-vector-builder.h" |
| 34 | |
| 35 | /* Functions that test for certain constant types, abstracting away the |
| 36 | decision about whether to check for overflow. */ |
| 37 | |
| 38 | static inline bool |
| 39 | integer_cst_p (tree t) |
| 40 | { |
| 41 | return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t); |
| 42 | } |
| 43 | |
| 44 | static inline bool |
| 45 | real_cst_p (tree t) |
| 46 | { |
| 47 | return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t); |
| 48 | } |
| 49 | |
| 50 | static inline bool |
| 51 | complex_cst_p (tree t) |
| 52 | { |
| 53 | return TREE_CODE (t) == COMPLEX_CST; |
| 54 | } |
| 55 | |
| 56 | /* Return true if ARG is a size_type_node constant. |
| 57 | Store it in *SIZE_OUT if so. */ |
| 58 | |
| 59 | static inline bool |
| 60 | size_t_cst_p (tree t, unsigned HOST_WIDE_INT *size_out) |
| 61 | { |
| 62 | if (types_compatible_p (size_type_node, TREE_TYPE (t)) |
| 63 | && integer_cst_p (t) |
| 64 | && tree_fits_uhwi_p (t)) |
| 65 | { |
| 66 | *size_out = tree_to_uhwi (t); |
| 67 | return true; |
| 68 | } |
| 69 | return false; |
| 70 | } |
| 71 | |
| 72 | /* RES is the result of a comparison in which < 0 means "less", 0 means |
| 73 | "equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and |
| 74 | return it in type TYPE. */ |
| 75 | |
| 76 | tree |
| 77 | build_cmp_result (tree type, int res) |
| 78 | { |
| 79 | return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0); |
| 80 | } |
| 81 | |
| 82 | /* M is the result of trying to constant-fold an expression (starting |
| 83 | with clear MPFR flags) and INEXACT says whether the result in M is |
| 84 | exact or inexact. Return true if M can be used as a constant-folded |
| 85 | result in format FORMAT, storing the value in *RESULT if so. */ |
| 86 | |
| 87 | static bool |
| 88 | do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact, |
| 89 | const real_format *format) |
| 90 | { |
| 91 | /* Proceed iff we get a normal number, i.e. not NaN or Inf and no |
| 92 | overflow/underflow occurred. If -frounding-math, proceed iff the |
| 93 | result of calling FUNC was exact. */ |
| 94 | if (!mpfr_number_p (m) |
| 95 | || mpfr_overflow_p () |
| 96 | || mpfr_underflow_p () |
| 97 | || (flag_rounding_math && inexact)) |
| 98 | return false; |
| 99 | |
| 100 | REAL_VALUE_TYPE tmp; |
| 101 | real_from_mpfr (&tmp, m, format, MPFR_RNDN); |
| 102 | |
| 103 | /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values. |
| 104 | If the REAL_VALUE_TYPE is zero but the mpfr_t is not, then we |
| 105 | underflowed in the conversion. */ |
| 106 | if (!real_isfinite (&tmp) |
| 107 | || ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0))) |
| 108 | return false; |
| 109 | |
| 110 | real_convert (result, format, &tmp); |
| 111 | return real_identical (result, &tmp); |
| 112 | } |
| 113 | |
| 114 | /* Try to evaluate: |
| 115 | |
| 116 | *RESULT = f (*ARG) |
| 117 | |
| 118 | in format FORMAT, given that FUNC is the MPFR implementation of f. |
| 119 | Return true on success. */ |
| 120 | |
| 121 | static bool |
| 122 | do_mpfr_arg1 (real_value *result, |
| 123 | int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t), |
| 124 | const real_value *arg, const real_format *format) |
| 125 | { |
| 126 | /* To proceed, MPFR must exactly represent the target floating point |
| 127 | format, which only happens when the target base equals two. */ |
| 128 | if (format->b != 2 || !real_isfinite (arg)) |
| 129 | return false; |
| 130 | |
| 131 | int prec = format->p; |
| 132 | mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; |
| 133 | |
| 134 | auto_mpfr m (prec); |
| 135 | mpfr_from_real (m, arg, MPFR_RNDN); |
| 136 | mpfr_clear_flags (); |
| 137 | bool inexact = func (m, m, rnd); |
| 138 | bool ok = do_mpfr_ckconv (result, m, inexact, format); |
| 139 | |
| 140 | return ok; |
| 141 | } |
| 142 | |
| 143 | /* Try to evaluate: |
| 144 | |
| 145 | *RESULT_SIN = sin (*ARG); |
| 146 | *RESULT_COS = cos (*ARG); |
| 147 | |
| 148 | for format FORMAT. Return true on success. */ |
| 149 | |
| 150 | static bool |
| 151 | do_mpfr_sincos (real_value *result_sin, real_value *result_cos, |
| 152 | const real_value *arg, const real_format *format) |
| 153 | { |
| 154 | /* To proceed, MPFR must exactly represent the target floating point |
| 155 | format, which only happens when the target base equals two. */ |
| 156 | if (format->b != 2 || !real_isfinite (arg)) |
| 157 | return false; |
| 158 | |
| 159 | int prec = format->p; |
| 160 | mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; |
| 161 | mpfr_t m, ms, mc; |
| 162 | |
| 163 | mpfr_inits2 (prec, m, ms, mc, NULL); |
| 164 | mpfr_from_real (m, arg, MPFR_RNDN); |
| 165 | mpfr_clear_flags (); |
| 166 | bool inexact = mpfr_sin_cos (ms, mc, m, rnd); |
| 167 | bool ok = (do_mpfr_ckconv (result: result_sin, m: ms, inexact, format) |
| 168 | && do_mpfr_ckconv (result: result_cos, m: mc, inexact, format)); |
| 169 | mpfr_clears (m, ms, mc, NULL); |
| 170 | |
| 171 | return ok; |
| 172 | } |
| 173 | |
| 174 | /* Try to evaluate: |
| 175 | |
| 176 | *RESULT = f (*ARG0, *ARG1) |
| 177 | |
| 178 | in format FORMAT, given that FUNC is the MPFR implementation of f. |
| 179 | Return true on success. */ |
| 180 | |
| 181 | static bool |
| 182 | do_mpfr_arg2 (real_value *result, |
| 183 | int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t), |
| 184 | const real_value *arg0, const real_value *arg1, |
| 185 | const real_format *format) |
| 186 | { |
| 187 | /* To proceed, MPFR must exactly represent the target floating point |
| 188 | format, which only happens when the target base equals two. */ |
| 189 | if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1)) |
| 190 | return false; |
| 191 | |
| 192 | int prec = format->p; |
| 193 | mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; |
| 194 | mpfr_t m0, m1; |
| 195 | |
| 196 | mpfr_inits2 (prec, m0, m1, NULL); |
| 197 | mpfr_from_real (m0, arg0, MPFR_RNDN); |
| 198 | mpfr_from_real (m1, arg1, MPFR_RNDN); |
| 199 | mpfr_clear_flags (); |
| 200 | bool inexact = func (m0, m0, m1, rnd); |
| 201 | bool ok = do_mpfr_ckconv (result, m: m0, inexact, format); |
| 202 | mpfr_clears (m0, m1, NULL); |
| 203 | |
| 204 | return ok; |
| 205 | } |
| 206 | |
| 207 | /* Try to evaluate: |
| 208 | |
| 209 | *RESULT = f (ARG0, *ARG1) |
| 210 | |
| 211 | in format FORMAT, given that FUNC is the MPFR implementation of f. |
| 212 | Return true on success. */ |
| 213 | |
| 214 | static bool |
| 215 | do_mpfr_arg2 (real_value *result, |
| 216 | int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t), |
| 217 | const wide_int_ref &arg0, const real_value *arg1, |
| 218 | const real_format *format) |
| 219 | { |
| 220 | if (format->b != 2 || !real_isfinite (arg1)) |
| 221 | return false; |
| 222 | |
| 223 | int prec = format->p; |
| 224 | mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; |
| 225 | |
| 226 | auto_mpfr m (prec); |
| 227 | mpfr_from_real (m, arg1, MPFR_RNDN); |
| 228 | mpfr_clear_flags (); |
| 229 | bool inexact = func (m, arg0.to_shwi (), m, rnd); |
| 230 | bool ok = do_mpfr_ckconv (result, m, inexact, format); |
| 231 | |
| 232 | return ok; |
| 233 | } |
| 234 | |
| 235 | /* Try to evaluate: |
| 236 | |
| 237 | *RESULT = f (*ARG0, *ARG1, *ARG2) |
| 238 | |
| 239 | in format FORMAT, given that FUNC is the MPFR implementation of f. |
| 240 | Return true on success. */ |
| 241 | |
| 242 | static bool |
| 243 | do_mpfr_arg3 (real_value *result, |
| 244 | int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, |
| 245 | mpfr_srcptr, mpfr_rnd_t), |
| 246 | const real_value *arg0, const real_value *arg1, |
| 247 | const real_value *arg2, const real_format *format) |
| 248 | { |
| 249 | /* To proceed, MPFR must exactly represent the target floating point |
| 250 | format, which only happens when the target base equals two. */ |
| 251 | if (format->b != 2 |
| 252 | || !real_isfinite (arg0) |
| 253 | || !real_isfinite (arg1) |
| 254 | || !real_isfinite (arg2)) |
| 255 | return false; |
| 256 | |
| 257 | int prec = format->p; |
| 258 | mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN; |
| 259 | mpfr_t m0, m1, m2; |
| 260 | |
| 261 | mpfr_inits2 (prec, m0, m1, m2, NULL); |
| 262 | mpfr_from_real (m0, arg0, MPFR_RNDN); |
| 263 | mpfr_from_real (m1, arg1, MPFR_RNDN); |
| 264 | mpfr_from_real (m2, arg2, MPFR_RNDN); |
| 265 | mpfr_clear_flags (); |
| 266 | bool inexact = func (m0, m0, m1, m2, rnd); |
| 267 | bool ok = do_mpfr_ckconv (result, m: m0, inexact, format); |
| 268 | mpfr_clears (m0, m1, m2, NULL); |
| 269 | |
| 270 | return ok; |
| 271 | } |
| 272 | |
| 273 | /* M is the result of trying to constant-fold an expression (starting |
| 274 | with clear MPFR flags) and INEXACT says whether the result in M is |
| 275 | exact or inexact. Return true if M can be used as a constant-folded |
| 276 | result in which the real and imaginary parts have format FORMAT. |
| 277 | Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */ |
| 278 | |
| 279 | static bool |
| 280 | do_mpc_ckconv (real_value *result_real, real_value *result_imag, |
| 281 | mpc_srcptr m, bool inexact, const real_format *format) |
| 282 | { |
| 283 | /* Proceed iff we get a normal number, i.e. not NaN or Inf and no |
| 284 | overflow/underflow occurred. If -frounding-math, proceed iff the |
| 285 | result of calling FUNC was exact. */ |
| 286 | if (!mpfr_number_p (mpc_realref (m)) |
| 287 | || !mpfr_number_p (mpc_imagref (m)) |
| 288 | || mpfr_overflow_p () |
| 289 | || mpfr_underflow_p () |
| 290 | || (flag_rounding_math && inexact)) |
| 291 | return false; |
| 292 | |
| 293 | REAL_VALUE_TYPE tmp_real, tmp_imag; |
| 294 | real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN); |
| 295 | real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN); |
| 296 | |
| 297 | /* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values. |
| 298 | If the REAL_VALUE_TYPE is zero but the mpfr_t is not, then we |
| 299 | underflowed in the conversion. */ |
| 300 | if (!real_isfinite (&tmp_real) |
| 301 | || !real_isfinite (&tmp_imag) |
| 302 | || (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0) |
| 303 | || (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0)) |
| 304 | return false; |
| 305 | |
| 306 | real_convert (result_real, format, &tmp_real); |
| 307 | real_convert (result_imag, format, &tmp_imag); |
| 308 | |
| 309 | return (real_identical (result_real, &tmp_real) |
| 310 | && real_identical (result_imag, &tmp_imag)); |
| 311 | } |
| 312 | |
| 313 | /* Try to evaluate: |
| 314 | |
| 315 | RESULT = f (ARG) |
| 316 | |
| 317 | in format FORMAT, given that FUNC is the mpc implementation of f. |
| 318 | Return true on success. Both RESULT and ARG are represented as |
| 319 | real and imaginary pairs. */ |
| 320 | |
| 321 | static bool |
| 322 | do_mpc_arg1 (real_value *result_real, real_value *result_imag, |
| 323 | int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t), |
| 324 | const real_value *arg_real, const real_value *arg_imag, |
| 325 | const real_format *format) |
| 326 | { |
| 327 | /* To proceed, MPFR must exactly represent the target floating point |
| 328 | format, which only happens when the target base equals two. */ |
| 329 | if (format->b != 2 |
| 330 | || !real_isfinite (arg_real) |
| 331 | || !real_isfinite (arg_imag)) |
| 332 | return false; |
| 333 | |
| 334 | int prec = format->p; |
| 335 | mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN; |
| 336 | mpc_t m; |
| 337 | |
| 338 | mpc_init2 (m, prec); |
| 339 | mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN); |
| 340 | mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN); |
| 341 | mpfr_clear_flags (); |
| 342 | bool inexact = func (m, m, crnd); |
| 343 | bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format); |
| 344 | mpc_clear (m); |
| 345 | |
| 346 | return ok; |
| 347 | } |
| 348 | |
| 349 | /* Try to evaluate: |
| 350 | |
| 351 | RESULT = f (ARG0, ARG1) |
| 352 | |
| 353 | in format FORMAT, given that FUNC is the mpc implementation of f. |
| 354 | Return true on success. RESULT, ARG0 and ARG1 are represented as |
| 355 | real and imaginary pairs. */ |
| 356 | |
| 357 | static bool |
| 358 | do_mpc_arg2 (real_value *result_real, real_value *result_imag, |
| 359 | int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t), |
| 360 | const real_value *arg0_real, const real_value *arg0_imag, |
| 361 | const real_value *arg1_real, const real_value *arg1_imag, |
| 362 | const real_format *format) |
| 363 | { |
| 364 | if (!real_isfinite (arg0_real) |
| 365 | || !real_isfinite (arg0_imag) |
| 366 | || !real_isfinite (arg1_real) |
| 367 | || !real_isfinite (arg1_imag)) |
| 368 | return false; |
| 369 | |
| 370 | int prec = format->p; |
| 371 | mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN; |
| 372 | mpc_t m0, m1; |
| 373 | |
| 374 | mpc_init2 (m0, prec); |
| 375 | mpc_init2 (m1, prec); |
| 376 | mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN); |
| 377 | mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN); |
| 378 | mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN); |
| 379 | mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN); |
| 380 | mpfr_clear_flags (); |
| 381 | bool inexact = func (m0, m0, m1, crnd); |
| 382 | bool ok = do_mpc_ckconv (result_real, result_imag, m: m0, inexact, format); |
| 383 | mpc_clear (m0); |
| 384 | mpc_clear (m1); |
| 385 | |
| 386 | return ok; |
| 387 | } |
| 388 | |
| 389 | /* Try to evaluate: |
| 390 | |
| 391 | *RESULT = logb (*ARG) |
| 392 | |
| 393 | in format FORMAT. Return true on success. */ |
| 394 | |
| 395 | static bool |
| 396 | fold_const_logb (real_value *result, const real_value *arg, |
| 397 | const real_format *format) |
| 398 | { |
| 399 | switch (arg->cl) |
| 400 | { |
| 401 | case rvc_nan: |
| 402 | /* If arg is +-NaN, then return it. */ |
| 403 | *result = *arg; |
| 404 | return true; |
| 405 | |
| 406 | case rvc_inf: |
| 407 | /* If arg is +-Inf, then return +Inf. */ |
| 408 | *result = *arg; |
| 409 | result->sign = 0; |
| 410 | return true; |
| 411 | |
| 412 | case rvc_zero: |
| 413 | /* Zero may set errno and/or raise an exception. */ |
| 414 | return false; |
| 415 | |
| 416 | case rvc_normal: |
| 417 | /* For normal numbers, proceed iff radix == 2. In GCC, |
| 418 | normalized significands are in the range [0.5, 1.0). We |
| 419 | want the exponent as if they were [1.0, 2.0) so get the |
| 420 | exponent and subtract 1. */ |
| 421 | if (format->b == 2) |
| 422 | { |
| 423 | real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED); |
| 424 | return true; |
| 425 | } |
| 426 | return false; |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | /* Try to evaluate: |
| 431 | |
| 432 | *RESULT = significand (*ARG) |
| 433 | |
| 434 | in format FORMAT. Return true on success. */ |
| 435 | |
| 436 | static bool |
| 437 | fold_const_significand (real_value *result, const real_value *arg, |
| 438 | const real_format *format) |
| 439 | { |
| 440 | switch (arg->cl) |
| 441 | { |
| 442 | case rvc_zero: |
| 443 | case rvc_nan: |
| 444 | case rvc_inf: |
| 445 | /* If arg is +-0, +-Inf or +-NaN, then return it. */ |
| 446 | *result = *arg; |
| 447 | return true; |
| 448 | |
| 449 | case rvc_normal: |
| 450 | /* For normal numbers, proceed iff radix == 2. */ |
| 451 | if (format->b == 2) |
| 452 | { |
| 453 | *result = *arg; |
| 454 | /* In GCC, normalized significands are in the range [0.5, 1.0). |
| 455 | We want them to be [1.0, 2.0) so set the exponent to 1. */ |
| 456 | SET_REAL_EXP (result, 1); |
| 457 | return true; |
| 458 | } |
| 459 | return false; |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | /* Try to evaluate: |
| 464 | |
| 465 | *RESULT = f (*ARG) |
| 466 | |
| 467 | where FORMAT is the format of *ARG and PRECISION is the number of |
| 468 | significant bits in the result. Return true on success. */ |
| 469 | |
| 470 | static bool |
| 471 | fold_const_conversion (wide_int *result, |
| 472 | void (*fn) (real_value *, format_helper, |
| 473 | const real_value *), |
| 474 | const real_value *arg, unsigned int precision, |
| 475 | const real_format *format) |
| 476 | { |
| 477 | if (!real_isfinite (arg)) |
| 478 | return false; |
| 479 | |
| 480 | real_value rounded; |
| 481 | fn (&rounded, format, arg); |
| 482 | |
| 483 | bool fail = false; |
| 484 | *result = real_to_integer (&rounded, &fail, precision); |
| 485 | return !fail; |
| 486 | } |
| 487 | |
| 488 | /* Try to evaluate: |
| 489 | |
| 490 | *RESULT = pow (*ARG0, *ARG1) |
| 491 | |
| 492 | in format FORMAT. Return true on success. */ |
| 493 | |
| 494 | static bool |
| 495 | fold_const_pow (real_value *result, const real_value *arg0, |
| 496 | const real_value *arg1, const real_format *format) |
| 497 | { |
| 498 | if (do_mpfr_arg2 (result, func: mpfr_pow, arg0, arg1, format)) |
| 499 | return true; |
| 500 | |
| 501 | /* Check for an integer exponent. */ |
| 502 | REAL_VALUE_TYPE cint1; |
| 503 | HOST_WIDE_INT n1 = real_to_integer (arg1); |
| 504 | real_from_integer (&cint1, VOIDmode, n1, SIGNED); |
| 505 | /* Attempt to evaluate pow at compile-time, unless this should |
| 506 | raise an exception. */ |
| 507 | if (real_identical (arg1, &cint1) |
| 508 | && (n1 > 0 |
| 509 | || (!flag_trapping_math && !flag_errno_math) |
| 510 | || !real_equal (arg0, &dconst0))) |
| 511 | { |
| 512 | bool inexact = real_powi (result, format, arg0, n1); |
| 513 | /* Avoid the folding if flag_signaling_nans is on. */ |
| 514 | if (flag_unsafe_math_optimizations |
| 515 | || (!inexact |
| 516 | && !(flag_signaling_nans |
| 517 | && REAL_VALUE_ISSIGNALING_NAN (*arg0)))) |
| 518 | return true; |
| 519 | } |
| 520 | |
| 521 | return false; |
| 522 | } |
| 523 | |
| 524 | /* Try to evaluate: |
| 525 | |
| 526 | *RESULT = nextafter (*ARG0, *ARG1) |
| 527 | |
| 528 | or |
| 529 | |
| 530 | *RESULT = nexttoward (*ARG0, *ARG1) |
| 531 | |
| 532 | in format FORMAT. Return true on success. */ |
| 533 | |
| 534 | static bool |
| 535 | fold_const_nextafter (real_value *result, const real_value *arg0, |
| 536 | const real_value *arg1, const real_format *format) |
| 537 | { |
| 538 | if (REAL_VALUE_ISSIGNALING_NAN (*arg0) |
| 539 | || REAL_VALUE_ISSIGNALING_NAN (*arg1)) |
| 540 | return false; |
| 541 | |
| 542 | /* Don't handle composite modes, nor decimal, nor modes without |
| 543 | inf or denorm at least for now. */ |
| 544 | if (format->pnan < format->p |
| 545 | || format->b == 10 |
| 546 | || !format->has_inf |
| 547 | || !format->has_denorm) |
| 548 | return false; |
| 549 | |
| 550 | if (real_nextafter (result, format, arg0, arg1) |
| 551 | /* If raising underflow or overflow and setting errno to ERANGE, |
| 552 | fail if we care about those side-effects. */ |
| 553 | && (flag_trapping_math || flag_errno_math)) |
| 554 | return false; |
| 555 | /* Similarly for nextafter (0, 1) raising underflow. */ |
| 556 | else if (flag_trapping_math |
| 557 | && arg0->cl == rvc_zero |
| 558 | && result->cl != rvc_zero) |
| 559 | return false; |
| 560 | |
| 561 | real_convert (result, format, result); |
| 562 | |
| 563 | return true; |
| 564 | } |
| 565 | |
| 566 | /* Try to evaluate: |
| 567 | |
| 568 | *RESULT = ldexp (*ARG0, ARG1) |
| 569 | |
| 570 | in format FORMAT. Return true on success. */ |
| 571 | |
| 572 | static bool |
| 573 | fold_const_builtin_load_exponent (real_value *result, const real_value *arg0, |
| 574 | const wide_int_ref &arg1, |
| 575 | const real_format *format) |
| 576 | { |
| 577 | /* Bound the maximum adjustment to twice the range of the |
| 578 | mode's valid exponents. Use abs to ensure the range is |
| 579 | positive as a sanity check. */ |
| 580 | int max_exp_adj = 2 * labs (x: format->emax - format->emin); |
| 581 | |
| 582 | /* The requested adjustment must be inside this range. This |
| 583 | is a preliminary cap to avoid things like overflow, we |
| 584 | may still fail to compute the result for other reasons. */ |
| 585 | if (wi::les_p (x: arg1, y: -max_exp_adj) || wi::ges_p (x: arg1, y: max_exp_adj)) |
| 586 | return false; |
| 587 | |
| 588 | /* Don't perform operation if we honor signaling NaNs and |
| 589 | operand is a signaling NaN. */ |
| 590 | if (!flag_unsafe_math_optimizations |
| 591 | && flag_signaling_nans |
| 592 | && REAL_VALUE_ISSIGNALING_NAN (*arg0)) |
| 593 | return false; |
| 594 | |
| 595 | REAL_VALUE_TYPE initial_result; |
| 596 | real_ldexp (&initial_result, arg0, arg1.to_shwi ()); |
| 597 | |
| 598 | /* Ensure we didn't overflow. */ |
| 599 | if (real_isinf (&initial_result)) |
| 600 | return false; |
| 601 | |
| 602 | /* Only proceed if the target mode can hold the |
| 603 | resulting value. */ |
| 604 | *result = real_value_truncate (format, initial_result); |
| 605 | return real_equal (&initial_result, result); |
| 606 | } |
| 607 | |
| 608 | /* Fold a call to __builtin_nan or __builtin_nans with argument ARG and |
| 609 | return type TYPE. QUIET is true if a quiet rather than signalling |
| 610 | NaN is required. */ |
| 611 | |
| 612 | static tree |
| 613 | fold_const_builtin_nan (tree type, tree arg, bool quiet) |
| 614 | { |
| 615 | REAL_VALUE_TYPE real; |
| 616 | const char *str = c_getstr (arg); |
| 617 | if (str && real_nan (&real, str, quiet, TYPE_MODE (type))) |
| 618 | return build_real (type, real); |
| 619 | return NULL_TREE; |
| 620 | } |
| 621 | |
| 622 | /* Fold a call to IFN_REDUC_<CODE> (ARG), returning a value of type TYPE. */ |
| 623 | |
| 624 | static tree |
| 625 | fold_const_reduction (tree type, tree arg, tree_code code) |
| 626 | { |
| 627 | unsigned HOST_WIDE_INT nelts; |
| 628 | if (TREE_CODE (arg) != VECTOR_CST |
| 629 | || !VECTOR_CST_NELTS (arg).is_constant (const_value: &nelts)) |
| 630 | return NULL_TREE; |
| 631 | |
| 632 | tree res = VECTOR_CST_ELT (arg, 0); |
| 633 | for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++) |
| 634 | { |
| 635 | res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i)); |
| 636 | if (res == NULL_TREE || !CONSTANT_CLASS_P (res)) |
| 637 | return NULL_TREE; |
| 638 | } |
| 639 | return res; |
| 640 | } |
| 641 | |
| 642 | /* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */ |
| 643 | |
| 644 | static tree |
| 645 | fold_const_vec_convert (tree ret_type, tree arg) |
| 646 | { |
| 647 | enum tree_code code = NOP_EXPR; |
| 648 | tree arg_type = TREE_TYPE (arg); |
| 649 | if (TREE_CODE (arg) != VECTOR_CST) |
| 650 | return NULL_TREE; |
| 651 | |
| 652 | gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type)); |
| 653 | |
| 654 | if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type)) |
| 655 | && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type))) |
| 656 | code = FIX_TRUNC_EXPR; |
| 657 | else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type)) |
| 658 | && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type))) |
| 659 | code = FLOAT_EXPR; |
| 660 | |
| 661 | /* We can't handle steps directly when extending, since the |
| 662 | values need to wrap at the original precision first. */ |
| 663 | bool step_ok_p |
| 664 | = (INTEGRAL_TYPE_P (TREE_TYPE (ret_type)) |
| 665 | && INTEGRAL_TYPE_P (TREE_TYPE (arg_type)) |
| 666 | && (TYPE_PRECISION (TREE_TYPE (ret_type)) |
| 667 | <= TYPE_PRECISION (TREE_TYPE (arg_type)))); |
| 668 | tree_vector_builder elts; |
| 669 | if (!elts.new_unary_operation (shape: ret_type, vec: arg, allow_stepped_p: step_ok_p)) |
| 670 | return NULL_TREE; |
| 671 | |
| 672 | unsigned int count = elts.encoded_nelts (); |
| 673 | for (unsigned int i = 0; i < count; ++i) |
| 674 | { |
| 675 | tree elt = fold_unary (code, TREE_TYPE (ret_type), |
| 676 | VECTOR_CST_ELT (arg, i)); |
| 677 | if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) |
| 678 | return NULL_TREE; |
| 679 | elts.quick_push (obj: elt); |
| 680 | } |
| 681 | |
| 682 | return elts.build (); |
| 683 | } |
| 684 | |
| 685 | /* Try to evaluate: |
| 686 | |
| 687 | IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... }) |
| 688 | |
| 689 | Return the value on success and null on failure. */ |
| 690 | |
| 691 | static tree |
| 692 | fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1) |
| 693 | { |
| 694 | if (known_ge (arg0, arg1)) |
| 695 | return build_zero_cst (type); |
| 696 | |
| 697 | if (maybe_ge (arg0, arg1)) |
| 698 | return NULL_TREE; |
| 699 | |
| 700 | poly_uint64 diff = arg1 - arg0; |
| 701 | poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (node: type); |
| 702 | if (known_ge (diff, nelts)) |
| 703 | return build_all_ones_cst (type); |
| 704 | |
| 705 | unsigned HOST_WIDE_INT const_diff; |
| 706 | if (known_le (diff, nelts) && diff.is_constant (const_value: &const_diff)) |
| 707 | { |
| 708 | tree minus_one = build_minus_one_cst (TREE_TYPE (type)); |
| 709 | tree zero = build_zero_cst (TREE_TYPE (type)); |
| 710 | return build_vector_a_then_b (type, const_diff, minus_one, zero); |
| 711 | } |
| 712 | return NULL_TREE; |
| 713 | } |
| 714 | |
| 715 | /* Try to evaluate: |
| 716 | |
| 717 | *RESULT = FN (*ARG) |
| 718 | |
| 719 | in format FORMAT. Return true on success. */ |
| 720 | |
| 721 | static bool |
| 722 | fold_const_call_ss (real_value *result, combined_fn fn, |
| 723 | const real_value *arg, const real_format *format) |
| 724 | { |
| 725 | switch (fn) |
| 726 | { |
| 727 | CASE_CFN_SQRT: |
| 728 | CASE_CFN_SQRT_FN: |
| 729 | return (real_compare (GE_EXPR, arg, &dconst0) |
| 730 | && do_mpfr_arg1 (result, func: mpfr_sqrt, arg, format)); |
| 731 | |
| 732 | CASE_CFN_CBRT: |
| 733 | CASE_CFN_CBRT_FN: |
| 734 | return do_mpfr_arg1 (result, func: mpfr_cbrt, arg, format); |
| 735 | |
| 736 | CASE_CFN_ASIN: |
| 737 | CASE_CFN_ASIN_FN: |
| 738 | return (real_compare (GE_EXPR, arg, &dconstm1) |
| 739 | && real_compare (LE_EXPR, arg, &dconst1) |
| 740 | && do_mpfr_arg1 (result, func: mpfr_asin, arg, format)); |
| 741 | |
| 742 | CASE_CFN_ACOS: |
| 743 | CASE_CFN_ACOS_FN: |
| 744 | return (real_compare (GE_EXPR, arg, &dconstm1) |
| 745 | && real_compare (LE_EXPR, arg, &dconst1) |
| 746 | && do_mpfr_arg1 (result, func: mpfr_acos, arg, format)); |
| 747 | |
| 748 | CASE_CFN_ATAN: |
| 749 | CASE_CFN_ATAN_FN: |
| 750 | return do_mpfr_arg1 (result, func: mpfr_atan, arg, format); |
| 751 | |
| 752 | CASE_CFN_ASINH: |
| 753 | CASE_CFN_ASINH_FN: |
| 754 | return do_mpfr_arg1 (result, func: mpfr_asinh, arg, format); |
| 755 | |
| 756 | CASE_CFN_ACOSH: |
| 757 | CASE_CFN_ACOSH_FN: |
| 758 | return (real_compare (GE_EXPR, arg, &dconst1) |
| 759 | && do_mpfr_arg1 (result, func: mpfr_acosh, arg, format)); |
| 760 | |
| 761 | CASE_CFN_ATANH: |
| 762 | CASE_CFN_ATANH_FN: |
| 763 | return (real_compare (GE_EXPR, arg, &dconstm1) |
| 764 | && real_compare (LE_EXPR, arg, &dconst1) |
| 765 | && do_mpfr_arg1 (result, func: mpfr_atanh, arg, format)); |
| 766 | |
| 767 | CASE_CFN_SIN: |
| 768 | CASE_CFN_SIN_FN: |
| 769 | return do_mpfr_arg1 (result, func: mpfr_sin, arg, format); |
| 770 | |
| 771 | CASE_CFN_COS: |
| 772 | CASE_CFN_COS_FN: |
| 773 | return do_mpfr_arg1 (result, func: mpfr_cos, arg, format); |
| 774 | |
| 775 | CASE_CFN_TAN: |
| 776 | CASE_CFN_TAN_FN: |
| 777 | return do_mpfr_arg1 (result, func: mpfr_tan, arg, format); |
| 778 | |
| 779 | CASE_CFN_SINH: |
| 780 | CASE_CFN_SINH_FN: |
| 781 | return do_mpfr_arg1 (result, func: mpfr_sinh, arg, format); |
| 782 | |
| 783 | CASE_CFN_COSH: |
| 784 | CASE_CFN_COSH_FN: |
| 785 | return do_mpfr_arg1 (result, func: mpfr_cosh, arg, format); |
| 786 | |
| 787 | CASE_CFN_TANH: |
| 788 | CASE_CFN_TANH_FN: |
| 789 | return do_mpfr_arg1 (result, func: mpfr_tanh, arg, format); |
| 790 | |
| 791 | CASE_CFN_ERF: |
| 792 | CASE_CFN_ERF_FN: |
| 793 | return do_mpfr_arg1 (result, func: mpfr_erf, arg, format); |
| 794 | |
| 795 | CASE_CFN_ERFC: |
| 796 | CASE_CFN_ERFC_FN: |
| 797 | return do_mpfr_arg1 (result, func: mpfr_erfc, arg, format); |
| 798 | |
| 799 | CASE_CFN_TGAMMA: |
| 800 | CASE_CFN_TGAMMA_FN: |
| 801 | return do_mpfr_arg1 (result, func: mpfr_gamma, arg, format); |
| 802 | |
| 803 | CASE_CFN_EXP: |
| 804 | CASE_CFN_EXP_FN: |
| 805 | return do_mpfr_arg1 (result, func: mpfr_exp, arg, format); |
| 806 | |
| 807 | CASE_CFN_EXP2: |
| 808 | CASE_CFN_EXP2_FN: |
| 809 | return do_mpfr_arg1 (result, func: mpfr_exp2, arg, format); |
| 810 | |
| 811 | CASE_CFN_EXP10: |
| 812 | CASE_CFN_POW10: |
| 813 | return do_mpfr_arg1 (result, func: mpfr_exp10, arg, format); |
| 814 | |
| 815 | CASE_CFN_EXPM1: |
| 816 | CASE_CFN_EXPM1_FN: |
| 817 | return do_mpfr_arg1 (result, func: mpfr_expm1, arg, format); |
| 818 | |
| 819 | CASE_CFN_LOG: |
| 820 | CASE_CFN_LOG_FN: |
| 821 | return (real_compare (GT_EXPR, arg, &dconst0) |
| 822 | && do_mpfr_arg1 (result, func: mpfr_log, arg, format)); |
| 823 | |
| 824 | CASE_CFN_LOG2: |
| 825 | CASE_CFN_LOG2_FN: |
| 826 | return (real_compare (GT_EXPR, arg, &dconst0) |
| 827 | && do_mpfr_arg1 (result, func: mpfr_log2, arg, format)); |
| 828 | |
| 829 | CASE_CFN_LOG10: |
| 830 | CASE_CFN_LOG10_FN: |
| 831 | return (real_compare (GT_EXPR, arg, &dconst0) |
| 832 | && do_mpfr_arg1 (result, func: mpfr_log10, arg, format)); |
| 833 | |
| 834 | CASE_CFN_LOG1P: |
| 835 | CASE_CFN_LOG1P_FN: |
| 836 | return (real_compare (GT_EXPR, arg, &dconstm1) |
| 837 | && do_mpfr_arg1 (result, func: mpfr_log1p, arg, format)); |
| 838 | |
| 839 | CASE_CFN_J0: |
| 840 | return do_mpfr_arg1 (result, func: mpfr_j0, arg, format); |
| 841 | |
| 842 | CASE_CFN_J1: |
| 843 | return do_mpfr_arg1 (result, func: mpfr_j1, arg, format); |
| 844 | |
| 845 | CASE_CFN_Y0: |
| 846 | return (real_compare (GT_EXPR, arg, &dconst0) |
| 847 | && do_mpfr_arg1 (result, func: mpfr_y0, arg, format)); |
| 848 | |
| 849 | CASE_CFN_Y1: |
| 850 | return (real_compare (GT_EXPR, arg, &dconst0) |
| 851 | && do_mpfr_arg1 (result, func: mpfr_y1, arg, format)); |
| 852 | |
| 853 | CASE_CFN_FLOOR: |
| 854 | CASE_CFN_FLOOR_FN: |
| 855 | if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) |
| 856 | { |
| 857 | real_floor (result, format, arg); |
| 858 | return true; |
| 859 | } |
| 860 | return false; |
| 861 | |
| 862 | CASE_CFN_CEIL: |
| 863 | CASE_CFN_CEIL_FN: |
| 864 | if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) |
| 865 | { |
| 866 | real_ceil (result, format, arg); |
| 867 | return true; |
| 868 | } |
| 869 | return false; |
| 870 | |
| 871 | CASE_CFN_TRUNC: |
| 872 | CASE_CFN_TRUNC_FN: |
| 873 | if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) |
| 874 | { |
| 875 | real_trunc (result, format, arg); |
| 876 | return true; |
| 877 | } |
| 878 | return false; |
| 879 | |
| 880 | CASE_CFN_ROUND: |
| 881 | CASE_CFN_ROUND_FN: |
| 882 | if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) |
| 883 | { |
| 884 | real_round (result, format, arg); |
| 885 | return true; |
| 886 | } |
| 887 | return false; |
| 888 | |
| 889 | CASE_CFN_ROUNDEVEN: |
| 890 | CASE_CFN_ROUNDEVEN_FN: |
| 891 | if (!REAL_VALUE_ISSIGNALING_NAN (*arg)) |
| 892 | { |
| 893 | real_roundeven (result, format, arg); |
| 894 | return true; |
| 895 | } |
| 896 | return false; |
| 897 | |
| 898 | CASE_CFN_LOGB: |
| 899 | CASE_CFN_LOGB_FN: |
| 900 | return fold_const_logb (result, arg, format); |
| 901 | |
| 902 | CASE_CFN_SIGNIFICAND: |
| 903 | return fold_const_significand (result, arg, format); |
| 904 | |
| 905 | default: |
| 906 | return false; |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | /* Try to evaluate: |
| 911 | |
| 912 | *RESULT = FN (*ARG) |
| 913 | |
| 914 | where FORMAT is the format of ARG and PRECISION is the number of |
| 915 | significant bits in the result. Return true on success. */ |
| 916 | |
| 917 | static bool |
| 918 | fold_const_call_ss (wide_int *result, combined_fn fn, |
| 919 | const real_value *arg, unsigned int precision, |
| 920 | const real_format *format) |
| 921 | { |
| 922 | switch (fn) |
| 923 | { |
| 924 | CASE_CFN_SIGNBIT: |
| 925 | if (real_isneg (arg)) |
| 926 | *result = wi::one (precision); |
| 927 | else |
| 928 | *result = wi::zero (precision); |
| 929 | return true; |
| 930 | |
| 931 | CASE_CFN_ILOGB: |
| 932 | CASE_CFN_ILOGB_FN: |
| 933 | /* For ilogb we don't know FP_ILOGB0, so only handle normal values. |
| 934 | Proceed iff radix == 2. In GCC, normalized significands are in |
| 935 | the range [0.5, 1.0). We want the exponent as if they were |
| 936 | [1.0, 2.0) so get the exponent and subtract 1. */ |
| 937 | if (arg->cl == rvc_normal && format->b == 2) |
| 938 | { |
| 939 | *result = wi::shwi (REAL_EXP (arg) - 1, precision); |
| 940 | return true; |
| 941 | } |
| 942 | return false; |
| 943 | |
| 944 | CASE_CFN_ICEIL: |
| 945 | CASE_CFN_LCEIL: |
| 946 | CASE_CFN_LLCEIL: |
| 947 | return fold_const_conversion (result, fn: real_ceil, arg, |
| 948 | precision, format); |
| 949 | |
| 950 | CASE_CFN_LFLOOR: |
| 951 | CASE_CFN_IFLOOR: |
| 952 | CASE_CFN_LLFLOOR: |
| 953 | return fold_const_conversion (result, fn: real_floor, arg, |
| 954 | precision, format); |
| 955 | |
| 956 | CASE_CFN_IROUND: |
| 957 | CASE_CFN_LROUND: |
| 958 | CASE_CFN_LROUND_FN: |
| 959 | CASE_CFN_LLROUND: |
| 960 | CASE_CFN_LLROUND_FN: |
| 961 | return fold_const_conversion (result, fn: real_round, arg, |
| 962 | precision, format); |
| 963 | |
| 964 | CASE_CFN_IRINT: |
| 965 | CASE_CFN_LRINT: |
| 966 | CASE_CFN_LRINT_FN: |
| 967 | CASE_CFN_LLRINT: |
| 968 | CASE_CFN_LLRINT_FN: |
| 969 | /* Not yet folded to a constant. */ |
| 970 | return false; |
| 971 | |
| 972 | CASE_CFN_FINITE: |
| 973 | case CFN_BUILT_IN_FINITED32: |
| 974 | case CFN_BUILT_IN_FINITED64: |
| 975 | case CFN_BUILT_IN_FINITED128: |
| 976 | case CFN_BUILT_IN_ISFINITE: |
| 977 | *result = wi::shwi (val: real_isfinite (arg) ? 1 : 0, precision); |
| 978 | return true; |
| 979 | |
| 980 | case CFN_BUILT_IN_ISSIGNALING: |
| 981 | *result = wi::shwi (val: real_issignaling_nan (arg) ? 1 : 0, precision); |
| 982 | return true; |
| 983 | |
| 984 | CASE_CFN_ISINF: |
| 985 | case CFN_BUILT_IN_ISINFD32: |
| 986 | case CFN_BUILT_IN_ISINFD64: |
| 987 | case CFN_BUILT_IN_ISINFD128: |
| 988 | if (real_isinf (arg)) |
| 989 | *result = wi::shwi (val: arg->sign ? -1 : 1, precision); |
| 990 | else |
| 991 | *result = wi::shwi (val: 0, precision); |
| 992 | return true; |
| 993 | |
| 994 | CASE_CFN_ISNAN: |
| 995 | case CFN_BUILT_IN_ISNAND32: |
| 996 | case CFN_BUILT_IN_ISNAND64: |
| 997 | case CFN_BUILT_IN_ISNAND128: |
| 998 | *result = wi::shwi (val: real_isnan (arg) ? 1 : 0, precision); |
| 999 | return true; |
| 1000 | |
| 1001 | default: |
| 1002 | return false; |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | /* Try to evaluate: |
| 1007 | |
| 1008 | *RESULT = FN (ARG) |
| 1009 | |
| 1010 | where ARG_TYPE is the type of ARG and PRECISION is the number of bits |
| 1011 | in the result. Return true on success. */ |
| 1012 | |
| 1013 | static bool |
| 1014 | fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg, |
| 1015 | unsigned int precision, tree arg_type) |
| 1016 | { |
| 1017 | switch (fn) |
| 1018 | { |
| 1019 | CASE_CFN_FFS: |
| 1020 | case CFN_BUILT_IN_FFSG: |
| 1021 | *result = wi::shwi (val: wi::ffs (arg), precision); |
| 1022 | return true; |
| 1023 | |
| 1024 | CASE_CFN_CLZ: |
| 1025 | case CFN_BUILT_IN_CLZG: |
| 1026 | { |
| 1027 | int tmp; |
| 1028 | if (wi::ne_p (x: arg, y: 0)) |
| 1029 | tmp = wi::clz (arg); |
| 1030 | else if (TREE_CODE (arg_type) == BITINT_TYPE) |
| 1031 | tmp = TYPE_PRECISION (arg_type); |
| 1032 | else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type), |
| 1033 | tmp)) |
| 1034 | tmp = TYPE_PRECISION (arg_type); |
| 1035 | *result = wi::shwi (val: tmp, precision); |
| 1036 | return true; |
| 1037 | } |
| 1038 | |
| 1039 | CASE_CFN_CTZ: |
| 1040 | case CFN_BUILT_IN_CTZG: |
| 1041 | { |
| 1042 | int tmp; |
| 1043 | if (wi::ne_p (x: arg, y: 0)) |
| 1044 | tmp = wi::ctz (arg); |
| 1045 | else if (TREE_CODE (arg_type) == BITINT_TYPE) |
| 1046 | tmp = TYPE_PRECISION (arg_type); |
| 1047 | else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type), |
| 1048 | tmp)) |
| 1049 | tmp = TYPE_PRECISION (arg_type); |
| 1050 | *result = wi::shwi (val: tmp, precision); |
| 1051 | return true; |
| 1052 | } |
| 1053 | |
| 1054 | CASE_CFN_CLRSB: |
| 1055 | case CFN_BUILT_IN_CLRSBG: |
| 1056 | *result = wi::shwi (val: wi::clrsb (arg), precision); |
| 1057 | return true; |
| 1058 | |
| 1059 | CASE_CFN_POPCOUNT: |
| 1060 | case CFN_BUILT_IN_POPCOUNTG: |
| 1061 | *result = wi::shwi (val: wi::popcount (arg), precision); |
| 1062 | return true; |
| 1063 | |
| 1064 | CASE_CFN_PARITY: |
| 1065 | case CFN_BUILT_IN_PARITYG: |
| 1066 | *result = wi::shwi (val: wi::parity (x: arg), precision); |
| 1067 | return true; |
| 1068 | |
| 1069 | case CFN_BUILT_IN_BSWAP16: |
| 1070 | case CFN_BUILT_IN_BSWAP32: |
| 1071 | case CFN_BUILT_IN_BSWAP64: |
| 1072 | case CFN_BUILT_IN_BSWAP128: |
| 1073 | *result = wi::bswap (x: wide_int::from (x: arg, precision, |
| 1074 | TYPE_SIGN (arg_type))); |
| 1075 | return true; |
| 1076 | |
| 1077 | default: |
| 1078 | return false; |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | /* Try to evaluate: |
| 1083 | |
| 1084 | RESULT = FN (*ARG) |
| 1085 | |
| 1086 | where FORMAT is the format of ARG and of the real and imaginary parts |
| 1087 | of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return |
| 1088 | true on success. */ |
| 1089 | |
| 1090 | static bool |
| 1091 | fold_const_call_cs (real_value *result_real, real_value *result_imag, |
| 1092 | combined_fn fn, const real_value *arg, |
| 1093 | const real_format *format) |
| 1094 | { |
| 1095 | switch (fn) |
| 1096 | { |
| 1097 | CASE_CFN_CEXPI: |
| 1098 | /* cexpi(x+yi) = cos(x)+sin(y)*i. */ |
| 1099 | return do_mpfr_sincos (result_sin: result_imag, result_cos: result_real, arg, format); |
| 1100 | |
| 1101 | default: |
| 1102 | return false; |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | /* Try to evaluate: |
| 1107 | |
| 1108 | *RESULT = fn (ARG) |
| 1109 | |
| 1110 | where FORMAT is the format of RESULT and of the real and imaginary parts |
| 1111 | of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on |
| 1112 | success. */ |
| 1113 | |
| 1114 | static bool |
| 1115 | fold_const_call_sc (real_value *result, combined_fn fn, |
| 1116 | const real_value *arg_real, const real_value *arg_imag, |
| 1117 | const real_format *format) |
| 1118 | { |
| 1119 | switch (fn) |
| 1120 | { |
| 1121 | CASE_CFN_CABS: |
| 1122 | CASE_CFN_CABS_FN: |
| 1123 | return do_mpfr_arg2 (result, func: mpfr_hypot, arg0: arg_real, arg1: arg_imag, format); |
| 1124 | |
| 1125 | default: |
| 1126 | return false; |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | /* Try to evaluate: |
| 1131 | |
| 1132 | RESULT = fn (ARG) |
| 1133 | |
| 1134 | where FORMAT is the format of the real and imaginary parts of RESULT |
| 1135 | (RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG). |
| 1136 | Return true on success. */ |
| 1137 | |
| 1138 | static bool |
| 1139 | fold_const_call_cc (real_value *result_real, real_value *result_imag, |
| 1140 | combined_fn fn, const real_value *arg_real, |
| 1141 | const real_value *arg_imag, const real_format *format) |
| 1142 | { |
| 1143 | switch (fn) |
| 1144 | { |
| 1145 | CASE_CFN_CCOS: |
| 1146 | CASE_CFN_CCOS_FN: |
| 1147 | return do_mpc_arg1 (result_real, result_imag, func: mpc_cos, |
| 1148 | arg_real, arg_imag, format); |
| 1149 | |
| 1150 | CASE_CFN_CCOSH: |
| 1151 | CASE_CFN_CCOSH_FN: |
| 1152 | return do_mpc_arg1 (result_real, result_imag, func: mpc_cosh, |
| 1153 | arg_real, arg_imag, format); |
| 1154 | |
| 1155 | CASE_CFN_CPROJ: |
| 1156 | CASE_CFN_CPROJ_FN: |
| 1157 | if (real_isinf (arg_real) || real_isinf (arg_imag)) |
| 1158 | { |
| 1159 | *result_real = dconstinf; |
| 1160 | *result_imag = dconst0; |
| 1161 | result_imag->sign = arg_imag->sign; |
| 1162 | } |
| 1163 | else |
| 1164 | { |
| 1165 | *result_real = *arg_real; |
| 1166 | *result_imag = *arg_imag; |
| 1167 | } |
| 1168 | return true; |
| 1169 | |
| 1170 | CASE_CFN_CSIN: |
| 1171 | CASE_CFN_CSIN_FN: |
| 1172 | return do_mpc_arg1 (result_real, result_imag, func: mpc_sin, |
| 1173 | arg_real, arg_imag, format); |
| 1174 | |
| 1175 | CASE_CFN_CSINH: |
| 1176 | CASE_CFN_CSINH_FN: |
| 1177 | return do_mpc_arg1 (result_real, result_imag, func: mpc_sinh, |
| 1178 | arg_real, arg_imag, format); |
| 1179 | |
| 1180 | CASE_CFN_CTAN: |
| 1181 | CASE_CFN_CTAN_FN: |
| 1182 | return do_mpc_arg1 (result_real, result_imag, func: mpc_tan, |
| 1183 | arg_real, arg_imag, format); |
| 1184 | |
| 1185 | CASE_CFN_CTANH: |
| 1186 | CASE_CFN_CTANH_FN: |
| 1187 | return do_mpc_arg1 (result_real, result_imag, func: mpc_tanh, |
| 1188 | arg_real, arg_imag, format); |
| 1189 | |
| 1190 | CASE_CFN_CLOG: |
| 1191 | CASE_CFN_CLOG_FN: |
| 1192 | return do_mpc_arg1 (result_real, result_imag, func: mpc_log, |
| 1193 | arg_real, arg_imag, format); |
| 1194 | |
| 1195 | CASE_CFN_CSQRT: |
| 1196 | CASE_CFN_CSQRT_FN: |
| 1197 | return do_mpc_arg1 (result_real, result_imag, func: mpc_sqrt, |
| 1198 | arg_real, arg_imag, format); |
| 1199 | |
| 1200 | CASE_CFN_CASIN: |
| 1201 | CASE_CFN_CASIN_FN: |
| 1202 | return do_mpc_arg1 (result_real, result_imag, func: mpc_asin, |
| 1203 | arg_real, arg_imag, format); |
| 1204 | |
| 1205 | CASE_CFN_CACOS: |
| 1206 | CASE_CFN_CACOS_FN: |
| 1207 | return do_mpc_arg1 (result_real, result_imag, func: mpc_acos, |
| 1208 | arg_real, arg_imag, format); |
| 1209 | |
| 1210 | CASE_CFN_CATAN: |
| 1211 | CASE_CFN_CATAN_FN: |
| 1212 | return do_mpc_arg1 (result_real, result_imag, func: mpc_atan, |
| 1213 | arg_real, arg_imag, format); |
| 1214 | |
| 1215 | CASE_CFN_CASINH: |
| 1216 | CASE_CFN_CASINH_FN: |
| 1217 | return do_mpc_arg1 (result_real, result_imag, func: mpc_asinh, |
| 1218 | arg_real, arg_imag, format); |
| 1219 | |
| 1220 | CASE_CFN_CACOSH: |
| 1221 | CASE_CFN_CACOSH_FN: |
| 1222 | return do_mpc_arg1 (result_real, result_imag, func: mpc_acosh, |
| 1223 | arg_real, arg_imag, format); |
| 1224 | |
| 1225 | CASE_CFN_CATANH: |
| 1226 | CASE_CFN_CATANH_FN: |
| 1227 | return do_mpc_arg1 (result_real, result_imag, func: mpc_atanh, |
| 1228 | arg_real, arg_imag, format); |
| 1229 | |
| 1230 | CASE_CFN_CEXP: |
| 1231 | CASE_CFN_CEXP_FN: |
| 1232 | return do_mpc_arg1 (result_real, result_imag, func: mpc_exp, |
| 1233 | arg_real, arg_imag, format); |
| 1234 | |
| 1235 | default: |
| 1236 | return false; |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | /* Subroutine of fold_const_call, with the same interface. Handle cases |
| 1241 | where the arguments and result are numerical. */ |
| 1242 | |
| 1243 | static tree |
| 1244 | fold_const_call_1 (combined_fn fn, tree type, tree arg) |
| 1245 | { |
| 1246 | machine_mode mode = TYPE_MODE (type); |
| 1247 | machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg)); |
| 1248 | |
| 1249 | if (integer_cst_p (t: arg)) |
| 1250 | { |
| 1251 | if (SCALAR_INT_MODE_P (mode)) |
| 1252 | { |
| 1253 | wide_int result; |
| 1254 | if (fold_const_call_ss (result: &result, fn, arg: wi::to_wide (t: arg), |
| 1255 | TYPE_PRECISION (type), TREE_TYPE (arg))) |
| 1256 | return wide_int_to_tree (type, cst: result); |
| 1257 | } |
| 1258 | return NULL_TREE; |
| 1259 | } |
| 1260 | |
| 1261 | if (real_cst_p (t: arg)) |
| 1262 | { |
| 1263 | gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode)); |
| 1264 | if (mode == arg_mode) |
| 1265 | { |
| 1266 | /* real -> real. */ |
| 1267 | REAL_VALUE_TYPE result; |
| 1268 | if (fold_const_call_ss (result: &result, fn, TREE_REAL_CST_PTR (arg), |
| 1269 | REAL_MODE_FORMAT (mode))) |
| 1270 | return build_real (type, result); |
| 1271 | } |
| 1272 | else if (COMPLEX_MODE_P (mode) |
| 1273 | && GET_MODE_INNER (mode) == arg_mode) |
| 1274 | { |
| 1275 | /* real -> complex real. */ |
| 1276 | REAL_VALUE_TYPE result_real, result_imag; |
| 1277 | if (fold_const_call_cs (result_real: &result_real, result_imag: &result_imag, fn, |
| 1278 | TREE_REAL_CST_PTR (arg), |
| 1279 | REAL_MODE_FORMAT (arg_mode))) |
| 1280 | return build_complex (type, |
| 1281 | build_real (TREE_TYPE (type), result_real), |
| 1282 | build_real (TREE_TYPE (type), result_imag)); |
| 1283 | } |
| 1284 | else if (INTEGRAL_TYPE_P (type)) |
| 1285 | { |
| 1286 | /* real -> int. */ |
| 1287 | wide_int result; |
| 1288 | if (fold_const_call_ss (result: &result, fn, |
| 1289 | TREE_REAL_CST_PTR (arg), |
| 1290 | TYPE_PRECISION (type), |
| 1291 | REAL_MODE_FORMAT (arg_mode))) |
| 1292 | return wide_int_to_tree (type, cst: result); |
| 1293 | } |
| 1294 | return NULL_TREE; |
| 1295 | } |
| 1296 | |
| 1297 | if (complex_cst_p (t: arg)) |
| 1298 | { |
| 1299 | gcc_checking_assert (COMPLEX_MODE_P (arg_mode)); |
| 1300 | machine_mode inner_mode = GET_MODE_INNER (arg_mode); |
| 1301 | tree argr = TREE_REALPART (arg); |
| 1302 | tree argi = TREE_IMAGPART (arg); |
| 1303 | if (mode == arg_mode |
| 1304 | && real_cst_p (t: argr) |
| 1305 | && real_cst_p (t: argi)) |
| 1306 | { |
| 1307 | /* complex real -> complex real. */ |
| 1308 | REAL_VALUE_TYPE result_real, result_imag; |
| 1309 | if (fold_const_call_cc (result_real: &result_real, result_imag: &result_imag, fn, |
| 1310 | TREE_REAL_CST_PTR (argr), |
| 1311 | TREE_REAL_CST_PTR (argi), |
| 1312 | REAL_MODE_FORMAT (inner_mode))) |
| 1313 | return build_complex (type, |
| 1314 | build_real (TREE_TYPE (type), result_real), |
| 1315 | build_real (TREE_TYPE (type), result_imag)); |
| 1316 | } |
| 1317 | if (mode == inner_mode |
| 1318 | && real_cst_p (t: argr) |
| 1319 | && real_cst_p (t: argi)) |
| 1320 | { |
| 1321 | /* complex real -> real. */ |
| 1322 | REAL_VALUE_TYPE result; |
| 1323 | if (fold_const_call_sc (result: &result, fn, |
| 1324 | TREE_REAL_CST_PTR (argr), |
| 1325 | TREE_REAL_CST_PTR (argi), |
| 1326 | REAL_MODE_FORMAT (inner_mode))) |
| 1327 | return build_real (type, result); |
| 1328 | } |
| 1329 | return NULL_TREE; |
| 1330 | } |
| 1331 | |
| 1332 | return NULL_TREE; |
| 1333 | } |
| 1334 | |
| 1335 | /* Try to fold FN (ARG) to a constant. Return the constant on success, |
| 1336 | otherwise return null. TYPE is the type of the return value. */ |
| 1337 | |
| 1338 | tree |
| 1339 | fold_const_call (combined_fn fn, tree type, tree arg) |
| 1340 | { |
| 1341 | switch (fn) |
| 1342 | { |
| 1343 | case CFN_BUILT_IN_STRLEN: |
| 1344 | if (const char *str = c_getstr (arg)) |
| 1345 | return build_int_cst (type, strlen (s: str)); |
| 1346 | return NULL_TREE; |
| 1347 | |
| 1348 | CASE_CFN_NAN: |
| 1349 | CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN): |
| 1350 | case CFN_BUILT_IN_NAND32: |
| 1351 | case CFN_BUILT_IN_NAND64: |
| 1352 | case CFN_BUILT_IN_NAND128: |
| 1353 | case CFN_BUILT_IN_NAND64X: |
| 1354 | return fold_const_builtin_nan (type, arg, quiet: true); |
| 1355 | |
| 1356 | CASE_CFN_NANS: |
| 1357 | CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS): |
| 1358 | case CFN_BUILT_IN_NANSF16B: |
| 1359 | case CFN_BUILT_IN_NANSD32: |
| 1360 | case CFN_BUILT_IN_NANSD64: |
| 1361 | case CFN_BUILT_IN_NANSD128: |
| 1362 | case CFN_BUILT_IN_NANSD64X: |
| 1363 | return fold_const_builtin_nan (type, arg, quiet: false); |
| 1364 | |
| 1365 | case CFN_REDUC_PLUS: |
| 1366 | return fold_const_reduction (type, arg, code: PLUS_EXPR); |
| 1367 | |
| 1368 | case CFN_REDUC_MAX: |
| 1369 | return fold_const_reduction (type, arg, code: MAX_EXPR); |
| 1370 | |
| 1371 | case CFN_REDUC_MIN: |
| 1372 | return fold_const_reduction (type, arg, code: MIN_EXPR); |
| 1373 | |
| 1374 | case CFN_REDUC_AND: |
| 1375 | return fold_const_reduction (type, arg, code: BIT_AND_EXPR); |
| 1376 | |
| 1377 | case CFN_REDUC_IOR: |
| 1378 | return fold_const_reduction (type, arg, code: BIT_IOR_EXPR); |
| 1379 | |
| 1380 | case CFN_REDUC_XOR: |
| 1381 | return fold_const_reduction (type, arg, code: BIT_XOR_EXPR); |
| 1382 | |
| 1383 | case CFN_VEC_CONVERT: |
| 1384 | return fold_const_vec_convert (ret_type: type, arg); |
| 1385 | |
| 1386 | default: |
| 1387 | return fold_const_call_1 (fn, type, arg); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | /* Fold a call to IFN_FOLD_LEFT_<CODE> (ARG0, ARG1), returning a value |
| 1392 | of type TYPE. */ |
| 1393 | |
| 1394 | static tree |
| 1395 | fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code) |
| 1396 | { |
| 1397 | if (TREE_CODE (arg1) != VECTOR_CST) |
| 1398 | return NULL_TREE; |
| 1399 | |
| 1400 | unsigned HOST_WIDE_INT nelts; |
| 1401 | if (!VECTOR_CST_NELTS (arg1).is_constant (const_value: &nelts)) |
| 1402 | return NULL_TREE; |
| 1403 | |
| 1404 | for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++) |
| 1405 | { |
| 1406 | arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i)); |
| 1407 | if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0)) |
| 1408 | return NULL_TREE; |
| 1409 | } |
| 1410 | return arg0; |
| 1411 | } |
| 1412 | |
| 1413 | /* Try to evaluate: |
| 1414 | |
| 1415 | *RESULT = FN (*ARG0, *ARG1) |
| 1416 | |
| 1417 | in format FORMAT. Return true on success. */ |
| 1418 | |
| 1419 | static bool |
| 1420 | fold_const_call_sss (real_value *result, combined_fn fn, |
| 1421 | const real_value *arg0, const real_value *arg1, |
| 1422 | const real_format *format) |
| 1423 | { |
| 1424 | switch (fn) |
| 1425 | { |
| 1426 | CASE_CFN_DREM: |
| 1427 | CASE_CFN_REMAINDER: |
| 1428 | CASE_CFN_REMAINDER_FN: |
| 1429 | return do_mpfr_arg2 (result, func: mpfr_remainder, arg0, arg1, format); |
| 1430 | |
| 1431 | CASE_CFN_ATAN2: |
| 1432 | CASE_CFN_ATAN2_FN: |
| 1433 | return do_mpfr_arg2 (result, func: mpfr_atan2, arg0, arg1, format); |
| 1434 | |
| 1435 | CASE_CFN_FDIM: |
| 1436 | CASE_CFN_FDIM_FN: |
| 1437 | return do_mpfr_arg2 (result, func: mpfr_dim, arg0, arg1, format); |
| 1438 | |
| 1439 | CASE_CFN_FMOD: |
| 1440 | CASE_CFN_FMOD_FN: |
| 1441 | return do_mpfr_arg2 (result, func: mpfr_fmod, arg0, arg1, format); |
| 1442 | |
| 1443 | CASE_CFN_HYPOT: |
| 1444 | CASE_CFN_HYPOT_FN: |
| 1445 | return do_mpfr_arg2 (result, func: mpfr_hypot, arg0, arg1, format); |
| 1446 | |
| 1447 | CASE_CFN_COPYSIGN: |
| 1448 | CASE_CFN_COPYSIGN_FN: |
| 1449 | *result = *arg0; |
| 1450 | real_copysign (result, arg1); |
| 1451 | return true; |
| 1452 | |
| 1453 | CASE_CFN_FMIN: |
| 1454 | CASE_CFN_FMIN_FN: |
| 1455 | return do_mpfr_arg2 (result, func: mpfr_min, arg0, arg1, format); |
| 1456 | |
| 1457 | CASE_CFN_FMAX: |
| 1458 | CASE_CFN_FMAX_FN: |
| 1459 | return do_mpfr_arg2 (result, func: mpfr_max, arg0, arg1, format); |
| 1460 | |
| 1461 | CASE_CFN_POW: |
| 1462 | CASE_CFN_POW_FN: |
| 1463 | return fold_const_pow (result, arg0, arg1, format); |
| 1464 | |
| 1465 | CASE_CFN_NEXTAFTER: |
| 1466 | CASE_CFN_NEXTAFTER_FN: |
| 1467 | case CFN_BUILT_IN_NEXTAFTERF16B: |
| 1468 | CASE_CFN_NEXTTOWARD: |
| 1469 | return fold_const_nextafter (result, arg0, arg1, format); |
| 1470 | |
| 1471 | default: |
| 1472 | return false; |
| 1473 | } |
| 1474 | } |
| 1475 | |
| 1476 | /* Try to evaluate: |
| 1477 | |
| 1478 | *RESULT = FN (*ARG0, ARG1) |
| 1479 | |
| 1480 | where FORMAT is the format of *RESULT and *ARG0. Return true on |
| 1481 | success. */ |
| 1482 | |
| 1483 | static bool |
| 1484 | fold_const_call_sss (real_value *result, combined_fn fn, |
| 1485 | const real_value *arg0, const wide_int_ref &arg1, |
| 1486 | const real_format *format) |
| 1487 | { |
| 1488 | switch (fn) |
| 1489 | { |
| 1490 | CASE_CFN_LDEXP: |
| 1491 | CASE_CFN_LDEXP_FN: |
| 1492 | return fold_const_builtin_load_exponent (result, arg0, arg1, format); |
| 1493 | |
| 1494 | CASE_CFN_SCALBN: |
| 1495 | CASE_CFN_SCALBN_FN: |
| 1496 | CASE_CFN_SCALBLN: |
| 1497 | CASE_CFN_SCALBLN_FN: |
| 1498 | return (format->b == 2 |
| 1499 | && fold_const_builtin_load_exponent (result, arg0, arg1, |
| 1500 | format)); |
| 1501 | |
| 1502 | CASE_CFN_POWI: |
| 1503 | /* Avoid the folding if flag_signaling_nans is on and |
| 1504 | operand is a signaling NaN. */ |
| 1505 | if (!flag_unsafe_math_optimizations |
| 1506 | && flag_signaling_nans |
| 1507 | && REAL_VALUE_ISSIGNALING_NAN (*arg0)) |
| 1508 | return false; |
| 1509 | |
| 1510 | real_powi (result, format, arg0, arg1.to_shwi ()); |
| 1511 | return true; |
| 1512 | |
| 1513 | default: |
| 1514 | return false; |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | /* Try to evaluate: |
| 1519 | |
| 1520 | *RESULT = FN (ARG0, *ARG1) |
| 1521 | |
| 1522 | where FORMAT is the format of *RESULT and *ARG1. Return true on |
| 1523 | success. */ |
| 1524 | |
| 1525 | static bool |
| 1526 | fold_const_call_sss (real_value *result, combined_fn fn, |
| 1527 | const wide_int_ref &arg0, const real_value *arg1, |
| 1528 | const real_format *format) |
| 1529 | { |
| 1530 | switch (fn) |
| 1531 | { |
| 1532 | CASE_CFN_JN: |
| 1533 | return do_mpfr_arg2 (result, func: mpfr_jn, arg0, arg1, format); |
| 1534 | |
| 1535 | CASE_CFN_YN: |
| 1536 | return (real_compare (GT_EXPR, arg1, &dconst0) |
| 1537 | && do_mpfr_arg2 (result, func: mpfr_yn, arg0, arg1, format)); |
| 1538 | |
| 1539 | default: |
| 1540 | return false; |
| 1541 | } |
| 1542 | } |
| 1543 | |
| 1544 | /* Try to evaluate: |
| 1545 | |
| 1546 | *RESULT = FN (ARG0, ARG1) |
| 1547 | |
| 1548 | where ARG_TYPE is the type of ARG0 and PRECISION is the number of bits in |
| 1549 | the result. Return true on success. */ |
| 1550 | |
| 1551 | static bool |
| 1552 | fold_const_call_sss (wide_int *result, combined_fn fn, |
| 1553 | const wide_int_ref &arg0, const wide_int_ref &arg1, |
| 1554 | unsigned int precision, tree arg_type ATTRIBUTE_UNUSED) |
| 1555 | { |
| 1556 | switch (fn) |
| 1557 | { |
| 1558 | case CFN_CLZ: |
| 1559 | case CFN_BUILT_IN_CLZG: |
| 1560 | { |
| 1561 | int tmp; |
| 1562 | if (wi::ne_p (x: arg0, y: 0)) |
| 1563 | tmp = wi::clz (arg0); |
| 1564 | else |
| 1565 | tmp = arg1.to_shwi (); |
| 1566 | *result = wi::shwi (val: tmp, precision); |
| 1567 | return true; |
| 1568 | } |
| 1569 | |
| 1570 | case CFN_CTZ: |
| 1571 | case CFN_BUILT_IN_CTZG: |
| 1572 | { |
| 1573 | int tmp; |
| 1574 | if (wi::ne_p (x: arg0, y: 0)) |
| 1575 | tmp = wi::ctz (arg0); |
| 1576 | else |
| 1577 | tmp = arg1.to_shwi (); |
| 1578 | *result = wi::shwi (val: tmp, precision); |
| 1579 | return true; |
| 1580 | } |
| 1581 | |
| 1582 | default: |
| 1583 | return false; |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | /* Try to evaluate: |
| 1588 | |
| 1589 | RESULT = fn (ARG0, ARG1) |
| 1590 | |
| 1591 | where FORMAT is the format of the real and imaginary parts of RESULT |
| 1592 | (RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG) |
| 1593 | and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */ |
| 1594 | |
| 1595 | static bool |
| 1596 | fold_const_call_ccc (real_value *result_real, real_value *result_imag, |
| 1597 | combined_fn fn, const real_value *arg0_real, |
| 1598 | const real_value *arg0_imag, const real_value *arg1_real, |
| 1599 | const real_value *arg1_imag, const real_format *format) |
| 1600 | { |
| 1601 | switch (fn) |
| 1602 | { |
| 1603 | CASE_CFN_CPOW: |
| 1604 | CASE_CFN_CPOW_FN: |
| 1605 | return do_mpc_arg2 (result_real, result_imag, func: mpc_pow, |
| 1606 | arg0_real, arg0_imag, arg1_real, arg1_imag, format); |
| 1607 | |
| 1608 | default: |
| 1609 | return false; |
| 1610 | } |
| 1611 | } |
| 1612 | |
| 1613 | /* Subroutine of fold_const_call, with the same interface. Handle cases |
| 1614 | where the arguments and result are numerical. */ |
| 1615 | |
| 1616 | static tree |
| 1617 | fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1) |
| 1618 | { |
| 1619 | machine_mode mode = TYPE_MODE (type); |
| 1620 | machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); |
| 1621 | machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1)); |
| 1622 | |
| 1623 | if (integer_cst_p (t: arg0) && integer_cst_p (t: arg1)) |
| 1624 | { |
| 1625 | if (SCALAR_INT_MODE_P (mode)) |
| 1626 | { |
| 1627 | wide_int result; |
| 1628 | if (fold_const_call_sss (result: &result, fn, arg0: wi::to_wide (t: arg0), |
| 1629 | arg1: wi::to_wide (t: arg1), TYPE_PRECISION (type), |
| 1630 | TREE_TYPE (arg0))) |
| 1631 | return wide_int_to_tree (type, cst: result); |
| 1632 | } |
| 1633 | return NULL_TREE; |
| 1634 | } |
| 1635 | |
| 1636 | if (mode == arg0_mode |
| 1637 | && real_cst_p (t: arg0) |
| 1638 | && real_cst_p (t: arg1)) |
| 1639 | { |
| 1640 | gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode)); |
| 1641 | REAL_VALUE_TYPE result; |
| 1642 | if (arg0_mode == arg1_mode) |
| 1643 | { |
| 1644 | /* real, real -> real. */ |
| 1645 | if (fold_const_call_sss (result: &result, fn, TREE_REAL_CST_PTR (arg0), |
| 1646 | TREE_REAL_CST_PTR (arg1), |
| 1647 | REAL_MODE_FORMAT (mode))) |
| 1648 | return build_real (type, result); |
| 1649 | } |
| 1650 | else if (arg1_mode == TYPE_MODE (long_double_type_node)) |
| 1651 | switch (fn) |
| 1652 | { |
| 1653 | CASE_CFN_NEXTTOWARD: |
| 1654 | /* real, long double -> real. */ |
| 1655 | if (fold_const_call_sss (result: &result, fn, TREE_REAL_CST_PTR (arg0), |
| 1656 | TREE_REAL_CST_PTR (arg1), |
| 1657 | REAL_MODE_FORMAT (mode))) |
| 1658 | return build_real (type, result); |
| 1659 | break; |
| 1660 | default: |
| 1661 | break; |
| 1662 | } |
| 1663 | return NULL_TREE; |
| 1664 | } |
| 1665 | |
| 1666 | if (real_cst_p (t: arg0) |
| 1667 | && integer_cst_p (t: arg1)) |
| 1668 | { |
| 1669 | gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode)); |
| 1670 | if (mode == arg0_mode) |
| 1671 | { |
| 1672 | /* real, int -> real. */ |
| 1673 | REAL_VALUE_TYPE result; |
| 1674 | if (fold_const_call_sss (result: &result, fn, TREE_REAL_CST_PTR (arg0), |
| 1675 | arg1: wi::to_wide (t: arg1), |
| 1676 | REAL_MODE_FORMAT (mode))) |
| 1677 | return build_real (type, result); |
| 1678 | } |
| 1679 | return NULL_TREE; |
| 1680 | } |
| 1681 | |
| 1682 | if (integer_cst_p (t: arg0) |
| 1683 | && real_cst_p (t: arg1)) |
| 1684 | { |
| 1685 | gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode)); |
| 1686 | if (mode == arg1_mode) |
| 1687 | { |
| 1688 | /* int, real -> real. */ |
| 1689 | REAL_VALUE_TYPE result; |
| 1690 | if (fold_const_call_sss (result: &result, fn, arg0: wi::to_wide (t: arg0), |
| 1691 | TREE_REAL_CST_PTR (arg1), |
| 1692 | REAL_MODE_FORMAT (mode))) |
| 1693 | return build_real (type, result); |
| 1694 | } |
| 1695 | return NULL_TREE; |
| 1696 | } |
| 1697 | |
| 1698 | if (arg0_mode == arg1_mode |
| 1699 | && complex_cst_p (t: arg0) |
| 1700 | && complex_cst_p (t: arg1)) |
| 1701 | { |
| 1702 | gcc_checking_assert (COMPLEX_MODE_P (arg0_mode)); |
| 1703 | machine_mode inner_mode = GET_MODE_INNER (arg0_mode); |
| 1704 | tree arg0r = TREE_REALPART (arg0); |
| 1705 | tree arg0i = TREE_IMAGPART (arg0); |
| 1706 | tree arg1r = TREE_REALPART (arg1); |
| 1707 | tree arg1i = TREE_IMAGPART (arg1); |
| 1708 | if (mode == arg0_mode |
| 1709 | && real_cst_p (t: arg0r) |
| 1710 | && real_cst_p (t: arg0i) |
| 1711 | && real_cst_p (t: arg1r) |
| 1712 | && real_cst_p (t: arg1i)) |
| 1713 | { |
| 1714 | /* complex real, complex real -> complex real. */ |
| 1715 | REAL_VALUE_TYPE result_real, result_imag; |
| 1716 | if (fold_const_call_ccc (result_real: &result_real, result_imag: &result_imag, fn, |
| 1717 | TREE_REAL_CST_PTR (arg0r), |
| 1718 | TREE_REAL_CST_PTR (arg0i), |
| 1719 | TREE_REAL_CST_PTR (arg1r), |
| 1720 | TREE_REAL_CST_PTR (arg1i), |
| 1721 | REAL_MODE_FORMAT (inner_mode))) |
| 1722 | return build_complex (type, |
| 1723 | build_real (TREE_TYPE (type), result_real), |
| 1724 | build_real (TREE_TYPE (type), result_imag)); |
| 1725 | } |
| 1726 | return NULL_TREE; |
| 1727 | } |
| 1728 | |
| 1729 | return NULL_TREE; |
| 1730 | } |
| 1731 | |
| 1732 | /* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success, |
| 1733 | otherwise return null. TYPE is the type of the return value. */ |
| 1734 | |
| 1735 | tree |
| 1736 | fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1) |
| 1737 | { |
| 1738 | const char *p0, *p1; |
| 1739 | char c; |
| 1740 | tree_code subcode; |
| 1741 | switch (fn) |
| 1742 | { |
| 1743 | case CFN_BUILT_IN_STRSPN: |
| 1744 | if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) |
| 1745 | return build_int_cst (type, strspn (s: p0, accept: p1)); |
| 1746 | return NULL_TREE; |
| 1747 | |
| 1748 | case CFN_BUILT_IN_STRCSPN: |
| 1749 | if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) |
| 1750 | return build_int_cst (type, strcspn (s: p0, reject: p1)); |
| 1751 | return NULL_TREE; |
| 1752 | |
| 1753 | case CFN_BUILT_IN_STRCMP: |
| 1754 | if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) |
| 1755 | return build_cmp_result (type, res: strcmp (s1: p0, s2: p1)); |
| 1756 | return NULL_TREE; |
| 1757 | |
| 1758 | case CFN_BUILT_IN_STRCASECMP: |
| 1759 | if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) |
| 1760 | { |
| 1761 | int r = strcmp (s1: p0, s2: p1); |
| 1762 | if (r == 0) |
| 1763 | return build_cmp_result (type, res: r); |
| 1764 | } |
| 1765 | return NULL_TREE; |
| 1766 | |
| 1767 | case CFN_BUILT_IN_INDEX: |
| 1768 | case CFN_BUILT_IN_STRCHR: |
| 1769 | if ((p0 = c_getstr (arg0)) && target_char_cst_p (t: arg1, p: &c)) |
| 1770 | { |
| 1771 | const char *r = strchr (s: p0, c: c); |
| 1772 | if (r == NULL) |
| 1773 | return build_int_cst (type, 0); |
| 1774 | return fold_convert (type, |
| 1775 | fold_build_pointer_plus_hwi (arg0, r - p0)); |
| 1776 | } |
| 1777 | return NULL_TREE; |
| 1778 | |
| 1779 | case CFN_BUILT_IN_RINDEX: |
| 1780 | case CFN_BUILT_IN_STRRCHR: |
| 1781 | if ((p0 = c_getstr (arg0)) && target_char_cst_p (t: arg1, p: &c)) |
| 1782 | { |
| 1783 | const char *r = strrchr (s: p0, c: c); |
| 1784 | if (r == NULL) |
| 1785 | return build_int_cst (type, 0); |
| 1786 | return fold_convert (type, |
| 1787 | fold_build_pointer_plus_hwi (arg0, r - p0)); |
| 1788 | } |
| 1789 | return NULL_TREE; |
| 1790 | |
| 1791 | case CFN_BUILT_IN_STRSTR: |
| 1792 | if ((p1 = c_getstr (arg1))) |
| 1793 | { |
| 1794 | if ((p0 = c_getstr (arg0))) |
| 1795 | { |
| 1796 | const char *r = strstr (haystack: p0, needle: p1); |
| 1797 | if (r == NULL) |
| 1798 | return build_int_cst (type, 0); |
| 1799 | return fold_convert (type, |
| 1800 | fold_build_pointer_plus_hwi (arg0, r - p0)); |
| 1801 | } |
| 1802 | if (*p1 == '\0') |
| 1803 | return fold_convert (type, arg0); |
| 1804 | } |
| 1805 | return NULL_TREE; |
| 1806 | |
| 1807 | case CFN_FOLD_LEFT_PLUS: |
| 1808 | return fold_const_fold_left (type, arg0, arg1, code: PLUS_EXPR); |
| 1809 | |
| 1810 | case CFN_UBSAN_CHECK_ADD: |
| 1811 | case CFN_ADD_OVERFLOW: |
| 1812 | subcode = PLUS_EXPR; |
| 1813 | goto arith_overflow; |
| 1814 | |
| 1815 | case CFN_UBSAN_CHECK_SUB: |
| 1816 | case CFN_SUB_OVERFLOW: |
| 1817 | subcode = MINUS_EXPR; |
| 1818 | goto arith_overflow; |
| 1819 | |
| 1820 | case CFN_UBSAN_CHECK_MUL: |
| 1821 | case CFN_MUL_OVERFLOW: |
| 1822 | subcode = MULT_EXPR; |
| 1823 | goto arith_overflow; |
| 1824 | |
| 1825 | arith_overflow: |
| 1826 | if (integer_cst_p (t: arg0) && integer_cst_p (t: arg1)) |
| 1827 | { |
| 1828 | tree itype |
| 1829 | = TREE_CODE (type) == COMPLEX_TYPE ? TREE_TYPE (type) : type; |
| 1830 | bool ovf = false; |
| 1831 | tree r = int_const_binop (subcode, fold_convert (itype, arg0), |
| 1832 | fold_convert (itype, arg1)); |
| 1833 | if (!r || TREE_CODE (r) != INTEGER_CST) |
| 1834 | return NULL_TREE; |
| 1835 | if (arith_overflowed_p (subcode, itype, arg0, arg1)) |
| 1836 | ovf = true; |
| 1837 | if (TREE_OVERFLOW (r)) |
| 1838 | r = drop_tree_overflow (r); |
| 1839 | if (itype == type) |
| 1840 | { |
| 1841 | if (ovf) |
| 1842 | return NULL_TREE; |
| 1843 | return r; |
| 1844 | } |
| 1845 | else |
| 1846 | return build_complex (type, r, build_int_cst (itype, ovf)); |
| 1847 | } |
| 1848 | return NULL_TREE; |
| 1849 | |
| 1850 | default: |
| 1851 | return fold_const_call_1 (fn, type, arg0, arg1); |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | /* Try to evaluate: |
| 1856 | |
| 1857 | *RESULT = FN (*ARG0, *ARG1, *ARG2) |
| 1858 | |
| 1859 | in format FORMAT. Return true on success. */ |
| 1860 | |
| 1861 | static bool |
| 1862 | fold_const_call_ssss (real_value *result, combined_fn fn, |
| 1863 | const real_value *arg0, const real_value *arg1, |
| 1864 | const real_value *arg2, const real_format *format) |
| 1865 | { |
| 1866 | switch (fn) |
| 1867 | { |
| 1868 | CASE_CFN_FMA: |
| 1869 | CASE_CFN_FMA_FN: |
| 1870 | return do_mpfr_arg3 (result, func: mpfr_fma, arg0, arg1, arg2, format); |
| 1871 | |
| 1872 | case CFN_FMS: |
| 1873 | { |
| 1874 | real_value new_arg2 = real_value_negate (arg2); |
| 1875 | return do_mpfr_arg3 (result, func: mpfr_fma, arg0, arg1, arg2: &new_arg2, format); |
| 1876 | } |
| 1877 | |
| 1878 | case CFN_FNMA: |
| 1879 | { |
| 1880 | real_value new_arg0 = real_value_negate (arg0); |
| 1881 | return do_mpfr_arg3 (result, func: mpfr_fma, arg0: &new_arg0, arg1, arg2, format); |
| 1882 | } |
| 1883 | |
| 1884 | case CFN_FNMS: |
| 1885 | { |
| 1886 | real_value new_arg0 = real_value_negate (arg0); |
| 1887 | real_value new_arg2 = real_value_negate (arg2); |
| 1888 | return do_mpfr_arg3 (result, func: mpfr_fma, arg0: &new_arg0, arg1, |
| 1889 | arg2: &new_arg2, format); |
| 1890 | } |
| 1891 | |
| 1892 | default: |
| 1893 | return false; |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | /* Subroutine of fold_const_call, with the same interface. Handle cases |
| 1898 | where the arguments and result are numerical. */ |
| 1899 | |
| 1900 | static tree |
| 1901 | fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2) |
| 1902 | { |
| 1903 | machine_mode mode = TYPE_MODE (type); |
| 1904 | machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); |
| 1905 | machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1)); |
| 1906 | machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2)); |
| 1907 | |
| 1908 | if (arg0_mode == arg1_mode |
| 1909 | && arg0_mode == arg2_mode |
| 1910 | && real_cst_p (t: arg0) |
| 1911 | && real_cst_p (t: arg1) |
| 1912 | && real_cst_p (t: arg2)) |
| 1913 | { |
| 1914 | gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode)); |
| 1915 | if (mode == arg0_mode) |
| 1916 | { |
| 1917 | /* real, real, real -> real. */ |
| 1918 | REAL_VALUE_TYPE result; |
| 1919 | if (fold_const_call_ssss (result: &result, fn, TREE_REAL_CST_PTR (arg0), |
| 1920 | TREE_REAL_CST_PTR (arg1), |
| 1921 | TREE_REAL_CST_PTR (arg2), |
| 1922 | REAL_MODE_FORMAT (mode))) |
| 1923 | return build_real (type, result); |
| 1924 | } |
| 1925 | return NULL_TREE; |
| 1926 | } |
| 1927 | |
| 1928 | return NULL_TREE; |
| 1929 | } |
| 1930 | |
| 1931 | /* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on |
| 1932 | success, otherwise return null. TYPE is the type of the return value. */ |
| 1933 | |
| 1934 | tree |
| 1935 | fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2) |
| 1936 | { |
| 1937 | const char *p0, *p1; |
| 1938 | char c; |
| 1939 | unsigned HOST_WIDE_INT s0, s1, s2 = 0; |
| 1940 | switch (fn) |
| 1941 | { |
| 1942 | case CFN_BUILT_IN_STRNCMP: |
| 1943 | if (!size_t_cst_p (t: arg2, size_out: &s2)) |
| 1944 | return NULL_TREE; |
| 1945 | if (s2 == 0 |
| 1946 | && !TREE_SIDE_EFFECTS (arg0) |
| 1947 | && !TREE_SIDE_EFFECTS (arg1)) |
| 1948 | return build_int_cst (type, 0); |
| 1949 | else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1))) |
| 1950 | return build_int_cst (type, strncmp (s1: p0, s2: p1, MIN (s2, SIZE_MAX))); |
| 1951 | return NULL_TREE; |
| 1952 | |
| 1953 | case CFN_BUILT_IN_STRNCASECMP: |
| 1954 | if (!size_t_cst_p (t: arg2, size_out: &s2)) |
| 1955 | return NULL_TREE; |
| 1956 | if (s2 == 0 |
| 1957 | && !TREE_SIDE_EFFECTS (arg0) |
| 1958 | && !TREE_SIDE_EFFECTS (arg1)) |
| 1959 | return build_int_cst (type, 0); |
| 1960 | else if ((p0 = c_getstr (arg0)) |
| 1961 | && (p1 = c_getstr (arg1)) |
| 1962 | && strncmp (s1: p0, s2: p1, MIN (s2, SIZE_MAX)) == 0) |
| 1963 | return build_int_cst (type, 0); |
| 1964 | return NULL_TREE; |
| 1965 | |
| 1966 | case CFN_BUILT_IN_BCMP: |
| 1967 | case CFN_BUILT_IN_MEMCMP: |
| 1968 | if (!size_t_cst_p (t: arg2, size_out: &s2)) |
| 1969 | return NULL_TREE; |
| 1970 | if (s2 == 0 |
| 1971 | && !TREE_SIDE_EFFECTS (arg0) |
| 1972 | && !TREE_SIDE_EFFECTS (arg1)) |
| 1973 | return build_int_cst (type, 0); |
| 1974 | if ((p0 = getbyterep (arg0, &s0)) |
| 1975 | && (p1 = getbyterep (arg1, &s1)) |
| 1976 | && s2 <= s0 |
| 1977 | && s2 <= s1) |
| 1978 | return build_cmp_result (type, res: memcmp (s1: p0, s2: p1, n: s2)); |
| 1979 | return NULL_TREE; |
| 1980 | |
| 1981 | case CFN_BUILT_IN_MEMCHR: |
| 1982 | if (!size_t_cst_p (t: arg2, size_out: &s2)) |
| 1983 | return NULL_TREE; |
| 1984 | if (s2 == 0 |
| 1985 | && !TREE_SIDE_EFFECTS (arg0) |
| 1986 | && !TREE_SIDE_EFFECTS (arg1)) |
| 1987 | return build_int_cst (type, 0); |
| 1988 | if ((p0 = getbyterep (arg0, &s0)) |
| 1989 | && s2 <= s0 |
| 1990 | && target_char_cst_p (t: arg1, p: &c)) |
| 1991 | { |
| 1992 | const char *r = (const char *) memchr (s: p0, c: c, n: s2); |
| 1993 | if (r == NULL) |
| 1994 | return build_int_cst (type, 0); |
| 1995 | return fold_convert (type, |
| 1996 | fold_build_pointer_plus_hwi (arg0, r - p0)); |
| 1997 | } |
| 1998 | return NULL_TREE; |
| 1999 | |
| 2000 | case CFN_WHILE_ULT: |
| 2001 | { |
| 2002 | poly_uint64 parg0, parg1; |
| 2003 | if (poly_int_tree_p (t: arg0, value: &parg0) && poly_int_tree_p (t: arg1, value: &parg1)) |
| 2004 | return fold_while_ult (type, arg0: parg0, arg1: parg1); |
| 2005 | return NULL_TREE; |
| 2006 | } |
| 2007 | |
| 2008 | case CFN_UADDC: |
| 2009 | case CFN_USUBC: |
| 2010 | if (integer_cst_p (t: arg0) && integer_cst_p (t: arg1) && integer_cst_p (t: arg2)) |
| 2011 | { |
| 2012 | tree itype = TREE_TYPE (type); |
| 2013 | bool ovf = false; |
| 2014 | tree_code subcode = fn == CFN_UADDC ? PLUS_EXPR : MINUS_EXPR; |
| 2015 | tree r = int_const_binop (subcode, fold_convert (itype, arg0), |
| 2016 | fold_convert (itype, arg1)); |
| 2017 | if (!r) |
| 2018 | return NULL_TREE; |
| 2019 | if (arith_overflowed_p (subcode, itype, arg0, arg1)) |
| 2020 | ovf = true; |
| 2021 | tree r2 = int_const_binop (subcode, r, fold_convert (itype, arg2)); |
| 2022 | if (!r2 || TREE_CODE (r2) != INTEGER_CST) |
| 2023 | return NULL_TREE; |
| 2024 | if (arith_overflowed_p (subcode, itype, r, arg2)) |
| 2025 | ovf = true; |
| 2026 | if (TREE_OVERFLOW (r2)) |
| 2027 | r2 = drop_tree_overflow (r2); |
| 2028 | return build_complex (type, r2, build_int_cst (itype, ovf)); |
| 2029 | } |
| 2030 | return NULL_TREE; |
| 2031 | |
| 2032 | default: |
| 2033 | return fold_const_call_1 (fn, type, arg0, arg1, arg2); |
| 2034 | } |
| 2035 | } |
| 2036 | |