| 1 | /* Code for GIMPLE range related routines. |
| 2 | Copyright (C) 2019-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Andrew MacLeod <amacleod@redhat.com> |
| 4 | and Aldy Hernandez <aldyh@redhat.com>. |
| 5 | |
| 6 | This file is part of GCC. |
| 7 | |
| 8 | GCC is free software; you can redistribute it and/or modify |
| 9 | it under the terms of the GNU General Public License as published by |
| 10 | the Free Software Foundation; either version 3, or (at your option) |
| 11 | any later version. |
| 12 | |
| 13 | GCC is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with GCC; see the file COPYING3. If not see |
| 20 | <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #include "config.h" |
| 23 | #include "system.h" |
| 24 | #include "coretypes.h" |
| 25 | #include "backend.h" |
| 26 | #include "insn-codes.h" |
| 27 | #include "tree.h" |
| 28 | #include "gimple.h" |
| 29 | #include "ssa.h" |
| 30 | #include "gimple-pretty-print.h" |
| 31 | #include "optabs-tree.h" |
| 32 | #include "gimple-iterator.h" |
| 33 | #include "gimple-fold.h" |
| 34 | #include "wide-int.h" |
| 35 | #include "fold-const.h" |
| 36 | #include "case-cfn-macros.h" |
| 37 | #include "omp-general.h" |
| 38 | #include "cfgloop.h" |
| 39 | #include "tree-ssa-loop.h" |
| 40 | #include "tree-scalar-evolution.h" |
| 41 | #include "langhooks.h" |
| 42 | #include "vr-values.h" |
| 43 | #include "range.h" |
| 44 | #include "value-query.h" |
| 45 | #include "gimple-range-op.h" |
| 46 | #include "gimple-range.h" |
| 47 | #include "cgraph.h" |
| 48 | #include "alloc-pool.h" |
| 49 | #include "symbol-summary.h" |
| 50 | #include "ipa-utils.h" |
| 51 | #include "sreal.h" |
| 52 | #include "ipa-cp.h" |
| 53 | #include "ipa-prop.h" |
| 54 | #include "rtl.h" |
| 55 | // Construct a fur_source, and set the m_query field. |
| 56 | |
| 57 | fur_source::fur_source (range_query *q) |
| 58 | { |
| 59 | if (q) |
| 60 | m_query = q; |
| 61 | else |
| 62 | m_query = get_range_query (cfun); |
| 63 | m_depend_p = false; |
| 64 | } |
| 65 | |
| 66 | // Invoke range_of_expr on EXPR. |
| 67 | |
| 68 | bool |
| 69 | fur_source::get_operand (vrange &r, tree expr) |
| 70 | { |
| 71 | return m_query->range_of_expr (r, expr); |
| 72 | } |
| 73 | |
| 74 | // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
| 75 | // range_query to get the range on the edge. |
| 76 | |
| 77 | bool |
| 78 | fur_source::get_phi_operand (vrange &r, tree expr, edge e) |
| 79 | { |
| 80 | return m_query->range_on_edge (r, e, expr); |
| 81 | } |
| 82 | |
| 83 | // Default is no relation. |
| 84 | |
| 85 | relation_kind |
| 86 | fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED, |
| 87 | tree op2 ATTRIBUTE_UNUSED) |
| 88 | { |
| 89 | return VREL_VARYING; |
| 90 | } |
| 91 | |
| 92 | // Default registers nothing. |
| 93 | |
| 94 | void |
| 95 | fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED, |
| 96 | relation_kind k ATTRIBUTE_UNUSED, |
| 97 | tree op1 ATTRIBUTE_UNUSED, |
| 98 | tree op2 ATTRIBUTE_UNUSED) |
| 99 | { |
| 100 | } |
| 101 | |
| 102 | // Default registers nothing. |
| 103 | |
| 104 | void |
| 105 | fur_source::register_relation (edge e ATTRIBUTE_UNUSED, |
| 106 | relation_kind k ATTRIBUTE_UNUSED, |
| 107 | tree op1 ATTRIBUTE_UNUSED, |
| 108 | tree op2 ATTRIBUTE_UNUSED) |
| 109 | { |
| 110 | } |
| 111 | |
| 112 | // Get the value of EXPR on edge m_edge. |
| 113 | |
| 114 | bool |
| 115 | fur_edge::get_operand (vrange &r, tree expr) |
| 116 | { |
| 117 | return m_query->range_on_edge (r, m_edge, expr); |
| 118 | } |
| 119 | |
| 120 | // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
| 121 | // range_query to get the range on the edge. |
| 122 | |
| 123 | bool |
| 124 | fur_edge::get_phi_operand (vrange &r, tree expr, edge e) |
| 125 | { |
| 126 | // Edge to edge recalculations not supported yet, until we sort it out. |
| 127 | gcc_checking_assert (e == m_edge); |
| 128 | return m_query->range_on_edge (r, e, expr); |
| 129 | } |
| 130 | |
| 131 | // Instantiate a stmt based fur_source. |
| 132 | |
| 133 | fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q) |
| 134 | { |
| 135 | m_stmt = s; |
| 136 | } |
| 137 | |
| 138 | // Retrieve range of EXPR as it occurs as a use on stmt M_STMT. |
| 139 | |
| 140 | bool |
| 141 | fur_stmt::get_operand (vrange &r, tree expr) |
| 142 | { |
| 143 | return m_query->range_of_expr (r, expr, m_stmt); |
| 144 | } |
| 145 | |
| 146 | // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
| 147 | // range_query to get the range on the edge. |
| 148 | |
| 149 | bool |
| 150 | fur_stmt::get_phi_operand (vrange &r, tree expr, edge e) |
| 151 | { |
| 152 | // Pick up the range of expr from edge E. |
| 153 | fur_edge e_src (e, m_query); |
| 154 | return e_src.get_operand (r, expr); |
| 155 | } |
| 156 | |
| 157 | // Return relation based from m_stmt. |
| 158 | |
| 159 | relation_kind |
| 160 | fur_stmt::query_relation (tree op1, tree op2) |
| 161 | { |
| 162 | return m_query->relation ().query (s: m_stmt, ssa1: op1, ssa2: op2); |
| 163 | } |
| 164 | |
| 165 | // Instantiate a stmt based fur_source with a GORI object. |
| 166 | |
| 167 | |
| 168 | fur_depend::fur_depend (gimple *s, range_query *q) |
| 169 | : fur_stmt (s, q) |
| 170 | { |
| 171 | m_depend_p = true; |
| 172 | } |
| 173 | |
| 174 | // Register a relation on a stmt if there is an oracle. |
| 175 | |
| 176 | void |
| 177 | fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2) |
| 178 | { |
| 179 | m_query->relation ().record (s, k, op1, op2); |
| 180 | } |
| 181 | |
| 182 | // Register a relation on an edge if there is an oracle. |
| 183 | |
| 184 | void |
| 185 | fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2) |
| 186 | { |
| 187 | m_query->relation ().record (e, k, op1, op2); |
| 188 | } |
| 189 | |
| 190 | // This version of fur_source will pick a range up from a list of ranges |
| 191 | // supplied by the caller. |
| 192 | |
| 193 | class fur_list : public fur_source |
| 194 | { |
| 195 | public: |
| 196 | fur_list (vrange &r1, range_query *q = NULL); |
| 197 | fur_list (vrange &r1, vrange &r2, range_query *q = NULL); |
| 198 | fur_list (unsigned num, vrange **list, range_query *q = NULL); |
| 199 | virtual bool get_operand (vrange &r, tree expr) override; |
| 200 | virtual bool get_phi_operand (vrange &r, tree expr, edge e) override; |
| 201 | private: |
| 202 | vrange *m_local[2]; |
| 203 | vrange **m_list; |
| 204 | unsigned m_index; |
| 205 | unsigned m_limit; |
| 206 | }; |
| 207 | |
| 208 | // One range supplied for unary operations. |
| 209 | |
| 210 | fur_list::fur_list (vrange &r1, range_query *q) : fur_source (q) |
| 211 | { |
| 212 | m_list = m_local; |
| 213 | m_index = 0; |
| 214 | m_limit = 1; |
| 215 | m_local[0] = &r1; |
| 216 | } |
| 217 | |
| 218 | // Two ranges supplied for binary operations. |
| 219 | |
| 220 | fur_list::fur_list (vrange &r1, vrange &r2, range_query *q) : fur_source (q) |
| 221 | { |
| 222 | m_list = m_local; |
| 223 | m_index = 0; |
| 224 | m_limit = 2; |
| 225 | m_local[0] = &r1; |
| 226 | m_local[1] = &r2; |
| 227 | } |
| 228 | |
| 229 | // Arbitrary number of ranges in a vector. |
| 230 | |
| 231 | fur_list::fur_list (unsigned num, vrange **list, range_query *q) |
| 232 | : fur_source (q) |
| 233 | { |
| 234 | m_list = list; |
| 235 | m_index = 0; |
| 236 | m_limit = num; |
| 237 | } |
| 238 | |
| 239 | // Get the next operand from the vector, ensure types are compatible. |
| 240 | |
| 241 | bool |
| 242 | fur_list::get_operand (vrange &r, tree expr) |
| 243 | { |
| 244 | // Do not use the vector for non-ssa-names, or if it has been emptied. |
| 245 | if (TREE_CODE (expr) != SSA_NAME || m_index >= m_limit) |
| 246 | return m_query->range_of_expr (r, expr); |
| 247 | r = *m_list[m_index++]; |
| 248 | gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ())); |
| 249 | return true; |
| 250 | } |
| 251 | |
| 252 | // This will simply pick the next operand from the vector. |
| 253 | bool |
| 254 | fur_list::get_phi_operand (vrange &r, tree expr, edge e ATTRIBUTE_UNUSED) |
| 255 | { |
| 256 | return get_operand (r, expr); |
| 257 | } |
| 258 | |
| 259 | // Fold stmt S into range R using R1 as the first operand. |
| 260 | |
| 261 | bool |
| 262 | fold_range (vrange &r, gimple *s, vrange &r1, range_query *q) |
| 263 | { |
| 264 | fold_using_range f; |
| 265 | fur_list src (r1, q); |
| 266 | return f.fold_stmt (r, s, src); |
| 267 | } |
| 268 | |
| 269 | // Fold stmt S into range R using R1 and R2 as the first two operands. |
| 270 | |
| 271 | bool |
| 272 | fold_range (vrange &r, gimple *s, vrange &r1, vrange &r2, range_query *q) |
| 273 | { |
| 274 | fold_using_range f; |
| 275 | fur_list src (r1, r2, q); |
| 276 | return f.fold_stmt (r, s, src); |
| 277 | } |
| 278 | |
| 279 | // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial |
| 280 | // operands encountered. |
| 281 | |
| 282 | bool |
| 283 | fold_range (vrange &r, gimple *s, unsigned num_elements, vrange **vector, |
| 284 | range_query *q) |
| 285 | { |
| 286 | fold_using_range f; |
| 287 | fur_list src (num_elements, vector, q); |
| 288 | return f.fold_stmt (r, s, src); |
| 289 | } |
| 290 | |
| 291 | // Fold stmt S into range R using range query Q. |
| 292 | |
| 293 | bool |
| 294 | fold_range (vrange &r, gimple *s, range_query *q) |
| 295 | { |
| 296 | fold_using_range f; |
| 297 | fur_stmt src (s, q); |
| 298 | return f.fold_stmt (r, s, src); |
| 299 | } |
| 300 | |
| 301 | // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE. |
| 302 | |
| 303 | bool |
| 304 | fold_range (vrange &r, gimple *s, edge on_edge, range_query *q) |
| 305 | { |
| 306 | fold_using_range f; |
| 307 | fur_edge src (on_edge, q); |
| 308 | return f.fold_stmt (r, s, src); |
| 309 | } |
| 310 | |
| 311 | // Calculate op1 on statetemt S with LHS into range R using range query Q |
| 312 | // to resolve any other operands. |
| 313 | |
| 314 | bool |
| 315 | op1_range (vrange &r, gimple *s, const vrange &lhs, range_query *q) |
| 316 | { |
| 317 | gimple_range_op_handler handler (s); |
| 318 | if (!handler) |
| 319 | return false; |
| 320 | |
| 321 | fur_stmt src (s, q); |
| 322 | |
| 323 | tree op2_expr = handler.operand2 (); |
| 324 | if (!op2_expr) |
| 325 | return handler.calc_op1 (r, lhs_range: lhs); |
| 326 | |
| 327 | value_range op2 (TREE_TYPE (op2_expr)); |
| 328 | if (!src.get_operand (r&: op2, expr: op2_expr)) |
| 329 | return false; |
| 330 | |
| 331 | return handler.calc_op1 (r, lhs_range: lhs, op2_range: op2); |
| 332 | } |
| 333 | |
| 334 | // Calculate op1 on statetemt S into range R using range query Q. |
| 335 | // LHS is set to VARYING in this case. |
| 336 | |
| 337 | bool |
| 338 | op1_range (vrange &r, gimple *s, range_query *q) |
| 339 | { |
| 340 | tree lhs_type = gimple_range_type (s); |
| 341 | if (!lhs_type) |
| 342 | return false; |
| 343 | value_range lhs_range; |
| 344 | lhs_range.set_varying (lhs_type); |
| 345 | return op1_range (r, s, lhs: lhs_range, q); |
| 346 | } |
| 347 | |
| 348 | // Calculate op2 on statetemt S with LHS into range R using range query Q |
| 349 | // to resolve any other operands. |
| 350 | |
| 351 | bool |
| 352 | op2_range (vrange &r, gimple *s, const vrange &lhs, range_query *q) |
| 353 | { |
| 354 | |
| 355 | gimple_range_op_handler handler (s); |
| 356 | if (!handler) |
| 357 | return false; |
| 358 | |
| 359 | fur_stmt src (s, q); |
| 360 | |
| 361 | value_range op1 (TREE_TYPE (handler.operand1 ())); |
| 362 | if (!src.get_operand (r&: op1, expr: handler.operand1 ())) |
| 363 | return false; |
| 364 | |
| 365 | return handler.calc_op2 (r, lhs_range: lhs, op1_range: op1); |
| 366 | } |
| 367 | |
| 368 | // Calculate op2 on statetemt S into range R using range query Q. |
| 369 | // LHS is set to VARYING in this case. |
| 370 | |
| 371 | bool |
| 372 | op2_range (vrange &r, gimple *s, range_query *q) |
| 373 | { |
| 374 | tree lhs_type = gimple_range_type (s); |
| 375 | if (!lhs_type) |
| 376 | return false; |
| 377 | value_range lhs_range; |
| 378 | lhs_range.set_varying (lhs_type); |
| 379 | return op2_range (r, s, lhs: lhs_range, q); |
| 380 | } |
| 381 | |
| 382 | // Provide a fur_source which can be used to determine any relations on |
| 383 | // a statement. It manages the callback from fold_using_ranges to determine |
| 384 | // a relation_trio for a statement. |
| 385 | |
| 386 | class fur_relation : public fur_stmt |
| 387 | { |
| 388 | public: |
| 389 | fur_relation (gimple *s, range_query *q = NULL); |
| 390 | virtual void register_relation (gimple *stmt, relation_kind k, tree op1, |
| 391 | tree op2); |
| 392 | virtual void register_relation (edge e, relation_kind k, tree op1, |
| 393 | tree op2); |
| 394 | relation_trio trio() const; |
| 395 | private: |
| 396 | relation_kind def_op1, def_op2, op1_op2; |
| 397 | }; |
| 398 | |
| 399 | fur_relation::fur_relation (gimple *s, range_query *q) : fur_stmt (s, q) |
| 400 | { |
| 401 | def_op1 = def_op2 = op1_op2 = VREL_VARYING; |
| 402 | } |
| 403 | |
| 404 | // Construct a trio from what is known. |
| 405 | |
| 406 | relation_trio |
| 407 | fur_relation::trio () const |
| 408 | { |
| 409 | return relation_trio (def_op1, def_op2, op1_op2); |
| 410 | } |
| 411 | |
| 412 | // Don't support edges, but avoid a compiler warning by providing the routine. |
| 413 | |
| 414 | void |
| 415 | fur_relation::register_relation (edge, relation_kind, tree, tree) |
| 416 | { |
| 417 | } |
| 418 | |
| 419 | // Register relation K between OP1 and OP2 on STMT. |
| 420 | |
| 421 | void |
| 422 | fur_relation::register_relation (gimple *stmt, relation_kind k, tree op1, |
| 423 | tree op2) |
| 424 | { |
| 425 | tree lhs = gimple_get_lhs (stmt); |
| 426 | tree a1 = NULL_TREE; |
| 427 | tree a2 = NULL_TREE; |
| 428 | switch (gimple_code (g: stmt)) |
| 429 | { |
| 430 | case GIMPLE_COND: |
| 431 | a1 = gimple_cond_lhs (gs: stmt); |
| 432 | a2 = gimple_cond_rhs (gs: stmt); |
| 433 | break; |
| 434 | case GIMPLE_ASSIGN: |
| 435 | a1 = gimple_assign_rhs1 (gs: stmt); |
| 436 | if (gimple_num_ops (gs: stmt) >= 3) |
| 437 | a2 = gimple_assign_rhs2 (gs: stmt); |
| 438 | break; |
| 439 | default: |
| 440 | break; |
| 441 | } |
| 442 | // STMT is of the form LHS = A1 op A2, now map the relation to these |
| 443 | // operands, if possible. |
| 444 | if (op1 == lhs) |
| 445 | { |
| 446 | if (op2 == a1) |
| 447 | def_op1 = k; |
| 448 | else if (op2 == a2) |
| 449 | def_op2 = k; |
| 450 | } |
| 451 | else if (op2 == lhs) |
| 452 | { |
| 453 | if (op1 == a1) |
| 454 | def_op1 = relation_swap (r: k); |
| 455 | else if (op1 == a2) |
| 456 | def_op2 = relation_swap (r: k); |
| 457 | } |
| 458 | else |
| 459 | { |
| 460 | if (op1 == a1 && op2 == a2) |
| 461 | op1_op2 = k; |
| 462 | else if (op2 == a1 && op1 == a2) |
| 463 | op1_op2 = relation_swap (r: k); |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | // Return the relation trio for stmt S using query Q. |
| 468 | |
| 469 | relation_trio |
| 470 | fold_relations (gimple *s, range_query *q) |
| 471 | { |
| 472 | fold_using_range f; |
| 473 | fur_relation src (s, q); |
| 474 | tree lhs = gimple_range_ssa_p (exp: gimple_get_lhs (s)); |
| 475 | if (lhs) |
| 476 | { |
| 477 | value_range vr(TREE_TYPE (lhs)); |
| 478 | if (f.fold_stmt (r&: vr, s, src)) |
| 479 | return src.trio (); |
| 480 | } |
| 481 | return TRIO_VARYING; |
| 482 | } |
| 483 | |
| 484 | // ------------------------------------------------------------------------- |
| 485 | |
| 486 | // Adjust the range for a pointer difference where the operands came |
| 487 | // from a memchr. |
| 488 | // |
| 489 | // This notices the following sequence: |
| 490 | // |
| 491 | // def = __builtin_memchr (arg, 0, sz) |
| 492 | // n = def - arg |
| 493 | // |
| 494 | // The range for N can be narrowed to [0, PTRDIFF_MAX - 1]. |
| 495 | |
| 496 | static void |
| 497 | adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt) |
| 498 | { |
| 499 | tree op0 = gimple_assign_rhs1 (gs: diff_stmt); |
| 500 | tree op1 = gimple_assign_rhs2 (gs: diff_stmt); |
| 501 | tree op0_ptype = TREE_TYPE (TREE_TYPE (op0)); |
| 502 | tree op1_ptype = TREE_TYPE (TREE_TYPE (op1)); |
| 503 | gimple *call; |
| 504 | |
| 505 | if (TREE_CODE (op0) == SSA_NAME |
| 506 | && TREE_CODE (op1) == SSA_NAME |
| 507 | && (call = SSA_NAME_DEF_STMT (op0)) |
| 508 | && is_gimple_call (gs: call) |
| 509 | && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
| 510 | && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node) |
| 511 | && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node) |
| 512 | && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node) |
| 513 | && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node) |
| 514 | && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
| 515 | && vrp_operand_equal_p (op1, gimple_call_arg (gs: call, index: 0)) |
| 516 | && integer_zerop (gimple_call_arg (gs: call, index: 1))) |
| 517 | { |
| 518 | wide_int maxm1 = irange_val_max (ptrdiff_type_node) - 1; |
| 519 | res.intersect (int_range<2> (ptrdiff_type_node, |
| 520 | wi::zero (TYPE_PRECISION (ptrdiff_type_node)), |
| 521 | maxm1)); |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | // Adjust the range for an IMAGPART_EXPR. |
| 526 | |
| 527 | static void |
| 528 | adjust_imagpart_expr (vrange &res, const gimple *stmt) |
| 529 | { |
| 530 | tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
| 531 | |
| 532 | if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name)) |
| 533 | return; |
| 534 | |
| 535 | gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| 536 | if (is_gimple_call (gs: def_stmt) && gimple_call_internal_p (gs: def_stmt)) |
| 537 | { |
| 538 | switch (gimple_call_internal_fn (gs: def_stmt)) |
| 539 | { |
| 540 | case IFN_ADD_OVERFLOW: |
| 541 | case IFN_SUB_OVERFLOW: |
| 542 | case IFN_MUL_OVERFLOW: |
| 543 | case IFN_UADDC: |
| 544 | case IFN_USUBC: |
| 545 | case IFN_ATOMIC_COMPARE_EXCHANGE: |
| 546 | { |
| 547 | int_range<2> r; |
| 548 | r.set_varying (boolean_type_node); |
| 549 | tree type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| 550 | range_cast (r, type); |
| 551 | res.intersect (r); |
| 552 | } |
| 553 | default: |
| 554 | break; |
| 555 | } |
| 556 | return; |
| 557 | } |
| 558 | if (is_gimple_assign (gs: def_stmt) |
| 559 | && gimple_assign_rhs_code (gs: def_stmt) == COMPLEX_CST) |
| 560 | { |
| 561 | tree cst = gimple_assign_rhs1 (gs: def_stmt); |
| 562 | if (TREE_CODE (cst) == COMPLEX_CST |
| 563 | && TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) == INTEGER_TYPE) |
| 564 | { |
| 565 | wide_int w = wi::to_wide (TREE_IMAGPART (cst)); |
| 566 | int_range<1> imag (TREE_TYPE (TREE_IMAGPART (cst)), w, w); |
| 567 | res.intersect (imag); |
| 568 | } |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | // Adjust the range for a REALPART_EXPR. |
| 573 | |
| 574 | static void |
| 575 | adjust_realpart_expr (vrange &res, const gimple *stmt) |
| 576 | { |
| 577 | tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
| 578 | |
| 579 | if (TREE_CODE (name) != SSA_NAME) |
| 580 | return; |
| 581 | |
| 582 | gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| 583 | if (!SSA_NAME_DEF_STMT (name)) |
| 584 | return; |
| 585 | |
| 586 | if (is_gimple_assign (gs: def_stmt) |
| 587 | && gimple_assign_rhs_code (gs: def_stmt) == COMPLEX_CST) |
| 588 | { |
| 589 | tree cst = gimple_assign_rhs1 (gs: def_stmt); |
| 590 | if (TREE_CODE (cst) == COMPLEX_CST |
| 591 | && TREE_CODE (TREE_TYPE (TREE_TYPE (cst))) == INTEGER_TYPE) |
| 592 | { |
| 593 | wide_int imag = wi::to_wide (TREE_REALPART (cst)); |
| 594 | int_range<2> tmp (TREE_TYPE (TREE_REALPART (cst)), imag, imag); |
| 595 | res.intersect (tmp); |
| 596 | } |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | // This function looks for situations when walking the use/def chains |
| 601 | // may provide additional contextual range information not exposed on |
| 602 | // this statement. |
| 603 | |
| 604 | static void |
| 605 | gimple_range_adjustment (vrange &res, const gimple *stmt) |
| 606 | { |
| 607 | switch (gimple_expr_code (stmt)) |
| 608 | { |
| 609 | case POINTER_DIFF_EXPR: |
| 610 | adjust_pointer_diff_expr (res&: as_a <irange> (v&: res), diff_stmt: stmt); |
| 611 | return; |
| 612 | |
| 613 | case IMAGPART_EXPR: |
| 614 | adjust_imagpart_expr (res, stmt); |
| 615 | return; |
| 616 | |
| 617 | case REALPART_EXPR: |
| 618 | adjust_realpart_expr (res, stmt); |
| 619 | return; |
| 620 | |
| 621 | default: |
| 622 | break; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | // Calculate a range for statement S and return it in R. If NAME is provided it |
| 627 | // represents the SSA_NAME on the LHS of the statement. It is only required |
| 628 | // if there is more than one lhs/output. If a range cannot |
| 629 | // be calculated, return false. |
| 630 | |
| 631 | bool |
| 632 | fold_using_range::fold_stmt (vrange &r, gimple *s, fur_source &src, tree name) |
| 633 | { |
| 634 | bool res = false; |
| 635 | // If name and S are specified, make sure it is an LHS of S. |
| 636 | gcc_checking_assert (!name || !gimple_get_lhs (s) || |
| 637 | name == gimple_get_lhs (s)); |
| 638 | |
| 639 | if (!name) |
| 640 | name = gimple_get_lhs (s); |
| 641 | |
| 642 | // Process addresses. |
| 643 | if (gimple_code (g: s) == GIMPLE_ASSIGN |
| 644 | && gimple_assign_rhs_code (gs: s) == ADDR_EXPR) |
| 645 | return range_of_address (r&: as_a <prange> (v&: r), s, src); |
| 646 | |
| 647 | gimple_range_op_handler handler (s); |
| 648 | if (handler) |
| 649 | res = range_of_range_op (r, handler, src); |
| 650 | else if (is_a<gphi *>(p: s)) |
| 651 | res = range_of_phi (r, phi: as_a<gphi *> (p: s), src); |
| 652 | else if (is_a<gcall *>(p: s)) |
| 653 | res = range_of_call (r, call: as_a<gcall *> (p: s), src); |
| 654 | else if (is_a<gassign *> (p: s) && gimple_assign_rhs_code (gs: s) == COND_EXPR) |
| 655 | res = range_of_cond_expr (r, cond: as_a<gassign *> (p: s), src); |
| 656 | |
| 657 | // If the result is varying, check for basic nonnegativeness. |
| 658 | // Specifically this helps for now with strict enum in cases like |
| 659 | // g++.dg/warn/pr33738.C. |
| 660 | bool so_p; |
| 661 | if (res && r.varying_p () && INTEGRAL_TYPE_P (r.type ()) |
| 662 | && gimple_stmt_nonnegative_warnv_p (s, &so_p)) |
| 663 | r.set_nonnegative (r.type ()); |
| 664 | |
| 665 | if (!res) |
| 666 | { |
| 667 | // If no name specified or range is unsupported, bail. |
| 668 | if (!name || !gimple_range_ssa_p (exp: name)) |
| 669 | return false; |
| 670 | // We don't understand the stmt, so return the global range. |
| 671 | gimple_range_global (v&: r, name); |
| 672 | return true; |
| 673 | } |
| 674 | |
| 675 | if (r.undefined_p ()) |
| 676 | return true; |
| 677 | |
| 678 | // We sometimes get compatible types copied from operands, make sure |
| 679 | // the correct type is being returned. |
| 680 | if (name && TREE_TYPE (name) != r.type ()) |
| 681 | { |
| 682 | gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name))); |
| 683 | range_cast (r, TREE_TYPE (name)); |
| 684 | } |
| 685 | return true; |
| 686 | } |
| 687 | |
| 688 | // Calculate a range for range_op statement S and return it in R. If any |
| 689 | // If a range cannot be calculated, return false. |
| 690 | |
| 691 | bool |
| 692 | fold_using_range::range_of_range_op (vrange &r, |
| 693 | gimple_range_op_handler &handler, |
| 694 | fur_source &src) |
| 695 | { |
| 696 | gcc_checking_assert (handler); |
| 697 | gimple *s = handler.stmt (); |
| 698 | tree type = gimple_range_type (s); |
| 699 | if (!type) |
| 700 | return false; |
| 701 | |
| 702 | tree lhs = handler.lhs (); |
| 703 | tree op1 = handler.operand1 (); |
| 704 | tree op2 = handler.operand2 (); |
| 705 | |
| 706 | // Certain types of builtin functions may have no arguments. |
| 707 | if (!op1) |
| 708 | { |
| 709 | value_range r1 (type); |
| 710 | if (!handler.fold_range (r, type, lh: r1, rh: r1)) |
| 711 | r.set_varying (type); |
| 712 | return true; |
| 713 | } |
| 714 | |
| 715 | value_range range1 (TREE_TYPE (op1)); |
| 716 | value_range range2 (op2 ? TREE_TYPE (op2) : TREE_TYPE (op1)); |
| 717 | |
| 718 | if (src.get_operand (r&: range1, expr: op1)) |
| 719 | { |
| 720 | if (!op2) |
| 721 | { |
| 722 | // Fold range, and register any dependency if available. |
| 723 | value_range r2 (type); |
| 724 | r2.set_varying (type); |
| 725 | if (!handler.fold_range (r, type, lh: range1, rh: r2)) |
| 726 | r.set_varying (type); |
| 727 | if (lhs && gimple_range_ssa_p (exp: op1)) |
| 728 | { |
| 729 | if (src.gori_ssa ()) |
| 730 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: op1); |
| 731 | relation_kind rel; |
| 732 | rel = handler.lhs_op1_relation (lhs: r, op1: range1, op2: range1); |
| 733 | if (rel != VREL_VARYING) |
| 734 | src.register_relation (s, k: rel, op1: lhs, op2: op1); |
| 735 | } |
| 736 | } |
| 737 | else if (src.get_operand (r&: range2, expr: op2)) |
| 738 | { |
| 739 | relation_kind rel = src.query_relation (op1, op2); |
| 740 | if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_VARYING) |
| 741 | { |
| 742 | fprintf (stream: dump_file, format: " folding with relation " ); |
| 743 | print_generic_expr (dump_file, op1, TDF_SLIM); |
| 744 | print_relation (f: dump_file, rel); |
| 745 | print_generic_expr (dump_file, op2, TDF_SLIM); |
| 746 | fputc (c: '\n', stream: dump_file); |
| 747 | } |
| 748 | // Fold range, and register any dependency if available. |
| 749 | if (!handler.fold_range (r, type, lh: range1, rh: range2, |
| 750 | relation_trio::op1_op2 (k: rel))) |
| 751 | r.set_varying (type); |
| 752 | if (irange::supports_p (type)) |
| 753 | relation_fold_and_or (lhs_range&: as_a <irange> (v&: r), s, src, op1&: range1, op2&: range2); |
| 754 | if (lhs) |
| 755 | { |
| 756 | if (src.gori_ssa ()) |
| 757 | { |
| 758 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: op1); |
| 759 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: op2); |
| 760 | } |
| 761 | if (gimple_range_ssa_p (exp: op1)) |
| 762 | { |
| 763 | relation_kind rel2 = handler.lhs_op1_relation (lhs: r, op1: range1, |
| 764 | op2: range2, rel); |
| 765 | if (rel2 != VREL_VARYING) |
| 766 | src.register_relation (s, k: rel2, op1: lhs, op2: op1); |
| 767 | } |
| 768 | if (gimple_range_ssa_p (exp: op2)) |
| 769 | { |
| 770 | relation_kind rel2 = handler.lhs_op2_relation (lhs: r, op1: range1, |
| 771 | op2: range2, rel); |
| 772 | if (rel2 != VREL_VARYING) |
| 773 | src.register_relation (s, k: rel2, op1: lhs, op2); |
| 774 | } |
| 775 | } |
| 776 | // Check for an existing BB, as we maybe asked to fold an |
| 777 | // artificial statement not in the CFG. |
| 778 | else if (is_a<gcond *> (p: s) && gimple_bb (g: s)) |
| 779 | { |
| 780 | basic_block bb = gimple_bb (g: s); |
| 781 | edge e0 = EDGE_SUCC (bb, 0); |
| 782 | /* During RTL expansion one of the edges can be removed |
| 783 | if expansion proves the jump is unconditional. */ |
| 784 | edge e1 = single_succ_p (bb) ? NULL : EDGE_SUCC (bb, 1); |
| 785 | |
| 786 | gcc_checking_assert (e1 || currently_expanding_to_rtl); |
| 787 | if (!single_pred_p (bb: e0->dest)) |
| 788 | e0 = NULL; |
| 789 | if (e1 && !single_pred_p (bb: e1->dest)) |
| 790 | e1 = NULL; |
| 791 | src.register_outgoing_edges (as_a<gcond *> (p: s), |
| 792 | lhs_range&: as_a <irange> (v&: r), e0, e1); |
| 793 | } |
| 794 | } |
| 795 | else |
| 796 | r.set_varying (type); |
| 797 | } |
| 798 | else |
| 799 | r.set_varying (type); |
| 800 | // Make certain range-op adjustments that aren't handled any other way. |
| 801 | gimple_range_adjustment (res&: r, stmt: s); |
| 802 | return true; |
| 803 | } |
| 804 | |
| 805 | // Calculate the range of an assignment containing an ADDR_EXPR. |
| 806 | // Return the range in R. |
| 807 | // If a range cannot be calculated, set it to VARYING and return true. |
| 808 | |
| 809 | bool |
| 810 | fold_using_range::range_of_address (prange &r, gimple *stmt, fur_source &src) |
| 811 | { |
| 812 | gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
| 813 | gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR); |
| 814 | |
| 815 | bool strict_overflow_p; |
| 816 | tree expr = gimple_assign_rhs1 (gs: stmt); |
| 817 | poly_int64 bitsize, bitpos; |
| 818 | tree offset; |
| 819 | machine_mode mode; |
| 820 | int unsignedp, reversep, volatilep; |
| 821 | tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, |
| 822 | &bitpos, &offset, &mode, &unsignedp, |
| 823 | &reversep, &volatilep); |
| 824 | |
| 825 | |
| 826 | if (base != NULL_TREE |
| 827 | && TREE_CODE (base) == MEM_REF |
| 828 | && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) |
| 829 | { |
| 830 | tree ssa = TREE_OPERAND (base, 0); |
| 831 | tree lhs = gimple_get_lhs (stmt); |
| 832 | if (lhs && gimple_range_ssa_p (exp: ssa) && src.gori_ssa ()) |
| 833 | src.gori_ssa ()->register_dependency (name: lhs, ssa1: ssa); |
| 834 | src.get_operand (r, expr: ssa); |
| 835 | range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| 836 | |
| 837 | poly_offset_int off = 0; |
| 838 | bool off_cst = false; |
| 839 | if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST) |
| 840 | { |
| 841 | off = mem_ref_offset (base); |
| 842 | if (offset) |
| 843 | off += poly_offset_int::from (a: wi::to_poly_wide (t: offset), |
| 844 | sgn: SIGNED); |
| 845 | off <<= LOG2_BITS_PER_UNIT; |
| 846 | off += bitpos; |
| 847 | off_cst = true; |
| 848 | } |
| 849 | /* If &X->a is equal to X, the range of X is the result. */ |
| 850 | if (off_cst && known_eq (off, 0)) |
| 851 | return true; |
| 852 | else if (flag_delete_null_pointer_checks |
| 853 | && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))) |
| 854 | { |
| 855 | /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't |
| 856 | allow going from non-NULL pointer to NULL. */ |
| 857 | if (r.undefined_p () |
| 858 | || !r.contains_p (wi::zero (TYPE_PRECISION (TREE_TYPE (expr))))) |
| 859 | { |
| 860 | /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT |
| 861 | using POINTER_PLUS_EXPR if off_cst and just fall back to |
| 862 | this. */ |
| 863 | r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| 864 | return true; |
| 865 | } |
| 866 | } |
| 867 | /* If MEM_REF has a "positive" offset, consider it non-NULL |
| 868 | always, for -fdelete-null-pointer-checks also "negative" |
| 869 | ones. Punt for unknown offsets (e.g. variable ones). */ |
| 870 | if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)) |
| 871 | && off_cst |
| 872 | && known_ne (off, 0) |
| 873 | && (flag_delete_null_pointer_checks || known_gt (off, 0))) |
| 874 | { |
| 875 | r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| 876 | return true; |
| 877 | } |
| 878 | r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| 879 | return true; |
| 880 | } |
| 881 | |
| 882 | // Handle "= &a". |
| 883 | if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p)) |
| 884 | { |
| 885 | r.set_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| 886 | return true; |
| 887 | } |
| 888 | |
| 889 | // Otherwise return varying. |
| 890 | r.set_varying (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| 891 | return true; |
| 892 | } |
| 893 | |
| 894 | // Calculate a range for phi statement S and return it in R. |
| 895 | // If a range cannot be calculated, return false. |
| 896 | |
| 897 | bool |
| 898 | fold_using_range::range_of_phi (vrange &r, gphi *phi, fur_source &src) |
| 899 | { |
| 900 | tree phi_def = gimple_phi_result (gs: phi); |
| 901 | tree type = gimple_range_type (s: phi); |
| 902 | value_range arg_range (type); |
| 903 | value_range equiv_range (type); |
| 904 | unsigned x; |
| 905 | |
| 906 | if (!type) |
| 907 | return false; |
| 908 | |
| 909 | // Track if all executable arguments are the same. |
| 910 | tree single_arg = NULL_TREE; |
| 911 | bool seen_arg = false; |
| 912 | |
| 913 | relation_oracle *oracle = &(src.query()->relation ()); |
| 914 | // Start with an empty range, unioning in each argument's range. |
| 915 | r.set_undefined (); |
| 916 | for (x = 0; x < gimple_phi_num_args (gs: phi); x++) |
| 917 | { |
| 918 | tree arg = gimple_phi_arg_def (gs: phi, index: x); |
| 919 | // An argument that is the same as the def provides no new range. |
| 920 | if (arg == phi_def) |
| 921 | continue; |
| 922 | |
| 923 | edge e = gimple_phi_arg_edge (phi, i: x); |
| 924 | |
| 925 | // Get the range of the argument on its edge. |
| 926 | src.get_phi_operand (r&: arg_range, expr: arg, e); |
| 927 | |
| 928 | if (!arg_range.undefined_p ()) |
| 929 | { |
| 930 | // Register potential dependencies for stale value tracking. |
| 931 | // Likewise, if the incoming PHI argument is equivalent to this |
| 932 | // PHI definition, it provides no new info. Accumulate these ranges |
| 933 | // in case all arguments are equivalences. |
| 934 | if (oracle->query (e, ssa1: arg, ssa2: phi_def) == VREL_EQ) |
| 935 | equiv_range.union_(r: arg_range); |
| 936 | else |
| 937 | r.union_ (arg_range); |
| 938 | |
| 939 | if (gimple_range_ssa_p (exp: arg) && src.gori_ssa ()) |
| 940 | src.gori_ssa ()->register_dependency (name: phi_def, ssa1: arg); |
| 941 | } |
| 942 | |
| 943 | // Track if all arguments are the same. |
| 944 | if (!seen_arg) |
| 945 | { |
| 946 | seen_arg = true; |
| 947 | single_arg = arg; |
| 948 | } |
| 949 | else if (single_arg != arg) |
| 950 | single_arg = NULL_TREE; |
| 951 | |
| 952 | // Once the value reaches varying, stop looking. |
| 953 | if (r.varying_p () && single_arg == NULL_TREE) |
| 954 | break; |
| 955 | } |
| 956 | |
| 957 | // If all arguments were equivalences, use the equivalence ranges as no |
| 958 | // arguments were processed. |
| 959 | if (r.undefined_p () && !equiv_range.undefined_p ()) |
| 960 | r = equiv_range; |
| 961 | |
| 962 | // If the PHI boils down to a single effective argument, look at it. |
| 963 | if (single_arg) |
| 964 | { |
| 965 | // Symbolic arguments can be equivalences. |
| 966 | if (gimple_range_ssa_p (exp: single_arg)) |
| 967 | { |
| 968 | // Only allow the equivalence if the PHI definition does not |
| 969 | // dominate any incoming edge for SINGLE_ARG. |
| 970 | // See PR 108139 and 109462. |
| 971 | basic_block bb = gimple_bb (g: phi); |
| 972 | if (!dom_info_available_p (CDI_DOMINATORS)) |
| 973 | single_arg = NULL; |
| 974 | else |
| 975 | for (x = 0; x < gimple_phi_num_args (gs: phi); x++) |
| 976 | if (gimple_phi_arg_def (gs: phi, index: x) == single_arg |
| 977 | && dominated_by_p (CDI_DOMINATORS, |
| 978 | gimple_phi_arg_edge (phi, i: x)->src, |
| 979 | bb)) |
| 980 | { |
| 981 | single_arg = NULL; |
| 982 | break; |
| 983 | } |
| 984 | if (single_arg) |
| 985 | src.register_relation (s: phi, k: VREL_EQ, op1: phi_def, op2: single_arg); |
| 986 | } |
| 987 | else if (src.get_operand (r&: arg_range, expr: single_arg) |
| 988 | && arg_range.singleton_p ()) |
| 989 | { |
| 990 | // Numerical arguments that are a constant can be returned as |
| 991 | // the constant. This can help fold later cases where even this |
| 992 | // constant might have been UNDEFINED via an unreachable edge. |
| 993 | r = arg_range; |
| 994 | return true; |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | // If PHI analysis is available, see if there is an iniital range. |
| 999 | if (phi_analysis_available_p () |
| 1000 | && irange::supports_p (TREE_TYPE (phi_def))) |
| 1001 | { |
| 1002 | phi_group *g = (phi_analysis())[phi_def]; |
| 1003 | if (g && !(g->range ().varying_p ())) |
| 1004 | { |
| 1005 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1006 | { |
| 1007 | fprintf (stream: dump_file, format: "PHI GROUP query for " ); |
| 1008 | print_generic_expr (dump_file, phi_def, TDF_SLIM); |
| 1009 | fprintf (stream: dump_file, format: " found : " ); |
| 1010 | g->range ().dump (dump_file); |
| 1011 | fprintf (stream: dump_file, format: " and adjusted original range from :" ); |
| 1012 | r.dump (dump_file); |
| 1013 | } |
| 1014 | r.intersect (g->range ()); |
| 1015 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1016 | { |
| 1017 | fprintf (stream: dump_file, format: " to :" ); |
| 1018 | r.dump (dump_file); |
| 1019 | fprintf (stream: dump_file, format: "\n" ); |
| 1020 | } |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | // If SCEV is available, query if this PHI has any known values. |
| 1025 | if (scev_initialized_p () |
| 1026 | && !POINTER_TYPE_P (TREE_TYPE (phi_def))) |
| 1027 | { |
| 1028 | class loop *l = loop_containing_stmt (stmt: phi); |
| 1029 | if (l && loop_outer (loop: l)) |
| 1030 | { |
| 1031 | value_range loop_range (type); |
| 1032 | range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src); |
| 1033 | if (!loop_range.varying_p ()) |
| 1034 | { |
| 1035 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1036 | { |
| 1037 | fprintf (stream: dump_file, format: "Loops range found for " ); |
| 1038 | print_generic_expr (dump_file, phi_def, TDF_SLIM); |
| 1039 | fprintf (stream: dump_file, format: ": " ); |
| 1040 | loop_range.dump (dump_file); |
| 1041 | fprintf (stream: dump_file, format: " and calculated range :" ); |
| 1042 | r.dump (dump_file); |
| 1043 | fprintf (stream: dump_file, format: "\n" ); |
| 1044 | } |
| 1045 | r.intersect (loop_range); |
| 1046 | } |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | return true; |
| 1051 | } |
| 1052 | |
| 1053 | // Calculate a range for call statement S and return it in R. |
| 1054 | // If a range cannot be calculated, return false. |
| 1055 | |
| 1056 | bool |
| 1057 | fold_using_range::range_of_call (vrange &r, gcall *call, fur_source &) |
| 1058 | { |
| 1059 | tree type = gimple_range_type (s: call); |
| 1060 | if (!type) |
| 1061 | return false; |
| 1062 | |
| 1063 | tree lhs = gimple_call_lhs (gs: call); |
| 1064 | bool strict_overflow_p; |
| 1065 | |
| 1066 | if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p)) |
| 1067 | r.set_nonnegative (type); |
| 1068 | else if (gimple_call_nonnull_result_p (call) |
| 1069 | || gimple_call_nonnull_arg (call)) |
| 1070 | r.set_nonzero (type); |
| 1071 | else |
| 1072 | r.set_varying (type); |
| 1073 | |
| 1074 | tree callee = gimple_call_fndecl (gs: call); |
| 1075 | if (callee |
| 1076 | && useless_type_conversion_p (TREE_TYPE (TREE_TYPE (callee)), type)) |
| 1077 | { |
| 1078 | value_range val; |
| 1079 | if (ipa_return_value_range (range&: val, decl: callee)) |
| 1080 | { |
| 1081 | r.intersect (val); |
| 1082 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1083 | { |
| 1084 | fprintf (stream: dump_file, format: "Using return value range of " ); |
| 1085 | print_generic_expr (dump_file, callee, TDF_SLIM); |
| 1086 | fprintf (stream: dump_file, format: ": " ); |
| 1087 | val.dump (dump_file); |
| 1088 | fprintf (stream: dump_file, format: "\n" ); |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | // If there is an LHS, intersect that with what is known. |
| 1094 | if (gimple_range_ssa_p (exp: lhs)) |
| 1095 | { |
| 1096 | value_range def (TREE_TYPE (lhs)); |
| 1097 | gimple_range_global (v&: def, name: lhs); |
| 1098 | r.intersect (def); |
| 1099 | } |
| 1100 | return true; |
| 1101 | } |
| 1102 | |
| 1103 | // Given COND ? OP1 : OP2 with ranges R1 for OP1 and R2 for OP2, Use gori |
| 1104 | // to further resolve R1 and R2 if there are any dependencies between |
| 1105 | // OP1 and COND or OP2 and COND. All values can are to be calculated using SRC |
| 1106 | // as the origination source location for operands.. |
| 1107 | // Effectively, use COND an the edge condition and solve for OP1 on the true |
| 1108 | // edge and OP2 on the false edge. |
| 1109 | |
| 1110 | bool |
| 1111 | fold_using_range::condexpr_adjust (vrange &r1, vrange &r2, gimple *, tree cond, |
| 1112 | tree op1, tree op2, fur_source &src) |
| 1113 | { |
| 1114 | if (!src.gori () || !src.gori_ssa ()) |
| 1115 | return false; |
| 1116 | |
| 1117 | tree ssa1 = gimple_range_ssa_p (exp: op1); |
| 1118 | tree ssa2 = gimple_range_ssa_p (exp: op2); |
| 1119 | if (!ssa1 && !ssa2) |
| 1120 | return false; |
| 1121 | if (TREE_CODE (cond) != SSA_NAME) |
| 1122 | return false; |
| 1123 | gassign *cond_def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (cond)); |
| 1124 | if (!cond_def |
| 1125 | || TREE_CODE_CLASS (gimple_assign_rhs_code (cond_def)) != tcc_comparison) |
| 1126 | return false; |
| 1127 | tree type = TREE_TYPE (gimple_assign_rhs1 (cond_def)); |
| 1128 | if (!value_range::supports_type_p (type) |
| 1129 | || !range_compatible_p (type1: type, TREE_TYPE (gimple_assign_rhs2 (cond_def)))) |
| 1130 | return false; |
| 1131 | range_op_handler hand (gimple_assign_rhs_code (gs: cond_def)); |
| 1132 | if (!hand) |
| 1133 | return false; |
| 1134 | |
| 1135 | tree c1 = gimple_range_ssa_p (exp: gimple_assign_rhs1 (gs: cond_def)); |
| 1136 | tree c2 = gimple_range_ssa_p (exp: gimple_assign_rhs2 (gs: cond_def)); |
| 1137 | |
| 1138 | // Only solve if there is one SSA name in the condition. |
| 1139 | if ((!c1 && !c2) || (c1 && c2)) |
| 1140 | return false; |
| 1141 | |
| 1142 | // Pick up the current values of each part of the condition. |
| 1143 | tree rhs1 = gimple_assign_rhs1 (gs: cond_def); |
| 1144 | tree rhs2 = gimple_assign_rhs2 (gs: cond_def); |
| 1145 | value_range cl (TREE_TYPE (rhs1)); |
| 1146 | value_range cr (TREE_TYPE (rhs2)); |
| 1147 | src.get_operand (r&: cl, expr: rhs1); |
| 1148 | src.get_operand (r&: cr, expr: rhs2); |
| 1149 | |
| 1150 | tree cond_name = c1 ? c1 : c2; |
| 1151 | gimple *def_stmt = SSA_NAME_DEF_STMT (cond_name); |
| 1152 | |
| 1153 | // Evaluate the value of COND_NAME on the true and false edges, using either |
| 1154 | // the op1 or op2 routines based on its location. |
| 1155 | value_range cond_true (type), cond_false (type); |
| 1156 | if (c1) |
| 1157 | { |
| 1158 | if (!hand.op1_range (r&: cond_false, type, lhs: range_false (), op2: cr)) |
| 1159 | return false; |
| 1160 | if (!hand.op1_range (r&: cond_true, type, lhs: range_true (), op2: cr)) |
| 1161 | return false; |
| 1162 | cond_false.intersect (r: cl); |
| 1163 | cond_true.intersect (r: cl); |
| 1164 | } |
| 1165 | else |
| 1166 | { |
| 1167 | if (!hand.op2_range (r&: cond_false, type, lhs: range_false (), op1: cl)) |
| 1168 | return false; |
| 1169 | if (!hand.op2_range (r&: cond_true, type, lhs: range_true (), op1: cl)) |
| 1170 | return false; |
| 1171 | cond_false.intersect (r: cr); |
| 1172 | cond_true.intersect (r: cr); |
| 1173 | } |
| 1174 | |
| 1175 | // Now solve for SSA1 or SSA2 if they are in the dependency chain. |
| 1176 | if (ssa1 && src.gori_ssa()->in_chain_p (name: ssa1, def: cond_name)) |
| 1177 | { |
| 1178 | value_range tmp1 (TREE_TYPE (ssa1)); |
| 1179 | if (src.gori ()->compute_operand_range (tmp1, def_stmt, cond_true, |
| 1180 | ssa1, src)) |
| 1181 | r1.intersect (tmp1); |
| 1182 | } |
| 1183 | if (ssa2 && src.gori_ssa ()->in_chain_p (name: ssa2, def: cond_name)) |
| 1184 | { |
| 1185 | value_range tmp2 (TREE_TYPE (ssa2)); |
| 1186 | if (src.gori ()->compute_operand_range (tmp2, def_stmt, cond_false, |
| 1187 | ssa2, src)) |
| 1188 | r2.intersect (tmp2); |
| 1189 | } |
| 1190 | return true; |
| 1191 | } |
| 1192 | |
| 1193 | // Calculate a range for COND_EXPR statement S and return it in R. |
| 1194 | // If a range cannot be calculated, return false. |
| 1195 | |
| 1196 | bool |
| 1197 | fold_using_range::range_of_cond_expr (vrange &r, gassign *s, fur_source &src) |
| 1198 | { |
| 1199 | tree cond = gimple_assign_rhs1 (gs: s); |
| 1200 | tree op1 = gimple_assign_rhs2 (gs: s); |
| 1201 | tree op2 = gimple_assign_rhs3 (gs: s); |
| 1202 | |
| 1203 | tree type = gimple_range_type (s); |
| 1204 | if (!type) |
| 1205 | return false; |
| 1206 | |
| 1207 | value_range range1 (TREE_TYPE (op1)); |
| 1208 | value_range range2 (TREE_TYPE (op2)); |
| 1209 | value_range cond_range (TREE_TYPE (cond)); |
| 1210 | gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR); |
| 1211 | gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2))); |
| 1212 | src.get_operand (r&: cond_range, expr: cond); |
| 1213 | src.get_operand (r&: range1, expr: op1); |
| 1214 | src.get_operand (r&: range2, expr: op2); |
| 1215 | |
| 1216 | // Try to see if there is a dependence between the COND and either operand |
| 1217 | if (condexpr_adjust (r1&: range1, r2&: range2, s, cond, op1, op2, src)) |
| 1218 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1219 | { |
| 1220 | fprintf (stream: dump_file, format: "Possible COND_EXPR adjustment. Range op1 : " ); |
| 1221 | range1.dump(dump_file); |
| 1222 | fprintf (stream: dump_file, format: " and Range op2: " ); |
| 1223 | range2.dump(dump_file); |
| 1224 | fprintf (stream: dump_file, format: "\n" ); |
| 1225 | } |
| 1226 | |
| 1227 | // If the condition is known, choose the appropriate expression. |
| 1228 | if (cond_range.singleton_p ()) |
| 1229 | { |
| 1230 | // False, pick second operand. |
| 1231 | if (cond_range.zero_p ()) |
| 1232 | r = range2; |
| 1233 | else |
| 1234 | r = range1; |
| 1235 | } |
| 1236 | else |
| 1237 | { |
| 1238 | r = range1; |
| 1239 | r.union_ (range2); |
| 1240 | } |
| 1241 | gcc_checking_assert (r.undefined_p () |
| 1242 | || range_compatible_p (r.type (), type)); |
| 1243 | return true; |
| 1244 | } |
| 1245 | |
| 1246 | // If SCEV has any information about phi node NAME, return it as a range in R. |
| 1247 | |
| 1248 | void |
| 1249 | fold_using_range::range_of_ssa_name_with_loop_info (vrange &r, tree name, |
| 1250 | class loop *l, gphi *phi, |
| 1251 | fur_source &src) |
| 1252 | { |
| 1253 | gcc_checking_assert (TREE_CODE (name) == SSA_NAME); |
| 1254 | // SCEV currently invokes get_range_query () for values. If the query |
| 1255 | // being passed in is not the same SCEV will use, do not invoke SCEV. |
| 1256 | // This can be remove if/when SCEV uses a passed in range-query. |
| 1257 | if (src.query () != get_range_query (cfun)) |
| 1258 | { |
| 1259 | r.set_varying (TREE_TYPE (name)); |
| 1260 | // Report the msmatch if SRC is not the global query. The cache |
| 1261 | // uses a global query and would provide numerous false positives. |
| 1262 | if (dump_file && (dump_flags & TDF_DETAILS) |
| 1263 | && src.query () != get_global_range_query ()) |
| 1264 | fprintf (stream: dump_file, |
| 1265 | format: "fold_using-range:: SCEV not invoked due to mismatched queries\n" ); |
| 1266 | } |
| 1267 | else if (!range_of_var_in_loop (r, var: name, l, phi, src.query ())) |
| 1268 | r.set_varying (TREE_TYPE (name)); |
| 1269 | } |
| 1270 | |
| 1271 | // ----------------------------------------------------------------------- |
| 1272 | |
| 1273 | // Check if an && or || expression can be folded based on relations. ie |
| 1274 | // c_2 = a_6 > b_7 |
| 1275 | // c_3 = a_6 < b_7 |
| 1276 | // c_4 = c_2 && c_3 |
| 1277 | // c_2 and c_3 can never be true at the same time, |
| 1278 | // Therefore c_4 can always resolve to false based purely on the relations. |
| 1279 | |
| 1280 | void |
| 1281 | fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s, |
| 1282 | fur_source &src, vrange &op1, |
| 1283 | vrange &op2) |
| 1284 | { |
| 1285 | // No queries or already folded. |
| 1286 | if (!src.gori () || lhs_range.singleton_p ()) |
| 1287 | return; |
| 1288 | |
| 1289 | // Only care about AND and OR expressions. |
| 1290 | enum tree_code code = gimple_expr_code (stmt: s); |
| 1291 | bool is_and = false; |
| 1292 | if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) |
| 1293 | is_and = true; |
| 1294 | else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR) |
| 1295 | return; |
| 1296 | |
| 1297 | gimple_range_op_handler handler (s); |
| 1298 | tree lhs = handler.lhs (); |
| 1299 | tree ssa1 = gimple_range_ssa_p (exp: handler.operand1 ()); |
| 1300 | tree ssa2 = gimple_range_ssa_p (exp: handler.operand2 ()); |
| 1301 | |
| 1302 | // Deal with || and && only when there is a full set of symbolics. |
| 1303 | if (!lhs || !ssa1 || !ssa2 |
| 1304 | || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE) |
| 1305 | || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE) |
| 1306 | || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE)) |
| 1307 | return; |
| 1308 | |
| 1309 | // Now we know its a boolean AND or OR expression with boolean operands. |
| 1310 | // Ideally we search dependencies for common names, and see what pops out. |
| 1311 | // until then, simply try to resolve direct dependencies. |
| 1312 | |
| 1313 | gimple *ssa1_stmt = SSA_NAME_DEF_STMT (ssa1); |
| 1314 | gimple *ssa2_stmt = SSA_NAME_DEF_STMT (ssa2); |
| 1315 | |
| 1316 | gimple_range_op_handler handler1 (ssa1_stmt); |
| 1317 | gimple_range_op_handler handler2 (ssa2_stmt); |
| 1318 | |
| 1319 | // If either handler is not present, no relation can be found. |
| 1320 | if (!handler1 || !handler2) |
| 1321 | return; |
| 1322 | |
| 1323 | // Both stmts will need to have 2 ssa names in the stmt. |
| 1324 | tree ssa1_dep1 = gimple_range_ssa_p (exp: handler1.operand1 ()); |
| 1325 | tree ssa1_dep2 = gimple_range_ssa_p (exp: handler1.operand2 ()); |
| 1326 | tree ssa2_dep1 = gimple_range_ssa_p (exp: handler2.operand1 ()); |
| 1327 | tree ssa2_dep2 = gimple_range_ssa_p (exp: handler2.operand2 ()); |
| 1328 | |
| 1329 | if (!ssa1_dep1 || !ssa1_dep2 || !ssa2_dep1 || !ssa2_dep2) |
| 1330 | return; |
| 1331 | |
| 1332 | if (HONOR_NANS (TREE_TYPE (ssa1_dep1))) |
| 1333 | return; |
| 1334 | |
| 1335 | // Make sure they are the same dependencies, and detect the order of the |
| 1336 | // relationship. |
| 1337 | bool reverse_op2 = true; |
| 1338 | if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2) |
| 1339 | reverse_op2 = false; |
| 1340 | else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1) |
| 1341 | return; |
| 1342 | |
| 1343 | int_range<2> bool_one = range_true (); |
| 1344 | relation_kind relation1 = handler1.op1_op2_relation (lhs: bool_one, op1, op2); |
| 1345 | relation_kind relation2 = handler2.op1_op2_relation (lhs: bool_one, op1, op2); |
| 1346 | if (relation1 == VREL_VARYING || relation2 == VREL_VARYING) |
| 1347 | return; |
| 1348 | |
| 1349 | if (reverse_op2) |
| 1350 | relation2 = relation_negate (r: relation2); |
| 1351 | |
| 1352 | // x && y is false if the relation intersection of the true cases is NULL. |
| 1353 | if (is_and && relation_intersect (r1: relation1, r2: relation2) == VREL_UNDEFINED) |
| 1354 | lhs_range = range_false (boolean_type_node); |
| 1355 | // x || y is true if the union of the true cases is NO-RELATION.. |
| 1356 | // ie, one or the other being true covers the full range of possibilities. |
| 1357 | else if (!is_and && relation_union (r1: relation1, r2: relation2) == VREL_VARYING) |
| 1358 | lhs_range = bool_one; |
| 1359 | else |
| 1360 | return; |
| 1361 | |
| 1362 | range_cast (r&: lhs_range, TREE_TYPE (lhs)); |
| 1363 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1364 | { |
| 1365 | fprintf (stream: dump_file, format: " Relation adjustment: " ); |
| 1366 | print_generic_expr (dump_file, ssa1, TDF_SLIM); |
| 1367 | fprintf (stream: dump_file, format: " and " ); |
| 1368 | print_generic_expr (dump_file, ssa2, TDF_SLIM); |
| 1369 | fprintf (stream: dump_file, format: " combine to produce " ); |
| 1370 | lhs_range.dump (dump_file); |
| 1371 | fputc (c: '\n', stream: dump_file); |
| 1372 | } |
| 1373 | |
| 1374 | return; |
| 1375 | } |
| 1376 | |
| 1377 | // Register any outgoing edge relations from a conditional branch. |
| 1378 | |
| 1379 | void |
| 1380 | fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, |
| 1381 | edge e0, edge e1) |
| 1382 | { |
| 1383 | int_range<2> e0_range, e1_range; |
| 1384 | tree name; |
| 1385 | basic_block bb = gimple_bb (g: s); |
| 1386 | |
| 1387 | gimple_range_op_handler handler (s); |
| 1388 | if (!handler) |
| 1389 | return; |
| 1390 | |
| 1391 | if (e0) |
| 1392 | { |
| 1393 | // If this edge is never taken, ignore it. |
| 1394 | gcond_edge_range (r&: e0_range, e: e0); |
| 1395 | e0_range.intersect (lhs_range); |
| 1396 | if (e0_range.undefined_p ()) |
| 1397 | e0 = NULL; |
| 1398 | } |
| 1399 | |
| 1400 | if (e1) |
| 1401 | { |
| 1402 | // If this edge is never taken, ignore it. |
| 1403 | gcond_edge_range (r&: e1_range, e: e1); |
| 1404 | e1_range.intersect (lhs_range); |
| 1405 | if (e1_range.undefined_p ()) |
| 1406 | e1 = NULL; |
| 1407 | } |
| 1408 | |
| 1409 | if (!e0 && !e1) |
| 1410 | return; |
| 1411 | |
| 1412 | // First, register the gcond itself. This will catch statements like |
| 1413 | // if (a_2 < b_5) |
| 1414 | tree ssa1 = gimple_range_ssa_p (exp: handler.operand1 ()); |
| 1415 | tree ssa2 = gimple_range_ssa_p (exp: handler.operand2 ()); |
| 1416 | value_range r1,r2; |
| 1417 | if (ssa1 && ssa2) |
| 1418 | { |
| 1419 | r1.set_varying (TREE_TYPE (ssa1)); |
| 1420 | r2.set_varying (TREE_TYPE (ssa2)); |
| 1421 | if (e0) |
| 1422 | { |
| 1423 | relation_kind relation = handler.op1_op2_relation (lhs: e0_range, op1: r1, op2: r2); |
| 1424 | if (relation != VREL_VARYING) |
| 1425 | register_relation (e: e0, k: relation, op1: ssa1, op2: ssa2); |
| 1426 | } |
| 1427 | if (e1) |
| 1428 | { |
| 1429 | relation_kind relation = handler.op1_op2_relation (lhs: e1_range, op1: r1, op2: r2); |
| 1430 | if (relation != VREL_VARYING) |
| 1431 | register_relation (e: e1, k: relation, op1: ssa1, op2: ssa2); |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | // Outgoing relations of GORI exports require a gori engine. |
| 1436 | if (!gori_ssa ()) |
| 1437 | return; |
| 1438 | |
| 1439 | // Now look for other relations in the exports. This will find stmts |
| 1440 | // leading to the condition such as: |
| 1441 | // c_2 = a_4 < b_7 |
| 1442 | // if (c_2) |
| 1443 | FOR_EACH_GORI_EXPORT_NAME (gori_ssa (), bb, name) |
| 1444 | { |
| 1445 | if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE) |
| 1446 | continue; |
| 1447 | gimple *stmt = SSA_NAME_DEF_STMT (name); |
| 1448 | gimple_range_op_handler handler (stmt); |
| 1449 | if (!handler) |
| 1450 | continue; |
| 1451 | tree ssa1 = gimple_range_ssa_p (exp: handler.operand1 ()); |
| 1452 | tree ssa2 = gimple_range_ssa_p (exp: handler.operand2 ()); |
| 1453 | value_range r (TREE_TYPE (name)); |
| 1454 | if (ssa1 && ssa2) |
| 1455 | { |
| 1456 | r1.set_varying (TREE_TYPE (ssa1)); |
| 1457 | r2.set_varying (TREE_TYPE (ssa2)); |
| 1458 | if (e0 && gori ()->edge_range_p (r, e0, name, *m_query) |
| 1459 | && r.singleton_p ()) |
| 1460 | { |
| 1461 | relation_kind relation = handler.op1_op2_relation (lhs: r, op1: r1, op2: r2); |
| 1462 | if (relation != VREL_VARYING) |
| 1463 | register_relation (e: e0, k: relation, op1: ssa1, op2: ssa2); |
| 1464 | } |
| 1465 | if (e1 && gori ()->edge_range_p (r, e1, name, *m_query) |
| 1466 | && r.singleton_p ()) |
| 1467 | { |
| 1468 | relation_kind relation = handler.op1_op2_relation (lhs: r, op1: r1, op2: r2); |
| 1469 | if (relation != VREL_VARYING) |
| 1470 | register_relation (e: e1, k: relation, op1: ssa1, op2: ssa2); |
| 1471 | } |
| 1472 | } |
| 1473 | } |
| 1474 | } |
| 1475 | |