1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12#include <linux/bitfield.h>
13#include <linux/bsearch.h>
14#include <linux/cacheinfo.h>
15#include <linux/debugfs.h>
16#include <linux/kvm_host.h>
17#include <linux/mm.h>
18#include <linux/printk.h>
19#include <linux/uaccess.h>
20
21#include <asm/cacheflush.h>
22#include <asm/cputype.h>
23#include <asm/debug-monitors.h>
24#include <asm/esr.h>
25#include <asm/kvm_arm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_hyp.h>
28#include <asm/kvm_mmu.h>
29#include <asm/kvm_nested.h>
30#include <asm/perf_event.h>
31#include <asm/sysreg.h>
32
33#include <trace/events/kvm.h>
34
35#include "sys_regs.h"
36
37#include "trace.h"
38
39/*
40 * For AArch32, we only take care of what is being trapped. Anything
41 * that has to do with init and userspace access has to go via the
42 * 64bit interface.
43 */
44
45static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47 u64 val);
48
49static bool bad_trap(struct kvm_vcpu *vcpu,
50 struct sys_reg_params *params,
51 const struct sys_reg_desc *r,
52 const char *msg)
53{
54 WARN_ONCE(1, "Unexpected %s\n", msg);
55 print_sys_reg_instr(p: params);
56 kvm_inject_undefined(vcpu);
57 return false;
58}
59
60static bool read_from_write_only(struct kvm_vcpu *vcpu,
61 struct sys_reg_params *params,
62 const struct sys_reg_desc *r)
63{
64 return bad_trap(vcpu, params, r,
65 msg: "sys_reg read to write-only register");
66}
67
68static bool write_to_read_only(struct kvm_vcpu *vcpu,
69 struct sys_reg_params *params,
70 const struct sys_reg_desc *r)
71{
72 return bad_trap(vcpu, params, r,
73 msg: "sys_reg write to read-only register");
74}
75
76#define PURE_EL2_SYSREG(el2) \
77 case el2: { \
78 *el1r = el2; \
79 return true; \
80 }
81
82#define MAPPED_EL2_SYSREG(el2, el1, fn) \
83 case el2: { \
84 *xlate = fn; \
85 *el1r = el1; \
86 return true; \
87 }
88
89static bool get_el2_to_el1_mapping(unsigned int reg,
90 unsigned int *el1r, u64 (**xlate)(u64))
91{
92 switch (reg) {
93 PURE_EL2_SYSREG( VPIDR_EL2 );
94 PURE_EL2_SYSREG( VMPIDR_EL2 );
95 PURE_EL2_SYSREG( ACTLR_EL2 );
96 PURE_EL2_SYSREG( HCR_EL2 );
97 PURE_EL2_SYSREG( MDCR_EL2 );
98 PURE_EL2_SYSREG( HSTR_EL2 );
99 PURE_EL2_SYSREG( HACR_EL2 );
100 PURE_EL2_SYSREG( VTTBR_EL2 );
101 PURE_EL2_SYSREG( VTCR_EL2 );
102 PURE_EL2_SYSREG( RVBAR_EL2 );
103 PURE_EL2_SYSREG( TPIDR_EL2 );
104 PURE_EL2_SYSREG( HPFAR_EL2 );
105 PURE_EL2_SYSREG( CNTHCTL_EL2 );
106 MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1,
107 translate_sctlr_el2_to_sctlr_el1 );
108 MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1,
109 translate_cptr_el2_to_cpacr_el1 );
110 MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1,
111 translate_ttbr0_el2_to_ttbr0_el1 );
112 MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL );
113 MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1,
114 translate_tcr_el2_to_tcr_el1 );
115 MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL );
116 MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL );
117 MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL );
118 MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL );
119 MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL );
120 MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL );
121 MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL );
122 MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL );
123 MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL );
124 default:
125 return false;
126 }
127}
128
129u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
130{
131 u64 val = 0x8badf00d8badf00d;
132 u64 (*xlate)(u64) = NULL;
133 unsigned int el1r;
134
135 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
136 goto memory_read;
137
138 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
139 if (!is_hyp_ctxt(vcpu))
140 goto memory_read;
141
142 /*
143 * If this register does not have an EL1 counterpart,
144 * then read the stored EL2 version.
145 */
146 if (reg == el1r)
147 goto memory_read;
148
149 /*
150 * If we have a non-VHE guest and that the sysreg
151 * requires translation to be used at EL1, use the
152 * in-memory copy instead.
153 */
154 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
155 goto memory_read;
156
157 /* Get the current version of the EL1 counterpart. */
158 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
159 return val;
160 }
161
162 /* EL1 register can't be on the CPU if the guest is in vEL2. */
163 if (unlikely(is_hyp_ctxt(vcpu)))
164 goto memory_read;
165
166 if (__vcpu_read_sys_reg_from_cpu(reg, &val))
167 return val;
168
169memory_read:
170 return __vcpu_sys_reg(vcpu, reg);
171}
172
173void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
174{
175 u64 (*xlate)(u64) = NULL;
176 unsigned int el1r;
177
178 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
179 goto memory_write;
180
181 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
182 if (!is_hyp_ctxt(vcpu))
183 goto memory_write;
184
185 /*
186 * Always store a copy of the write to memory to avoid having
187 * to reverse-translate virtual EL2 system registers for a
188 * non-VHE guest hypervisor.
189 */
190 __vcpu_sys_reg(vcpu, reg) = val;
191
192 /* No EL1 counterpart? We're done here.? */
193 if (reg == el1r)
194 return;
195
196 if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
197 val = xlate(val);
198
199 /* Redirect this to the EL1 version of the register. */
200 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
201 return;
202 }
203
204 /* EL1 register can't be on the CPU if the guest is in vEL2. */
205 if (unlikely(is_hyp_ctxt(vcpu)))
206 goto memory_write;
207
208 if (__vcpu_write_sys_reg_to_cpu(val, reg))
209 return;
210
211memory_write:
212 __vcpu_sys_reg(vcpu, reg) = val;
213}
214
215/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
216#define CSSELR_MAX 14
217
218/*
219 * Returns the minimum line size for the selected cache, expressed as
220 * Log2(bytes).
221 */
222static u8 get_min_cache_line_size(bool icache)
223{
224 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
225 u8 field;
226
227 if (icache)
228 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
229 else
230 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
231
232 /*
233 * Cache line size is represented as Log2(words) in CTR_EL0.
234 * Log2(bytes) can be derived with the following:
235 *
236 * Log2(words) + 2 = Log2(bytes / 4) + 2
237 * = Log2(bytes) - 2 + 2
238 * = Log2(bytes)
239 */
240 return field + 2;
241}
242
243/* Which cache CCSIDR represents depends on CSSELR value. */
244static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
245{
246 u8 line_size;
247
248 if (vcpu->arch.ccsidr)
249 return vcpu->arch.ccsidr[csselr];
250
251 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
252
253 /*
254 * Fabricate a CCSIDR value as the overriding value does not exist.
255 * The real CCSIDR value will not be used as it can vary by the
256 * physical CPU which the vcpu currently resides in.
257 *
258 * The line size is determined with get_min_cache_line_size(), which
259 * should be valid for all CPUs even if they have different cache
260 * configuration.
261 *
262 * The associativity bits are cleared, meaning the geometry of all data
263 * and unified caches (which are guaranteed to be PIPT and thus
264 * non-aliasing) are 1 set and 1 way.
265 * Guests should not be doing cache operations by set/way at all, and
266 * for this reason, we trap them and attempt to infer the intent, so
267 * that we can flush the entire guest's address space at the appropriate
268 * time. The exposed geometry minimizes the number of the traps.
269 * [If guests should attempt to infer aliasing properties from the
270 * geometry (which is not permitted by the architecture), they would
271 * only do so for virtually indexed caches.]
272 *
273 * We don't check if the cache level exists as it is allowed to return
274 * an UNKNOWN value if not.
275 */
276 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
277}
278
279static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
280{
281 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
282 u32 *ccsidr = vcpu->arch.ccsidr;
283 u32 i;
284
285 if ((val & CCSIDR_EL1_RES0) ||
286 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
287 return -EINVAL;
288
289 if (!ccsidr) {
290 if (val == get_ccsidr(vcpu, csselr))
291 return 0;
292
293 ccsidr = kmalloc_array(CSSELR_MAX, size: sizeof(u32), GFP_KERNEL_ACCOUNT);
294 if (!ccsidr)
295 return -ENOMEM;
296
297 for (i = 0; i < CSSELR_MAX; i++)
298 ccsidr[i] = get_ccsidr(vcpu, csselr: i);
299
300 vcpu->arch.ccsidr = ccsidr;
301 }
302
303 ccsidr[csselr] = val;
304
305 return 0;
306}
307
308static bool access_rw(struct kvm_vcpu *vcpu,
309 struct sys_reg_params *p,
310 const struct sys_reg_desc *r)
311{
312 if (p->is_write)
313 vcpu_write_sys_reg(vcpu, val: p->regval, reg: r->reg);
314 else
315 p->regval = vcpu_read_sys_reg(vcpu, reg: r->reg);
316
317 return true;
318}
319
320/*
321 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
322 */
323static bool access_dcsw(struct kvm_vcpu *vcpu,
324 struct sys_reg_params *p,
325 const struct sys_reg_desc *r)
326{
327 if (!p->is_write)
328 return read_from_write_only(vcpu, params: p, r);
329
330 /*
331 * Only track S/W ops if we don't have FWB. It still indicates
332 * that the guest is a bit broken (S/W operations should only
333 * be done by firmware, knowing that there is only a single
334 * CPU left in the system, and certainly not from non-secure
335 * software).
336 */
337 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
338 kvm_set_way_flush(vcpu);
339
340 return true;
341}
342
343static bool access_dcgsw(struct kvm_vcpu *vcpu,
344 struct sys_reg_params *p,
345 const struct sys_reg_desc *r)
346{
347 if (!kvm_has_mte(vcpu->kvm)) {
348 kvm_inject_undefined(vcpu);
349 return false;
350 }
351
352 /* Treat MTE S/W ops as we treat the classic ones: with contempt */
353 return access_dcsw(vcpu, p, r);
354}
355
356static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
357{
358 switch (r->aarch32_map) {
359 case AA32_LO:
360 *mask = GENMASK_ULL(31, 0);
361 *shift = 0;
362 break;
363 case AA32_HI:
364 *mask = GENMASK_ULL(63, 32);
365 *shift = 32;
366 break;
367 default:
368 *mask = GENMASK_ULL(63, 0);
369 *shift = 0;
370 break;
371 }
372}
373
374/*
375 * Generic accessor for VM registers. Only called as long as HCR_TVM
376 * is set. If the guest enables the MMU, we stop trapping the VM
377 * sys_regs and leave it in complete control of the caches.
378 */
379static bool access_vm_reg(struct kvm_vcpu *vcpu,
380 struct sys_reg_params *p,
381 const struct sys_reg_desc *r)
382{
383 bool was_enabled = vcpu_has_cache_enabled(vcpu);
384 u64 val, mask, shift;
385
386 BUG_ON(!p->is_write);
387
388 get_access_mask(r, mask: &mask, shift: &shift);
389
390 if (~mask) {
391 val = vcpu_read_sys_reg(vcpu, reg: r->reg);
392 val &= ~mask;
393 } else {
394 val = 0;
395 }
396
397 val |= (p->regval & (mask >> shift)) << shift;
398 vcpu_write_sys_reg(vcpu, val, reg: r->reg);
399
400 kvm_toggle_cache(vcpu, was_enabled);
401 return true;
402}
403
404static bool access_actlr(struct kvm_vcpu *vcpu,
405 struct sys_reg_params *p,
406 const struct sys_reg_desc *r)
407{
408 u64 mask, shift;
409
410 if (p->is_write)
411 return ignore_write(vcpu, p);
412
413 get_access_mask(r, mask: &mask, shift: &shift);
414 p->regval = (vcpu_read_sys_reg(vcpu, reg: r->reg) & mask) >> shift;
415
416 return true;
417}
418
419/*
420 * Trap handler for the GICv3 SGI generation system register.
421 * Forward the request to the VGIC emulation.
422 * The cp15_64 code makes sure this automatically works
423 * for both AArch64 and AArch32 accesses.
424 */
425static bool access_gic_sgi(struct kvm_vcpu *vcpu,
426 struct sys_reg_params *p,
427 const struct sys_reg_desc *r)
428{
429 bool g1;
430
431 if (!p->is_write)
432 return read_from_write_only(vcpu, params: p, r);
433
434 /*
435 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
436 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
437 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
438 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
439 * group.
440 */
441 if (p->Op0 == 0) { /* AArch32 */
442 switch (p->Op1) {
443 default: /* Keep GCC quiet */
444 case 0: /* ICC_SGI1R */
445 g1 = true;
446 break;
447 case 1: /* ICC_ASGI1R */
448 case 2: /* ICC_SGI0R */
449 g1 = false;
450 break;
451 }
452 } else { /* AArch64 */
453 switch (p->Op2) {
454 default: /* Keep GCC quiet */
455 case 5: /* ICC_SGI1R_EL1 */
456 g1 = true;
457 break;
458 case 6: /* ICC_ASGI1R_EL1 */
459 case 7: /* ICC_SGI0R_EL1 */
460 g1 = false;
461 break;
462 }
463 }
464
465 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
466
467 return true;
468}
469
470static bool access_gic_sre(struct kvm_vcpu *vcpu,
471 struct sys_reg_params *p,
472 const struct sys_reg_desc *r)
473{
474 if (p->is_write)
475 return ignore_write(vcpu, p);
476
477 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
478 return true;
479}
480
481static bool trap_raz_wi(struct kvm_vcpu *vcpu,
482 struct sys_reg_params *p,
483 const struct sys_reg_desc *r)
484{
485 if (p->is_write)
486 return ignore_write(vcpu, p);
487 else
488 return read_zero(vcpu, p);
489}
490
491static bool trap_undef(struct kvm_vcpu *vcpu,
492 struct sys_reg_params *p,
493 const struct sys_reg_desc *r)
494{
495 kvm_inject_undefined(vcpu);
496 return false;
497}
498
499/*
500 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
501 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
502 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
503 * treat it separately.
504 */
505static bool trap_loregion(struct kvm_vcpu *vcpu,
506 struct sys_reg_params *p,
507 const struct sys_reg_desc *r)
508{
509 u32 sr = reg_to_encoding(r);
510
511 if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
512 kvm_inject_undefined(vcpu);
513 return false;
514 }
515
516 if (p->is_write && sr == SYS_LORID_EL1)
517 return write_to_read_only(vcpu, params: p, r);
518
519 return trap_raz_wi(vcpu, p, r);
520}
521
522static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523 struct sys_reg_params *p,
524 const struct sys_reg_desc *r)
525{
526 u64 oslsr;
527
528 if (!p->is_write)
529 return read_from_write_only(vcpu, params: p, r);
530
531 /* Forward the OSLK bit to OSLSR */
532 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533 if (p->regval & OSLAR_EL1_OSLK)
534 oslsr |= OSLSR_EL1_OSLK;
535
536 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537 return true;
538}
539
540static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541 struct sys_reg_params *p,
542 const struct sys_reg_desc *r)
543{
544 if (p->is_write)
545 return write_to_read_only(vcpu, params: p, r);
546
547 p->regval = __vcpu_sys_reg(vcpu, r->reg);
548 return true;
549}
550
551static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552 u64 val)
553{
554 /*
555 * The only modifiable bit is the OSLK bit. Refuse the write if
556 * userspace attempts to change any other bit in the register.
557 */
558 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559 return -EINVAL;
560
561 __vcpu_sys_reg(vcpu, rd->reg) = val;
562 return 0;
563}
564
565static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566 struct sys_reg_params *p,
567 const struct sys_reg_desc *r)
568{
569 if (p->is_write) {
570 return ignore_write(vcpu, p);
571 } else {
572 p->regval = read_sysreg(dbgauthstatus_el1);
573 return true;
574 }
575}
576
577/*
578 * We want to avoid world-switching all the DBG registers all the
579 * time:
580 *
581 * - If we've touched any debug register, it is likely that we're
582 * going to touch more of them. It then makes sense to disable the
583 * traps and start doing the save/restore dance
584 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585 * then mandatory to save/restore the registers, as the guest
586 * depends on them.
587 *
588 * For this, we use a DIRTY bit, indicating the guest has modified the
589 * debug registers, used as follow:
590 *
591 * On guest entry:
592 * - If the dirty bit is set (because we're coming back from trapping),
593 * disable the traps, save host registers, restore guest registers.
594 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595 * set the dirty bit, disable the traps, save host registers,
596 * restore guest registers.
597 * - Otherwise, enable the traps
598 *
599 * On guest exit:
600 * - If the dirty bit is set, save guest registers, restore host
601 * registers and clear the dirty bit. This ensure that the host can
602 * now use the debug registers.
603 */
604static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605 struct sys_reg_params *p,
606 const struct sys_reg_desc *r)
607{
608 access_rw(vcpu, p, r);
609 if (p->is_write)
610 vcpu_set_flag(vcpu, DEBUG_DIRTY);
611
612 trace_trap_reg(fn: __func__, reg: r->reg, is_write: p->is_write, write_value: p->regval);
613
614 return true;
615}
616
617/*
618 * reg_to_dbg/dbg_to_reg
619 *
620 * A 32 bit write to a debug register leave top bits alone
621 * A 32 bit read from a debug register only returns the bottom bits
622 *
623 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624 * switches between host and guest values in future.
625 */
626static void reg_to_dbg(struct kvm_vcpu *vcpu,
627 struct sys_reg_params *p,
628 const struct sys_reg_desc *rd,
629 u64 *dbg_reg)
630{
631 u64 mask, shift, val;
632
633 get_access_mask(r: rd, mask: &mask, shift: &shift);
634
635 val = *dbg_reg;
636 val &= ~mask;
637 val |= (p->regval & (mask >> shift)) << shift;
638 *dbg_reg = val;
639
640 vcpu_set_flag(vcpu, DEBUG_DIRTY);
641}
642
643static void dbg_to_reg(struct kvm_vcpu *vcpu,
644 struct sys_reg_params *p,
645 const struct sys_reg_desc *rd,
646 u64 *dbg_reg)
647{
648 u64 mask, shift;
649
650 get_access_mask(r: rd, mask: &mask, shift: &shift);
651 p->regval = (*dbg_reg & mask) >> shift;
652}
653
654static bool trap_bvr(struct kvm_vcpu *vcpu,
655 struct sys_reg_params *p,
656 const struct sys_reg_desc *rd)
657{
658 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659
660 if (p->is_write)
661 reg_to_dbg(vcpu, p, rd, dbg_reg);
662 else
663 dbg_to_reg(vcpu, p, rd, dbg_reg);
664
665 trace_trap_reg(fn: __func__, reg: rd->CRm, is_write: p->is_write, write_value: *dbg_reg);
666
667 return true;
668}
669
670static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671 u64 val)
672{
673 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674 return 0;
675}
676
677static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678 u64 *val)
679{
680 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681 return 0;
682}
683
684static u64 reset_bvr(struct kvm_vcpu *vcpu,
685 const struct sys_reg_desc *rd)
686{
687 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688 return rd->val;
689}
690
691static bool trap_bcr(struct kvm_vcpu *vcpu,
692 struct sys_reg_params *p,
693 const struct sys_reg_desc *rd)
694{
695 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696
697 if (p->is_write)
698 reg_to_dbg(vcpu, p, rd, dbg_reg);
699 else
700 dbg_to_reg(vcpu, p, rd, dbg_reg);
701
702 trace_trap_reg(fn: __func__, reg: rd->CRm, is_write: p->is_write, write_value: *dbg_reg);
703
704 return true;
705}
706
707static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708 u64 val)
709{
710 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711 return 0;
712}
713
714static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 u64 *val)
716{
717 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718 return 0;
719}
720
721static u64 reset_bcr(struct kvm_vcpu *vcpu,
722 const struct sys_reg_desc *rd)
723{
724 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725 return rd->val;
726}
727
728static bool trap_wvr(struct kvm_vcpu *vcpu,
729 struct sys_reg_params *p,
730 const struct sys_reg_desc *rd)
731{
732 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733
734 if (p->is_write)
735 reg_to_dbg(vcpu, p, rd, dbg_reg);
736 else
737 dbg_to_reg(vcpu, p, rd, dbg_reg);
738
739 trace_trap_reg(fn: __func__, reg: rd->CRm, is_write: p->is_write,
740 write_value: vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741
742 return true;
743}
744
745static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746 u64 val)
747{
748 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749 return 0;
750}
751
752static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753 u64 *val)
754{
755 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756 return 0;
757}
758
759static u64 reset_wvr(struct kvm_vcpu *vcpu,
760 const struct sys_reg_desc *rd)
761{
762 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763 return rd->val;
764}
765
766static bool trap_wcr(struct kvm_vcpu *vcpu,
767 struct sys_reg_params *p,
768 const struct sys_reg_desc *rd)
769{
770 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771
772 if (p->is_write)
773 reg_to_dbg(vcpu, p, rd, dbg_reg);
774 else
775 dbg_to_reg(vcpu, p, rd, dbg_reg);
776
777 trace_trap_reg(fn: __func__, reg: rd->CRm, is_write: p->is_write, write_value: *dbg_reg);
778
779 return true;
780}
781
782static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783 u64 val)
784{
785 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786 return 0;
787}
788
789static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790 u64 *val)
791{
792 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793 return 0;
794}
795
796static u64 reset_wcr(struct kvm_vcpu *vcpu,
797 const struct sys_reg_desc *rd)
798{
799 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800 return rd->val;
801}
802
803static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804{
805 u64 amair = read_sysreg(amair_el1);
806 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807 return amair;
808}
809
810static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811{
812 u64 actlr = read_sysreg(actlr_el1);
813 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814 return actlr;
815}
816
817static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818{
819 u64 mpidr;
820
821 /*
822 * Map the vcpu_id into the first three affinity level fields of
823 * the MPIDR. We limit the number of VCPUs in level 0 due to a
824 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825 * of the GICv3 to be able to address each CPU directly when
826 * sending IPIs.
827 */
828 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831 mpidr |= (1ULL << 31);
832 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833
834 return mpidr;
835}
836
837static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838 const struct sys_reg_desc *r)
839{
840 if (kvm_vcpu_has_pmu(vcpu))
841 return 0;
842
843 return REG_HIDDEN;
844}
845
846static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847{
848 u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849 u8 n = vcpu->kvm->arch.pmcr_n;
850
851 if (n)
852 mask |= GENMASK(n - 1, 0);
853
854 reset_unknown(vcpu, r);
855 __vcpu_sys_reg(vcpu, r->reg) &= mask;
856
857 return __vcpu_sys_reg(vcpu, r->reg);
858}
859
860static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861{
862 reset_unknown(vcpu, r);
863 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864
865 return __vcpu_sys_reg(vcpu, r->reg);
866}
867
868static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869{
870 /* This thing will UNDEF, who cares about the reset value? */
871 if (!kvm_vcpu_has_pmu(vcpu))
872 return 0;
873
874 reset_unknown(vcpu, r);
875 __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876
877 return __vcpu_sys_reg(vcpu, r->reg);
878}
879
880static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881{
882 reset_unknown(vcpu, r);
883 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884
885 return __vcpu_sys_reg(vcpu, r->reg);
886}
887
888static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889{
890 u64 pmcr = 0;
891
892 if (!kvm_supports_32bit_el0())
893 pmcr |= ARMV8_PMU_PMCR_LC;
894
895 /*
896 * The value of PMCR.N field is included when the
897 * vCPU register is read via kvm_vcpu_read_pmcr().
898 */
899 __vcpu_sys_reg(vcpu, r->reg) = pmcr;
900
901 return __vcpu_sys_reg(vcpu, r->reg);
902}
903
904static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905{
906 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908
909 if (!enabled)
910 kvm_inject_undefined(vcpu);
911
912 return !enabled;
913}
914
915static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916{
917 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918}
919
920static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921{
922 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923}
924
925static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926{
927 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928}
929
930static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931{
932 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933}
934
935static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936 const struct sys_reg_desc *r)
937{
938 u64 val;
939
940 if (pmu_access_el0_disabled(vcpu))
941 return false;
942
943 if (p->is_write) {
944 /*
945 * Only update writeable bits of PMCR (continuing into
946 * kvm_pmu_handle_pmcr() as well)
947 */
948 val = kvm_vcpu_read_pmcr(vcpu);
949 val &= ~ARMV8_PMU_PMCR_MASK;
950 val |= p->regval & ARMV8_PMU_PMCR_MASK;
951 if (!kvm_supports_32bit_el0())
952 val |= ARMV8_PMU_PMCR_LC;
953 kvm_pmu_handle_pmcr(vcpu, val);
954 } else {
955 /* PMCR.P & PMCR.C are RAZ */
956 val = kvm_vcpu_read_pmcr(vcpu)
957 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958 p->regval = val;
959 }
960
961 return true;
962}
963
964static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965 const struct sys_reg_desc *r)
966{
967 if (pmu_access_event_counter_el0_disabled(vcpu))
968 return false;
969
970 if (p->is_write)
971 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972 else
973 /* return PMSELR.SEL field */
974 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975 & ARMV8_PMU_COUNTER_MASK;
976
977 return true;
978}
979
980static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981 const struct sys_reg_desc *r)
982{
983 u64 pmceid, mask, shift;
984
985 BUG_ON(p->is_write);
986
987 if (pmu_access_el0_disabled(vcpu))
988 return false;
989
990 get_access_mask(r, mask: &mask, shift: &shift);
991
992 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993 pmceid &= mask;
994 pmceid >>= shift;
995
996 p->regval = pmceid;
997
998 return true;
999}
1000
1001static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002{
1003 u64 pmcr, val;
1004
1005 pmcr = kvm_vcpu_read_pmcr(vcpu);
1006 val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008 kvm_inject_undefined(vcpu);
1009 return false;
1010 }
1011
1012 return true;
1013}
1014
1015static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016 u64 *val)
1017{
1018 u64 idx;
1019
1020 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021 /* PMCCNTR_EL0 */
1022 idx = ARMV8_PMU_CYCLE_IDX;
1023 else
1024 /* PMEVCNTRn_EL0 */
1025 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026
1027 *val = kvm_pmu_get_counter_value(vcpu, idx);
1028 return 0;
1029}
1030
1031static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032 struct sys_reg_params *p,
1033 const struct sys_reg_desc *r)
1034{
1035 u64 idx = ~0UL;
1036
1037 if (r->CRn == 9 && r->CRm == 13) {
1038 if (r->Op2 == 2) {
1039 /* PMXEVCNTR_EL0 */
1040 if (pmu_access_event_counter_el0_disabled(vcpu))
1041 return false;
1042
1043 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044 & ARMV8_PMU_COUNTER_MASK;
1045 } else if (r->Op2 == 0) {
1046 /* PMCCNTR_EL0 */
1047 if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048 return false;
1049
1050 idx = ARMV8_PMU_CYCLE_IDX;
1051 }
1052 } else if (r->CRn == 0 && r->CRm == 9) {
1053 /* PMCCNTR */
1054 if (pmu_access_event_counter_el0_disabled(vcpu))
1055 return false;
1056
1057 idx = ARMV8_PMU_CYCLE_IDX;
1058 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059 /* PMEVCNTRn_EL0 */
1060 if (pmu_access_event_counter_el0_disabled(vcpu))
1061 return false;
1062
1063 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064 }
1065
1066 /* Catch any decoding mistake */
1067 WARN_ON(idx == ~0UL);
1068
1069 if (!pmu_counter_idx_valid(vcpu, idx))
1070 return false;
1071
1072 if (p->is_write) {
1073 if (pmu_access_el0_disabled(vcpu))
1074 return false;
1075
1076 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077 } else {
1078 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079 }
1080
1081 return true;
1082}
1083
1084static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085 const struct sys_reg_desc *r)
1086{
1087 u64 idx, reg;
1088
1089 if (pmu_access_el0_disabled(vcpu))
1090 return false;
1091
1092 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093 /* PMXEVTYPER_EL0 */
1094 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095 reg = PMEVTYPER0_EL0 + idx;
1096 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098 if (idx == ARMV8_PMU_CYCLE_IDX)
1099 reg = PMCCFILTR_EL0;
1100 else
1101 /* PMEVTYPERn_EL0 */
1102 reg = PMEVTYPER0_EL0 + idx;
1103 } else {
1104 BUG();
1105 }
1106
1107 if (!pmu_counter_idx_valid(vcpu, idx))
1108 return false;
1109
1110 if (p->is_write) {
1111 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112 kvm_vcpu_pmu_restore_guest(vcpu);
1113 } else {
1114 p->regval = __vcpu_sys_reg(vcpu, reg);
1115 }
1116
1117 return true;
1118}
1119
1120static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121{
1122 bool set;
1123
1124 val &= kvm_pmu_valid_counter_mask(vcpu);
1125
1126 switch (r->reg) {
1127 case PMOVSSET_EL0:
1128 /* CRm[1] being set indicates a SET register, and CLR otherwise */
1129 set = r->CRm & 2;
1130 break;
1131 default:
1132 /* Op2[0] being set indicates a SET register, and CLR otherwise */
1133 set = r->Op2 & 1;
1134 break;
1135 }
1136
1137 if (set)
1138 __vcpu_sys_reg(vcpu, r->reg) |= val;
1139 else
1140 __vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141
1142 return 0;
1143}
1144
1145static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146{
1147 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148
1149 *val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150 return 0;
1151}
1152
1153static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154 const struct sys_reg_desc *r)
1155{
1156 u64 val, mask;
1157
1158 if (pmu_access_el0_disabled(vcpu))
1159 return false;
1160
1161 mask = kvm_pmu_valid_counter_mask(vcpu);
1162 if (p->is_write) {
1163 val = p->regval & mask;
1164 if (r->Op2 & 0x1) {
1165 /* accessing PMCNTENSET_EL0 */
1166 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167 kvm_pmu_enable_counter_mask(vcpu, val);
1168 kvm_vcpu_pmu_restore_guest(vcpu);
1169 } else {
1170 /* accessing PMCNTENCLR_EL0 */
1171 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172 kvm_pmu_disable_counter_mask(vcpu, val);
1173 }
1174 } else {
1175 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176 }
1177
1178 return true;
1179}
1180
1181static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182 const struct sys_reg_desc *r)
1183{
1184 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185
1186 if (check_pmu_access_disabled(vcpu, flags: 0))
1187 return false;
1188
1189 if (p->is_write) {
1190 u64 val = p->regval & mask;
1191
1192 if (r->Op2 & 0x1)
1193 /* accessing PMINTENSET_EL1 */
1194 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195 else
1196 /* accessing PMINTENCLR_EL1 */
1197 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198 } else {
1199 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200 }
1201
1202 return true;
1203}
1204
1205static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206 const struct sys_reg_desc *r)
1207{
1208 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209
1210 if (pmu_access_el0_disabled(vcpu))
1211 return false;
1212
1213 if (p->is_write) {
1214 if (r->CRm & 0x2)
1215 /* accessing PMOVSSET_EL0 */
1216 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217 else
1218 /* accessing PMOVSCLR_EL0 */
1219 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220 } else {
1221 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222 }
1223
1224 return true;
1225}
1226
1227static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228 const struct sys_reg_desc *r)
1229{
1230 u64 mask;
1231
1232 if (!p->is_write)
1233 return read_from_write_only(vcpu, params: p, r);
1234
1235 if (pmu_write_swinc_el0_disabled(vcpu))
1236 return false;
1237
1238 mask = kvm_pmu_valid_counter_mask(vcpu);
1239 kvm_pmu_software_increment(vcpu, p->regval & mask);
1240 return true;
1241}
1242
1243static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244 const struct sys_reg_desc *r)
1245{
1246 if (p->is_write) {
1247 if (!vcpu_mode_priv(vcpu)) {
1248 kvm_inject_undefined(vcpu);
1249 return false;
1250 }
1251
1252 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253 p->regval & ARMV8_PMU_USERENR_MASK;
1254 } else {
1255 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256 & ARMV8_PMU_USERENR_MASK;
1257 }
1258
1259 return true;
1260}
1261
1262static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263 u64 *val)
1264{
1265 *val = kvm_vcpu_read_pmcr(vcpu);
1266 return 0;
1267}
1268
1269static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270 u64 val)
1271{
1272 u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273 struct kvm *kvm = vcpu->kvm;
1274
1275 mutex_lock(&kvm->arch.config_lock);
1276
1277 /*
1278 * The vCPU can't have more counters than the PMU hardware
1279 * implements. Ignore this error to maintain compatibility
1280 * with the existing KVM behavior.
1281 */
1282 if (!kvm_vm_has_ran_once(kvm) &&
1283 new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284 kvm->arch.pmcr_n = new_n;
1285
1286 mutex_unlock(lock: &kvm->arch.config_lock);
1287
1288 /*
1289 * Ignore writes to RES0 bits, read only bits that are cleared on
1290 * vCPU reset, and writable bits that KVM doesn't support yet.
1291 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293 * But, we leave the bit as it is here, as the vCPU's PMUver might
1294 * be changed later (NOTE: the bit will be cleared on first vCPU run
1295 * if necessary).
1296 */
1297 val &= ARMV8_PMU_PMCR_MASK;
1298
1299 /* The LC bit is RES1 when AArch32 is not supported */
1300 if (!kvm_supports_32bit_el0())
1301 val |= ARMV8_PMU_PMCR_LC;
1302
1303 __vcpu_sys_reg(vcpu, r->reg) = val;
1304 return 0;
1305}
1306
1307/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308#define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1309 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1310 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
1311 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1312 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
1313 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1314 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
1315 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1316 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
1317
1318#define PMU_SYS_REG(name) \
1319 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
1320 .visibility = pmu_visibility
1321
1322/* Macro to expand the PMEVCNTRn_EL0 register */
1323#define PMU_PMEVCNTR_EL0(n) \
1324 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
1325 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
1326 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327
1328/* Macro to expand the PMEVTYPERn_EL0 register */
1329#define PMU_PMEVTYPER_EL0(n) \
1330 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
1331 .reset = reset_pmevtyper, \
1332 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333
1334static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335 const struct sys_reg_desc *r)
1336{
1337 kvm_inject_undefined(vcpu);
1338
1339 return false;
1340}
1341
1342/* Macro to expand the AMU counter and type registers*/
1343#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347
1348static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349 const struct sys_reg_desc *rd)
1350{
1351 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352}
1353
1354/*
1355 * If we land here on a PtrAuth access, that is because we didn't
1356 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357 * way this happens is when the guest does not have PtrAuth support
1358 * enabled.
1359 */
1360#define __PTRAUTH_KEY(k) \
1361 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1362 .visibility = ptrauth_visibility}
1363
1364#define PTRAUTH_KEY(k) \
1365 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1366 __PTRAUTH_KEY(k ## KEYHI_EL1)
1367
1368static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369 struct sys_reg_params *p,
1370 const struct sys_reg_desc *r)
1371{
1372 enum kvm_arch_timers tmr;
1373 enum kvm_arch_timer_regs treg;
1374 u64 reg = reg_to_encoding(r);
1375
1376 switch (reg) {
1377 case SYS_CNTP_TVAL_EL0:
1378 case SYS_AARCH32_CNTP_TVAL:
1379 tmr = TIMER_PTIMER;
1380 treg = TIMER_REG_TVAL;
1381 break;
1382 case SYS_CNTP_CTL_EL0:
1383 case SYS_AARCH32_CNTP_CTL:
1384 tmr = TIMER_PTIMER;
1385 treg = TIMER_REG_CTL;
1386 break;
1387 case SYS_CNTP_CVAL_EL0:
1388 case SYS_AARCH32_CNTP_CVAL:
1389 tmr = TIMER_PTIMER;
1390 treg = TIMER_REG_CVAL;
1391 break;
1392 case SYS_CNTPCT_EL0:
1393 case SYS_CNTPCTSS_EL0:
1394 case SYS_AARCH32_CNTPCT:
1395 tmr = TIMER_PTIMER;
1396 treg = TIMER_REG_CNT;
1397 break;
1398 default:
1399 print_sys_reg_msg(p, fmt: "%s", "Unhandled trapped timer register");
1400 kvm_inject_undefined(vcpu);
1401 return false;
1402 }
1403
1404 if (p->is_write)
1405 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, val: p->regval);
1406 else
1407 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408
1409 return true;
1410}
1411
1412static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413 s64 new, s64 cur)
1414{
1415 struct arm64_ftr_bits kvm_ftr = *ftrp;
1416
1417 /* Some features have different safe value type in KVM than host features */
1418 switch (id) {
1419 case SYS_ID_AA64DFR0_EL1:
1420 switch (kvm_ftr.shift) {
1421 case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422 kvm_ftr.type = FTR_LOWER_SAFE;
1423 break;
1424 case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425 kvm_ftr.type = FTR_LOWER_SAFE;
1426 break;
1427 }
1428 break;
1429 case SYS_ID_DFR0_EL1:
1430 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431 kvm_ftr.type = FTR_LOWER_SAFE;
1432 break;
1433 }
1434
1435 return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436}
1437
1438/*
1439 * arm64_check_features() - Check if a feature register value constitutes
1440 * a subset of features indicated by the idreg's KVM sanitised limit.
1441 *
1442 * This function will check if each feature field of @val is the "safe" value
1443 * against idreg's KVM sanitised limit return from reset() callback.
1444 * If a field value in @val is the same as the one in limit, it is always
1445 * considered the safe value regardless For register fields that are not in
1446 * writable, only the value in limit is considered the safe value.
1447 *
1448 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449 */
1450static int arm64_check_features(struct kvm_vcpu *vcpu,
1451 const struct sys_reg_desc *rd,
1452 u64 val)
1453{
1454 const struct arm64_ftr_reg *ftr_reg;
1455 const struct arm64_ftr_bits *ftrp = NULL;
1456 u32 id = reg_to_encoding(rd);
1457 u64 writable_mask = rd->val;
1458 u64 limit = rd->reset(vcpu, rd);
1459 u64 mask = 0;
1460
1461 /*
1462 * Hidden and unallocated ID registers may not have a corresponding
1463 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464 * only safe value is 0.
1465 */
1466 if (sysreg_visible_as_raz(vcpu, r: rd))
1467 return val ? -E2BIG : 0;
1468
1469 ftr_reg = get_arm64_ftr_reg(id);
1470 if (!ftr_reg)
1471 return -EINVAL;
1472
1473 ftrp = ftr_reg->ftr_bits;
1474
1475 for (; ftrp && ftrp->width; ftrp++) {
1476 s64 f_val, f_lim, safe_val;
1477 u64 ftr_mask;
1478
1479 ftr_mask = arm64_ftr_mask(ftrp);
1480 if ((ftr_mask & writable_mask) != ftr_mask)
1481 continue;
1482
1483 f_val = arm64_ftr_value(ftrp, val);
1484 f_lim = arm64_ftr_value(ftrp, limit);
1485 mask |= ftr_mask;
1486
1487 if (f_val == f_lim)
1488 safe_val = f_val;
1489 else
1490 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, new: f_val, cur: f_lim);
1491
1492 if (safe_val != f_val)
1493 return -E2BIG;
1494 }
1495
1496 /* For fields that are not writable, values in limit are the safe values. */
1497 if ((val & ~mask) != (limit & ~mask))
1498 return -E2BIG;
1499
1500 return 0;
1501}
1502
1503static u8 pmuver_to_perfmon(u8 pmuver)
1504{
1505 switch (pmuver) {
1506 case ID_AA64DFR0_EL1_PMUVer_IMP:
1507 return ID_DFR0_EL1_PerfMon_PMUv3;
1508 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509 return ID_DFR0_EL1_PerfMon_IMPDEF;
1510 default:
1511 /* Anything ARMv8.1+ and NI have the same value. For now. */
1512 return pmuver;
1513 }
1514}
1515
1516/* Read a sanitised cpufeature ID register by sys_reg_desc */
1517static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518 const struct sys_reg_desc *r)
1519{
1520 u32 id = reg_to_encoding(r);
1521 u64 val;
1522
1523 if (sysreg_visible_as_raz(vcpu, r))
1524 return 0;
1525
1526 val = read_sanitised_ftr_reg(id);
1527
1528 switch (id) {
1529 case SYS_ID_AA64PFR1_EL1:
1530 if (!kvm_has_mte(vcpu->kvm))
1531 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532
1533 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534 break;
1535 case SYS_ID_AA64ISAR1_EL1:
1536 if (!vcpu_has_ptrauth(vcpu))
1537 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541 break;
1542 case SYS_ID_AA64ISAR2_EL1:
1543 if (!vcpu_has_ptrauth(vcpu))
1544 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548 break;
1549 case SYS_ID_AA64MMFR2_EL1:
1550 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551 break;
1552 case SYS_ID_MMFR4_EL1:
1553 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554 break;
1555 }
1556
1557 return val;
1558}
1559
1560static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561 const struct sys_reg_desc *r)
1562{
1563 return __kvm_read_sanitised_id_reg(vcpu, r);
1564}
1565
1566static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567{
1568 return IDREG(vcpu->kvm, reg_to_encoding(r));
1569}
1570
1571/*
1572 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574 */
1575static inline bool is_id_reg(u32 id)
1576{
1577 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579 sys_reg_CRm(id) < 8);
1580}
1581
1582static inline bool is_aa32_id_reg(u32 id)
1583{
1584 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586 sys_reg_CRm(id) <= 3);
1587}
1588
1589static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590 const struct sys_reg_desc *r)
1591{
1592 u32 id = reg_to_encoding(r);
1593
1594 switch (id) {
1595 case SYS_ID_AA64ZFR0_EL1:
1596 if (!vcpu_has_sve(vcpu))
1597 return REG_RAZ;
1598 break;
1599 }
1600
1601 return 0;
1602}
1603
1604static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605 const struct sys_reg_desc *r)
1606{
1607 /*
1608 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609 * EL. Promote to RAZ/WI in order to guarantee consistency between
1610 * systems.
1611 */
1612 if (!kvm_supports_32bit_el0())
1613 return REG_RAZ | REG_USER_WI;
1614
1615 return id_visibility(vcpu, r);
1616}
1617
1618static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619 const struct sys_reg_desc *r)
1620{
1621 return REG_RAZ;
1622}
1623
1624/* cpufeature ID register access trap handlers */
1625
1626static bool access_id_reg(struct kvm_vcpu *vcpu,
1627 struct sys_reg_params *p,
1628 const struct sys_reg_desc *r)
1629{
1630 if (p->is_write)
1631 return write_to_read_only(vcpu, params: p, r);
1632
1633 p->regval = read_id_reg(vcpu, r);
1634
1635 return true;
1636}
1637
1638/* Visibility overrides for SVE-specific control registers */
1639static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640 const struct sys_reg_desc *rd)
1641{
1642 if (vcpu_has_sve(vcpu))
1643 return 0;
1644
1645 return REG_HIDDEN;
1646}
1647
1648static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649 const struct sys_reg_desc *rd)
1650{
1651 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652
1653 if (!vcpu_has_sve(vcpu))
1654 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655
1656 /*
1657 * The default is to expose CSV2 == 1 if the HW isn't affected.
1658 * Although this is a per-CPU feature, we make it global because
1659 * asymmetric systems are just a nuisance.
1660 *
1661 * Userspace can override this as long as it doesn't promise
1662 * the impossible.
1663 */
1664 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667 }
1668 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671 }
1672
1673 if (kvm_vgic_global_state.type == VGIC_V3) {
1674 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676 }
1677
1678 val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679
1680 return val;
1681}
1682
1683#define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \
1684({ \
1685 u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \
1686 (val) &= ~reg##_##field##_MASK; \
1687 (val) |= FIELD_PREP(reg##_##field##_MASK, \
1688 min(__f_val, \
1689 (u64)SYS_FIELD_VALUE(reg, field, limit))); \
1690 (val); \
1691})
1692
1693static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1694 const struct sys_reg_desc *rd)
1695{
1696 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1697
1698 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1699
1700 /*
1701 * Only initialize the PMU version if the vCPU was configured with one.
1702 */
1703 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1704 if (kvm_vcpu_has_pmu(vcpu))
1705 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1706 kvm_arm_pmu_get_pmuver_limit());
1707
1708 /* Hide SPE from guests */
1709 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1710
1711 return val;
1712}
1713
1714static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1715 const struct sys_reg_desc *rd,
1716 u64 val)
1717{
1718 u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1719 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1720
1721 /*
1722 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1723 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1724 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1725 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1726 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1727 *
1728 * At minimum, we're on the hook to allow values that were given to
1729 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1730 * with a more sensible NI. The value of an ID register changing under
1731 * the nose of the guest is unfortunate, but is certainly no more
1732 * surprising than an ill-guided PMU driver poking at impdef system
1733 * registers that end in an UNDEF...
1734 */
1735 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1736 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1737
1738 /*
1739 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1740 * nonzero minimum safe value.
1741 */
1742 if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1743 return -EINVAL;
1744
1745 return set_id_reg(vcpu, rd, val);
1746}
1747
1748static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1749 const struct sys_reg_desc *rd)
1750{
1751 u8 perfmon = pmuver_to_perfmon(pmuver: kvm_arm_pmu_get_pmuver_limit());
1752 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1753
1754 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1755 if (kvm_vcpu_has_pmu(vcpu))
1756 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1757
1758 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1759
1760 return val;
1761}
1762
1763static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1764 const struct sys_reg_desc *rd,
1765 u64 val)
1766{
1767 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1768 u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1769
1770 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1771 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1772 perfmon = 0;
1773 }
1774
1775 /*
1776 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1777 * it doesn't promise more than what the HW gives us on the
1778 * AArch64 side (as everything is emulated with that), and
1779 * that this is a PMUv3.
1780 */
1781 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1782 return -EINVAL;
1783
1784 if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1785 return -EINVAL;
1786
1787 return set_id_reg(vcpu, rd, val);
1788}
1789
1790/*
1791 * cpufeature ID register user accessors
1792 *
1793 * For now, these registers are immutable for userspace, so no values
1794 * are stored, and for set_id_reg() we don't allow the effective value
1795 * to be changed.
1796 */
1797static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1798 u64 *val)
1799{
1800 /*
1801 * Avoid locking if the VM has already started, as the ID registers are
1802 * guaranteed to be invariant at that point.
1803 */
1804 if (kvm_vm_has_ran_once(vcpu->kvm)) {
1805 *val = read_id_reg(vcpu, r: rd);
1806 return 0;
1807 }
1808
1809 mutex_lock(&vcpu->kvm->arch.config_lock);
1810 *val = read_id_reg(vcpu, r: rd);
1811 mutex_unlock(lock: &vcpu->kvm->arch.config_lock);
1812
1813 return 0;
1814}
1815
1816static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1817 u64 val)
1818{
1819 u32 id = reg_to_encoding(rd);
1820 int ret;
1821
1822 mutex_lock(&vcpu->kvm->arch.config_lock);
1823
1824 /*
1825 * Once the VM has started the ID registers are immutable. Reject any
1826 * write that does not match the final register value.
1827 */
1828 if (kvm_vm_has_ran_once(vcpu->kvm)) {
1829 if (val != read_id_reg(vcpu, r: rd))
1830 ret = -EBUSY;
1831 else
1832 ret = 0;
1833
1834 mutex_unlock(lock: &vcpu->kvm->arch.config_lock);
1835 return ret;
1836 }
1837
1838 ret = arm64_check_features(vcpu, rd, val);
1839 if (!ret)
1840 IDREG(vcpu->kvm, id) = val;
1841
1842 mutex_unlock(lock: &vcpu->kvm->arch.config_lock);
1843
1844 /*
1845 * arm64_check_features() returns -E2BIG to indicate the register's
1846 * feature set is a superset of the maximally-allowed register value.
1847 * While it would be nice to precisely describe this to userspace, the
1848 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1849 * writes return -EINVAL.
1850 */
1851 if (ret == -E2BIG)
1852 ret = -EINVAL;
1853 return ret;
1854}
1855
1856static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1857 u64 *val)
1858{
1859 *val = 0;
1860 return 0;
1861}
1862
1863static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1864 u64 val)
1865{
1866 return 0;
1867}
1868
1869static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1870 const struct sys_reg_desc *r)
1871{
1872 if (p->is_write)
1873 return write_to_read_only(vcpu, params: p, r);
1874
1875 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1876 return true;
1877}
1878
1879static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1880 const struct sys_reg_desc *r)
1881{
1882 if (p->is_write)
1883 return write_to_read_only(vcpu, params: p, r);
1884
1885 p->regval = __vcpu_sys_reg(vcpu, r->reg);
1886 return true;
1887}
1888
1889/*
1890 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1891 * by the physical CPU which the vcpu currently resides in.
1892 */
1893static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1894{
1895 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1896 u64 clidr;
1897 u8 loc;
1898
1899 if ((ctr_el0 & CTR_EL0_IDC)) {
1900 /*
1901 * Data cache clean to the PoU is not required so LoUU and LoUIS
1902 * will not be set and a unified cache, which will be marked as
1903 * LoC, will be added.
1904 *
1905 * If not DIC, let the unified cache L2 so that an instruction
1906 * cache can be added as L1 later.
1907 */
1908 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1909 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1910 } else {
1911 /*
1912 * Data cache clean to the PoU is required so let L1 have a data
1913 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1914 * it can be marked as LoC too.
1915 */
1916 loc = 1;
1917 clidr = 1 << CLIDR_LOUU_SHIFT;
1918 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1919 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1920 }
1921
1922 /*
1923 * Instruction cache invalidation to the PoU is required so let L1 have
1924 * an instruction cache. If L1 already has a data cache, it will be
1925 * CACHE_TYPE_SEPARATE.
1926 */
1927 if (!(ctr_el0 & CTR_EL0_DIC))
1928 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1929
1930 clidr |= loc << CLIDR_LOC_SHIFT;
1931
1932 /*
1933 * Add tag cache unified to data cache. Allocation tags and data are
1934 * unified in a cache line so that it looks valid even if there is only
1935 * one cache line.
1936 */
1937 if (kvm_has_mte(vcpu->kvm))
1938 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1939
1940 __vcpu_sys_reg(vcpu, r->reg) = clidr;
1941
1942 return __vcpu_sys_reg(vcpu, r->reg);
1943}
1944
1945static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1946 u64 val)
1947{
1948 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1949 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1950
1951 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1952 return -EINVAL;
1953
1954 __vcpu_sys_reg(vcpu, rd->reg) = val;
1955
1956 return 0;
1957}
1958
1959static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1960 const struct sys_reg_desc *r)
1961{
1962 int reg = r->reg;
1963
1964 if (p->is_write)
1965 vcpu_write_sys_reg(vcpu, val: p->regval, reg);
1966 else
1967 p->regval = vcpu_read_sys_reg(vcpu, reg);
1968 return true;
1969}
1970
1971static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1972 const struct sys_reg_desc *r)
1973{
1974 u32 csselr;
1975
1976 if (p->is_write)
1977 return write_to_read_only(vcpu, params: p, r);
1978
1979 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1980 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1981 if (csselr < CSSELR_MAX)
1982 p->regval = get_ccsidr(vcpu, csselr);
1983
1984 return true;
1985}
1986
1987static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1988 const struct sys_reg_desc *rd)
1989{
1990 if (kvm_has_mte(vcpu->kvm))
1991 return 0;
1992
1993 return REG_HIDDEN;
1994}
1995
1996#define MTE_REG(name) { \
1997 SYS_DESC(SYS_##name), \
1998 .access = undef_access, \
1999 .reset = reset_unknown, \
2000 .reg = name, \
2001 .visibility = mte_visibility, \
2002}
2003
2004static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2005 const struct sys_reg_desc *rd)
2006{
2007 if (vcpu_has_nv(vcpu))
2008 return 0;
2009
2010 return REG_HIDDEN;
2011}
2012
2013static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2014 struct sys_reg_params *p,
2015 const struct sys_reg_desc *r)
2016{
2017 /*
2018 * We really shouldn't be here, and this is likely the result
2019 * of a misconfigured trap, as this register should target the
2020 * VNCR page, and nothing else.
2021 */
2022 return bad_trap(vcpu, params: p, r,
2023 msg: "trap of VNCR-backed register");
2024}
2025
2026static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2027 struct sys_reg_params *p,
2028 const struct sys_reg_desc *r)
2029{
2030 /*
2031 * We really shouldn't be here, and this is likely the result
2032 * of a misconfigured trap, as this register should target the
2033 * corresponding EL1, and nothing else.
2034 */
2035 return bad_trap(vcpu, params: p, r,
2036 msg: "trap of EL2 register redirected to EL1");
2037}
2038
2039#define EL2_REG(name, acc, rst, v) { \
2040 SYS_DESC(SYS_##name), \
2041 .access = acc, \
2042 .reset = rst, \
2043 .reg = name, \
2044 .visibility = el2_visibility, \
2045 .val = v, \
2046}
2047
2048#define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v)
2049#define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v)
2050
2051/*
2052 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2053 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2054 * handling traps. Given that, they are always hidden from userspace.
2055 */
2056static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2057 const struct sys_reg_desc *rd)
2058{
2059 return REG_HIDDEN_USER;
2060}
2061
2062#define EL12_REG(name, acc, rst, v) { \
2063 SYS_DESC(SYS_##name##_EL12), \
2064 .access = acc, \
2065 .reset = rst, \
2066 .reg = name##_EL1, \
2067 .val = v, \
2068 .visibility = hidden_user_visibility, \
2069}
2070
2071/*
2072 * Since reset() callback and field val are not used for idregs, they will be
2073 * used for specific purposes for idregs.
2074 * The reset() would return KVM sanitised register value. The value would be the
2075 * same as the host kernel sanitised value if there is no KVM sanitisation.
2076 * The val would be used as a mask indicating writable fields for the idreg.
2077 * Only bits with 1 are writable from userspace. This mask might not be
2078 * necessary in the future whenever all ID registers are enabled as writable
2079 * from userspace.
2080 */
2081
2082#define ID_DESC(name) \
2083 SYS_DESC(SYS_##name), \
2084 .access = access_id_reg, \
2085 .get_user = get_id_reg \
2086
2087/* sys_reg_desc initialiser for known cpufeature ID registers */
2088#define ID_SANITISED(name) { \
2089 ID_DESC(name), \
2090 .set_user = set_id_reg, \
2091 .visibility = id_visibility, \
2092 .reset = kvm_read_sanitised_id_reg, \
2093 .val = 0, \
2094}
2095
2096/* sys_reg_desc initialiser for known cpufeature ID registers */
2097#define AA32_ID_SANITISED(name) { \
2098 ID_DESC(name), \
2099 .set_user = set_id_reg, \
2100 .visibility = aa32_id_visibility, \
2101 .reset = kvm_read_sanitised_id_reg, \
2102 .val = 0, \
2103}
2104
2105/* sys_reg_desc initialiser for writable ID registers */
2106#define ID_WRITABLE(name, mask) { \
2107 ID_DESC(name), \
2108 .set_user = set_id_reg, \
2109 .visibility = id_visibility, \
2110 .reset = kvm_read_sanitised_id_reg, \
2111 .val = mask, \
2112}
2113
2114/*
2115 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2116 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2117 * (1 <= crm < 8, 0 <= Op2 < 8).
2118 */
2119#define ID_UNALLOCATED(crm, op2) { \
2120 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
2121 .access = access_id_reg, \
2122 .get_user = get_id_reg, \
2123 .set_user = set_id_reg, \
2124 .visibility = raz_visibility, \
2125 .reset = kvm_read_sanitised_id_reg, \
2126 .val = 0, \
2127}
2128
2129/*
2130 * sys_reg_desc initialiser for known ID registers that we hide from guests.
2131 * For now, these are exposed just like unallocated ID regs: they appear
2132 * RAZ for the guest.
2133 */
2134#define ID_HIDDEN(name) { \
2135 ID_DESC(name), \
2136 .set_user = set_id_reg, \
2137 .visibility = raz_visibility, \
2138 .reset = kvm_read_sanitised_id_reg, \
2139 .val = 0, \
2140}
2141
2142static bool access_sp_el1(struct kvm_vcpu *vcpu,
2143 struct sys_reg_params *p,
2144 const struct sys_reg_desc *r)
2145{
2146 if (p->is_write)
2147 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2148 else
2149 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2150
2151 return true;
2152}
2153
2154static bool access_elr(struct kvm_vcpu *vcpu,
2155 struct sys_reg_params *p,
2156 const struct sys_reg_desc *r)
2157{
2158 if (p->is_write)
2159 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2160 else
2161 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2162
2163 return true;
2164}
2165
2166static bool access_spsr(struct kvm_vcpu *vcpu,
2167 struct sys_reg_params *p,
2168 const struct sys_reg_desc *r)
2169{
2170 if (p->is_write)
2171 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2172 else
2173 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2174
2175 return true;
2176}
2177
2178static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2179{
2180 u64 val = r->val;
2181
2182 if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2183 val |= HCR_E2H;
2184
2185 return __vcpu_sys_reg(vcpu, r->reg) = val;
2186}
2187
2188/*
2189 * Architected system registers.
2190 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2191 *
2192 * Debug handling: We do trap most, if not all debug related system
2193 * registers. The implementation is good enough to ensure that a guest
2194 * can use these with minimal performance degradation. The drawback is
2195 * that we don't implement any of the external debug architecture.
2196 * This should be revisited if we ever encounter a more demanding
2197 * guest...
2198 */
2199static const struct sys_reg_desc sys_reg_descs[] = {
2200 DBG_BCR_BVR_WCR_WVR_EL1(0),
2201 DBG_BCR_BVR_WCR_WVR_EL1(1),
2202 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2203 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2204 DBG_BCR_BVR_WCR_WVR_EL1(2),
2205 DBG_BCR_BVR_WCR_WVR_EL1(3),
2206 DBG_BCR_BVR_WCR_WVR_EL1(4),
2207 DBG_BCR_BVR_WCR_WVR_EL1(5),
2208 DBG_BCR_BVR_WCR_WVR_EL1(6),
2209 DBG_BCR_BVR_WCR_WVR_EL1(7),
2210 DBG_BCR_BVR_WCR_WVR_EL1(8),
2211 DBG_BCR_BVR_WCR_WVR_EL1(9),
2212 DBG_BCR_BVR_WCR_WVR_EL1(10),
2213 DBG_BCR_BVR_WCR_WVR_EL1(11),
2214 DBG_BCR_BVR_WCR_WVR_EL1(12),
2215 DBG_BCR_BVR_WCR_WVR_EL1(13),
2216 DBG_BCR_BVR_WCR_WVR_EL1(14),
2217 DBG_BCR_BVR_WCR_WVR_EL1(15),
2218
2219 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2220 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2221 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2222 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2223 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2224 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2225 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2226 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2227 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2228
2229 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2230 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2231 // DBGDTR[TR]X_EL0 share the same encoding
2232 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2233
2234 { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2235
2236 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2237
2238 /*
2239 * ID regs: all ID_SANITISED() entries here must have corresponding
2240 * entries in arm64_ftr_regs[].
2241 */
2242
2243 /* AArch64 mappings of the AArch32 ID registers */
2244 /* CRm=1 */
2245 AA32_ID_SANITISED(ID_PFR0_EL1),
2246 AA32_ID_SANITISED(ID_PFR1_EL1),
2247 { SYS_DESC(SYS_ID_DFR0_EL1),
2248 .access = access_id_reg,
2249 .get_user = get_id_reg,
2250 .set_user = set_id_dfr0_el1,
2251 .visibility = aa32_id_visibility,
2252 .reset = read_sanitised_id_dfr0_el1,
2253 .val = ID_DFR0_EL1_PerfMon_MASK |
2254 ID_DFR0_EL1_CopDbg_MASK, },
2255 ID_HIDDEN(ID_AFR0_EL1),
2256 AA32_ID_SANITISED(ID_MMFR0_EL1),
2257 AA32_ID_SANITISED(ID_MMFR1_EL1),
2258 AA32_ID_SANITISED(ID_MMFR2_EL1),
2259 AA32_ID_SANITISED(ID_MMFR3_EL1),
2260
2261 /* CRm=2 */
2262 AA32_ID_SANITISED(ID_ISAR0_EL1),
2263 AA32_ID_SANITISED(ID_ISAR1_EL1),
2264 AA32_ID_SANITISED(ID_ISAR2_EL1),
2265 AA32_ID_SANITISED(ID_ISAR3_EL1),
2266 AA32_ID_SANITISED(ID_ISAR4_EL1),
2267 AA32_ID_SANITISED(ID_ISAR5_EL1),
2268 AA32_ID_SANITISED(ID_MMFR4_EL1),
2269 AA32_ID_SANITISED(ID_ISAR6_EL1),
2270
2271 /* CRm=3 */
2272 AA32_ID_SANITISED(MVFR0_EL1),
2273 AA32_ID_SANITISED(MVFR1_EL1),
2274 AA32_ID_SANITISED(MVFR2_EL1),
2275 ID_UNALLOCATED(3,3),
2276 AA32_ID_SANITISED(ID_PFR2_EL1),
2277 ID_HIDDEN(ID_DFR1_EL1),
2278 AA32_ID_SANITISED(ID_MMFR5_EL1),
2279 ID_UNALLOCATED(3,7),
2280
2281 /* AArch64 ID registers */
2282 /* CRm=4 */
2283 { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2284 .access = access_id_reg,
2285 .get_user = get_id_reg,
2286 .set_user = set_id_reg,
2287 .reset = read_sanitised_id_aa64pfr0_el1,
2288 .val = ~(ID_AA64PFR0_EL1_AMU |
2289 ID_AA64PFR0_EL1_MPAM |
2290 ID_AA64PFR0_EL1_SVE |
2291 ID_AA64PFR0_EL1_RAS |
2292 ID_AA64PFR0_EL1_GIC |
2293 ID_AA64PFR0_EL1_AdvSIMD |
2294 ID_AA64PFR0_EL1_FP), },
2295 ID_SANITISED(ID_AA64PFR1_EL1),
2296 ID_UNALLOCATED(4,2),
2297 ID_UNALLOCATED(4,3),
2298 ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2299 ID_HIDDEN(ID_AA64SMFR0_EL1),
2300 ID_UNALLOCATED(4,6),
2301 ID_UNALLOCATED(4,7),
2302
2303 /* CRm=5 */
2304 { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2305 .access = access_id_reg,
2306 .get_user = get_id_reg,
2307 .set_user = set_id_aa64dfr0_el1,
2308 .reset = read_sanitised_id_aa64dfr0_el1,
2309 .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2310 ID_AA64DFR0_EL1_DebugVer_MASK, },
2311 ID_SANITISED(ID_AA64DFR1_EL1),
2312 ID_UNALLOCATED(5,2),
2313 ID_UNALLOCATED(5,3),
2314 ID_HIDDEN(ID_AA64AFR0_EL1),
2315 ID_HIDDEN(ID_AA64AFR1_EL1),
2316 ID_UNALLOCATED(5,6),
2317 ID_UNALLOCATED(5,7),
2318
2319 /* CRm=6 */
2320 ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2321 ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2322 ID_AA64ISAR1_EL1_GPA |
2323 ID_AA64ISAR1_EL1_API |
2324 ID_AA64ISAR1_EL1_APA)),
2325 ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2326 ID_AA64ISAR2_EL1_APA3 |
2327 ID_AA64ISAR2_EL1_GPA3)),
2328 ID_UNALLOCATED(6,3),
2329 ID_UNALLOCATED(6,4),
2330 ID_UNALLOCATED(6,5),
2331 ID_UNALLOCATED(6,6),
2332 ID_UNALLOCATED(6,7),
2333
2334 /* CRm=7 */
2335 ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2336 ID_AA64MMFR0_EL1_TGRAN4_2 |
2337 ID_AA64MMFR0_EL1_TGRAN64_2 |
2338 ID_AA64MMFR0_EL1_TGRAN16_2)),
2339 ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2340 ID_AA64MMFR1_EL1_HCX |
2341 ID_AA64MMFR1_EL1_XNX |
2342 ID_AA64MMFR1_EL1_TWED |
2343 ID_AA64MMFR1_EL1_XNX |
2344 ID_AA64MMFR1_EL1_VH |
2345 ID_AA64MMFR1_EL1_VMIDBits)),
2346 ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2347 ID_AA64MMFR2_EL1_EVT |
2348 ID_AA64MMFR2_EL1_FWB |
2349 ID_AA64MMFR2_EL1_IDS |
2350 ID_AA64MMFR2_EL1_NV |
2351 ID_AA64MMFR2_EL1_CCIDX)),
2352 ID_SANITISED(ID_AA64MMFR3_EL1),
2353 ID_SANITISED(ID_AA64MMFR4_EL1),
2354 ID_UNALLOCATED(7,5),
2355 ID_UNALLOCATED(7,6),
2356 ID_UNALLOCATED(7,7),
2357
2358 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2359 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2360 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2361
2362 MTE_REG(RGSR_EL1),
2363 MTE_REG(GCR_EL1),
2364
2365 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2366 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2367 { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2368 { SYS_DESC(SYS_SMCR_EL1), undef_access },
2369 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2370 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2371 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2372 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2373
2374 PTRAUTH_KEY(APIA),
2375 PTRAUTH_KEY(APIB),
2376 PTRAUTH_KEY(APDA),
2377 PTRAUTH_KEY(APDB),
2378 PTRAUTH_KEY(APGA),
2379
2380 { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2381 { SYS_DESC(SYS_ELR_EL1), access_elr},
2382
2383 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2384 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2385 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2386
2387 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2388 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2389 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2390 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2391 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2392 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2393 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2394 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2395
2396 MTE_REG(TFSR_EL1),
2397 MTE_REG(TFSRE0_EL1),
2398
2399 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2400 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2401
2402 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2403 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2404 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2405 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2406 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2407 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2408 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2409 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2410 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2411 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2412 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2413 /* PMBIDR_EL1 is not trapped */
2414
2415 { PMU_SYS_REG(PMINTENSET_EL1),
2416 .access = access_pminten, .reg = PMINTENSET_EL1,
2417 .get_user = get_pmreg, .set_user = set_pmreg },
2418 { PMU_SYS_REG(PMINTENCLR_EL1),
2419 .access = access_pminten, .reg = PMINTENSET_EL1,
2420 .get_user = get_pmreg, .set_user = set_pmreg },
2421 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2422
2423 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2424 { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2425 { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2426 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2427
2428 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2429 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2430 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2431 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2432 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2433
2434 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2435 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2436
2437 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2438 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2439 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2440 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2441 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2442 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2443 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2444 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2445 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2446 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2447 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2448 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2449
2450 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2451 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2452
2453 { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2454
2455 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2456
2457 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2458
2459 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2460 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2461 .set_user = set_clidr },
2462 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2463 { SYS_DESC(SYS_SMIDR_EL1), undef_access },
2464 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2465 { SYS_DESC(SYS_CTR_EL0), access_ctr },
2466 { SYS_DESC(SYS_SVCR), undef_access },
2467
2468 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2469 .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2470 { PMU_SYS_REG(PMCNTENSET_EL0),
2471 .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2472 .get_user = get_pmreg, .set_user = set_pmreg },
2473 { PMU_SYS_REG(PMCNTENCLR_EL0),
2474 .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2475 .get_user = get_pmreg, .set_user = set_pmreg },
2476 { PMU_SYS_REG(PMOVSCLR_EL0),
2477 .access = access_pmovs, .reg = PMOVSSET_EL0,
2478 .get_user = get_pmreg, .set_user = set_pmreg },
2479 /*
2480 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2481 * previously (and pointlessly) advertised in the past...
2482 */
2483 { PMU_SYS_REG(PMSWINC_EL0),
2484 .get_user = get_raz_reg, .set_user = set_wi_reg,
2485 .access = access_pmswinc, .reset = NULL },
2486 { PMU_SYS_REG(PMSELR_EL0),
2487 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2488 { PMU_SYS_REG(PMCEID0_EL0),
2489 .access = access_pmceid, .reset = NULL },
2490 { PMU_SYS_REG(PMCEID1_EL0),
2491 .access = access_pmceid, .reset = NULL },
2492 { PMU_SYS_REG(PMCCNTR_EL0),
2493 .access = access_pmu_evcntr, .reset = reset_unknown,
2494 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2495 { PMU_SYS_REG(PMXEVTYPER_EL0),
2496 .access = access_pmu_evtyper, .reset = NULL },
2497 { PMU_SYS_REG(PMXEVCNTR_EL0),
2498 .access = access_pmu_evcntr, .reset = NULL },
2499 /*
2500 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2501 * in 32bit mode. Here we choose to reset it as zero for consistency.
2502 */
2503 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2504 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2505 { PMU_SYS_REG(PMOVSSET_EL0),
2506 .access = access_pmovs, .reg = PMOVSSET_EL0,
2507 .get_user = get_pmreg, .set_user = set_pmreg },
2508
2509 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2510 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2511 { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2512
2513 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2514
2515 { SYS_DESC(SYS_AMCR_EL0), undef_access },
2516 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2517 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2518 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2519 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2520 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2521 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2522 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2523 AMU_AMEVCNTR0_EL0(0),
2524 AMU_AMEVCNTR0_EL0(1),
2525 AMU_AMEVCNTR0_EL0(2),
2526 AMU_AMEVCNTR0_EL0(3),
2527 AMU_AMEVCNTR0_EL0(4),
2528 AMU_AMEVCNTR0_EL0(5),
2529 AMU_AMEVCNTR0_EL0(6),
2530 AMU_AMEVCNTR0_EL0(7),
2531 AMU_AMEVCNTR0_EL0(8),
2532 AMU_AMEVCNTR0_EL0(9),
2533 AMU_AMEVCNTR0_EL0(10),
2534 AMU_AMEVCNTR0_EL0(11),
2535 AMU_AMEVCNTR0_EL0(12),
2536 AMU_AMEVCNTR0_EL0(13),
2537 AMU_AMEVCNTR0_EL0(14),
2538 AMU_AMEVCNTR0_EL0(15),
2539 AMU_AMEVTYPER0_EL0(0),
2540 AMU_AMEVTYPER0_EL0(1),
2541 AMU_AMEVTYPER0_EL0(2),
2542 AMU_AMEVTYPER0_EL0(3),
2543 AMU_AMEVTYPER0_EL0(4),
2544 AMU_AMEVTYPER0_EL0(5),
2545 AMU_AMEVTYPER0_EL0(6),
2546 AMU_AMEVTYPER0_EL0(7),
2547 AMU_AMEVTYPER0_EL0(8),
2548 AMU_AMEVTYPER0_EL0(9),
2549 AMU_AMEVTYPER0_EL0(10),
2550 AMU_AMEVTYPER0_EL0(11),
2551 AMU_AMEVTYPER0_EL0(12),
2552 AMU_AMEVTYPER0_EL0(13),
2553 AMU_AMEVTYPER0_EL0(14),
2554 AMU_AMEVTYPER0_EL0(15),
2555 AMU_AMEVCNTR1_EL0(0),
2556 AMU_AMEVCNTR1_EL0(1),
2557 AMU_AMEVCNTR1_EL0(2),
2558 AMU_AMEVCNTR1_EL0(3),
2559 AMU_AMEVCNTR1_EL0(4),
2560 AMU_AMEVCNTR1_EL0(5),
2561 AMU_AMEVCNTR1_EL0(6),
2562 AMU_AMEVCNTR1_EL0(7),
2563 AMU_AMEVCNTR1_EL0(8),
2564 AMU_AMEVCNTR1_EL0(9),
2565 AMU_AMEVCNTR1_EL0(10),
2566 AMU_AMEVCNTR1_EL0(11),
2567 AMU_AMEVCNTR1_EL0(12),
2568 AMU_AMEVCNTR1_EL0(13),
2569 AMU_AMEVCNTR1_EL0(14),
2570 AMU_AMEVCNTR1_EL0(15),
2571 AMU_AMEVTYPER1_EL0(0),
2572 AMU_AMEVTYPER1_EL0(1),
2573 AMU_AMEVTYPER1_EL0(2),
2574 AMU_AMEVTYPER1_EL0(3),
2575 AMU_AMEVTYPER1_EL0(4),
2576 AMU_AMEVTYPER1_EL0(5),
2577 AMU_AMEVTYPER1_EL0(6),
2578 AMU_AMEVTYPER1_EL0(7),
2579 AMU_AMEVTYPER1_EL0(8),
2580 AMU_AMEVTYPER1_EL0(9),
2581 AMU_AMEVTYPER1_EL0(10),
2582 AMU_AMEVTYPER1_EL0(11),
2583 AMU_AMEVTYPER1_EL0(12),
2584 AMU_AMEVTYPER1_EL0(13),
2585 AMU_AMEVTYPER1_EL0(14),
2586 AMU_AMEVTYPER1_EL0(15),
2587
2588 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2589 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2590 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2591 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2592 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2593
2594 /* PMEVCNTRn_EL0 */
2595 PMU_PMEVCNTR_EL0(0),
2596 PMU_PMEVCNTR_EL0(1),
2597 PMU_PMEVCNTR_EL0(2),
2598 PMU_PMEVCNTR_EL0(3),
2599 PMU_PMEVCNTR_EL0(4),
2600 PMU_PMEVCNTR_EL0(5),
2601 PMU_PMEVCNTR_EL0(6),
2602 PMU_PMEVCNTR_EL0(7),
2603 PMU_PMEVCNTR_EL0(8),
2604 PMU_PMEVCNTR_EL0(9),
2605 PMU_PMEVCNTR_EL0(10),
2606 PMU_PMEVCNTR_EL0(11),
2607 PMU_PMEVCNTR_EL0(12),
2608 PMU_PMEVCNTR_EL0(13),
2609 PMU_PMEVCNTR_EL0(14),
2610 PMU_PMEVCNTR_EL0(15),
2611 PMU_PMEVCNTR_EL0(16),
2612 PMU_PMEVCNTR_EL0(17),
2613 PMU_PMEVCNTR_EL0(18),
2614 PMU_PMEVCNTR_EL0(19),
2615 PMU_PMEVCNTR_EL0(20),
2616 PMU_PMEVCNTR_EL0(21),
2617 PMU_PMEVCNTR_EL0(22),
2618 PMU_PMEVCNTR_EL0(23),
2619 PMU_PMEVCNTR_EL0(24),
2620 PMU_PMEVCNTR_EL0(25),
2621 PMU_PMEVCNTR_EL0(26),
2622 PMU_PMEVCNTR_EL0(27),
2623 PMU_PMEVCNTR_EL0(28),
2624 PMU_PMEVCNTR_EL0(29),
2625 PMU_PMEVCNTR_EL0(30),
2626 /* PMEVTYPERn_EL0 */
2627 PMU_PMEVTYPER_EL0(0),
2628 PMU_PMEVTYPER_EL0(1),
2629 PMU_PMEVTYPER_EL0(2),
2630 PMU_PMEVTYPER_EL0(3),
2631 PMU_PMEVTYPER_EL0(4),
2632 PMU_PMEVTYPER_EL0(5),
2633 PMU_PMEVTYPER_EL0(6),
2634 PMU_PMEVTYPER_EL0(7),
2635 PMU_PMEVTYPER_EL0(8),
2636 PMU_PMEVTYPER_EL0(9),
2637 PMU_PMEVTYPER_EL0(10),
2638 PMU_PMEVTYPER_EL0(11),
2639 PMU_PMEVTYPER_EL0(12),
2640 PMU_PMEVTYPER_EL0(13),
2641 PMU_PMEVTYPER_EL0(14),
2642 PMU_PMEVTYPER_EL0(15),
2643 PMU_PMEVTYPER_EL0(16),
2644 PMU_PMEVTYPER_EL0(17),
2645 PMU_PMEVTYPER_EL0(18),
2646 PMU_PMEVTYPER_EL0(19),
2647 PMU_PMEVTYPER_EL0(20),
2648 PMU_PMEVTYPER_EL0(21),
2649 PMU_PMEVTYPER_EL0(22),
2650 PMU_PMEVTYPER_EL0(23),
2651 PMU_PMEVTYPER_EL0(24),
2652 PMU_PMEVTYPER_EL0(25),
2653 PMU_PMEVTYPER_EL0(26),
2654 PMU_PMEVTYPER_EL0(27),
2655 PMU_PMEVTYPER_EL0(28),
2656 PMU_PMEVTYPER_EL0(29),
2657 PMU_PMEVTYPER_EL0(30),
2658 /*
2659 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2660 * in 32bit mode. Here we choose to reset it as zero for consistency.
2661 */
2662 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2663 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2664
2665 EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2666 EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2667 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2668 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2669 EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2670 EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2671 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2672 EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2673 EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2674 EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2675 EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2676 EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2677
2678 EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2679
2680 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2681 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2682 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2683 EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2684 EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2685
2686 { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2687 EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2688 EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2689 EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2690 EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2691 EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2692 { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2693
2694 /* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2695 { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2696 .visibility = hidden_user_visibility },
2697 { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2698 .visibility = hidden_user_visibility },
2699 { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2700 .visibility = hidden_user_visibility },
2701 { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2702 .visibility = hidden_user_visibility },
2703
2704 { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2705 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2706 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2707 EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2708 { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2709
2710 EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2711 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2712
2713 EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2714 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2715
2716 EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2717 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2718 { SYS_DESC(SYS_RMR_EL2), trap_undef },
2719
2720 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2721 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2722
2723 EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2724 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2725
2726 EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2727
2728 EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2729};
2730
2731static struct sys_reg_desc sys_insn_descs[] = {
2732 { SYS_DESC(SYS_DC_ISW), access_dcsw },
2733 { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2734 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2735 { SYS_DESC(SYS_DC_CSW), access_dcsw },
2736 { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2737 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2738 { SYS_DESC(SYS_DC_CISW), access_dcsw },
2739 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2740 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2741};
2742
2743static const struct sys_reg_desc *first_idreg;
2744
2745static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2746 struct sys_reg_params *p,
2747 const struct sys_reg_desc *r)
2748{
2749 if (p->is_write) {
2750 return ignore_write(vcpu, p);
2751 } else {
2752 u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2753 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
2754
2755 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2756 (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2757 (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2758 (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2759 (1 << 15) | (el3 << 14) | (el3 << 12));
2760 return true;
2761 }
2762}
2763
2764/*
2765 * AArch32 debug register mappings
2766 *
2767 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2768 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2769 *
2770 * None of the other registers share their location, so treat them as
2771 * if they were 64bit.
2772 */
2773#define DBG_BCR_BVR_WCR_WVR(n) \
2774 /* DBGBVRn */ \
2775 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2776 /* DBGBCRn */ \
2777 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
2778 /* DBGWVRn */ \
2779 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
2780 /* DBGWCRn */ \
2781 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2782
2783#define DBGBXVR(n) \
2784 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2785
2786/*
2787 * Trapped cp14 registers. We generally ignore most of the external
2788 * debug, on the principle that they don't really make sense to a
2789 * guest. Revisit this one day, would this principle change.
2790 */
2791static const struct sys_reg_desc cp14_regs[] = {
2792 /* DBGDIDR */
2793 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2794 /* DBGDTRRXext */
2795 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2796
2797 DBG_BCR_BVR_WCR_WVR(0),
2798 /* DBGDSCRint */
2799 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2800 DBG_BCR_BVR_WCR_WVR(1),
2801 /* DBGDCCINT */
2802 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2803 /* DBGDSCRext */
2804 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2805 DBG_BCR_BVR_WCR_WVR(2),
2806 /* DBGDTR[RT]Xint */
2807 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2808 /* DBGDTR[RT]Xext */
2809 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2810 DBG_BCR_BVR_WCR_WVR(3),
2811 DBG_BCR_BVR_WCR_WVR(4),
2812 DBG_BCR_BVR_WCR_WVR(5),
2813 /* DBGWFAR */
2814 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2815 /* DBGOSECCR */
2816 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2817 DBG_BCR_BVR_WCR_WVR(6),
2818 /* DBGVCR */
2819 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2820 DBG_BCR_BVR_WCR_WVR(7),
2821 DBG_BCR_BVR_WCR_WVR(8),
2822 DBG_BCR_BVR_WCR_WVR(9),
2823 DBG_BCR_BVR_WCR_WVR(10),
2824 DBG_BCR_BVR_WCR_WVR(11),
2825 DBG_BCR_BVR_WCR_WVR(12),
2826 DBG_BCR_BVR_WCR_WVR(13),
2827 DBG_BCR_BVR_WCR_WVR(14),
2828 DBG_BCR_BVR_WCR_WVR(15),
2829
2830 /* DBGDRAR (32bit) */
2831 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2832
2833 DBGBXVR(0),
2834 /* DBGOSLAR */
2835 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2836 DBGBXVR(1),
2837 /* DBGOSLSR */
2838 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2839 DBGBXVR(2),
2840 DBGBXVR(3),
2841 /* DBGOSDLR */
2842 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2843 DBGBXVR(4),
2844 /* DBGPRCR */
2845 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2846 DBGBXVR(5),
2847 DBGBXVR(6),
2848 DBGBXVR(7),
2849 DBGBXVR(8),
2850 DBGBXVR(9),
2851 DBGBXVR(10),
2852 DBGBXVR(11),
2853 DBGBXVR(12),
2854 DBGBXVR(13),
2855 DBGBXVR(14),
2856 DBGBXVR(15),
2857
2858 /* DBGDSAR (32bit) */
2859 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2860
2861 /* DBGDEVID2 */
2862 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2863 /* DBGDEVID1 */
2864 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2865 /* DBGDEVID */
2866 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2867 /* DBGCLAIMSET */
2868 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2869 /* DBGCLAIMCLR */
2870 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2871 /* DBGAUTHSTATUS */
2872 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2873};
2874
2875/* Trapped cp14 64bit registers */
2876static const struct sys_reg_desc cp14_64_regs[] = {
2877 /* DBGDRAR (64bit) */
2878 { Op1( 0), CRm( 1), .access = trap_raz_wi },
2879
2880 /* DBGDSAR (64bit) */
2881 { Op1( 0), CRm( 2), .access = trap_raz_wi },
2882};
2883
2884#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
2885 AA32(_map), \
2886 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
2887 .visibility = pmu_visibility
2888
2889/* Macro to expand the PMEVCNTRn register */
2890#define PMU_PMEVCNTR(n) \
2891 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2892 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2893 .access = access_pmu_evcntr }
2894
2895/* Macro to expand the PMEVTYPERn register */
2896#define PMU_PMEVTYPER(n) \
2897 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2898 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2899 .access = access_pmu_evtyper }
2900/*
2901 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2902 * depending on the way they are accessed (as a 32bit or a 64bit
2903 * register).
2904 */
2905static const struct sys_reg_desc cp15_regs[] = {
2906 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2907 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2908 /* ACTLR */
2909 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2910 /* ACTLR2 */
2911 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2912 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2913 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2914 /* TTBCR */
2915 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2916 /* TTBCR2 */
2917 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2918 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2919 /* DFSR */
2920 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2921 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2922 /* ADFSR */
2923 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2924 /* AIFSR */
2925 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2926 /* DFAR */
2927 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2928 /* IFAR */
2929 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2930
2931 /*
2932 * DC{C,I,CI}SW operations:
2933 */
2934 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2935 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2936 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2937
2938 /* PMU */
2939 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2940 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2941 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2942 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2943 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2944 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2945 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
2946 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
2947 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2948 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2949 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2950 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2951 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2952 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2953 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2954 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
2955 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
2956 /* PMMIR */
2957 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2958
2959 /* PRRR/MAIR0 */
2960 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2961 /* NMRR/MAIR1 */
2962 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2963 /* AMAIR0 */
2964 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2965 /* AMAIR1 */
2966 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2967
2968 /* ICC_SRE */
2969 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2970
2971 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2972
2973 /* Arch Tmers */
2974 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2975 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2976
2977 /* PMEVCNTRn */
2978 PMU_PMEVCNTR(0),
2979 PMU_PMEVCNTR(1),
2980 PMU_PMEVCNTR(2),
2981 PMU_PMEVCNTR(3),
2982 PMU_PMEVCNTR(4),
2983 PMU_PMEVCNTR(5),
2984 PMU_PMEVCNTR(6),
2985 PMU_PMEVCNTR(7),
2986 PMU_PMEVCNTR(8),
2987 PMU_PMEVCNTR(9),
2988 PMU_PMEVCNTR(10),
2989 PMU_PMEVCNTR(11),
2990 PMU_PMEVCNTR(12),
2991 PMU_PMEVCNTR(13),
2992 PMU_PMEVCNTR(14),
2993 PMU_PMEVCNTR(15),
2994 PMU_PMEVCNTR(16),
2995 PMU_PMEVCNTR(17),
2996 PMU_PMEVCNTR(18),
2997 PMU_PMEVCNTR(19),
2998 PMU_PMEVCNTR(20),
2999 PMU_PMEVCNTR(21),
3000 PMU_PMEVCNTR(22),
3001 PMU_PMEVCNTR(23),
3002 PMU_PMEVCNTR(24),
3003 PMU_PMEVCNTR(25),
3004 PMU_PMEVCNTR(26),
3005 PMU_PMEVCNTR(27),
3006 PMU_PMEVCNTR(28),
3007 PMU_PMEVCNTR(29),
3008 PMU_PMEVCNTR(30),
3009 /* PMEVTYPERn */
3010 PMU_PMEVTYPER(0),
3011 PMU_PMEVTYPER(1),
3012 PMU_PMEVTYPER(2),
3013 PMU_PMEVTYPER(3),
3014 PMU_PMEVTYPER(4),
3015 PMU_PMEVTYPER(5),
3016 PMU_PMEVTYPER(6),
3017 PMU_PMEVTYPER(7),
3018 PMU_PMEVTYPER(8),
3019 PMU_PMEVTYPER(9),
3020 PMU_PMEVTYPER(10),
3021 PMU_PMEVTYPER(11),
3022 PMU_PMEVTYPER(12),
3023 PMU_PMEVTYPER(13),
3024 PMU_PMEVTYPER(14),
3025 PMU_PMEVTYPER(15),
3026 PMU_PMEVTYPER(16),
3027 PMU_PMEVTYPER(17),
3028 PMU_PMEVTYPER(18),
3029 PMU_PMEVTYPER(19),
3030 PMU_PMEVTYPER(20),
3031 PMU_PMEVTYPER(21),
3032 PMU_PMEVTYPER(22),
3033 PMU_PMEVTYPER(23),
3034 PMU_PMEVTYPER(24),
3035 PMU_PMEVTYPER(25),
3036 PMU_PMEVTYPER(26),
3037 PMU_PMEVTYPER(27),
3038 PMU_PMEVTYPER(28),
3039 PMU_PMEVTYPER(29),
3040 PMU_PMEVTYPER(30),
3041 /* PMCCFILTR */
3042 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3043
3044 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3045 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3046
3047 /* CCSIDR2 */
3048 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
3049
3050 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3051};
3052
3053static const struct sys_reg_desc cp15_64_regs[] = {
3054 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3055 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3056 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3057 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
3058 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3059 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3060 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3061 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
3062 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
3063};
3064
3065static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3066 bool is_32)
3067{
3068 unsigned int i;
3069
3070 for (i = 0; i < n; i++) {
3071 if (!is_32 && table[i].reg && !table[i].reset) {
3072 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3073 return false;
3074 }
3075
3076 if (i && cmp_sys_reg(i1: &table[i-1], i2: &table[i]) >= 0) {
3077 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3078 return false;
3079 }
3080 }
3081
3082 return true;
3083}
3084
3085int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3086{
3087 kvm_inject_undefined(vcpu);
3088 return 1;
3089}
3090
3091static void perform_access(struct kvm_vcpu *vcpu,
3092 struct sys_reg_params *params,
3093 const struct sys_reg_desc *r)
3094{
3095 trace_kvm_sys_access(vcpu_pc: *vcpu_pc(vcpu), params, reg: r);
3096
3097 /* Check for regs disabled by runtime config */
3098 if (sysreg_hidden(vcpu, r)) {
3099 kvm_inject_undefined(vcpu);
3100 return;
3101 }
3102
3103 /*
3104 * Not having an accessor means that we have configured a trap
3105 * that we don't know how to handle. This certainly qualifies
3106 * as a gross bug that should be fixed right away.
3107 */
3108 BUG_ON(!r->access);
3109
3110 /* Skip instruction if instructed so */
3111 if (likely(r->access(vcpu, params, r)))
3112 kvm_incr_pc(vcpu);
3113}
3114
3115/*
3116 * emulate_cp -- tries to match a sys_reg access in a handling table, and
3117 * call the corresponding trap handler.
3118 *
3119 * @params: pointer to the descriptor of the access
3120 * @table: array of trap descriptors
3121 * @num: size of the trap descriptor array
3122 *
3123 * Return true if the access has been handled, false if not.
3124 */
3125static bool emulate_cp(struct kvm_vcpu *vcpu,
3126 struct sys_reg_params *params,
3127 const struct sys_reg_desc *table,
3128 size_t num)
3129{
3130 const struct sys_reg_desc *r;
3131
3132 if (!table)
3133 return false; /* Not handled */
3134
3135 r = find_reg(params, table, num);
3136
3137 if (r) {
3138 perform_access(vcpu, params, r);
3139 return true;
3140 }
3141
3142 /* Not handled */
3143 return false;
3144}
3145
3146static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3147 struct sys_reg_params *params)
3148{
3149 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3150 int cp = -1;
3151
3152 switch (esr_ec) {
3153 case ESR_ELx_EC_CP15_32:
3154 case ESR_ELx_EC_CP15_64:
3155 cp = 15;
3156 break;
3157 case ESR_ELx_EC_CP14_MR:
3158 case ESR_ELx_EC_CP14_64:
3159 cp = 14;
3160 break;
3161 default:
3162 WARN_ON(1);
3163 }
3164
3165 print_sys_reg_msg(p: params,
3166 fmt: "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3167 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3168 kvm_inject_undefined(vcpu);
3169}
3170
3171/**
3172 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3173 * @vcpu: The VCPU pointer
3174 * @global: &struct sys_reg_desc
3175 * @nr_global: size of the @global array
3176 */
3177static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3178 const struct sys_reg_desc *global,
3179 size_t nr_global)
3180{
3181 struct sys_reg_params params;
3182 u64 esr = kvm_vcpu_get_esr(vcpu);
3183 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3184 int Rt2 = (esr >> 10) & 0x1f;
3185
3186 params.CRm = (esr >> 1) & 0xf;
3187 params.is_write = ((esr & 1) == 0);
3188
3189 params.Op0 = 0;
3190 params.Op1 = (esr >> 16) & 0xf;
3191 params.Op2 = 0;
3192 params.CRn = 0;
3193
3194 /*
3195 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3196 * backends between AArch32 and AArch64, we get away with it.
3197 */
3198 if (params.is_write) {
3199 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3200 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3201 }
3202
3203 /*
3204 * If the table contains a handler, handle the
3205 * potential register operation in the case of a read and return
3206 * with success.
3207 */
3208 if (emulate_cp(vcpu, params: &params, table: global, num: nr_global)) {
3209 /* Split up the value between registers for the read side */
3210 if (!params.is_write) {
3211 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3212 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3213 }
3214
3215 return 1;
3216 }
3217
3218 unhandled_cp_access(vcpu, params: &params);
3219 return 1;
3220}
3221
3222static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3223
3224/*
3225 * The CP10 ID registers are architecturally mapped to AArch64 feature
3226 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3227 * from AArch32.
3228 */
3229static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3230{
3231 u8 reg_id = (esr >> 10) & 0xf;
3232 bool valid;
3233
3234 params->is_write = ((esr & 1) == 0);
3235 params->Op0 = 3;
3236 params->Op1 = 0;
3237 params->CRn = 0;
3238 params->CRm = 3;
3239
3240 /* CP10 ID registers are read-only */
3241 valid = !params->is_write;
3242
3243 switch (reg_id) {
3244 /* MVFR0 */
3245 case 0b0111:
3246 params->Op2 = 0;
3247 break;
3248 /* MVFR1 */
3249 case 0b0110:
3250 params->Op2 = 1;
3251 break;
3252 /* MVFR2 */
3253 case 0b0101:
3254 params->Op2 = 2;
3255 break;
3256 default:
3257 valid = false;
3258 }
3259
3260 if (valid)
3261 return true;
3262
3263 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3264 params->is_write ? "write" : "read", reg_id);
3265 return false;
3266}
3267
3268/**
3269 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3270 * VFP Register' from AArch32.
3271 * @vcpu: The vCPU pointer
3272 *
3273 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3274 * Work out the correct AArch64 system register encoding and reroute to the
3275 * AArch64 system register emulation.
3276 */
3277int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3278{
3279 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3280 u64 esr = kvm_vcpu_get_esr(vcpu);
3281 struct sys_reg_params params;
3282
3283 /* UNDEF on any unhandled register access */
3284 if (!kvm_esr_cp10_id_to_sys64(esr, params: &params)) {
3285 kvm_inject_undefined(vcpu);
3286 return 1;
3287 }
3288
3289 if (emulate_sys_reg(vcpu, params: &params))
3290 vcpu_set_reg(vcpu, Rt, params.regval);
3291
3292 return 1;
3293}
3294
3295/**
3296 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3297 * CRn=0, which corresponds to the AArch32 feature
3298 * registers.
3299 * @vcpu: the vCPU pointer
3300 * @params: the system register access parameters.
3301 *
3302 * Our cp15 system register tables do not enumerate the AArch32 feature
3303 * registers. Conveniently, our AArch64 table does, and the AArch32 system
3304 * register encoding can be trivially remapped into the AArch64 for the feature
3305 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3306 *
3307 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3308 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3309 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3310 * treat undefined registers in this range as RAZ.
3311 */
3312static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3313 struct sys_reg_params *params)
3314{
3315 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3316
3317 /* Treat impossible writes to RO registers as UNDEFINED */
3318 if (params->is_write) {
3319 unhandled_cp_access(vcpu, params);
3320 return 1;
3321 }
3322
3323 params->Op0 = 3;
3324
3325 /*
3326 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3327 * Avoid conflicting with future expansion of AArch64 feature registers
3328 * and simply treat them as RAZ here.
3329 */
3330 if (params->CRm > 3)
3331 params->regval = 0;
3332 else if (!emulate_sys_reg(vcpu, params))
3333 return 1;
3334
3335 vcpu_set_reg(vcpu, Rt, params->regval);
3336 return 1;
3337}
3338
3339/**
3340 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3341 * @vcpu: The VCPU pointer
3342 * @params: &struct sys_reg_params
3343 * @global: &struct sys_reg_desc
3344 * @nr_global: size of the @global array
3345 */
3346static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3347 struct sys_reg_params *params,
3348 const struct sys_reg_desc *global,
3349 size_t nr_global)
3350{
3351 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3352
3353 params->regval = vcpu_get_reg(vcpu, Rt);
3354
3355 if (emulate_cp(vcpu, params, table: global, num: nr_global)) {
3356 if (!params->is_write)
3357 vcpu_set_reg(vcpu, Rt, params->regval);
3358 return 1;
3359 }
3360
3361 unhandled_cp_access(vcpu, params);
3362 return 1;
3363}
3364
3365int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3366{
3367 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3368}
3369
3370int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3371{
3372 struct sys_reg_params params;
3373
3374 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3375
3376 /*
3377 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3378 * system register table. Registers in the ID range where CRm=0 are
3379 * excluded from this scheme as they do not trivially map into AArch64
3380 * system register encodings.
3381 */
3382 if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3383 return kvm_emulate_cp15_id_reg(vcpu, params: &params);
3384
3385 return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3386}
3387
3388int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3389{
3390 return kvm_handle_cp_64(vcpu, global: cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3391}
3392
3393int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3394{
3395 struct sys_reg_params params;
3396
3397 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3398
3399 return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3400}
3401
3402/**
3403 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3404 * @vcpu: The VCPU pointer
3405 * @params: Decoded system register parameters
3406 *
3407 * Return: true if the system register access was successful, false otherwise.
3408 */
3409static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3410 struct sys_reg_params *params)
3411{
3412 const struct sys_reg_desc *r;
3413
3414 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3415 if (likely(r)) {
3416 perform_access(vcpu, params, r);
3417 return true;
3418 }
3419
3420 print_sys_reg_msg(p: params,
3421 fmt: "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3422 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3423 kvm_inject_undefined(vcpu);
3424
3425 return false;
3426}
3427
3428static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3429{
3430 struct kvm *kvm = s->private;
3431 u8 *iter;
3432
3433 mutex_lock(&kvm->arch.config_lock);
3434
3435 iter = &kvm->arch.idreg_debugfs_iter;
3436 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3437 *iter == (u8)~0) {
3438 *iter = *pos;
3439 if (*iter >= KVM_ARM_ID_REG_NUM)
3440 iter = NULL;
3441 } else {
3442 iter = ERR_PTR(error: -EBUSY);
3443 }
3444
3445 mutex_unlock(lock: &kvm->arch.config_lock);
3446
3447 return iter;
3448}
3449
3450static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3451{
3452 struct kvm *kvm = s->private;
3453
3454 (*pos)++;
3455
3456 if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) {
3457 kvm->arch.idreg_debugfs_iter++;
3458
3459 return &kvm->arch.idreg_debugfs_iter;
3460 }
3461
3462 return NULL;
3463}
3464
3465static void idregs_debug_stop(struct seq_file *s, void *v)
3466{
3467 struct kvm *kvm = s->private;
3468
3469 if (IS_ERR(ptr: v))
3470 return;
3471
3472 mutex_lock(&kvm->arch.config_lock);
3473
3474 kvm->arch.idreg_debugfs_iter = ~0;
3475
3476 mutex_unlock(lock: &kvm->arch.config_lock);
3477}
3478
3479static int idregs_debug_show(struct seq_file *s, void *v)
3480{
3481 struct kvm *kvm = s->private;
3482 const struct sys_reg_desc *desc;
3483
3484 desc = first_idreg + kvm->arch.idreg_debugfs_iter;
3485
3486 if (!desc->name)
3487 return 0;
3488
3489 seq_printf(m: s, fmt: "%20s:\t%016llx\n",
3490 desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter)));
3491
3492 return 0;
3493}
3494
3495static const struct seq_operations idregs_debug_sops = {
3496 .start = idregs_debug_start,
3497 .next = idregs_debug_next,
3498 .stop = idregs_debug_stop,
3499 .show = idregs_debug_show,
3500};
3501
3502DEFINE_SEQ_ATTRIBUTE(idregs_debug);
3503
3504void kvm_sys_regs_create_debugfs(struct kvm *kvm)
3505{
3506 kvm->arch.idreg_debugfs_iter = ~0;
3507
3508 debugfs_create_file(name: "idregs", mode: 0444, parent: kvm->debugfs_dentry, data: kvm,
3509 fops: &idregs_debug_fops);
3510}
3511
3512static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3513{
3514 const struct sys_reg_desc *idreg = first_idreg;
3515 u32 id = reg_to_encoding(idreg);
3516 struct kvm *kvm = vcpu->kvm;
3517
3518 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3519 return;
3520
3521 lockdep_assert_held(&kvm->arch.config_lock);
3522
3523 /* Initialize all idregs */
3524 while (is_id_reg(id)) {
3525 IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3526
3527 idreg++;
3528 id = reg_to_encoding(idreg);
3529 }
3530
3531 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3532}
3533
3534/**
3535 * kvm_reset_sys_regs - sets system registers to reset value
3536 * @vcpu: The VCPU pointer
3537 *
3538 * This function finds the right table above and sets the registers on the
3539 * virtual CPU struct to their architecturally defined reset values.
3540 */
3541void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3542{
3543 unsigned long i;
3544
3545 kvm_reset_id_regs(vcpu);
3546
3547 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3548 const struct sys_reg_desc *r = &sys_reg_descs[i];
3549
3550 if (is_id_reg(reg_to_encoding(r)))
3551 continue;
3552
3553 if (r->reset)
3554 r->reset(vcpu, r);
3555 }
3556}
3557
3558/**
3559 * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
3560 * trap on a guest execution
3561 * @vcpu: The VCPU pointer
3562 */
3563int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3564{
3565 const struct sys_reg_desc *desc = NULL;
3566 struct sys_reg_params params;
3567 unsigned long esr = kvm_vcpu_get_esr(vcpu);
3568 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3569 int sr_idx;
3570
3571 trace_kvm_handle_sys_reg(hsr: esr);
3572
3573 if (triage_sysreg_trap(vcpu, sr_index: &sr_idx))
3574 return 1;
3575
3576 params = esr_sys64_to_params(esr);
3577 params.regval = vcpu_get_reg(vcpu, Rt);
3578
3579 /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
3580 if (params.Op0 == 2 || params.Op0 == 3)
3581 desc = &sys_reg_descs[sr_idx];
3582 else
3583 desc = &sys_insn_descs[sr_idx];
3584
3585 perform_access(vcpu, params: &params, r: desc);
3586
3587 /* Read from system register? */
3588 if (!params.is_write &&
3589 (params.Op0 == 2 || params.Op0 == 3))
3590 vcpu_set_reg(vcpu, Rt, params.regval);
3591
3592 return 1;
3593}
3594
3595/******************************************************************************
3596 * Userspace API
3597 *****************************************************************************/
3598
3599static bool index_to_params(u64 id, struct sys_reg_params *params)
3600{
3601 switch (id & KVM_REG_SIZE_MASK) {
3602 case KVM_REG_SIZE_U64:
3603 /* Any unused index bits means it's not valid. */
3604 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3605 | KVM_REG_ARM_COPROC_MASK
3606 | KVM_REG_ARM64_SYSREG_OP0_MASK
3607 | KVM_REG_ARM64_SYSREG_OP1_MASK
3608 | KVM_REG_ARM64_SYSREG_CRN_MASK
3609 | KVM_REG_ARM64_SYSREG_CRM_MASK
3610 | KVM_REG_ARM64_SYSREG_OP2_MASK))
3611 return false;
3612 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3613 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3614 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3615 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3616 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3617 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3618 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3619 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3620 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3621 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3622 return true;
3623 default:
3624 return false;
3625 }
3626}
3627
3628const struct sys_reg_desc *get_reg_by_id(u64 id,
3629 const struct sys_reg_desc table[],
3630 unsigned int num)
3631{
3632 struct sys_reg_params params;
3633
3634 if (!index_to_params(id, params: &params))
3635 return NULL;
3636
3637 return find_reg(params: &params, table, num);
3638}
3639
3640/* Decode an index value, and find the sys_reg_desc entry. */
3641static const struct sys_reg_desc *
3642id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3643 const struct sys_reg_desc table[], unsigned int num)
3644
3645{
3646 const struct sys_reg_desc *r;
3647
3648 /* We only do sys_reg for now. */
3649 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3650 return NULL;
3651
3652 r = get_reg_by_id(id, table, num);
3653
3654 /* Not saved in the sys_reg array and not otherwise accessible? */
3655 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3656 r = NULL;
3657
3658 return r;
3659}
3660
3661/*
3662 * These are the invariant sys_reg registers: we let the guest see the
3663 * host versions of these, so they're part of the guest state.
3664 *
3665 * A future CPU may provide a mechanism to present different values to
3666 * the guest, or a future kvm may trap them.
3667 */
3668
3669#define FUNCTION_INVARIANT(reg) \
3670 static u64 get_##reg(struct kvm_vcpu *v, \
3671 const struct sys_reg_desc *r) \
3672 { \
3673 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
3674 return ((struct sys_reg_desc *)r)->val; \
3675 }
3676
3677FUNCTION_INVARIANT(midr_el1)
3678FUNCTION_INVARIANT(revidr_el1)
3679FUNCTION_INVARIANT(aidr_el1)
3680
3681static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3682{
3683 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3684 return ((struct sys_reg_desc *)r)->val;
3685}
3686
3687/* ->val is filled in by kvm_sys_reg_table_init() */
3688static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3689 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3690 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3691 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3692 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3693};
3694
3695static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3696{
3697 const struct sys_reg_desc *r;
3698
3699 r = get_reg_by_id(id, invariant_sys_regs,
3700 ARRAY_SIZE(invariant_sys_regs));
3701 if (!r)
3702 return -ENOENT;
3703
3704 return put_user(r->val, uaddr);
3705}
3706
3707static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3708{
3709 const struct sys_reg_desc *r;
3710 u64 val;
3711
3712 r = get_reg_by_id(id, invariant_sys_regs,
3713 ARRAY_SIZE(invariant_sys_regs));
3714 if (!r)
3715 return -ENOENT;
3716
3717 if (get_user(val, uaddr))
3718 return -EFAULT;
3719
3720 /* This is what we mean by invariant: you can't change it. */
3721 if (r->val != val)
3722 return -EINVAL;
3723
3724 return 0;
3725}
3726
3727static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3728{
3729 u32 val;
3730 u32 __user *uval = uaddr;
3731
3732 /* Fail if we have unknown bits set. */
3733 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3734 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3735 return -ENOENT;
3736
3737 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3738 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3739 if (KVM_REG_SIZE(id) != 4)
3740 return -ENOENT;
3741 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3742 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3743 if (val >= CSSELR_MAX)
3744 return -ENOENT;
3745
3746 return put_user(get_ccsidr(vcpu, val), uval);
3747 default:
3748 return -ENOENT;
3749 }
3750}
3751
3752static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3753{
3754 u32 val, newval;
3755 u32 __user *uval = uaddr;
3756
3757 /* Fail if we have unknown bits set. */
3758 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3759 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3760 return -ENOENT;
3761
3762 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3763 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3764 if (KVM_REG_SIZE(id) != 4)
3765 return -ENOENT;
3766 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3767 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3768 if (val >= CSSELR_MAX)
3769 return -ENOENT;
3770
3771 if (get_user(newval, uval))
3772 return -EFAULT;
3773
3774 return set_ccsidr(vcpu, csselr: val, val: newval);
3775 default:
3776 return -ENOENT;
3777 }
3778}
3779
3780int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3781 const struct sys_reg_desc table[], unsigned int num)
3782{
3783 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3784 const struct sys_reg_desc *r;
3785 u64 val;
3786 int ret;
3787
3788 r = id_to_sys_reg_desc(vcpu, id: reg->id, table, num);
3789 if (!r || sysreg_hidden_user(vcpu, r))
3790 return -ENOENT;
3791
3792 if (r->get_user) {
3793 ret = (r->get_user)(vcpu, r, &val);
3794 } else {
3795 val = __vcpu_sys_reg(vcpu, r->reg);
3796 ret = 0;
3797 }
3798
3799 if (!ret)
3800 ret = put_user(val, uaddr);
3801
3802 return ret;
3803}
3804
3805int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3806{
3807 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3808 int err;
3809
3810 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3811 return demux_c15_get(vcpu, id: reg->id, uaddr);
3812
3813 err = get_invariant_sys_reg(id: reg->id, uaddr);
3814 if (err != -ENOENT)
3815 return err;
3816
3817 return kvm_sys_reg_get_user(vcpu, reg,
3818 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3819}
3820
3821int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3822 const struct sys_reg_desc table[], unsigned int num)
3823{
3824 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3825 const struct sys_reg_desc *r;
3826 u64 val;
3827 int ret;
3828
3829 if (get_user(val, uaddr))
3830 return -EFAULT;
3831
3832 r = id_to_sys_reg_desc(vcpu, id: reg->id, table, num);
3833 if (!r || sysreg_hidden_user(vcpu, r))
3834 return -ENOENT;
3835
3836 if (sysreg_user_write_ignore(vcpu, r))
3837 return 0;
3838
3839 if (r->set_user) {
3840 ret = (r->set_user)(vcpu, r, val);
3841 } else {
3842 __vcpu_sys_reg(vcpu, r->reg) = val;
3843 ret = 0;
3844 }
3845
3846 return ret;
3847}
3848
3849int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3850{
3851 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3852 int err;
3853
3854 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3855 return demux_c15_set(vcpu, id: reg->id, uaddr);
3856
3857 err = set_invariant_sys_reg(id: reg->id, uaddr);
3858 if (err != -ENOENT)
3859 return err;
3860
3861 return kvm_sys_reg_set_user(vcpu, reg,
3862 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3863}
3864
3865static unsigned int num_demux_regs(void)
3866{
3867 return CSSELR_MAX;
3868}
3869
3870static int write_demux_regids(u64 __user *uindices)
3871{
3872 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3873 unsigned int i;
3874
3875 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3876 for (i = 0; i < CSSELR_MAX; i++) {
3877 if (put_user(val | i, uindices))
3878 return -EFAULT;
3879 uindices++;
3880 }
3881 return 0;
3882}
3883
3884static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3885{
3886 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3887 KVM_REG_ARM64_SYSREG |
3888 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3889 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3890 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3891 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3892 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3893}
3894
3895static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3896{
3897 if (!*uind)
3898 return true;
3899
3900 if (put_user(sys_reg_to_index(reg), *uind))
3901 return false;
3902
3903 (*uind)++;
3904 return true;
3905}
3906
3907static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3908 const struct sys_reg_desc *rd,
3909 u64 __user **uind,
3910 unsigned int *total)
3911{
3912 /*
3913 * Ignore registers we trap but don't save,
3914 * and for which no custom user accessor is provided.
3915 */
3916 if (!(rd->reg || rd->get_user))
3917 return 0;
3918
3919 if (sysreg_hidden_user(vcpu, r: rd))
3920 return 0;
3921
3922 if (!copy_reg_to_user(reg: rd, uind))
3923 return -EFAULT;
3924
3925 (*total)++;
3926 return 0;
3927}
3928
3929/* Assumed ordered tables, see kvm_sys_reg_table_init. */
3930static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3931{
3932 const struct sys_reg_desc *i2, *end2;
3933 unsigned int total = 0;
3934 int err;
3935
3936 i2 = sys_reg_descs;
3937 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3938
3939 while (i2 != end2) {
3940 err = walk_one_sys_reg(vcpu, rd: i2++, uind: &uind, total: &total);
3941 if (err)
3942 return err;
3943 }
3944 return total;
3945}
3946
3947unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3948{
3949 return ARRAY_SIZE(invariant_sys_regs)
3950 + num_demux_regs()
3951 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3952}
3953
3954int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3955{
3956 unsigned int i;
3957 int err;
3958
3959 /* Then give them all the invariant registers' indices. */
3960 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3961 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3962 return -EFAULT;
3963 uindices++;
3964 }
3965
3966 err = walk_sys_regs(vcpu, uind: uindices);
3967 if (err < 0)
3968 return err;
3969 uindices += err;
3970
3971 return write_demux_regids(uindices);
3972}
3973
3974#define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \
3975 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \
3976 sys_reg_Op1(r), \
3977 sys_reg_CRn(r), \
3978 sys_reg_CRm(r), \
3979 sys_reg_Op2(r))
3980
3981static bool is_feature_id_reg(u32 encoding)
3982{
3983 return (sys_reg_Op0(encoding) == 3 &&
3984 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3985 sys_reg_CRn(encoding) == 0 &&
3986 sys_reg_CRm(encoding) <= 7);
3987}
3988
3989int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3990{
3991 const void *zero_page = page_to_virt(ZERO_PAGE(0));
3992 u64 __user *masks = (u64 __user *)range->addr;
3993
3994 /* Only feature id range is supported, reserved[13] must be zero. */
3995 if (range->range ||
3996 memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3997 return -EINVAL;
3998
3999 /* Wipe the whole thing first */
4000 if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4001 return -EFAULT;
4002
4003 for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4004 const struct sys_reg_desc *reg = &sys_reg_descs[i];
4005 u32 encoding = reg_to_encoding(reg);
4006 u64 val;
4007
4008 if (!is_feature_id_reg(encoding) || !reg->set_user)
4009 continue;
4010
4011 /*
4012 * For ID registers, we return the writable mask. Other feature
4013 * registers return a full 64bit mask. That's not necessary
4014 * compliant with a given revision of the architecture, but the
4015 * RES0/RES1 definitions allow us to do that.
4016 */
4017 if (is_id_reg(encoding)) {
4018 if (!reg->val ||
4019 (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
4020 continue;
4021 val = reg->val;
4022 } else {
4023 val = ~0UL;
4024 }
4025
4026 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4027 return -EFAULT;
4028 }
4029
4030 return 0;
4031}
4032
4033void kvm_init_sysreg(struct kvm_vcpu *vcpu)
4034{
4035 struct kvm *kvm = vcpu->kvm;
4036
4037 mutex_lock(&kvm->arch.config_lock);
4038
4039 /*
4040 * In the absence of FGT, we cannot independently trap TLBI
4041 * Range instructions. This isn't great, but trapping all
4042 * TLBIs would be far worse. Live with it...
4043 */
4044 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4045 vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4046
4047 if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4048 vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS;
4049
4050 if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4051 vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4052 }
4053
4054 if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4055 goto out;
4056
4057 kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 |
4058 HFGxTR_EL2_nMAIR2_EL1 |
4059 HFGxTR_EL2_nS2POR_EL1 |
4060 HFGxTR_EL2_nPOR_EL1 |
4061 HFGxTR_EL2_nPOR_EL0 |
4062 HFGxTR_EL2_nACCDATA_EL1 |
4063 HFGxTR_EL2_nSMPRI_EL1_MASK |
4064 HFGxTR_EL2_nTPIDR2_EL0_MASK);
4065
4066 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4067 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4068 HFGITR_EL2_TLBIRVALE1OS |
4069 HFGITR_EL2_TLBIRVAAE1OS |
4070 HFGITR_EL2_TLBIRVAE1OS |
4071 HFGITR_EL2_TLBIVAALE1OS |
4072 HFGITR_EL2_TLBIVALE1OS |
4073 HFGITR_EL2_TLBIVAAE1OS |
4074 HFGITR_EL2_TLBIASIDE1OS |
4075 HFGITR_EL2_TLBIVAE1OS |
4076 HFGITR_EL2_TLBIVMALLE1OS);
4077
4078 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4079 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 |
4080 HFGITR_EL2_TLBIRVALE1 |
4081 HFGITR_EL2_TLBIRVAAE1 |
4082 HFGITR_EL2_TLBIRVAE1 |
4083 HFGITR_EL2_TLBIRVAALE1IS|
4084 HFGITR_EL2_TLBIRVALE1IS |
4085 HFGITR_EL2_TLBIRVAAE1IS |
4086 HFGITR_EL2_TLBIRVAE1IS |
4087 HFGITR_EL2_TLBIRVAALE1OS|
4088 HFGITR_EL2_TLBIRVALE1OS |
4089 HFGITR_EL2_TLBIRVAAE1OS |
4090 HFGITR_EL2_TLBIRVAE1OS);
4091
4092 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4093 kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4094 HFGxTR_EL2_nPIR_EL1);
4095
4096 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4097 kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4098 HAFGRTR_EL2_RES1);
4099
4100 set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4101out:
4102 mutex_unlock(lock: &kvm->arch.config_lock);
4103}
4104
4105int __init kvm_sys_reg_table_init(void)
4106{
4107 struct sys_reg_params params;
4108 bool valid = true;
4109 unsigned int i;
4110 int ret = 0;
4111
4112 /* Make sure tables are unique and in order. */
4113 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4114 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4115 valid &= check_sysreg_table(table: cp14_64_regs, ARRAY_SIZE(cp14_64_regs), is_32: true);
4116 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4117 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4118 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4119 valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4120
4121 if (!valid)
4122 return -EINVAL;
4123
4124 /* We abuse the reset function to overwrite the table itself. */
4125 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4126 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4127
4128 /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
4129 params = encoding_to_params(SYS_ID_PFR0_EL1);
4130 first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4131 if (!first_idreg)
4132 return -EINVAL;
4133
4134 ret = populate_nv_trap_config();
4135
4136 for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4137 ret = populate_sysreg_config(sys_reg_descs + i, i);
4138
4139 for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4140 ret = populate_sysreg_config(sys_insn_descs + i, i);
4141
4142 return ret;
4143}
4144

source code of linux/arch/arm64/kvm/sys_regs.c