| 1 | /* "Bag-of-pages" garbage collector for the GNU compiler. |
| 2 | Copyright (C) 1999-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "config.h" |
| 21 | #include "system.h" |
| 22 | #include "coretypes.h" |
| 23 | #include "backend.h" |
| 24 | #include "alias.h" |
| 25 | #include "tree.h" |
| 26 | #include "rtl.h" |
| 27 | #include "memmodel.h" |
| 28 | #include "tm_p.h" |
| 29 | #include "diagnostic-core.h" |
| 30 | #include "flags.h" |
| 31 | #include "ggc-internal.h" |
| 32 | #include "timevar.h" |
| 33 | #include "cgraph.h" |
| 34 | #include "cfgloop.h" |
| 35 | #include "plugin.h" |
| 36 | |
| 37 | /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a |
| 38 | file open. Prefer either to valloc. */ |
| 39 | #ifdef HAVE_MMAP_ANON |
| 40 | # undef HAVE_MMAP_DEV_ZERO |
| 41 | # define USING_MMAP |
| 42 | #endif |
| 43 | |
| 44 | #ifdef HAVE_MMAP_DEV_ZERO |
| 45 | # define USING_MMAP |
| 46 | #endif |
| 47 | |
| 48 | #ifndef USING_MMAP |
| 49 | #define USING_MALLOC_PAGE_GROUPS |
| 50 | #endif |
| 51 | |
| 52 | #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \ |
| 53 | && defined(USING_MMAP) |
| 54 | # define USING_MADVISE |
| 55 | #endif |
| 56 | |
| 57 | /* Strategy: |
| 58 | |
| 59 | This garbage-collecting allocator allocates objects on one of a set |
| 60 | of pages. Each page can allocate objects of a single size only; |
| 61 | available sizes are powers of two starting at four bytes. The size |
| 62 | of an allocation request is rounded up to the next power of two |
| 63 | (`order'), and satisfied from the appropriate page. |
| 64 | |
| 65 | Each page is recorded in a page-entry, which also maintains an |
| 66 | in-use bitmap of object positions on the page. This allows the |
| 67 | allocation state of a particular object to be flipped without |
| 68 | touching the page itself. |
| 69 | |
| 70 | Each page-entry also has a context depth, which is used to track |
| 71 | pushing and popping of allocation contexts. Only objects allocated |
| 72 | in the current (highest-numbered) context may be collected. |
| 73 | |
| 74 | Page entries are arranged in an array of singly-linked lists. The |
| 75 | array is indexed by the allocation size, in bits, of the pages on |
| 76 | it; i.e. all pages on a list allocate objects of the same size. |
| 77 | Pages are ordered on the list such that all non-full pages precede |
| 78 | all full pages, with non-full pages arranged in order of decreasing |
| 79 | context depth. |
| 80 | |
| 81 | Empty pages (of all orders) are kept on a single page cache list, |
| 82 | and are considered first when new pages are required; they are |
| 83 | deallocated at the start of the next collection if they haven't |
| 84 | been recycled by then. */ |
| 85 | |
| 86 | /* Define GGC_DEBUG_LEVEL to print debugging information. |
| 87 | 0: No debugging output. |
| 88 | 1: GC statistics only. |
| 89 | 2: Page-entry allocations/deallocations as well. |
| 90 | 3: Object allocations as well. |
| 91 | 4: Object marks as well. */ |
| 92 | #define GGC_DEBUG_LEVEL (0) |
| 93 | |
| 94 | /* A two-level tree is used to look up the page-entry for a given |
| 95 | pointer. Two chunks of the pointer's bits are extracted to index |
| 96 | the first and second levels of the tree, as follows: |
| 97 | |
| 98 | HOST_PAGE_SIZE_BITS |
| 99 | 32 | | |
| 100 | msb +----------------+----+------+------+ lsb |
| 101 | | | | |
| 102 | PAGE_L1_BITS | |
| 103 | | | |
| 104 | PAGE_L2_BITS |
| 105 | |
| 106 | The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry |
| 107 | pages are aligned on system page boundaries. The next most |
| 108 | significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first |
| 109 | index values in the lookup table, respectively. |
| 110 | |
| 111 | For 32-bit architectures and the settings below, there are no |
| 112 | leftover bits. For architectures with wider pointers, the lookup |
| 113 | tree points to a list of pages, which must be scanned to find the |
| 114 | correct one. */ |
| 115 | |
| 116 | #define PAGE_L1_BITS (8) |
| 117 | #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize) |
| 118 | #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS) |
| 119 | #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS) |
| 120 | |
| 121 | #define LOOKUP_L1(p) \ |
| 122 | (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1)) |
| 123 | |
| 124 | #define LOOKUP_L2(p) \ |
| 125 | (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1)) |
| 126 | |
| 127 | /* The number of objects per allocation page, for objects on a page of |
| 128 | the indicated ORDER. */ |
| 129 | #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER] |
| 130 | |
| 131 | /* The number of objects in P. */ |
| 132 | #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order)) |
| 133 | |
| 134 | /* The size of an object on a page of the indicated ORDER. */ |
| 135 | #define OBJECT_SIZE(ORDER) object_size_table[ORDER] |
| 136 | |
| 137 | /* For speed, we avoid doing a general integer divide to locate the |
| 138 | offset in the allocation bitmap, by precalculating numbers M, S |
| 139 | such that (O * M) >> S == O / Z (modulo 2^32), for any offset O |
| 140 | within the page which is evenly divisible by the object size Z. */ |
| 141 | #define DIV_MULT(ORDER) inverse_table[ORDER].mult |
| 142 | #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift |
| 143 | #define OFFSET_TO_BIT(OFFSET, ORDER) \ |
| 144 | (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER)) |
| 145 | |
| 146 | /* We use this structure to determine the alignment required for |
| 147 | allocations. For power-of-two sized allocations, that's not a |
| 148 | problem, but it does matter for odd-sized allocations. |
| 149 | We do not care about alignment for floating-point types. */ |
| 150 | |
| 151 | struct max_alignment { |
| 152 | char c; |
| 153 | union { |
| 154 | int64_t i; |
| 155 | void *p; |
| 156 | } u; |
| 157 | }; |
| 158 | |
| 159 | /* The biggest alignment required. */ |
| 160 | |
| 161 | #define MAX_ALIGNMENT (offsetof (struct max_alignment, u)) |
| 162 | |
| 163 | |
| 164 | /* The number of extra orders, not corresponding to power-of-two sized |
| 165 | objects. */ |
| 166 | |
| 167 | #define ARRAY_SIZE (extra_order_size_table) |
| 168 | |
| 169 | #define RTL_SIZE(NSLOTS) \ |
| 170 | (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion)) |
| 171 | |
| 172 | #define TREE_EXP_SIZE(OPS) \ |
| 173 | (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree)) |
| 174 | |
| 175 | /* The Ith entry is the maximum size of an object to be stored in the |
| 176 | Ith extra order. Adding a new entry to this array is the *only* |
| 177 | thing you need to do to add a new special allocation size. */ |
| 178 | |
| 179 | static const size_t [] = { |
| 180 | /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT. |
| 181 | There are a lot of structures with these sizes and explicitly |
| 182 | listing them risks orders being dropped because they changed size. */ |
| 183 | MAX_ALIGNMENT * 3, |
| 184 | MAX_ALIGNMENT * 5, |
| 185 | MAX_ALIGNMENT * 6, |
| 186 | MAX_ALIGNMENT * 7, |
| 187 | MAX_ALIGNMENT * 9, |
| 188 | MAX_ALIGNMENT * 10, |
| 189 | MAX_ALIGNMENT * 11, |
| 190 | MAX_ALIGNMENT * 12, |
| 191 | MAX_ALIGNMENT * 13, |
| 192 | MAX_ALIGNMENT * 14, |
| 193 | MAX_ALIGNMENT * 15, |
| 194 | sizeof (struct tree_decl_non_common), |
| 195 | sizeof (struct tree_field_decl), |
| 196 | sizeof (struct tree_parm_decl), |
| 197 | sizeof (struct tree_var_decl), |
| 198 | sizeof (struct tree_type_non_common), |
| 199 | sizeof (struct function), |
| 200 | sizeof (struct basic_block_def), |
| 201 | sizeof (struct cgraph_node), |
| 202 | sizeof (class loop), |
| 203 | }; |
| 204 | |
| 205 | /* The total number of orders. */ |
| 206 | |
| 207 | #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS) |
| 208 | |
| 209 | /* Compute the smallest nonnegative number which when added to X gives |
| 210 | a multiple of F. */ |
| 211 | |
| 212 | #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f)) |
| 213 | |
| 214 | /* Round X to next multiple of the page size */ |
| 215 | |
| 216 | #define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize) |
| 217 | |
| 218 | /* The Ith entry is the number of objects on a page or order I. */ |
| 219 | |
| 220 | static unsigned objects_per_page_table[NUM_ORDERS]; |
| 221 | |
| 222 | /* The Ith entry is the size of an object on a page of order I. */ |
| 223 | |
| 224 | static size_t object_size_table[NUM_ORDERS]; |
| 225 | |
| 226 | /* The Ith entry is a pair of numbers (mult, shift) such that |
| 227 | ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32, |
| 228 | for all k evenly divisible by OBJECT_SIZE(I). */ |
| 229 | |
| 230 | static struct |
| 231 | { |
| 232 | size_t mult; |
| 233 | unsigned int shift; |
| 234 | } |
| 235 | inverse_table[NUM_ORDERS]; |
| 236 | |
| 237 | struct free_list; |
| 238 | |
| 239 | /* A page_entry records the status of an allocation page. This |
| 240 | structure is dynamically sized to fit the bitmap in_use_p. */ |
| 241 | struct page_entry |
| 242 | { |
| 243 | /* The next page-entry with objects of the same size, or NULL if |
| 244 | this is the last page-entry. */ |
| 245 | struct page_entry *next; |
| 246 | |
| 247 | /* The previous page-entry with objects of the same size, or NULL if |
| 248 | this is the first page-entry. The PREV pointer exists solely to |
| 249 | keep the cost of ggc_free manageable. */ |
| 250 | struct page_entry *prev; |
| 251 | |
| 252 | /* The number of bytes allocated. (This will always be a multiple |
| 253 | of the host system page size.) */ |
| 254 | size_t bytes; |
| 255 | |
| 256 | /* Free list of this page size. */ |
| 257 | struct free_list *free_list; |
| 258 | |
| 259 | /* The address at which the memory is allocated. */ |
| 260 | char *page; |
| 261 | |
| 262 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 263 | /* Back pointer to the page group this page came from. */ |
| 264 | struct page_group *group; |
| 265 | #endif |
| 266 | |
| 267 | /* This is the index in the by_depth varray where this page table |
| 268 | can be found. */ |
| 269 | unsigned long index_by_depth; |
| 270 | |
| 271 | /* Context depth of this page. */ |
| 272 | unsigned short context_depth; |
| 273 | |
| 274 | /* The number of free objects remaining on this page. */ |
| 275 | unsigned short num_free_objects; |
| 276 | |
| 277 | /* A likely candidate for the bit position of a free object for the |
| 278 | next allocation from this page. */ |
| 279 | unsigned short next_bit_hint; |
| 280 | |
| 281 | /* The lg of size of objects allocated from this page. */ |
| 282 | unsigned char order; |
| 283 | |
| 284 | /* Discarded page? */ |
| 285 | bool discarded; |
| 286 | |
| 287 | /* A bit vector indicating whether or not objects are in use. The |
| 288 | Nth bit is one if the Nth object on this page is allocated. This |
| 289 | array is dynamically sized. */ |
| 290 | unsigned long in_use_p[1]; |
| 291 | }; |
| 292 | |
| 293 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 294 | /* A page_group describes a large allocation from malloc, from which |
| 295 | we parcel out aligned pages. */ |
| 296 | struct page_group |
| 297 | { |
| 298 | /* A linked list of all extant page groups. */ |
| 299 | struct page_group *next; |
| 300 | |
| 301 | /* The address we received from malloc. */ |
| 302 | char *allocation; |
| 303 | |
| 304 | /* The size of the block. */ |
| 305 | size_t alloc_size; |
| 306 | |
| 307 | /* A bitmask of pages in use. */ |
| 308 | unsigned int in_use; |
| 309 | }; |
| 310 | #endif |
| 311 | |
| 312 | #if HOST_BITS_PER_PTR <= 32 |
| 313 | |
| 314 | /* On 32-bit hosts, we use a two level page table, as pictured above. */ |
| 315 | typedef page_entry **page_table[PAGE_L1_SIZE]; |
| 316 | |
| 317 | #else |
| 318 | |
| 319 | /* On 64-bit hosts, we use the same two level page tables plus a linked |
| 320 | list that disambiguates the top 32-bits. There will almost always be |
| 321 | exactly one entry in the list. */ |
| 322 | typedef struct page_table_chain |
| 323 | { |
| 324 | struct page_table_chain *next; |
| 325 | size_t high_bits; |
| 326 | page_entry **table[PAGE_L1_SIZE]; |
| 327 | } *page_table; |
| 328 | |
| 329 | #endif |
| 330 | |
| 331 | class finalizer |
| 332 | { |
| 333 | public: |
| 334 | finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {} |
| 335 | |
| 336 | void *addr () const { return m_addr; } |
| 337 | |
| 338 | void call () const { m_function (m_addr); } |
| 339 | |
| 340 | private: |
| 341 | void *m_addr; |
| 342 | void (*m_function)(void *); |
| 343 | }; |
| 344 | |
| 345 | class vec_finalizer |
| 346 | { |
| 347 | public: |
| 348 | vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) : |
| 349 | m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {} |
| 350 | |
| 351 | void call () const |
| 352 | { |
| 353 | for (size_t i = 0; i < m_n_objects; i++) |
| 354 | m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size))); |
| 355 | } |
| 356 | |
| 357 | void *addr () const { return reinterpret_cast<void *> (m_addr); } |
| 358 | |
| 359 | private: |
| 360 | uintptr_t m_addr; |
| 361 | void (*m_function)(void *); |
| 362 | size_t m_object_size; |
| 363 | size_t m_n_objects; |
| 364 | }; |
| 365 | |
| 366 | #ifdef ENABLE_GC_ALWAYS_COLLECT |
| 367 | /* List of free objects to be verified as actually free on the |
| 368 | next collection. */ |
| 369 | struct free_object |
| 370 | { |
| 371 | void *object; |
| 372 | struct free_object *next; |
| 373 | }; |
| 374 | #endif |
| 375 | |
| 376 | constexpr int num_free_list = 8; |
| 377 | |
| 378 | /* A free_list for pages with BYTES size. */ |
| 379 | struct free_list |
| 380 | { |
| 381 | size_t bytes; |
| 382 | page_entry *free_pages; |
| 383 | }; |
| 384 | |
| 385 | /* The rest of the global variables. */ |
| 386 | static struct ggc_globals |
| 387 | { |
| 388 | /* The Nth element in this array is a page with objects of size 2^N. |
| 389 | If there are any pages with free objects, they will be at the |
| 390 | head of the list. NULL if there are no page-entries for this |
| 391 | object size. */ |
| 392 | page_entry *pages[NUM_ORDERS]; |
| 393 | |
| 394 | /* The Nth element in this array is the last page with objects of |
| 395 | size 2^N. NULL if there are no page-entries for this object |
| 396 | size. */ |
| 397 | page_entry *page_tails[NUM_ORDERS]; |
| 398 | |
| 399 | /* Lookup table for associating allocation pages with object addresses. */ |
| 400 | page_table lookup; |
| 401 | |
| 402 | /* The system's page size. */ |
| 403 | size_t pagesize; |
| 404 | size_t lg_pagesize; |
| 405 | |
| 406 | /* Bytes currently allocated. */ |
| 407 | size_t allocated; |
| 408 | |
| 409 | /* Bytes currently allocated at the end of the last collection. */ |
| 410 | size_t allocated_last_gc; |
| 411 | |
| 412 | /* Total amount of memory mapped. */ |
| 413 | size_t bytes_mapped; |
| 414 | |
| 415 | /* Bit N set if any allocations have been done at context depth N. */ |
| 416 | unsigned long context_depth_allocations; |
| 417 | |
| 418 | /* Bit N set if any collections have been done at context depth N. */ |
| 419 | unsigned long context_depth_collections; |
| 420 | |
| 421 | /* The current depth in the context stack. */ |
| 422 | unsigned short context_depth; |
| 423 | |
| 424 | /* A file descriptor open to /dev/zero for reading. */ |
| 425 | #if defined (HAVE_MMAP_DEV_ZERO) |
| 426 | int dev_zero_fd; |
| 427 | #endif |
| 428 | |
| 429 | /* A cache of free system pages. Entry 0 is fallback. */ |
| 430 | struct free_list free_lists[num_free_list]; |
| 431 | |
| 432 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 433 | page_group *page_groups; |
| 434 | #endif |
| 435 | |
| 436 | /* The file descriptor for debugging output. */ |
| 437 | FILE *debug_file; |
| 438 | |
| 439 | /* Current number of elements in use in depth below. */ |
| 440 | unsigned int depth_in_use; |
| 441 | |
| 442 | /* Maximum number of elements that can be used before resizing. */ |
| 443 | unsigned int depth_max; |
| 444 | |
| 445 | /* Each element of this array is an index in by_depth where the given |
| 446 | depth starts. This structure is indexed by that given depth we |
| 447 | are interested in. */ |
| 448 | unsigned int *depth; |
| 449 | |
| 450 | /* Current number of elements in use in by_depth below. */ |
| 451 | unsigned int by_depth_in_use; |
| 452 | |
| 453 | /* Maximum number of elements that can be used before resizing. */ |
| 454 | unsigned int by_depth_max; |
| 455 | |
| 456 | /* Each element of this array is a pointer to a page_entry, all |
| 457 | page_entries can be found in here by increasing depth. |
| 458 | index_by_depth in the page_entry is the index into this data |
| 459 | structure where that page_entry can be found. This is used to |
| 460 | speed up finding all page_entries at a particular depth. */ |
| 461 | page_entry **by_depth; |
| 462 | |
| 463 | /* Each element is a pointer to the saved in_use_p bits, if any, |
| 464 | zero otherwise. We allocate them all together, to enable a |
| 465 | better runtime data access pattern. */ |
| 466 | unsigned long **save_in_use; |
| 467 | |
| 468 | /* Finalizers for single objects. The first index is collection_depth. */ |
| 469 | vec<vec<finalizer> > finalizers; |
| 470 | |
| 471 | /* Finalizers for vectors of objects. */ |
| 472 | vec<vec<vec_finalizer> > vec_finalizers; |
| 473 | |
| 474 | #ifdef ENABLE_GC_ALWAYS_COLLECT |
| 475 | /* List of free objects to be verified as actually free on the |
| 476 | next collection. */ |
| 477 | struct free_object *free_object_list; |
| 478 | #endif |
| 479 | |
| 480 | struct |
| 481 | { |
| 482 | /* Total GC-allocated memory. */ |
| 483 | unsigned long long total_allocated; |
| 484 | /* Total overhead for GC-allocated memory. */ |
| 485 | unsigned long long total_overhead; |
| 486 | |
| 487 | /* Total allocations and overhead for sizes less than 32, 64 and 128. |
| 488 | These sizes are interesting because they are typical cache line |
| 489 | sizes. */ |
| 490 | |
| 491 | unsigned long long total_allocated_under32; |
| 492 | unsigned long long total_overhead_under32; |
| 493 | |
| 494 | unsigned long long total_allocated_under64; |
| 495 | unsigned long long total_overhead_under64; |
| 496 | |
| 497 | unsigned long long total_allocated_under128; |
| 498 | unsigned long long total_overhead_under128; |
| 499 | |
| 500 | /* The allocations for each of the allocation orders. */ |
| 501 | unsigned long long total_allocated_per_order[NUM_ORDERS]; |
| 502 | |
| 503 | /* The overhead for each of the allocation orders. */ |
| 504 | unsigned long long total_overhead_per_order[NUM_ORDERS]; |
| 505 | |
| 506 | /* Number of fallbacks. */ |
| 507 | unsigned long long fallback; |
| 508 | } stats; |
| 509 | } G; |
| 510 | |
| 511 | /* True if a gc is currently taking place. */ |
| 512 | |
| 513 | static bool in_gc = false; |
| 514 | |
| 515 | /* The size in bytes required to maintain a bitmap for the objects |
| 516 | on a page-entry. */ |
| 517 | #define BITMAP_SIZE(Num_objects) \ |
| 518 | (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long)) |
| 519 | |
| 520 | /* Allocate pages in chunks of this size, to throttle calls to memory |
| 521 | allocation routines. The first page is used, the rest go onto the |
| 522 | free list. This cannot be larger than HOST_BITS_PER_INT for the |
| 523 | in_use bitmask for page_group. Hosts that need a different value |
| 524 | can override this by defining GGC_QUIRE_SIZE explicitly. */ |
| 525 | #ifndef GGC_QUIRE_SIZE |
| 526 | # ifdef USING_MMAP |
| 527 | # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */ |
| 528 | # else |
| 529 | # define GGC_QUIRE_SIZE 16 |
| 530 | # endif |
| 531 | #endif |
| 532 | |
| 533 | /* Initial guess as to how many page table entries we might need. */ |
| 534 | #define INITIAL_PTE_COUNT 128 |
| 535 | |
| 536 | static page_entry *lookup_page_table_entry (const void *); |
| 537 | static void set_page_table_entry (void *, page_entry *); |
| 538 | #ifdef USING_MMAP |
| 539 | static char *alloc_anon (char *, size_t, bool check); |
| 540 | #endif |
| 541 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 542 | static size_t page_group_index (char *, char *); |
| 543 | static void set_page_group_in_use (page_group *, char *); |
| 544 | static void clear_page_group_in_use (page_group *, char *); |
| 545 | #endif |
| 546 | static struct page_entry * alloc_page (unsigned); |
| 547 | static void free_page (struct page_entry *); |
| 548 | static void clear_marks (void); |
| 549 | static void sweep_pages (void); |
| 550 | static void ggc_recalculate_in_use_p (page_entry *); |
| 551 | static void compute_inverse (unsigned); |
| 552 | static inline void adjust_depth (void); |
| 553 | static void move_ptes_to_front (int, int); |
| 554 | |
| 555 | void debug_print_page_list (int); |
| 556 | static void push_depth (unsigned int); |
| 557 | static void push_by_depth (page_entry *, unsigned long *); |
| 558 | |
| 559 | /* Push an entry onto G.depth. */ |
| 560 | |
| 561 | inline static void |
| 562 | push_depth (unsigned int i) |
| 563 | { |
| 564 | if (G.depth_in_use >= G.depth_max) |
| 565 | { |
| 566 | G.depth_max *= 2; |
| 567 | G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max); |
| 568 | } |
| 569 | G.depth[G.depth_in_use++] = i; |
| 570 | } |
| 571 | |
| 572 | /* Push an entry onto G.by_depth and G.save_in_use. */ |
| 573 | |
| 574 | inline static void |
| 575 | push_by_depth (page_entry *p, unsigned long *s) |
| 576 | { |
| 577 | if (G.by_depth_in_use >= G.by_depth_max) |
| 578 | { |
| 579 | G.by_depth_max *= 2; |
| 580 | G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max); |
| 581 | G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use, |
| 582 | G.by_depth_max); |
| 583 | } |
| 584 | G.by_depth[G.by_depth_in_use] = p; |
| 585 | G.save_in_use[G.by_depth_in_use++] = s; |
| 586 | } |
| 587 | |
| 588 | #if (GCC_VERSION < 3001) |
| 589 | #define prefetch(X) ((void) X) |
| 590 | #else |
| 591 | #define prefetch(X) __builtin_prefetch (X) |
| 592 | #endif |
| 593 | |
| 594 | #define save_in_use_p_i(__i) \ |
| 595 | (G.save_in_use[__i]) |
| 596 | #define save_in_use_p(__p) \ |
| 597 | (save_in_use_p_i (__p->index_by_depth)) |
| 598 | |
| 599 | /* Traverse the page table and find the entry for a page. |
| 600 | If the object wasn't allocated in GC return NULL. */ |
| 601 | |
| 602 | static inline page_entry * |
| 603 | safe_lookup_page_table_entry (const void *p) |
| 604 | { |
| 605 | page_entry ***base; |
| 606 | size_t L1, L2; |
| 607 | |
| 608 | #if HOST_BITS_PER_PTR <= 32 |
| 609 | base = &G.lookup[0]; |
| 610 | #else |
| 611 | page_table table = G.lookup; |
| 612 | uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; |
| 613 | while (1) |
| 614 | { |
| 615 | if (table == NULL) |
| 616 | return NULL; |
| 617 | if (table->high_bits == high_bits) |
| 618 | break; |
| 619 | table = table->next; |
| 620 | } |
| 621 | base = &table->table[0]; |
| 622 | #endif |
| 623 | |
| 624 | /* Extract the level 1 and 2 indices. */ |
| 625 | L1 = LOOKUP_L1 (p); |
| 626 | L2 = LOOKUP_L2 (p); |
| 627 | if (! base[L1]) |
| 628 | return NULL; |
| 629 | |
| 630 | return base[L1][L2]; |
| 631 | } |
| 632 | |
| 633 | /* Traverse the page table and find the entry for a page. |
| 634 | Die (probably) if the object wasn't allocated via GC. */ |
| 635 | |
| 636 | static inline page_entry * |
| 637 | lookup_page_table_entry (const void *p) |
| 638 | { |
| 639 | page_entry ***base; |
| 640 | size_t L1, L2; |
| 641 | |
| 642 | #if HOST_BITS_PER_PTR <= 32 |
| 643 | base = &G.lookup[0]; |
| 644 | #else |
| 645 | page_table table = G.lookup; |
| 646 | uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; |
| 647 | while (table->high_bits != high_bits) |
| 648 | table = table->next; |
| 649 | base = &table->table[0]; |
| 650 | #endif |
| 651 | |
| 652 | /* Extract the level 1 and 2 indices. */ |
| 653 | L1 = LOOKUP_L1 (p); |
| 654 | L2 = LOOKUP_L2 (p); |
| 655 | |
| 656 | return base[L1][L2]; |
| 657 | } |
| 658 | |
| 659 | /* Set the page table entry for a page. */ |
| 660 | |
| 661 | static void |
| 662 | set_page_table_entry (void *p, page_entry *entry) |
| 663 | { |
| 664 | page_entry ***base; |
| 665 | size_t L1, L2; |
| 666 | |
| 667 | #if HOST_BITS_PER_PTR <= 32 |
| 668 | base = &G.lookup[0]; |
| 669 | #else |
| 670 | page_table table; |
| 671 | uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; |
| 672 | for (table = G.lookup; table; table = table->next) |
| 673 | if (table->high_bits == high_bits) |
| 674 | goto found; |
| 675 | |
| 676 | /* Not found -- allocate a new table. */ |
| 677 | table = XCNEW (struct page_table_chain); |
| 678 | table->next = G.lookup; |
| 679 | table->high_bits = high_bits; |
| 680 | G.lookup = table; |
| 681 | found: |
| 682 | base = &table->table[0]; |
| 683 | #endif |
| 684 | |
| 685 | /* Extract the level 1 and 2 indices. */ |
| 686 | L1 = LOOKUP_L1 (p); |
| 687 | L2 = LOOKUP_L2 (p); |
| 688 | |
| 689 | if (base[L1] == NULL) |
| 690 | base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE); |
| 691 | |
| 692 | base[L1][L2] = entry; |
| 693 | } |
| 694 | |
| 695 | /* Prints the page-entry for object size ORDER, for debugging. */ |
| 696 | |
| 697 | DEBUG_FUNCTION void |
| 698 | debug_print_page_list (int order) |
| 699 | { |
| 700 | page_entry *p; |
| 701 | printf (format: "Head=%p, Tail=%p:\n" , (void *) G.pages[order], |
| 702 | (void *) G.page_tails[order]); |
| 703 | p = G.pages[order]; |
| 704 | while (p != NULL) |
| 705 | { |
| 706 | printf (format: "%p(%1d|%3d) -> " , (void *) p, p->context_depth, |
| 707 | p->num_free_objects); |
| 708 | p = p->next; |
| 709 | } |
| 710 | printf (format: "NULL\n" ); |
| 711 | fflush (stdout); |
| 712 | } |
| 713 | |
| 714 | #ifdef USING_MMAP |
| 715 | /* Allocate SIZE bytes of anonymous memory, preferably near PREF, |
| 716 | (if non-null). The ifdef structure here is intended to cause a |
| 717 | compile error unless exactly one of the HAVE_* is defined. */ |
| 718 | |
| 719 | static inline char * |
| 720 | alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check) |
| 721 | { |
| 722 | #ifdef HAVE_MMAP_ANON |
| 723 | char *page = (char *) mmap (addr: pref, len: size, PROT_READ | PROT_WRITE, |
| 724 | MAP_PRIVATE | MAP_ANONYMOUS, fd: -1, offset: 0); |
| 725 | #endif |
| 726 | #ifdef HAVE_MMAP_DEV_ZERO |
| 727 | char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, |
| 728 | MAP_PRIVATE, G.dev_zero_fd, 0); |
| 729 | #endif |
| 730 | |
| 731 | if (page == (char *) MAP_FAILED) |
| 732 | { |
| 733 | if (!check) |
| 734 | return NULL; |
| 735 | perror (s: "virtual memory exhausted" ); |
| 736 | exit (FATAL_EXIT_CODE); |
| 737 | } |
| 738 | |
| 739 | /* Remember that we allocated this memory. */ |
| 740 | G.bytes_mapped += size; |
| 741 | |
| 742 | /* Pretend we don't have access to the allocated pages. We'll enable |
| 743 | access to smaller pieces of the area in ggc_internal_alloc. Discard the |
| 744 | handle to avoid handle leak. */ |
| 745 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size)); |
| 746 | |
| 747 | return page; |
| 748 | } |
| 749 | #endif |
| 750 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 751 | /* Compute the index for this page into the page group. */ |
| 752 | |
| 753 | static inline size_t |
| 754 | page_group_index (char *allocation, char *page) |
| 755 | { |
| 756 | return (size_t) (page - allocation) >> G.lg_pagesize; |
| 757 | } |
| 758 | |
| 759 | /* Set and clear the in_use bit for this page in the page group. */ |
| 760 | |
| 761 | static inline void |
| 762 | set_page_group_in_use (page_group *group, char *page) |
| 763 | { |
| 764 | group->in_use |= 1 << page_group_index (group->allocation, page); |
| 765 | } |
| 766 | |
| 767 | static inline void |
| 768 | clear_page_group_in_use (page_group *group, char *page) |
| 769 | { |
| 770 | group->in_use &= ~(1 << page_group_index (group->allocation, page)); |
| 771 | } |
| 772 | #endif |
| 773 | |
| 774 | /* Find a free list for ENTRY_SIZE. */ |
| 775 | |
| 776 | static inline struct free_list * |
| 777 | find_free_list (size_t entry_size) |
| 778 | { |
| 779 | int i; |
| 780 | for (i = 1; i < num_free_list; i++) |
| 781 | { |
| 782 | if (G.free_lists[i].bytes == entry_size) |
| 783 | return &G.free_lists[i]; |
| 784 | if (G.free_lists[i].bytes == 0) |
| 785 | { |
| 786 | G.free_lists[i].bytes = entry_size; |
| 787 | return &G.free_lists[i]; |
| 788 | } |
| 789 | } |
| 790 | /* Fallback. Does this happen? */ |
| 791 | if (GATHER_STATISTICS) |
| 792 | G.stats.fallback++; |
| 793 | return &G.free_lists[0]; |
| 794 | } |
| 795 | |
| 796 | /* Fast lookup of free_list by order. */ |
| 797 | |
| 798 | static struct free_list *cache_free_list[NUM_ORDERS]; |
| 799 | |
| 800 | /* Faster way to find a free list by ORDER for BYTES. */ |
| 801 | |
| 802 | static inline struct free_list * |
| 803 | find_free_list_order (unsigned order, size_t bytes) |
| 804 | { |
| 805 | if (cache_free_list[order] == NULL) |
| 806 | cache_free_list[order] = find_free_list (entry_size: bytes); |
| 807 | return cache_free_list[order]; |
| 808 | } |
| 809 | |
| 810 | /* Allocate a new page for allocating objects of size 2^ORDER, |
| 811 | and return an entry for it. The entry is not added to the |
| 812 | appropriate page_table list. */ |
| 813 | |
| 814 | static inline struct page_entry * |
| 815 | alloc_page (unsigned order) |
| 816 | { |
| 817 | struct page_entry *entry, *p, **pp; |
| 818 | char *page; |
| 819 | size_t num_objects; |
| 820 | size_t bitmap_size; |
| 821 | size_t page_entry_size; |
| 822 | size_t entry_size; |
| 823 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 824 | page_group *group; |
| 825 | #endif |
| 826 | struct free_list *free_list; |
| 827 | |
| 828 | num_objects = OBJECTS_PER_PAGE (order); |
| 829 | bitmap_size = BITMAP_SIZE (num_objects + 1); |
| 830 | page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size; |
| 831 | entry_size = num_objects * OBJECT_SIZE (order); |
| 832 | if (entry_size < G.pagesize) |
| 833 | entry_size = G.pagesize; |
| 834 | entry_size = PAGE_ALIGN (entry_size); |
| 835 | |
| 836 | entry = NULL; |
| 837 | page = NULL; |
| 838 | |
| 839 | free_list = find_free_list_order (order, bytes: entry_size); |
| 840 | |
| 841 | /* Check the list of free pages for one we can use. */ |
| 842 | for (pp = &free_list->free_pages, p = *pp; p; pp = &p->next, p = *pp) |
| 843 | if (p->bytes == entry_size) |
| 844 | break; |
| 845 | |
| 846 | if (p != NULL) |
| 847 | { |
| 848 | if (p->discarded) |
| 849 | G.bytes_mapped += p->bytes; |
| 850 | p->discarded = false; |
| 851 | |
| 852 | /* Recycle the allocated memory from this page ... */ |
| 853 | *pp = p->next; |
| 854 | page = p->page; |
| 855 | |
| 856 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 857 | group = p->group; |
| 858 | #endif |
| 859 | |
| 860 | /* ... and, if possible, the page entry itself. */ |
| 861 | if (p->order == order) |
| 862 | { |
| 863 | entry = p; |
| 864 | memset (s: entry, c: 0, n: page_entry_size); |
| 865 | } |
| 866 | else |
| 867 | free (ptr: p); |
| 868 | } |
| 869 | #ifdef USING_MMAP |
| 870 | else if (entry_size == G.pagesize) |
| 871 | { |
| 872 | /* We want just one page. Allocate a bunch of them and put the |
| 873 | extras on the freelist. (Can only do this optimization with |
| 874 | mmap for backing store.) */ |
| 875 | struct page_entry *e, *f = free_list->free_pages; |
| 876 | int i, entries = GGC_QUIRE_SIZE; |
| 877 | |
| 878 | page = alloc_anon (NULL, size: G.pagesize * GGC_QUIRE_SIZE, check: false); |
| 879 | if (page == NULL) |
| 880 | { |
| 881 | page = alloc_anon (NULL, size: G.pagesize, check: true); |
| 882 | entries = 1; |
| 883 | } |
| 884 | |
| 885 | /* This loop counts down so that the chain will be in ascending |
| 886 | memory order. */ |
| 887 | for (i = entries - 1; i >= 1; i--) |
| 888 | { |
| 889 | e = XCNEWVAR (struct page_entry, page_entry_size); |
| 890 | e->order = order; |
| 891 | e->bytes = G.pagesize; |
| 892 | e->free_list = free_list; |
| 893 | e->page = page + (i << G.lg_pagesize); |
| 894 | e->next = f; |
| 895 | f = e; |
| 896 | } |
| 897 | |
| 898 | free_list->free_pages = f; |
| 899 | } |
| 900 | else |
| 901 | page = alloc_anon (NULL, size: entry_size, check: true); |
| 902 | #endif |
| 903 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 904 | else |
| 905 | { |
| 906 | /* Allocate a large block of memory and serve out the aligned |
| 907 | pages therein. This results in much less memory wastage |
| 908 | than the traditional implementation of valloc. */ |
| 909 | |
| 910 | char *allocation, *a, *enda; |
| 911 | size_t alloc_size, head_slop, tail_slop; |
| 912 | int multiple_pages = (entry_size == G.pagesize); |
| 913 | |
| 914 | if (multiple_pages) |
| 915 | alloc_size = GGC_QUIRE_SIZE * G.pagesize; |
| 916 | else |
| 917 | alloc_size = entry_size + G.pagesize - 1; |
| 918 | allocation = XNEWVEC (char, alloc_size); |
| 919 | |
| 920 | page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize); |
| 921 | head_slop = page - allocation; |
| 922 | if (multiple_pages) |
| 923 | tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1); |
| 924 | else |
| 925 | tail_slop = alloc_size - entry_size - head_slop; |
| 926 | enda = allocation + alloc_size - tail_slop; |
| 927 | |
| 928 | /* We allocated N pages, which are likely not aligned, leaving |
| 929 | us with N-1 usable pages. We plan to place the page_group |
| 930 | structure somewhere in the slop. */ |
| 931 | if (head_slop >= sizeof (page_group)) |
| 932 | group = (page_group *)page - 1; |
| 933 | else |
| 934 | { |
| 935 | /* We magically got an aligned allocation. Too bad, we have |
| 936 | to waste a page anyway. */ |
| 937 | if (tail_slop == 0) |
| 938 | { |
| 939 | enda -= G.pagesize; |
| 940 | tail_slop += G.pagesize; |
| 941 | } |
| 942 | gcc_assert (tail_slop >= sizeof (page_group)); |
| 943 | group = (page_group *)enda; |
| 944 | tail_slop -= sizeof (page_group); |
| 945 | } |
| 946 | |
| 947 | /* Remember that we allocated this memory. */ |
| 948 | group->next = G.page_groups; |
| 949 | group->allocation = allocation; |
| 950 | group->alloc_size = alloc_size; |
| 951 | group->in_use = 0; |
| 952 | G.page_groups = group; |
| 953 | G.bytes_mapped += alloc_size; |
| 954 | |
| 955 | /* If we allocated multiple pages, put the rest on the free list. */ |
| 956 | if (multiple_pages) |
| 957 | { |
| 958 | struct page_entry *e, *f = free_list->free_pages; |
| 959 | for (a = enda - G.pagesize; a != page; a -= G.pagesize) |
| 960 | { |
| 961 | e = XCNEWVAR (struct page_entry, page_entry_size); |
| 962 | e->order = order; |
| 963 | e->bytes = G.pagesize; |
| 964 | e->free_list = free_list; |
| 965 | e->page = a; |
| 966 | e->group = group; |
| 967 | e->next = f; |
| 968 | f = e; |
| 969 | } |
| 970 | free_list->free_pages = f; |
| 971 | } |
| 972 | } |
| 973 | #endif |
| 974 | |
| 975 | if (entry == NULL) |
| 976 | entry = XCNEWVAR (struct page_entry, page_entry_size); |
| 977 | |
| 978 | entry->bytes = entry_size; |
| 979 | entry->free_list = free_list; |
| 980 | entry->page = page; |
| 981 | entry->context_depth = G.context_depth; |
| 982 | entry->order = order; |
| 983 | entry->num_free_objects = num_objects; |
| 984 | entry->next_bit_hint = 1; |
| 985 | |
| 986 | G.context_depth_allocations |= (unsigned long)1 << G.context_depth; |
| 987 | |
| 988 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 989 | entry->group = group; |
| 990 | set_page_group_in_use (group, page); |
| 991 | #endif |
| 992 | |
| 993 | /* Set the one-past-the-end in-use bit. This acts as a sentry as we |
| 994 | increment the hint. */ |
| 995 | entry->in_use_p[num_objects / HOST_BITS_PER_LONG] |
| 996 | = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG); |
| 997 | |
| 998 | set_page_table_entry (p: page, entry); |
| 999 | |
| 1000 | if (GGC_DEBUG_LEVEL >= 2) |
| 1001 | fprintf (stream: G.debug_file, |
| 1002 | format: "Allocating page at %p, object size=" |
| 1003 | HOST_SIZE_T_PRINT_UNSIGNED ", data %p-%p\n" , |
| 1004 | (void *) entry, (fmt_size_t) OBJECT_SIZE (order), |
| 1005 | (void *) page, (void *) (page + entry_size - 1)); |
| 1006 | |
| 1007 | return entry; |
| 1008 | } |
| 1009 | |
| 1010 | /* Adjust the size of G.depth so that no index greater than the one |
| 1011 | used by the top of the G.by_depth is used. */ |
| 1012 | |
| 1013 | static inline void |
| 1014 | adjust_depth (void) |
| 1015 | { |
| 1016 | page_entry *top; |
| 1017 | |
| 1018 | if (G.by_depth_in_use) |
| 1019 | { |
| 1020 | top = G.by_depth[G.by_depth_in_use-1]; |
| 1021 | |
| 1022 | /* Peel back indices in depth that index into by_depth, so that |
| 1023 | as new elements are added to by_depth, we note the indices |
| 1024 | of those elements, if they are for new context depths. */ |
| 1025 | while (G.depth_in_use > (size_t)top->context_depth+1) |
| 1026 | --G.depth_in_use; |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | /* For a page that is no longer needed, put it on the free page list. */ |
| 1031 | |
| 1032 | static void |
| 1033 | free_page (page_entry *entry) |
| 1034 | { |
| 1035 | if (GGC_DEBUG_LEVEL >= 2) |
| 1036 | fprintf (stream: G.debug_file, |
| 1037 | format: "Deallocating page at %p, data %p-%p\n" , (void *) entry, |
| 1038 | (void *) entry->page, (void *) (entry->page + entry->bytes - 1)); |
| 1039 | |
| 1040 | /* Mark the page as inaccessible. Discard the handle to avoid handle |
| 1041 | leak. */ |
| 1042 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes)); |
| 1043 | |
| 1044 | set_page_table_entry (p: entry->page, NULL); |
| 1045 | |
| 1046 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 1047 | clear_page_group_in_use (entry->group, entry->page); |
| 1048 | #endif |
| 1049 | |
| 1050 | if (G.by_depth_in_use > 1) |
| 1051 | { |
| 1052 | page_entry *top = G.by_depth[G.by_depth_in_use-1]; |
| 1053 | int i = entry->index_by_depth; |
| 1054 | |
| 1055 | /* We cannot free a page from a context deeper than the current |
| 1056 | one. */ |
| 1057 | gcc_assert (entry->context_depth == top->context_depth); |
| 1058 | |
| 1059 | /* Put top element into freed slot. */ |
| 1060 | G.by_depth[i] = top; |
| 1061 | G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1]; |
| 1062 | top->index_by_depth = i; |
| 1063 | } |
| 1064 | --G.by_depth_in_use; |
| 1065 | |
| 1066 | adjust_depth (); |
| 1067 | |
| 1068 | struct free_list *free_list = entry->free_list; |
| 1069 | entry->next = free_list->free_pages; |
| 1070 | free_list->free_pages = entry; |
| 1071 | } |
| 1072 | |
| 1073 | /* Release the free page cache for FREE_LIST to the system. */ |
| 1074 | |
| 1075 | static void |
| 1076 | do_release_pages (struct free_list *free_list, size_t &n1, size_t &n2) |
| 1077 | { |
| 1078 | (void) n1; |
| 1079 | (void) n2; |
| 1080 | #ifdef USING_MADVISE |
| 1081 | page_entry *p, *start_p; |
| 1082 | char *start; |
| 1083 | size_t len; |
| 1084 | size_t mapped_len; |
| 1085 | page_entry *next, *prev, *newprev; |
| 1086 | size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize; |
| 1087 | |
| 1088 | /* First free larger continuous areas to the OS. |
| 1089 | This allows other allocators to grab these areas if needed. |
| 1090 | This is only done on larger chunks to avoid fragmentation. |
| 1091 | This does not always work because the free_pages list is only |
| 1092 | approximately sorted. */ |
| 1093 | |
| 1094 | p = free_list->free_pages; |
| 1095 | prev = NULL; |
| 1096 | while (p) |
| 1097 | { |
| 1098 | start = p->page; |
| 1099 | start_p = p; |
| 1100 | len = 0; |
| 1101 | mapped_len = 0; |
| 1102 | newprev = prev; |
| 1103 | while (p && p->page == start + len) |
| 1104 | { |
| 1105 | len += p->bytes; |
| 1106 | if (!p->discarded) |
| 1107 | mapped_len += p->bytes; |
| 1108 | newprev = p; |
| 1109 | p = p->next; |
| 1110 | } |
| 1111 | if (len >= free_unit) |
| 1112 | { |
| 1113 | while (start_p != p) |
| 1114 | { |
| 1115 | next = start_p->next; |
| 1116 | free (ptr: start_p); |
| 1117 | start_p = next; |
| 1118 | } |
| 1119 | munmap (addr: start, len: len); |
| 1120 | if (prev) |
| 1121 | prev->next = p; |
| 1122 | else |
| 1123 | free_list->free_pages = p; |
| 1124 | G.bytes_mapped -= mapped_len; |
| 1125 | n1 += len; |
| 1126 | continue; |
| 1127 | } |
| 1128 | prev = newprev; |
| 1129 | } |
| 1130 | |
| 1131 | /* Now give back the fragmented pages to the OS, but keep the address |
| 1132 | space to reuse it next time. */ |
| 1133 | |
| 1134 | for (p = free_list->free_pages; p; ) |
| 1135 | { |
| 1136 | if (p->discarded) |
| 1137 | { |
| 1138 | p = p->next; |
| 1139 | continue; |
| 1140 | } |
| 1141 | start = p->page; |
| 1142 | len = p->bytes; |
| 1143 | start_p = p; |
| 1144 | p = p->next; |
| 1145 | while (p && p->page == start + len) |
| 1146 | { |
| 1147 | len += p->bytes; |
| 1148 | p = p->next; |
| 1149 | } |
| 1150 | /* Give the page back to the kernel, but don't free the mapping. |
| 1151 | This avoids fragmentation in the virtual memory map of the |
| 1152 | process. Next time we can reuse it by just touching it. */ |
| 1153 | madvise (addr: start, len: len, MADV_DONTNEED); |
| 1154 | /* Don't count those pages as mapped to not touch the garbage collector |
| 1155 | unnecessarily. */ |
| 1156 | G.bytes_mapped -= len; |
| 1157 | n2 += len; |
| 1158 | while (start_p != p) |
| 1159 | { |
| 1160 | start_p->discarded = true; |
| 1161 | start_p = start_p->next; |
| 1162 | } |
| 1163 | } |
| 1164 | #endif |
| 1165 | #if defined(USING_MMAP) && !defined(USING_MADVISE) |
| 1166 | page_entry *p, *next; |
| 1167 | char *start; |
| 1168 | size_t len; |
| 1169 | |
| 1170 | /* Gather up adjacent pages so they are unmapped together. */ |
| 1171 | p = free_list->free_pages; |
| 1172 | |
| 1173 | while (p) |
| 1174 | { |
| 1175 | start = p->page; |
| 1176 | next = p->next; |
| 1177 | len = p->bytes; |
| 1178 | free (p); |
| 1179 | p = next; |
| 1180 | |
| 1181 | while (p && p->page == start + len) |
| 1182 | { |
| 1183 | next = p->next; |
| 1184 | len += p->bytes; |
| 1185 | free (p); |
| 1186 | p = next; |
| 1187 | } |
| 1188 | |
| 1189 | munmap (start, len); |
| 1190 | n1 += len; |
| 1191 | G.bytes_mapped -= len; |
| 1192 | } |
| 1193 | |
| 1194 | free_list->free_pages = NULL; |
| 1195 | #endif |
| 1196 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 1197 | page_entry **pp, *p; |
| 1198 | |
| 1199 | /* Remove all pages from free page groups from the list. */ |
| 1200 | pp = &free_list->free_pages; |
| 1201 | while ((p = *pp) != NULL) |
| 1202 | if (p->group->in_use == 0) |
| 1203 | { |
| 1204 | *pp = p->next; |
| 1205 | free (p); |
| 1206 | } |
| 1207 | else |
| 1208 | pp = &p->next; |
| 1209 | #endif |
| 1210 | } |
| 1211 | |
| 1212 | /* Release the free page cache to the system. */ |
| 1213 | |
| 1214 | static void |
| 1215 | release_pages () |
| 1216 | { |
| 1217 | size_t n1 = 0; |
| 1218 | size_t n2 = 0; |
| 1219 | for (int i = 0; i < num_free_list; i++) |
| 1220 | do_release_pages (free_list: &G.free_lists[i], n1, n2); |
| 1221 | #ifdef USING_MALLOC_PAGE_GROUPS |
| 1222 | page_group **gp, *g; |
| 1223 | |
| 1224 | /* Remove all free page groups, and release the storage. */ |
| 1225 | gp = &G.page_groups; |
| 1226 | while ((g = *gp) != NULL) |
| 1227 | if (g->in_use == 0) |
| 1228 | { |
| 1229 | *gp = g->next; |
| 1230 | G.bytes_mapped -= g->alloc_size; |
| 1231 | n1 += g->alloc_size; |
| 1232 | free (g->allocation); |
| 1233 | } |
| 1234 | else |
| 1235 | gp = &g->next; |
| 1236 | #endif |
| 1237 | if (!quiet_flag && (n1 || n2)) |
| 1238 | { |
| 1239 | fprintf (stderr, format: " {GC" ); |
| 1240 | if (n1) |
| 1241 | fprintf (stderr, format: " released " PRsa (0), SIZE_AMOUNT (n1)); |
| 1242 | if (n2) |
| 1243 | fprintf (stderr, format: " madv_dontneed " PRsa (0), SIZE_AMOUNT (n2)); |
| 1244 | fprintf (stderr, format: "}" ); |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | /* This table provides a fast way to determine ceil(log_2(size)) for |
| 1249 | allocation requests. The minimum allocation size is eight bytes. */ |
| 1250 | #define NUM_SIZE_LOOKUP 512 |
| 1251 | static unsigned char size_lookup[NUM_SIZE_LOOKUP] = |
| 1252 | { |
| 1253 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, |
| 1254 | 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 1255 | 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 1256 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 1257 | 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 1258 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 1259 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 1260 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 1261 | 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1262 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1263 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1264 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1265 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1266 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1267 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1268 | 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
| 1269 | 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1270 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1271 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1272 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1273 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1274 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1275 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1276 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1277 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1278 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1279 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1280 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1281 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1282 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1283 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, |
| 1284 | 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 |
| 1285 | }; |
| 1286 | |
| 1287 | /* For a given size of memory requested for allocation, return the |
| 1288 | actual size that is going to be allocated, as well as the size |
| 1289 | order. */ |
| 1290 | |
| 1291 | static void |
| 1292 | ggc_round_alloc_size_1 (size_t requested_size, |
| 1293 | size_t *size_order, |
| 1294 | size_t *alloced_size) |
| 1295 | { |
| 1296 | size_t order, object_size; |
| 1297 | |
| 1298 | if (requested_size < NUM_SIZE_LOOKUP) |
| 1299 | { |
| 1300 | order = size_lookup[requested_size]; |
| 1301 | object_size = OBJECT_SIZE (order); |
| 1302 | } |
| 1303 | else |
| 1304 | { |
| 1305 | order = 10; |
| 1306 | while (requested_size > (object_size = OBJECT_SIZE (order))) |
| 1307 | order++; |
| 1308 | } |
| 1309 | |
| 1310 | if (size_order) |
| 1311 | *size_order = order; |
| 1312 | if (alloced_size) |
| 1313 | *alloced_size = object_size; |
| 1314 | } |
| 1315 | |
| 1316 | /* For a given size of memory requested for allocation, return the |
| 1317 | actual size that is going to be allocated. */ |
| 1318 | |
| 1319 | size_t |
| 1320 | ggc_round_alloc_size (size_t requested_size) |
| 1321 | { |
| 1322 | size_t size = 0; |
| 1323 | |
| 1324 | ggc_round_alloc_size_1 (requested_size, NULL, alloced_size: &size); |
| 1325 | return size; |
| 1326 | } |
| 1327 | |
| 1328 | /* Push a finalizer onto the appropriate vec. */ |
| 1329 | |
| 1330 | static void |
| 1331 | add_finalizer (void *result, void (*f)(void *), size_t s, size_t n) |
| 1332 | { |
| 1333 | if (f == NULL) |
| 1334 | /* No finalizer. */; |
| 1335 | else if (n == 1) |
| 1336 | { |
| 1337 | finalizer fin (result, f); |
| 1338 | G.finalizers[G.context_depth].safe_push (obj: fin); |
| 1339 | } |
| 1340 | else |
| 1341 | { |
| 1342 | vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n); |
| 1343 | G.vec_finalizers[G.context_depth].safe_push (obj: fin); |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */ |
| 1348 | |
| 1349 | #ifdef HAVE_ATTRIBUTE_ALIAS |
| 1350 | extern "C" void * |
| 1351 | ggc_internal_alloc_ (size_t size, void (*f)(void *), size_t s, size_t n |
| 1352 | MEM_STAT_DECL) |
| 1353 | #else |
| 1354 | void * |
| 1355 | ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n |
| 1356 | MEM_STAT_DECL) |
| 1357 | #endif |
| 1358 | { |
| 1359 | size_t order, word, bit, object_offset, object_size; |
| 1360 | struct page_entry *entry; |
| 1361 | void *result; |
| 1362 | |
| 1363 | ggc_round_alloc_size_1 (requested_size: size, size_order: &order, alloced_size: &object_size); |
| 1364 | |
| 1365 | /* If there are non-full pages for this size allocation, they are at |
| 1366 | the head of the list. */ |
| 1367 | entry = G.pages[order]; |
| 1368 | |
| 1369 | /* If there is no page for this object size, or all pages in this |
| 1370 | context are full, allocate a new page. */ |
| 1371 | if (entry == NULL || entry->num_free_objects == 0) |
| 1372 | { |
| 1373 | struct page_entry *new_entry; |
| 1374 | new_entry = alloc_page (order); |
| 1375 | |
| 1376 | new_entry->index_by_depth = G.by_depth_in_use; |
| 1377 | push_by_depth (p: new_entry, s: 0); |
| 1378 | |
| 1379 | /* We can skip context depths, if we do, make sure we go all the |
| 1380 | way to the new depth. */ |
| 1381 | while (new_entry->context_depth >= G.depth_in_use) |
| 1382 | push_depth (i: G.by_depth_in_use-1); |
| 1383 | |
| 1384 | /* If this is the only entry, it's also the tail. If it is not |
| 1385 | the only entry, then we must update the PREV pointer of the |
| 1386 | ENTRY (G.pages[order]) to point to our new page entry. */ |
| 1387 | if (entry == NULL) |
| 1388 | G.page_tails[order] = new_entry; |
| 1389 | else |
| 1390 | entry->prev = new_entry; |
| 1391 | |
| 1392 | /* Put new pages at the head of the page list. By definition the |
| 1393 | entry at the head of the list always has a NULL pointer. */ |
| 1394 | new_entry->next = entry; |
| 1395 | new_entry->prev = NULL; |
| 1396 | entry = new_entry; |
| 1397 | G.pages[order] = new_entry; |
| 1398 | |
| 1399 | /* For a new page, we know the word and bit positions (in the |
| 1400 | in_use bitmap) of the first available object -- they're zero. */ |
| 1401 | new_entry->next_bit_hint = 1; |
| 1402 | word = 0; |
| 1403 | bit = 0; |
| 1404 | object_offset = 0; |
| 1405 | } |
| 1406 | else |
| 1407 | { |
| 1408 | /* First try to use the hint left from the previous allocation |
| 1409 | to locate a clear bit in the in-use bitmap. We've made sure |
| 1410 | that the one-past-the-end bit is always set, so if the hint |
| 1411 | has run over, this test will fail. */ |
| 1412 | unsigned hint = entry->next_bit_hint; |
| 1413 | word = hint / HOST_BITS_PER_LONG; |
| 1414 | bit = hint % HOST_BITS_PER_LONG; |
| 1415 | |
| 1416 | /* If the hint didn't work, scan the bitmap from the beginning. */ |
| 1417 | if ((entry->in_use_p[word] >> bit) & 1) |
| 1418 | { |
| 1419 | word = bit = 0; |
| 1420 | while (~entry->in_use_p[word] == 0) |
| 1421 | ++word; |
| 1422 | |
| 1423 | #if GCC_VERSION >= 3004 |
| 1424 | bit = __builtin_ctzl (~entry->in_use_p[word]); |
| 1425 | #else |
| 1426 | while ((entry->in_use_p[word] >> bit) & 1) |
| 1427 | ++bit; |
| 1428 | #endif |
| 1429 | |
| 1430 | hint = word * HOST_BITS_PER_LONG + bit; |
| 1431 | } |
| 1432 | |
| 1433 | /* Next time, try the next bit. */ |
| 1434 | entry->next_bit_hint = hint + 1; |
| 1435 | |
| 1436 | object_offset = hint * object_size; |
| 1437 | } |
| 1438 | |
| 1439 | /* Set the in-use bit. */ |
| 1440 | entry->in_use_p[word] |= ((unsigned long) 1 << bit); |
| 1441 | |
| 1442 | /* Keep a running total of the number of free objects. If this page |
| 1443 | fills up, we may have to move it to the end of the list if the |
| 1444 | next page isn't full. If the next page is full, all subsequent |
| 1445 | pages are full, so there's no need to move it. */ |
| 1446 | if (--entry->num_free_objects == 0 |
| 1447 | && entry->next != NULL |
| 1448 | && entry->next->num_free_objects > 0) |
| 1449 | { |
| 1450 | /* We have a new head for the list. */ |
| 1451 | G.pages[order] = entry->next; |
| 1452 | |
| 1453 | /* We are moving ENTRY to the end of the page table list. |
| 1454 | The new page at the head of the list will have NULL in |
| 1455 | its PREV field and ENTRY will have NULL in its NEXT field. */ |
| 1456 | entry->next->prev = NULL; |
| 1457 | entry->next = NULL; |
| 1458 | |
| 1459 | /* Append ENTRY to the tail of the list. */ |
| 1460 | entry->prev = G.page_tails[order]; |
| 1461 | G.page_tails[order]->next = entry; |
| 1462 | G.page_tails[order] = entry; |
| 1463 | } |
| 1464 | |
| 1465 | /* Calculate the object's address. */ |
| 1466 | result = entry->page + object_offset; |
| 1467 | if (GATHER_STATISTICS) |
| 1468 | ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size, |
| 1469 | result FINAL_PASS_MEM_STAT); |
| 1470 | |
| 1471 | #ifdef ENABLE_GC_CHECKING |
| 1472 | /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the |
| 1473 | exact same semantics in presence of memory bugs, regardless of |
| 1474 | ENABLE_VALGRIND_CHECKING. We override this request below. Drop the |
| 1475 | handle to avoid handle leak. */ |
| 1476 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size)); |
| 1477 | |
| 1478 | /* `Poison' the entire allocated object, including any padding at |
| 1479 | the end. */ |
| 1480 | memset (s: result, c: 0xaf, n: object_size); |
| 1481 | |
| 1482 | /* Make the bytes after the end of the object unaccessible. Discard the |
| 1483 | handle to avoid handle leak. */ |
| 1484 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size, |
| 1485 | object_size - size)); |
| 1486 | #endif |
| 1487 | |
| 1488 | /* Tell Valgrind that the memory is there, but its content isn't |
| 1489 | defined. The bytes at the end of the object are still marked |
| 1490 | unaccessible. */ |
| 1491 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size)); |
| 1492 | |
| 1493 | /* Keep track of how many bytes are being allocated. This |
| 1494 | information is used in deciding when to collect. */ |
| 1495 | G.allocated += object_size; |
| 1496 | |
| 1497 | /* For timevar statistics. */ |
| 1498 | timevar_ggc_mem_total += object_size; |
| 1499 | |
| 1500 | if (f) |
| 1501 | add_finalizer (result, f, s, n); |
| 1502 | |
| 1503 | if (GATHER_STATISTICS) |
| 1504 | { |
| 1505 | size_t overhead = object_size - size; |
| 1506 | |
| 1507 | G.stats.total_overhead += overhead; |
| 1508 | G.stats.total_allocated += object_size; |
| 1509 | G.stats.total_overhead_per_order[order] += overhead; |
| 1510 | G.stats.total_allocated_per_order[order] += object_size; |
| 1511 | |
| 1512 | if (size <= 32) |
| 1513 | { |
| 1514 | G.stats.total_overhead_under32 += overhead; |
| 1515 | G.stats.total_allocated_under32 += object_size; |
| 1516 | } |
| 1517 | if (size <= 64) |
| 1518 | { |
| 1519 | G.stats.total_overhead_under64 += overhead; |
| 1520 | G.stats.total_allocated_under64 += object_size; |
| 1521 | } |
| 1522 | if (size <= 128) |
| 1523 | { |
| 1524 | G.stats.total_overhead_under128 += overhead; |
| 1525 | G.stats.total_allocated_under128 += object_size; |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | if (GGC_DEBUG_LEVEL >= 3) |
| 1530 | fprintf (stream: G.debug_file, |
| 1531 | format: "Allocating object, requested size=" |
| 1532 | HOST_SIZE_T_PRINT_UNSIGNED ", actual=" HOST_SIZE_T_PRINT_UNSIGNED |
| 1533 | " at %p on %p\n" , |
| 1534 | (fmt_size_t) size, (fmt_size_t) object_size, result, |
| 1535 | (void *) entry); |
| 1536 | |
| 1537 | return result; |
| 1538 | } |
| 1539 | |
| 1540 | #ifdef HAVE_ATTRIBUTE_ALIAS |
| 1541 | extern void * |
| 1542 | ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, |
| 1543 | size_t n MEM_STAT_DECL) |
| 1544 | __attribute__((__alias__ ("ggc_internal_alloc_" ))); |
| 1545 | extern void * |
| 1546 | ggc_internal_alloc_no_dtor (size_t size, void (*f)(void *), size_t s, |
| 1547 | size_t n MEM_STAT_DECL) |
| 1548 | __attribute__((__alias__ ("ggc_internal_alloc_" ))); |
| 1549 | #else |
| 1550 | #ifdef __GNUC__ |
| 1551 | __attribute__ ((__noinline__)) |
| 1552 | #endif |
| 1553 | void * |
| 1554 | ggc_internal_alloc_no_dtor (size_t size, void (*f)(void *), size_t s, |
| 1555 | size_t n MEM_STAT_DECL) |
| 1556 | { |
| 1557 | return ggc_internal_alloc (size, f, s, n PASS_MEM_STAT); |
| 1558 | } |
| 1559 | #endif |
| 1560 | |
| 1561 | /* Mark function for strings. */ |
| 1562 | |
| 1563 | void |
| 1564 | gt_ggc_m_S (const void *p) |
| 1565 | { |
| 1566 | page_entry *entry; |
| 1567 | unsigned bit, word; |
| 1568 | unsigned long mask; |
| 1569 | unsigned long offset; |
| 1570 | |
| 1571 | if (!p) |
| 1572 | return; |
| 1573 | |
| 1574 | /* Look up the page on which the object is alloced. If it was not |
| 1575 | GC allocated, gracefully bail out. */ |
| 1576 | entry = safe_lookup_page_table_entry (p); |
| 1577 | if (!entry) |
| 1578 | return; |
| 1579 | |
| 1580 | /* Calculate the index of the object on the page; this is its bit |
| 1581 | position in the in_use_p bitmap. Note that because a char* might |
| 1582 | point to the middle of an object, we need special code here to |
| 1583 | make sure P points to the start of an object. */ |
| 1584 | offset = ((const char *) p - entry->page) % object_size_table[entry->order]; |
| 1585 | if (offset) |
| 1586 | { |
| 1587 | /* Here we've seen a char* which does not point to the beginning |
| 1588 | of an allocated object. We assume it points to the middle of |
| 1589 | a STRING_CST. */ |
| 1590 | gcc_assert (offset == offsetof (struct tree_string, str)); |
| 1591 | p = ((const char *) p) - offset; |
| 1592 | gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p)); |
| 1593 | return; |
| 1594 | } |
| 1595 | |
| 1596 | bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); |
| 1597 | word = bit / HOST_BITS_PER_LONG; |
| 1598 | mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); |
| 1599 | |
| 1600 | /* If the bit was previously set, skip it. */ |
| 1601 | if (entry->in_use_p[word] & mask) |
| 1602 | return; |
| 1603 | |
| 1604 | /* Otherwise set it, and decrement the free object count. */ |
| 1605 | entry->in_use_p[word] |= mask; |
| 1606 | entry->num_free_objects -= 1; |
| 1607 | |
| 1608 | if (GGC_DEBUG_LEVEL >= 4) |
| 1609 | fprintf (stream: G.debug_file, format: "Marking %p\n" , p); |
| 1610 | |
| 1611 | return; |
| 1612 | } |
| 1613 | |
| 1614 | |
| 1615 | /* User-callable entry points for marking string X. */ |
| 1616 | |
| 1617 | void |
| 1618 | gt_ggc_mx (const char *& x) |
| 1619 | { |
| 1620 | gt_ggc_m_S (p: x); |
| 1621 | } |
| 1622 | |
| 1623 | void |
| 1624 | gt_ggc_mx (char *& x) |
| 1625 | { |
| 1626 | gt_ggc_m_S (p: x); |
| 1627 | } |
| 1628 | |
| 1629 | void |
| 1630 | gt_ggc_mx (unsigned char *& x) |
| 1631 | { |
| 1632 | gt_ggc_m_S (p: x); |
| 1633 | } |
| 1634 | |
| 1635 | void |
| 1636 | gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED) |
| 1637 | { |
| 1638 | } |
| 1639 | |
| 1640 | /* If P is not marked, marks it and return false. Otherwise return true. |
| 1641 | P must have been allocated by the GC allocator; it mustn't point to |
| 1642 | static objects, stack variables, or memory allocated with malloc. */ |
| 1643 | |
| 1644 | bool |
| 1645 | ggc_set_mark (const void *p) |
| 1646 | { |
| 1647 | page_entry *entry; |
| 1648 | unsigned bit, word; |
| 1649 | unsigned long mask; |
| 1650 | |
| 1651 | /* Look up the page on which the object is alloced. If the object |
| 1652 | wasn't allocated by the collector, we'll probably die. */ |
| 1653 | entry = lookup_page_table_entry (p); |
| 1654 | gcc_assert (entry); |
| 1655 | |
| 1656 | /* Calculate the index of the object on the page; this is its bit |
| 1657 | position in the in_use_p bitmap. */ |
| 1658 | bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); |
| 1659 | word = bit / HOST_BITS_PER_LONG; |
| 1660 | mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); |
| 1661 | |
| 1662 | /* If the bit was previously set, skip it. */ |
| 1663 | if (entry->in_use_p[word] & mask) |
| 1664 | return true; |
| 1665 | |
| 1666 | /* Otherwise set it, and decrement the free object count. */ |
| 1667 | entry->in_use_p[word] |= mask; |
| 1668 | entry->num_free_objects -= 1; |
| 1669 | |
| 1670 | if (GGC_DEBUG_LEVEL >= 4) |
| 1671 | fprintf (stream: G.debug_file, format: "Marking %p\n" , p); |
| 1672 | |
| 1673 | return false; |
| 1674 | } |
| 1675 | |
| 1676 | /* Return true if P has been marked, zero otherwise. |
| 1677 | P must have been allocated by the GC allocator; it mustn't point to |
| 1678 | static objects, stack variables, or memory allocated with malloc. */ |
| 1679 | |
| 1680 | bool |
| 1681 | ggc_marked_p (const void *p) |
| 1682 | { |
| 1683 | page_entry *entry; |
| 1684 | unsigned bit, word; |
| 1685 | unsigned long mask; |
| 1686 | |
| 1687 | /* Look up the page on which the object is alloced. If the object |
| 1688 | wasn't allocated by the collector, we'll probably die. */ |
| 1689 | entry = lookup_page_table_entry (p); |
| 1690 | gcc_assert (entry); |
| 1691 | |
| 1692 | /* Calculate the index of the object on the page; this is its bit |
| 1693 | position in the in_use_p bitmap. */ |
| 1694 | bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); |
| 1695 | word = bit / HOST_BITS_PER_LONG; |
| 1696 | mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); |
| 1697 | |
| 1698 | return (entry->in_use_p[word] & mask) != 0; |
| 1699 | } |
| 1700 | |
| 1701 | /* Return the size of the gc-able object P. */ |
| 1702 | |
| 1703 | size_t |
| 1704 | ggc_get_size (const void *p) |
| 1705 | { |
| 1706 | page_entry *pe = lookup_page_table_entry (p); |
| 1707 | return OBJECT_SIZE (pe->order); |
| 1708 | } |
| 1709 | |
| 1710 | /* Release the memory for object P. */ |
| 1711 | |
| 1712 | void |
| 1713 | ggc_free (void *p) |
| 1714 | { |
| 1715 | if (in_gc) |
| 1716 | return; |
| 1717 | |
| 1718 | page_entry *pe = lookup_page_table_entry (p); |
| 1719 | size_t order = pe->order; |
| 1720 | size_t size = OBJECT_SIZE (order); |
| 1721 | |
| 1722 | if (GATHER_STATISTICS) |
| 1723 | ggc_free_overhead (p); |
| 1724 | |
| 1725 | if (GGC_DEBUG_LEVEL >= 3) |
| 1726 | fprintf (stream: G.debug_file, |
| 1727 | format: "Freeing object, actual size=" |
| 1728 | HOST_SIZE_T_PRINT_UNSIGNED ", at %p on %p\n" , |
| 1729 | (fmt_size_t) size, p, (void *) pe); |
| 1730 | |
| 1731 | #ifdef ENABLE_GC_CHECKING |
| 1732 | /* Poison the data, to indicate the data is garbage. */ |
| 1733 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size)); |
| 1734 | memset (s: p, c: 0xa5, n: size); |
| 1735 | #endif |
| 1736 | /* Let valgrind know the object is free. */ |
| 1737 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size)); |
| 1738 | |
| 1739 | #ifdef ENABLE_GC_ALWAYS_COLLECT |
| 1740 | /* In the completely-anal-checking mode, we do *not* immediately free |
| 1741 | the data, but instead verify that the data is *actually* not |
| 1742 | reachable the next time we collect. */ |
| 1743 | { |
| 1744 | struct free_object *fo = XNEW (struct free_object); |
| 1745 | fo->object = p; |
| 1746 | fo->next = G.free_object_list; |
| 1747 | G.free_object_list = fo; |
| 1748 | } |
| 1749 | #else |
| 1750 | { |
| 1751 | unsigned int bit_offset, word, bit; |
| 1752 | |
| 1753 | G.allocated -= size; |
| 1754 | |
| 1755 | /* Mark the object not-in-use. */ |
| 1756 | bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order); |
| 1757 | word = bit_offset / HOST_BITS_PER_LONG; |
| 1758 | bit = bit_offset % HOST_BITS_PER_LONG; |
| 1759 | pe->in_use_p[word] &= ~(1UL << bit); |
| 1760 | |
| 1761 | if (pe->num_free_objects++ == 0) |
| 1762 | { |
| 1763 | page_entry *p, *q; |
| 1764 | |
| 1765 | /* If the page is completely full, then it's supposed to |
| 1766 | be after all pages that aren't. Since we've freed one |
| 1767 | object from a page that was full, we need to move the |
| 1768 | page to the head of the list. |
| 1769 | |
| 1770 | PE is the node we want to move. Q is the previous node |
| 1771 | and P is the next node in the list. */ |
| 1772 | q = pe->prev; |
| 1773 | if (q && q->num_free_objects == 0) |
| 1774 | { |
| 1775 | p = pe->next; |
| 1776 | |
| 1777 | q->next = p; |
| 1778 | |
| 1779 | /* If PE was at the end of the list, then Q becomes the |
| 1780 | new end of the list. If PE was not the end of the |
| 1781 | list, then we need to update the PREV field for P. */ |
| 1782 | if (!p) |
| 1783 | G.page_tails[order] = q; |
| 1784 | else |
| 1785 | p->prev = q; |
| 1786 | |
| 1787 | /* Move PE to the head of the list. */ |
| 1788 | pe->next = G.pages[order]; |
| 1789 | pe->prev = NULL; |
| 1790 | G.pages[order]->prev = pe; |
| 1791 | G.pages[order] = pe; |
| 1792 | } |
| 1793 | |
| 1794 | /* Reset the hint bit to point to the only free object. */ |
| 1795 | pe->next_bit_hint = bit_offset; |
| 1796 | } |
| 1797 | } |
| 1798 | #endif |
| 1799 | } |
| 1800 | |
| 1801 | /* Subroutine of init_ggc which computes the pair of numbers used to |
| 1802 | perform division by OBJECT_SIZE (order) and fills in inverse_table[]. |
| 1803 | |
| 1804 | This algorithm is taken from Granlund and Montgomery's paper |
| 1805 | "Division by Invariant Integers using Multiplication" |
| 1806 | (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by |
| 1807 | constants). */ |
| 1808 | |
| 1809 | static void |
| 1810 | compute_inverse (unsigned order) |
| 1811 | { |
| 1812 | size_t size, inv; |
| 1813 | unsigned int e; |
| 1814 | |
| 1815 | size = OBJECT_SIZE (order); |
| 1816 | e = 0; |
| 1817 | while (size % 2 == 0) |
| 1818 | { |
| 1819 | e++; |
| 1820 | size >>= 1; |
| 1821 | } |
| 1822 | |
| 1823 | inv = size; |
| 1824 | while (inv * size != 1) |
| 1825 | inv = inv * (2 - inv*size); |
| 1826 | |
| 1827 | DIV_MULT (order) = inv; |
| 1828 | DIV_SHIFT (order) = e; |
| 1829 | } |
| 1830 | |
| 1831 | /* Initialize the ggc-mmap allocator. */ |
| 1832 | void |
| 1833 | init_ggc (void) |
| 1834 | { |
| 1835 | static bool init_p = false; |
| 1836 | unsigned order; |
| 1837 | |
| 1838 | if (init_p) |
| 1839 | return; |
| 1840 | init_p = true; |
| 1841 | |
| 1842 | G.pagesize = getpagesize (); |
| 1843 | G.lg_pagesize = exact_log2 (x: G.pagesize); |
| 1844 | |
| 1845 | #ifdef HAVE_MMAP_DEV_ZERO |
| 1846 | G.dev_zero_fd = open ("/dev/zero" , O_RDONLY); |
| 1847 | if (G.dev_zero_fd == -1) |
| 1848 | internal_error ("open /dev/zero: %m" ); |
| 1849 | #endif |
| 1850 | |
| 1851 | #if 0 |
| 1852 | G.debug_file = fopen ("ggc-mmap.debug" , "w" ); |
| 1853 | #else |
| 1854 | G.debug_file = stdout; |
| 1855 | #endif |
| 1856 | |
| 1857 | #ifdef USING_MMAP |
| 1858 | /* StunOS has an amazing off-by-one error for the first mmap allocation |
| 1859 | after fiddling with RLIMIT_STACK. The result, as hard as it is to |
| 1860 | believe, is an unaligned page allocation, which would cause us to |
| 1861 | hork badly if we tried to use it. */ |
| 1862 | { |
| 1863 | char *p = alloc_anon (NULL, size: G.pagesize, check: true); |
| 1864 | struct page_entry *e; |
| 1865 | if ((uintptr_t)p & (G.pagesize - 1)) |
| 1866 | { |
| 1867 | /* How losing. Discard this one and try another. If we still |
| 1868 | can't get something useful, give up. */ |
| 1869 | |
| 1870 | p = alloc_anon (NULL, size: G.pagesize, check: true); |
| 1871 | gcc_assert (!((uintptr_t)p & (G.pagesize - 1))); |
| 1872 | } |
| 1873 | |
| 1874 | /* We have a good page, might as well hold onto it... */ |
| 1875 | e = XCNEW (struct page_entry); |
| 1876 | e->bytes = G.pagesize; |
| 1877 | e->free_list = find_free_list (entry_size: G.pagesize); |
| 1878 | e->page = p; |
| 1879 | e->next = e->free_list->free_pages; |
| 1880 | e->free_list->free_pages = e; |
| 1881 | } |
| 1882 | #endif |
| 1883 | |
| 1884 | /* Initialize the object size table. */ |
| 1885 | for (order = 0; order < HOST_BITS_PER_PTR; ++order) |
| 1886 | object_size_table[order] = (size_t) 1 << order; |
| 1887 | for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) |
| 1888 | { |
| 1889 | size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR]; |
| 1890 | |
| 1891 | /* If S is not a multiple of the MAX_ALIGNMENT, then round it up |
| 1892 | so that we're sure of getting aligned memory. */ |
| 1893 | s = ROUND_UP (s, MAX_ALIGNMENT); |
| 1894 | object_size_table[order] = s; |
| 1895 | } |
| 1896 | |
| 1897 | /* Initialize the objects-per-page and inverse tables. */ |
| 1898 | for (order = 0; order < NUM_ORDERS; ++order) |
| 1899 | { |
| 1900 | objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order); |
| 1901 | if (objects_per_page_table[order] == 0) |
| 1902 | objects_per_page_table[order] = 1; |
| 1903 | compute_inverse (order); |
| 1904 | } |
| 1905 | |
| 1906 | /* Reset the size_lookup array to put appropriately sized objects in |
| 1907 | the special orders. All objects bigger than the previous power |
| 1908 | of two, but no greater than the special size, should go in the |
| 1909 | new order. */ |
| 1910 | for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) |
| 1911 | { |
| 1912 | int o; |
| 1913 | int i; |
| 1914 | |
| 1915 | i = OBJECT_SIZE (order); |
| 1916 | if (i >= NUM_SIZE_LOOKUP) |
| 1917 | continue; |
| 1918 | |
| 1919 | for (o = size_lookup[i]; o == size_lookup [i]; --i) |
| 1920 | size_lookup[i] = order; |
| 1921 | } |
| 1922 | |
| 1923 | G.depth_in_use = 0; |
| 1924 | G.depth_max = 10; |
| 1925 | G.depth = XNEWVEC (unsigned int, G.depth_max); |
| 1926 | |
| 1927 | G.by_depth_in_use = 0; |
| 1928 | G.by_depth_max = INITIAL_PTE_COUNT; |
| 1929 | G.by_depth = XNEWVEC (page_entry *, G.by_depth_max); |
| 1930 | G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); |
| 1931 | |
| 1932 | /* Allocate space for the depth 0 finalizers. */ |
| 1933 | G.finalizers.safe_push (obj: vNULL); |
| 1934 | G.vec_finalizers.safe_push (obj: vNULL); |
| 1935 | gcc_assert (G.finalizers.length() == 1); |
| 1936 | } |
| 1937 | |
| 1938 | /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P |
| 1939 | reflects reality. Recalculate NUM_FREE_OBJECTS as well. */ |
| 1940 | |
| 1941 | static void |
| 1942 | ggc_recalculate_in_use_p (page_entry *p) |
| 1943 | { |
| 1944 | unsigned int i; |
| 1945 | size_t num_objects; |
| 1946 | |
| 1947 | /* Because the past-the-end bit in in_use_p is always set, we |
| 1948 | pretend there is one additional object. */ |
| 1949 | num_objects = OBJECTS_IN_PAGE (p) + 1; |
| 1950 | |
| 1951 | /* Reset the free object count. */ |
| 1952 | p->num_free_objects = num_objects; |
| 1953 | |
| 1954 | /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */ |
| 1955 | for (i = 0; |
| 1956 | i < CEIL (BITMAP_SIZE (num_objects), |
| 1957 | sizeof (*p->in_use_p)); |
| 1958 | ++i) |
| 1959 | { |
| 1960 | unsigned long j; |
| 1961 | |
| 1962 | /* Something is in use if it is marked, or if it was in use in a |
| 1963 | context further down the context stack. */ |
| 1964 | p->in_use_p[i] |= save_in_use_p (p)[i]; |
| 1965 | |
| 1966 | /* Decrement the free object count for every object allocated. */ |
| 1967 | for (j = p->in_use_p[i]; j; j >>= 1) |
| 1968 | p->num_free_objects -= (j & 1); |
| 1969 | } |
| 1970 | |
| 1971 | gcc_assert (p->num_free_objects < num_objects); |
| 1972 | } |
| 1973 | |
| 1974 | /* Unmark all objects. */ |
| 1975 | |
| 1976 | static void |
| 1977 | clear_marks (void) |
| 1978 | { |
| 1979 | unsigned order; |
| 1980 | |
| 1981 | for (order = 2; order < NUM_ORDERS; order++) |
| 1982 | { |
| 1983 | page_entry *p; |
| 1984 | |
| 1985 | for (p = G.pages[order]; p != NULL; p = p->next) |
| 1986 | { |
| 1987 | size_t num_objects = OBJECTS_IN_PAGE (p); |
| 1988 | size_t bitmap_size = BITMAP_SIZE (num_objects + 1); |
| 1989 | |
| 1990 | /* The data should be page-aligned. */ |
| 1991 | gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1))); |
| 1992 | |
| 1993 | /* Pages that aren't in the topmost context are not collected; |
| 1994 | nevertheless, we need their in-use bit vectors to store GC |
| 1995 | marks. So, back them up first. */ |
| 1996 | if (p->context_depth < G.context_depth) |
| 1997 | { |
| 1998 | if (! save_in_use_p (p)) |
| 1999 | save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size); |
| 2000 | memcpy (save_in_use_p (p), src: p->in_use_p, n: bitmap_size); |
| 2001 | } |
| 2002 | |
| 2003 | /* Reset reset the number of free objects and clear the |
| 2004 | in-use bits. These will be adjusted by mark_obj. */ |
| 2005 | p->num_free_objects = num_objects; |
| 2006 | memset (s: p->in_use_p, c: 0, n: bitmap_size); |
| 2007 | |
| 2008 | /* Make sure the one-past-the-end bit is always set. */ |
| 2009 | p->in_use_p[num_objects / HOST_BITS_PER_LONG] |
| 2010 | = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG)); |
| 2011 | } |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | /* Check if any blocks with a registered finalizer have become unmarked. If so |
| 2016 | run the finalizer and unregister it because the block is about to be freed. |
| 2017 | Note that no guarantee is made about what order finalizers will run in so |
| 2018 | touching other objects in gc memory is extremely unwise. */ |
| 2019 | |
| 2020 | static void |
| 2021 | ggc_handle_finalizers () |
| 2022 | { |
| 2023 | unsigned dlen = G.finalizers.length(); |
| 2024 | for (unsigned d = G.context_depth; d < dlen; ++d) |
| 2025 | { |
| 2026 | vec<finalizer> &v = G.finalizers[d]; |
| 2027 | unsigned length = v.length (); |
| 2028 | for (unsigned int i = 0; i < length;) |
| 2029 | { |
| 2030 | finalizer &f = v[i]; |
| 2031 | if (!ggc_marked_p (p: f.addr ())) |
| 2032 | { |
| 2033 | f.call (); |
| 2034 | v.unordered_remove (ix: i); |
| 2035 | length--; |
| 2036 | } |
| 2037 | else |
| 2038 | i++; |
| 2039 | } |
| 2040 | } |
| 2041 | |
| 2042 | gcc_assert (dlen == G.vec_finalizers.length()); |
| 2043 | for (unsigned d = G.context_depth; d < dlen; ++d) |
| 2044 | { |
| 2045 | vec<vec_finalizer> &vv = G.vec_finalizers[d]; |
| 2046 | unsigned length = vv.length (); |
| 2047 | for (unsigned int i = 0; i < length;) |
| 2048 | { |
| 2049 | vec_finalizer &f = vv[i]; |
| 2050 | if (!ggc_marked_p (p: f.addr ())) |
| 2051 | { |
| 2052 | f.call (); |
| 2053 | vv.unordered_remove (ix: i); |
| 2054 | length--; |
| 2055 | } |
| 2056 | else |
| 2057 | i++; |
| 2058 | } |
| 2059 | } |
| 2060 | } |
| 2061 | |
| 2062 | /* Free all empty pages. Partially empty pages need no attention |
| 2063 | because the `mark' bit doubles as an `unused' bit. */ |
| 2064 | |
| 2065 | static void |
| 2066 | sweep_pages (void) |
| 2067 | { |
| 2068 | unsigned order; |
| 2069 | |
| 2070 | for (order = 2; order < NUM_ORDERS; order++) |
| 2071 | { |
| 2072 | /* The last page-entry to consider, regardless of entries |
| 2073 | placed at the end of the list. */ |
| 2074 | page_entry * const last = G.page_tails[order]; |
| 2075 | |
| 2076 | size_t num_objects; |
| 2077 | size_t live_objects; |
| 2078 | page_entry *p, *previous; |
| 2079 | int done; |
| 2080 | |
| 2081 | p = G.pages[order]; |
| 2082 | if (p == NULL) |
| 2083 | continue; |
| 2084 | |
| 2085 | previous = NULL; |
| 2086 | do |
| 2087 | { |
| 2088 | page_entry *next = p->next; |
| 2089 | |
| 2090 | /* Loop until all entries have been examined. */ |
| 2091 | done = (p == last); |
| 2092 | |
| 2093 | num_objects = OBJECTS_IN_PAGE (p); |
| 2094 | |
| 2095 | /* Add all live objects on this page to the count of |
| 2096 | allocated memory. */ |
| 2097 | live_objects = num_objects - p->num_free_objects; |
| 2098 | |
| 2099 | G.allocated += OBJECT_SIZE (order) * live_objects; |
| 2100 | |
| 2101 | /* Only objects on pages in the topmost context should get |
| 2102 | collected. */ |
| 2103 | if (p->context_depth < G.context_depth) |
| 2104 | ; |
| 2105 | |
| 2106 | /* Remove the page if it's empty. */ |
| 2107 | else if (live_objects == 0) |
| 2108 | { |
| 2109 | /* If P was the first page in the list, then NEXT |
| 2110 | becomes the new first page in the list, otherwise |
| 2111 | splice P out of the forward pointers. */ |
| 2112 | if (! previous) |
| 2113 | G.pages[order] = next; |
| 2114 | else |
| 2115 | previous->next = next; |
| 2116 | |
| 2117 | /* Splice P out of the back pointers too. */ |
| 2118 | if (next) |
| 2119 | next->prev = previous; |
| 2120 | |
| 2121 | /* Are we removing the last element? */ |
| 2122 | if (p == G.page_tails[order]) |
| 2123 | G.page_tails[order] = previous; |
| 2124 | free_page (entry: p); |
| 2125 | p = previous; |
| 2126 | } |
| 2127 | |
| 2128 | /* If the page is full, move it to the end. */ |
| 2129 | else if (p->num_free_objects == 0) |
| 2130 | { |
| 2131 | /* Don't move it if it's already at the end. */ |
| 2132 | if (p != G.page_tails[order]) |
| 2133 | { |
| 2134 | /* Move p to the end of the list. */ |
| 2135 | p->next = NULL; |
| 2136 | p->prev = G.page_tails[order]; |
| 2137 | G.page_tails[order]->next = p; |
| 2138 | |
| 2139 | /* Update the tail pointer... */ |
| 2140 | G.page_tails[order] = p; |
| 2141 | |
| 2142 | /* ... and the head pointer, if necessary. */ |
| 2143 | if (! previous) |
| 2144 | G.pages[order] = next; |
| 2145 | else |
| 2146 | previous->next = next; |
| 2147 | |
| 2148 | /* And update the backpointer in NEXT if necessary. */ |
| 2149 | if (next) |
| 2150 | next->prev = previous; |
| 2151 | |
| 2152 | p = previous; |
| 2153 | } |
| 2154 | } |
| 2155 | |
| 2156 | /* If we've fallen through to here, it's a page in the |
| 2157 | topmost context that is neither full nor empty. Such a |
| 2158 | page must precede pages at lesser context depth in the |
| 2159 | list, so move it to the head. */ |
| 2160 | else if (p != G.pages[order]) |
| 2161 | { |
| 2162 | previous->next = p->next; |
| 2163 | |
| 2164 | /* Update the backchain in the next node if it exists. */ |
| 2165 | if (p->next) |
| 2166 | p->next->prev = previous; |
| 2167 | |
| 2168 | /* Move P to the head of the list. */ |
| 2169 | p->next = G.pages[order]; |
| 2170 | p->prev = NULL; |
| 2171 | G.pages[order]->prev = p; |
| 2172 | |
| 2173 | /* Update the head pointer. */ |
| 2174 | G.pages[order] = p; |
| 2175 | |
| 2176 | /* Are we moving the last element? */ |
| 2177 | if (G.page_tails[order] == p) |
| 2178 | G.page_tails[order] = previous; |
| 2179 | p = previous; |
| 2180 | } |
| 2181 | |
| 2182 | previous = p; |
| 2183 | p = next; |
| 2184 | } |
| 2185 | while (! done); |
| 2186 | |
| 2187 | /* Now, restore the in_use_p vectors for any pages from contexts |
| 2188 | other than the current one. */ |
| 2189 | for (p = G.pages[order]; p; p = p->next) |
| 2190 | if (p->context_depth != G.context_depth) |
| 2191 | ggc_recalculate_in_use_p (p); |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | #ifdef ENABLE_GC_CHECKING |
| 2196 | /* Clobber all free objects. */ |
| 2197 | |
| 2198 | static void |
| 2199 | poison_pages (void) |
| 2200 | { |
| 2201 | unsigned order; |
| 2202 | |
| 2203 | for (order = 2; order < NUM_ORDERS; order++) |
| 2204 | { |
| 2205 | size_t size = OBJECT_SIZE (order); |
| 2206 | page_entry *p; |
| 2207 | |
| 2208 | for (p = G.pages[order]; p != NULL; p = p->next) |
| 2209 | { |
| 2210 | size_t num_objects; |
| 2211 | size_t i; |
| 2212 | |
| 2213 | if (p->context_depth != G.context_depth) |
| 2214 | /* Since we don't do any collection for pages in pushed |
| 2215 | contexts, there's no need to do any poisoning. And |
| 2216 | besides, the IN_USE_P array isn't valid until we pop |
| 2217 | contexts. */ |
| 2218 | continue; |
| 2219 | |
| 2220 | num_objects = OBJECTS_IN_PAGE (p); |
| 2221 | for (i = 0; i < num_objects; i++) |
| 2222 | { |
| 2223 | size_t word, bit; |
| 2224 | word = i / HOST_BITS_PER_LONG; |
| 2225 | bit = i % HOST_BITS_PER_LONG; |
| 2226 | if (((p->in_use_p[word] >> bit) & 1) == 0) |
| 2227 | { |
| 2228 | char *object = p->page + i * size; |
| 2229 | |
| 2230 | /* Keep poison-by-write when we expect to use Valgrind, |
| 2231 | so the exact same memory semantics is kept, in case |
| 2232 | there are memory errors. We override this request |
| 2233 | below. */ |
| 2234 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object, |
| 2235 | size)); |
| 2236 | memset (s: object, c: 0xa5, n: size); |
| 2237 | |
| 2238 | /* Drop the handle to avoid handle leak. */ |
| 2239 | VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size)); |
| 2240 | } |
| 2241 | } |
| 2242 | } |
| 2243 | } |
| 2244 | } |
| 2245 | #else |
| 2246 | #define poison_pages() |
| 2247 | #endif |
| 2248 | |
| 2249 | #ifdef ENABLE_GC_ALWAYS_COLLECT |
| 2250 | /* Validate that the reportedly free objects actually are. */ |
| 2251 | |
| 2252 | static void |
| 2253 | validate_free_objects (void) |
| 2254 | { |
| 2255 | struct free_object *f, *next, *still_free = NULL; |
| 2256 | |
| 2257 | for (f = G.free_object_list; f ; f = next) |
| 2258 | { |
| 2259 | page_entry *pe = lookup_page_table_entry (f->object); |
| 2260 | size_t bit, word; |
| 2261 | |
| 2262 | bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order); |
| 2263 | word = bit / HOST_BITS_PER_LONG; |
| 2264 | bit = bit % HOST_BITS_PER_LONG; |
| 2265 | next = f->next; |
| 2266 | |
| 2267 | /* Make certain it isn't visible from any root. Notice that we |
| 2268 | do this check before sweep_pages merges save_in_use_p. */ |
| 2269 | gcc_assert (!(pe->in_use_p[word] & (1UL << bit))); |
| 2270 | |
| 2271 | /* If the object comes from an outer context, then retain the |
| 2272 | free_object entry, so that we can verify that the address |
| 2273 | isn't live on the stack in some outer context. */ |
| 2274 | if (pe->context_depth != G.context_depth) |
| 2275 | { |
| 2276 | f->next = still_free; |
| 2277 | still_free = f; |
| 2278 | } |
| 2279 | else |
| 2280 | free (f); |
| 2281 | } |
| 2282 | |
| 2283 | G.free_object_list = still_free; |
| 2284 | } |
| 2285 | #else |
| 2286 | #define validate_free_objects() |
| 2287 | #endif |
| 2288 | |
| 2289 | /* Top level mark-and-sweep routine. */ |
| 2290 | |
| 2291 | void |
| 2292 | ggc_collect (enum ggc_collect mode) |
| 2293 | { |
| 2294 | /* Avoid frequent unnecessary work by skipping collection if the |
| 2295 | total allocations haven't expanded much since the last |
| 2296 | collection. */ |
| 2297 | float allocated_last_gc = |
| 2298 | MAX (G.allocated_last_gc, (size_t)param_ggc_min_heapsize * ONE_K); |
| 2299 | |
| 2300 | /* It is also good time to get memory block pool into limits. */ |
| 2301 | memory_block_pool::trim (); |
| 2302 | |
| 2303 | float min_expand = allocated_last_gc * param_ggc_min_expand / 100; |
| 2304 | if (mode == GGC_COLLECT_HEURISTIC |
| 2305 | && G.allocated < allocated_last_gc + min_expand) |
| 2306 | return; |
| 2307 | |
| 2308 | timevar_push (tv: TV_GC); |
| 2309 | if (GGC_DEBUG_LEVEL >= 2) |
| 2310 | fprintf (stream: G.debug_file, format: "BEGIN COLLECTING\n" ); |
| 2311 | |
| 2312 | /* Zero the total allocated bytes. This will be recalculated in the |
| 2313 | sweep phase. */ |
| 2314 | size_t allocated = G.allocated; |
| 2315 | G.allocated = 0; |
| 2316 | |
| 2317 | /* Release the pages we freed the last time we collected, but didn't |
| 2318 | reuse in the interim. */ |
| 2319 | release_pages (); |
| 2320 | |
| 2321 | /* Output this later so we do not interfere with release_pages. */ |
| 2322 | if (!quiet_flag) |
| 2323 | fprintf (stderr, format: " {GC " PRsa (0) " -> " , SIZE_AMOUNT (allocated)); |
| 2324 | |
| 2325 | /* Indicate that we've seen collections at this context depth. */ |
| 2326 | G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1; |
| 2327 | |
| 2328 | invoke_plugin_callbacks (event: PLUGIN_GGC_START, NULL); |
| 2329 | |
| 2330 | in_gc = true; |
| 2331 | clear_marks (); |
| 2332 | ggc_mark_roots (); |
| 2333 | ggc_handle_finalizers (); |
| 2334 | |
| 2335 | if (GATHER_STATISTICS) |
| 2336 | ggc_prune_overhead_list (); |
| 2337 | |
| 2338 | poison_pages (); |
| 2339 | validate_free_objects (); |
| 2340 | sweep_pages (); |
| 2341 | |
| 2342 | in_gc = false; |
| 2343 | G.allocated_last_gc = G.allocated; |
| 2344 | |
| 2345 | invoke_plugin_callbacks (event: PLUGIN_GGC_END, NULL); |
| 2346 | |
| 2347 | timevar_pop (tv: TV_GC); |
| 2348 | |
| 2349 | if (!quiet_flag) |
| 2350 | fprintf (stderr, PRsa (0) "}" , SIZE_AMOUNT (G.allocated)); |
| 2351 | if (GGC_DEBUG_LEVEL >= 2) |
| 2352 | fprintf (stream: G.debug_file, format: "END COLLECTING\n" ); |
| 2353 | } |
| 2354 | |
| 2355 | /* Return free pages to the system. */ |
| 2356 | |
| 2357 | void |
| 2358 | ggc_trim () |
| 2359 | { |
| 2360 | timevar_push (tv: TV_GC); |
| 2361 | G.allocated = 0; |
| 2362 | sweep_pages (); |
| 2363 | release_pages (); |
| 2364 | if (!quiet_flag) |
| 2365 | fprintf (stderr, format: " {GC trimmed to " PRsa (0) ", " PRsa (0) " mapped}" , |
| 2366 | SIZE_AMOUNT (G.allocated), SIZE_AMOUNT (G.bytes_mapped)); |
| 2367 | timevar_pop (tv: TV_GC); |
| 2368 | } |
| 2369 | |
| 2370 | /* Assume that all GGC memory is reachable and grow the limits for next |
| 2371 | collection. With checking, trigger GGC so -Q compilation outputs how much |
| 2372 | of memory really is reachable. */ |
| 2373 | |
| 2374 | void |
| 2375 | ggc_grow (void) |
| 2376 | { |
| 2377 | if (!flag_checking) |
| 2378 | G.allocated_last_gc = MAX (G.allocated_last_gc, |
| 2379 | G.allocated); |
| 2380 | else |
| 2381 | ggc_collect (); |
| 2382 | if (!quiet_flag) |
| 2383 | fprintf (stderr, format: " {GC " PRsa (0) "} " , SIZE_AMOUNT (G.allocated)); |
| 2384 | } |
| 2385 | |
| 2386 | void |
| 2387 | ggc_print_statistics (void) |
| 2388 | { |
| 2389 | struct ggc_statistics stats; |
| 2390 | unsigned int i; |
| 2391 | size_t total_overhead = 0; |
| 2392 | |
| 2393 | /* Clear the statistics. */ |
| 2394 | memset (s: &stats, c: 0, n: sizeof (stats)); |
| 2395 | |
| 2396 | /* Make sure collection will really occur. */ |
| 2397 | G.allocated_last_gc = 0; |
| 2398 | |
| 2399 | /* Collect and print the statistics common across collectors. */ |
| 2400 | ggc_print_common_statistics (stderr, &stats); |
| 2401 | |
| 2402 | /* Release free pages so that we will not count the bytes allocated |
| 2403 | there as part of the total allocated memory. */ |
| 2404 | release_pages (); |
| 2405 | |
| 2406 | /* Collect some information about the various sizes of |
| 2407 | allocation. */ |
| 2408 | fprintf (stderr, |
| 2409 | format: "Memory still allocated at the end of the compilation process\n" ); |
| 2410 | fprintf (stderr, format: "%-8s %10s %10s %10s\n" , |
| 2411 | "Size" , "Allocated" , "Used" , "Overhead" ); |
| 2412 | for (i = 0; i < NUM_ORDERS; ++i) |
| 2413 | { |
| 2414 | page_entry *p; |
| 2415 | size_t allocated; |
| 2416 | size_t in_use; |
| 2417 | size_t overhead; |
| 2418 | |
| 2419 | /* Skip empty entries. */ |
| 2420 | if (!G.pages[i]) |
| 2421 | continue; |
| 2422 | |
| 2423 | overhead = allocated = in_use = 0; |
| 2424 | |
| 2425 | /* Figure out the total number of bytes allocated for objects of |
| 2426 | this size, and how many of them are actually in use. Also figure |
| 2427 | out how much memory the page table is using. */ |
| 2428 | for (p = G.pages[i]; p; p = p->next) |
| 2429 | { |
| 2430 | allocated += p->bytes; |
| 2431 | in_use += |
| 2432 | (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i); |
| 2433 | |
| 2434 | overhead += (sizeof (page_entry) - sizeof (long) |
| 2435 | + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1)); |
| 2436 | } |
| 2437 | fprintf (stderr, format: "%-8" PRIu64 " " PRsa (10) " " PRsa (10) " " |
| 2438 | PRsa (10) "\n" , |
| 2439 | (uint64_t)OBJECT_SIZE (i), |
| 2440 | SIZE_AMOUNT (allocated), |
| 2441 | SIZE_AMOUNT (in_use), |
| 2442 | SIZE_AMOUNT (overhead)); |
| 2443 | total_overhead += overhead; |
| 2444 | } |
| 2445 | fprintf (stderr, format: "%-8s " PRsa (10) " " PRsa (10) " " PRsa (10) "\n" , |
| 2446 | "Total" , |
| 2447 | SIZE_AMOUNT (G.bytes_mapped), |
| 2448 | SIZE_AMOUNT (G.allocated), |
| 2449 | SIZE_AMOUNT (total_overhead)); |
| 2450 | |
| 2451 | if (GATHER_STATISTICS) |
| 2452 | { |
| 2453 | fprintf (stderr, format: "\nTotal allocations and overheads during " |
| 2454 | "the compilation process\n" ); |
| 2455 | |
| 2456 | fprintf (stderr, format: "Total Overhead: " |
| 2457 | PRsa (9) "\n" , |
| 2458 | SIZE_AMOUNT (G.stats.total_overhead)); |
| 2459 | fprintf (stderr, format: "Total Allocated: " |
| 2460 | PRsa (9) "\n" , |
| 2461 | SIZE_AMOUNT (G.stats.total_allocated)); |
| 2462 | |
| 2463 | fprintf (stderr, format: "Total Overhead under 32B: " |
| 2464 | PRsa (9) "\n" , |
| 2465 | SIZE_AMOUNT (G.stats.total_overhead_under32)); |
| 2466 | fprintf (stderr, format: "Total Allocated under 32B: " |
| 2467 | PRsa (9) "\n" , |
| 2468 | SIZE_AMOUNT (G.stats.total_allocated_under32)); |
| 2469 | fprintf (stderr, format: "Total Overhead under 64B: " |
| 2470 | PRsa (9) "\n" , |
| 2471 | SIZE_AMOUNT (G.stats.total_overhead_under64)); |
| 2472 | fprintf (stderr, format: "Total Allocated under 64B: " |
| 2473 | PRsa (9) "\n" , |
| 2474 | SIZE_AMOUNT (G.stats.total_allocated_under64)); |
| 2475 | fprintf (stderr, format: "Total Overhead under 128B: " |
| 2476 | PRsa (9) "\n" , |
| 2477 | SIZE_AMOUNT (G.stats.total_overhead_under128)); |
| 2478 | fprintf (stderr, format: "Total Allocated under 128B: " |
| 2479 | PRsa (9) "\n" , |
| 2480 | SIZE_AMOUNT (G.stats.total_allocated_under128)); |
| 2481 | fprintf (stderr, format: "Number of free list fallbacks: " |
| 2482 | PRsa (9) "\n" , |
| 2483 | SIZE_AMOUNT (G.stats.fallback)); |
| 2484 | |
| 2485 | for (i = 0; i < NUM_ORDERS; i++) |
| 2486 | if (G.stats.total_allocated_per_order[i]) |
| 2487 | { |
| 2488 | fprintf (stderr, format: "Total Overhead page size %9" PRIu64 ": " |
| 2489 | PRsa (9) "\n" , |
| 2490 | (uint64_t)OBJECT_SIZE (i), |
| 2491 | SIZE_AMOUNT (G.stats.total_overhead_per_order[i])); |
| 2492 | fprintf (stderr, format: "Total Allocated page size %9" PRIu64 ": " |
| 2493 | PRsa (9) "\n" , |
| 2494 | (uint64_t)OBJECT_SIZE (i), |
| 2495 | SIZE_AMOUNT (G.stats.total_allocated_per_order[i])); |
| 2496 | } |
| 2497 | } |
| 2498 | } |
| 2499 | |
| 2500 | struct ggc_pch_ondisk |
| 2501 | { |
| 2502 | unsigned totals[NUM_ORDERS]; |
| 2503 | }; |
| 2504 | |
| 2505 | struct ggc_pch_data |
| 2506 | { |
| 2507 | struct ggc_pch_ondisk d; |
| 2508 | uintptr_t base[NUM_ORDERS]; |
| 2509 | size_t written[NUM_ORDERS]; |
| 2510 | }; |
| 2511 | |
| 2512 | struct ggc_pch_data * |
| 2513 | init_ggc_pch (void) |
| 2514 | { |
| 2515 | return XCNEW (struct ggc_pch_data); |
| 2516 | } |
| 2517 | |
| 2518 | void |
| 2519 | ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, |
| 2520 | size_t size) |
| 2521 | { |
| 2522 | unsigned order; |
| 2523 | |
| 2524 | if (size < NUM_SIZE_LOOKUP) |
| 2525 | order = size_lookup[size]; |
| 2526 | else |
| 2527 | { |
| 2528 | order = 10; |
| 2529 | while (size > OBJECT_SIZE (order)) |
| 2530 | order++; |
| 2531 | } |
| 2532 | |
| 2533 | d->d.totals[order]++; |
| 2534 | } |
| 2535 | |
| 2536 | size_t |
| 2537 | ggc_pch_total_size (struct ggc_pch_data *d) |
| 2538 | { |
| 2539 | size_t a = 0; |
| 2540 | unsigned i; |
| 2541 | |
| 2542 | for (i = 0; i < NUM_ORDERS; i++) |
| 2543 | a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); |
| 2544 | return a; |
| 2545 | } |
| 2546 | |
| 2547 | void |
| 2548 | ggc_pch_this_base (struct ggc_pch_data *d, void *base) |
| 2549 | { |
| 2550 | uintptr_t a = (uintptr_t) base; |
| 2551 | unsigned i; |
| 2552 | |
| 2553 | for (i = 0; i < NUM_ORDERS; i++) |
| 2554 | { |
| 2555 | d->base[i] = a; |
| 2556 | a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); |
| 2557 | } |
| 2558 | } |
| 2559 | |
| 2560 | |
| 2561 | char * |
| 2562 | ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, |
| 2563 | size_t size) |
| 2564 | { |
| 2565 | unsigned order; |
| 2566 | char *result; |
| 2567 | |
| 2568 | if (size < NUM_SIZE_LOOKUP) |
| 2569 | order = size_lookup[size]; |
| 2570 | else |
| 2571 | { |
| 2572 | order = 10; |
| 2573 | while (size > OBJECT_SIZE (order)) |
| 2574 | order++; |
| 2575 | } |
| 2576 | |
| 2577 | result = (char *) d->base[order]; |
| 2578 | d->base[order] += OBJECT_SIZE (order); |
| 2579 | return result; |
| 2580 | } |
| 2581 | |
| 2582 | void |
| 2583 | ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED, |
| 2584 | FILE *f ATTRIBUTE_UNUSED) |
| 2585 | { |
| 2586 | /* Nothing to do. */ |
| 2587 | } |
| 2588 | |
| 2589 | void |
| 2590 | ggc_pch_write_object (struct ggc_pch_data *d, |
| 2591 | FILE *f, void *x, void *newx ATTRIBUTE_UNUSED, |
| 2592 | size_t size) |
| 2593 | { |
| 2594 | unsigned order; |
| 2595 | static const char emptyBytes[256] = { 0 }; |
| 2596 | |
| 2597 | if (size < NUM_SIZE_LOOKUP) |
| 2598 | order = size_lookup[size]; |
| 2599 | else |
| 2600 | { |
| 2601 | order = 10; |
| 2602 | while (size > OBJECT_SIZE (order)) |
| 2603 | order++; |
| 2604 | } |
| 2605 | |
| 2606 | if (fwrite (ptr: x, size: size, n: 1, s: f) != 1) |
| 2607 | fatal_error (input_location, "cannot write PCH file: %m" ); |
| 2608 | |
| 2609 | /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the |
| 2610 | object out to OBJECT_SIZE(order). This happens for strings. */ |
| 2611 | |
| 2612 | if (size != OBJECT_SIZE (order)) |
| 2613 | { |
| 2614 | unsigned padding = OBJECT_SIZE (order) - size; |
| 2615 | |
| 2616 | /* To speed small writes, we use a nulled-out array that's larger |
| 2617 | than most padding requests as the source for our null bytes. This |
| 2618 | permits us to do the padding with fwrite() rather than fseek(), and |
| 2619 | limits the chance the OS may try to flush any outstanding writes. */ |
| 2620 | if (padding <= sizeof (emptyBytes)) |
| 2621 | { |
| 2622 | if (fwrite (ptr: emptyBytes, size: 1, n: padding, s: f) != padding) |
| 2623 | fatal_error (input_location, "cannot write PCH file" ); |
| 2624 | } |
| 2625 | else |
| 2626 | { |
| 2627 | /* Larger than our buffer? Just default to fseek. */ |
| 2628 | if (fseek (stream: f, off: padding, SEEK_CUR) != 0) |
| 2629 | fatal_error (input_location, "cannot write PCH file" ); |
| 2630 | } |
| 2631 | } |
| 2632 | |
| 2633 | d->written[order]++; |
| 2634 | if (d->written[order] == d->d.totals[order] |
| 2635 | && fseek (stream: f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order), |
| 2636 | G.pagesize), |
| 2637 | SEEK_CUR) != 0) |
| 2638 | fatal_error (input_location, "cannot write PCH file: %m" ); |
| 2639 | } |
| 2640 | |
| 2641 | void |
| 2642 | ggc_pch_finish (struct ggc_pch_data *d, FILE *f) |
| 2643 | { |
| 2644 | if (fwrite (ptr: &d->d, size: sizeof (d->d), n: 1, s: f) != 1) |
| 2645 | fatal_error (input_location, "cannot write PCH file: %m" ); |
| 2646 | free (ptr: d); |
| 2647 | } |
| 2648 | |
| 2649 | /* Move the PCH PTE entries just added to the end of by_depth, to the |
| 2650 | front. */ |
| 2651 | |
| 2652 | static void |
| 2653 | move_ptes_to_front (int count_old_page_tables, int count_new_page_tables) |
| 2654 | { |
| 2655 | /* First, we swap the new entries to the front of the varrays. */ |
| 2656 | page_entry **new_by_depth; |
| 2657 | unsigned long **new_save_in_use; |
| 2658 | |
| 2659 | new_by_depth = XNEWVEC (page_entry *, G.by_depth_max); |
| 2660 | new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); |
| 2661 | |
| 2662 | memcpy (dest: &new_by_depth[0], |
| 2663 | src: &G.by_depth[count_old_page_tables], |
| 2664 | n: count_new_page_tables * sizeof (void *)); |
| 2665 | memcpy (dest: &new_by_depth[count_new_page_tables], |
| 2666 | src: &G.by_depth[0], |
| 2667 | n: count_old_page_tables * sizeof (void *)); |
| 2668 | memcpy (dest: &new_save_in_use[0], |
| 2669 | src: &G.save_in_use[count_old_page_tables], |
| 2670 | n: count_new_page_tables * sizeof (void *)); |
| 2671 | memcpy (dest: &new_save_in_use[count_new_page_tables], |
| 2672 | src: &G.save_in_use[0], |
| 2673 | n: count_old_page_tables * sizeof (void *)); |
| 2674 | |
| 2675 | free (ptr: G.by_depth); |
| 2676 | free (ptr: G.save_in_use); |
| 2677 | |
| 2678 | G.by_depth = new_by_depth; |
| 2679 | G.save_in_use = new_save_in_use; |
| 2680 | |
| 2681 | /* Now update all the index_by_depth fields. */ |
| 2682 | for (unsigned i = G.by_depth_in_use; i--;) |
| 2683 | { |
| 2684 | page_entry *p = G.by_depth[i]; |
| 2685 | p->index_by_depth = i; |
| 2686 | } |
| 2687 | |
| 2688 | /* And last, we update the depth pointers in G.depth. The first |
| 2689 | entry is already 0, and context 0 entries always start at index |
| 2690 | 0, so there is nothing to update in the first slot. We need a |
| 2691 | second slot, only if we have old ptes, and if we do, they start |
| 2692 | at index count_new_page_tables. */ |
| 2693 | if (count_old_page_tables) |
| 2694 | push_depth (i: count_new_page_tables); |
| 2695 | } |
| 2696 | |
| 2697 | void |
| 2698 | ggc_pch_read (FILE *f, void *addr) |
| 2699 | { |
| 2700 | struct ggc_pch_ondisk d; |
| 2701 | unsigned i; |
| 2702 | char *offs = (char *) addr; |
| 2703 | unsigned long count_old_page_tables; |
| 2704 | unsigned long count_new_page_tables; |
| 2705 | |
| 2706 | count_old_page_tables = G.by_depth_in_use; |
| 2707 | |
| 2708 | if (fread (ptr: &d, size: sizeof (d), n: 1, stream: f) != 1) |
| 2709 | fatal_error (input_location, "cannot read PCH file: %m" ); |
| 2710 | |
| 2711 | /* We've just read in a PCH file. So, every object that used to be |
| 2712 | allocated is now free. */ |
| 2713 | clear_marks (); |
| 2714 | #ifdef ENABLE_GC_CHECKING |
| 2715 | poison_pages (); |
| 2716 | #endif |
| 2717 | /* Since we free all the allocated objects, the free list becomes |
| 2718 | useless. Validate it now, which will also clear it. */ |
| 2719 | validate_free_objects (); |
| 2720 | |
| 2721 | /* No object read from a PCH file should ever be freed. So, set the |
| 2722 | context depth to 1, and set the depth of all the currently-allocated |
| 2723 | pages to be 1 too. PCH pages will have depth 0. */ |
| 2724 | gcc_assert (!G.context_depth); |
| 2725 | G.context_depth = 1; |
| 2726 | /* Allocate space for the depth 1 finalizers. */ |
| 2727 | G.finalizers.safe_push (obj: vNULL); |
| 2728 | G.vec_finalizers.safe_push (obj: vNULL); |
| 2729 | gcc_assert (G.finalizers.length() == 2); |
| 2730 | for (i = 0; i < NUM_ORDERS; i++) |
| 2731 | { |
| 2732 | page_entry *p; |
| 2733 | for (p = G.pages[i]; p != NULL; p = p->next) |
| 2734 | p->context_depth = G.context_depth; |
| 2735 | } |
| 2736 | |
| 2737 | /* Allocate the appropriate page-table entries for the pages read from |
| 2738 | the PCH file. */ |
| 2739 | |
| 2740 | for (i = 0; i < NUM_ORDERS; i++) |
| 2741 | { |
| 2742 | struct page_entry *entry; |
| 2743 | char *pte; |
| 2744 | size_t bytes; |
| 2745 | size_t num_objs; |
| 2746 | size_t j; |
| 2747 | |
| 2748 | if (d.totals[i] == 0) |
| 2749 | continue; |
| 2750 | |
| 2751 | bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i)); |
| 2752 | num_objs = bytes / OBJECT_SIZE (i); |
| 2753 | entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry) |
| 2754 | - sizeof (long) |
| 2755 | + BITMAP_SIZE (num_objs + 1))); |
| 2756 | entry->bytes = bytes; |
| 2757 | entry->free_list = find_free_list (entry_size: bytes); |
| 2758 | entry->page = offs; |
| 2759 | entry->context_depth = 0; |
| 2760 | offs += bytes; |
| 2761 | entry->num_free_objects = 0; |
| 2762 | entry->order = i; |
| 2763 | |
| 2764 | for (j = 0; |
| 2765 | j + HOST_BITS_PER_LONG <= num_objs + 1; |
| 2766 | j += HOST_BITS_PER_LONG) |
| 2767 | entry->in_use_p[j / HOST_BITS_PER_LONG] = -1; |
| 2768 | for (; j < num_objs + 1; j++) |
| 2769 | entry->in_use_p[j / HOST_BITS_PER_LONG] |
| 2770 | |= 1L << (j % HOST_BITS_PER_LONG); |
| 2771 | |
| 2772 | for (pte = entry->page; |
| 2773 | pte < entry->page + entry->bytes; |
| 2774 | pte += G.pagesize) |
| 2775 | set_page_table_entry (p: pte, entry); |
| 2776 | |
| 2777 | if (G.page_tails[i] != NULL) |
| 2778 | G.page_tails[i]->next = entry; |
| 2779 | else |
| 2780 | G.pages[i] = entry; |
| 2781 | G.page_tails[i] = entry; |
| 2782 | |
| 2783 | /* We start off by just adding all the new information to the |
| 2784 | end of the varrays, later, we will move the new information |
| 2785 | to the front of the varrays, as the PCH page tables are at |
| 2786 | context 0. */ |
| 2787 | push_by_depth (p: entry, s: 0); |
| 2788 | } |
| 2789 | |
| 2790 | /* Now, we update the various data structures that speed page table |
| 2791 | handling. */ |
| 2792 | count_new_page_tables = G.by_depth_in_use - count_old_page_tables; |
| 2793 | |
| 2794 | move_ptes_to_front (count_old_page_tables, count_new_page_tables); |
| 2795 | |
| 2796 | /* Update the statistics. */ |
| 2797 | G.allocated = G.allocated_last_gc = offs - (char *)addr; |
| 2798 | } |
| 2799 | |