| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * spu_switch.c |
| 4 | * |
| 5 | * (C) Copyright IBM Corp. 2005 |
| 6 | * |
| 7 | * Author: Mark Nutter <mnutter@us.ibm.com> |
| 8 | * |
| 9 | * Host-side part of SPU context switch sequence outlined in |
| 10 | * Synergistic Processor Element, Book IV. |
| 11 | * |
| 12 | * A fully premptive switch of an SPE is very expensive in terms |
| 13 | * of time and system resources. SPE Book IV indicates that SPE |
| 14 | * allocation should follow a "serially reusable device" model, |
| 15 | * in which the SPE is assigned a task until it completes. When |
| 16 | * this is not possible, this sequence may be used to premptively |
| 17 | * save, and then later (optionally) restore the context of a |
| 18 | * program executing on an SPE. |
| 19 | */ |
| 20 | |
| 21 | #include <linux/export.h> |
| 22 | #include <linux/errno.h> |
| 23 | #include <linux/hardirq.h> |
| 24 | #include <linux/sched.h> |
| 25 | #include <linux/kernel.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <linux/smp.h> |
| 29 | #include <linux/stddef.h> |
| 30 | #include <linux/unistd.h> |
| 31 | |
| 32 | #include <asm/io.h> |
| 33 | #include <asm/spu.h> |
| 34 | #include <asm/spu_priv1.h> |
| 35 | #include <asm/spu_csa.h> |
| 36 | #include <asm/mmu_context.h> |
| 37 | |
| 38 | #include "spufs.h" |
| 39 | |
| 40 | #include "spu_save_dump.h" |
| 41 | #include "spu_restore_dump.h" |
| 42 | |
| 43 | #if 0 |
| 44 | #define POLL_WHILE_TRUE(_c) { \ |
| 45 | do { \ |
| 46 | } while (_c); \ |
| 47 | } |
| 48 | #else |
| 49 | #define RELAX_SPIN_COUNT 1000 |
| 50 | #define POLL_WHILE_TRUE(_c) { \ |
| 51 | do { \ |
| 52 | int _i; \ |
| 53 | for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \ |
| 54 | cpu_relax(); \ |
| 55 | } \ |
| 56 | if (unlikely(_c)) yield(); \ |
| 57 | else break; \ |
| 58 | } while (_c); \ |
| 59 | } |
| 60 | #endif /* debug */ |
| 61 | |
| 62 | #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c)) |
| 63 | |
| 64 | static inline void acquire_spu_lock(struct spu *spu) |
| 65 | { |
| 66 | /* Save, Step 1: |
| 67 | * Restore, Step 1: |
| 68 | * Acquire SPU-specific mutual exclusion lock. |
| 69 | * TBD. |
| 70 | */ |
| 71 | } |
| 72 | |
| 73 | static inline void release_spu_lock(struct spu *spu) |
| 74 | { |
| 75 | /* Restore, Step 76: |
| 76 | * Release SPU-specific mutual exclusion lock. |
| 77 | * TBD. |
| 78 | */ |
| 79 | } |
| 80 | |
| 81 | static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu) |
| 82 | { |
| 83 | struct spu_problem __iomem *prob = spu->problem; |
| 84 | u32 isolate_state; |
| 85 | |
| 86 | /* Save, Step 2: |
| 87 | * Save, Step 6: |
| 88 | * If SPU_Status[E,L,IS] any field is '1', this |
| 89 | * SPU is in isolate state and cannot be context |
| 90 | * saved at this time. |
| 91 | */ |
| 92 | isolate_state = SPU_STATUS_ISOLATED_STATE | |
| 93 | SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS; |
| 94 | return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0; |
| 95 | } |
| 96 | |
| 97 | static inline void disable_interrupts(struct spu_state *csa, struct spu *spu) |
| 98 | { |
| 99 | /* Save, Step 3: |
| 100 | * Restore, Step 2: |
| 101 | * Save INT_Mask_class0 in CSA. |
| 102 | * Write INT_MASK_class0 with value of 0. |
| 103 | * Save INT_Mask_class1 in CSA. |
| 104 | * Write INT_MASK_class1 with value of 0. |
| 105 | * Save INT_Mask_class2 in CSA. |
| 106 | * Write INT_MASK_class2 with value of 0. |
| 107 | * Synchronize all three interrupts to be sure |
| 108 | * we no longer execute a handler on another CPU. |
| 109 | */ |
| 110 | spin_lock_irq(lock: &spu->register_lock); |
| 111 | if (csa) { |
| 112 | csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0); |
| 113 | csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1); |
| 114 | csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2); |
| 115 | } |
| 116 | spu_int_mask_set(spu, 0, 0ul); |
| 117 | spu_int_mask_set(spu, 1, 0ul); |
| 118 | spu_int_mask_set(spu, 2, 0ul); |
| 119 | eieio(); |
| 120 | spin_unlock_irq(lock: &spu->register_lock); |
| 121 | |
| 122 | /* |
| 123 | * This flag needs to be set before calling synchronize_irq so |
| 124 | * that the update will be visible to the relevant handlers |
| 125 | * via a simple load. |
| 126 | */ |
| 127 | set_bit(nr: SPU_CONTEXT_SWITCH_PENDING, addr: &spu->flags); |
| 128 | clear_bit(nr: SPU_CONTEXT_FAULT_PENDING, addr: &spu->flags); |
| 129 | synchronize_irq(irq: spu->irqs[0]); |
| 130 | synchronize_irq(irq: spu->irqs[1]); |
| 131 | synchronize_irq(irq: spu->irqs[2]); |
| 132 | } |
| 133 | |
| 134 | static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu) |
| 135 | { |
| 136 | /* Save, Step 4: |
| 137 | * Restore, Step 25. |
| 138 | * Set a software watchdog timer, which specifies the |
| 139 | * maximum allowable time for a context save sequence. |
| 140 | * |
| 141 | * For present, this implementation will not set a global |
| 142 | * watchdog timer, as virtualization & variable system load |
| 143 | * may cause unpredictable execution times. |
| 144 | */ |
| 145 | } |
| 146 | |
| 147 | static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu) |
| 148 | { |
| 149 | /* Save, Step 5: |
| 150 | * Restore, Step 3: |
| 151 | * Inhibit user-space access (if provided) to this |
| 152 | * SPU by unmapping the virtual pages assigned to |
| 153 | * the SPU memory-mapped I/O (MMIO) for problem |
| 154 | * state. TBD. |
| 155 | */ |
| 156 | } |
| 157 | |
| 158 | static inline void set_switch_pending(struct spu_state *csa, struct spu *spu) |
| 159 | { |
| 160 | /* Save, Step 7: |
| 161 | * Restore, Step 5: |
| 162 | * Set a software context switch pending flag. |
| 163 | * Done above in Step 3 - disable_interrupts(). |
| 164 | */ |
| 165 | } |
| 166 | |
| 167 | static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu) |
| 168 | { |
| 169 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 170 | |
| 171 | /* Save, Step 8: |
| 172 | * Suspend DMA and save MFC_CNTL. |
| 173 | */ |
| 174 | switch (in_be64(&priv2->mfc_control_RW) & |
| 175 | MFC_CNTL_SUSPEND_DMA_STATUS_MASK) { |
| 176 | case MFC_CNTL_SUSPEND_IN_PROGRESS: |
| 177 | POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| 178 | MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == |
| 179 | MFC_CNTL_SUSPEND_COMPLETE); |
| 180 | fallthrough; |
| 181 | case MFC_CNTL_SUSPEND_COMPLETE: |
| 182 | if (csa) |
| 183 | csa->priv2.mfc_control_RW = |
| 184 | in_be64(&priv2->mfc_control_RW) | |
| 185 | MFC_CNTL_SUSPEND_DMA_QUEUE; |
| 186 | break; |
| 187 | case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION: |
| 188 | out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); |
| 189 | POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| 190 | MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == |
| 191 | MFC_CNTL_SUSPEND_COMPLETE); |
| 192 | if (csa) |
| 193 | csa->priv2.mfc_control_RW = |
| 194 | in_be64(&priv2->mfc_control_RW) & |
| 195 | ~MFC_CNTL_SUSPEND_DMA_QUEUE & |
| 196 | ~MFC_CNTL_SUSPEND_MASK; |
| 197 | break; |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu) |
| 202 | { |
| 203 | struct spu_problem __iomem *prob = spu->problem; |
| 204 | |
| 205 | /* Save, Step 9: |
| 206 | * Save SPU_Runcntl in the CSA. This value contains |
| 207 | * the "Application Desired State". |
| 208 | */ |
| 209 | csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW); |
| 210 | } |
| 211 | |
| 212 | static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu) |
| 213 | { |
| 214 | /* Save, Step 10: |
| 215 | * Save MFC_SR1 in the CSA. |
| 216 | */ |
| 217 | csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu); |
| 218 | } |
| 219 | |
| 220 | static inline void save_spu_status(struct spu_state *csa, struct spu *spu) |
| 221 | { |
| 222 | struct spu_problem __iomem *prob = spu->problem; |
| 223 | |
| 224 | /* Save, Step 11: |
| 225 | * Read SPU_Status[R], and save to CSA. |
| 226 | */ |
| 227 | if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) { |
| 228 | csa->prob.spu_status_R = in_be32(&prob->spu_status_R); |
| 229 | } else { |
| 230 | u32 stopped; |
| 231 | |
| 232 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| 233 | eieio(); |
| 234 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 235 | SPU_STATUS_RUNNING); |
| 236 | stopped = |
| 237 | SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP | |
| 238 | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; |
| 239 | if ((in_be32(&prob->spu_status_R) & stopped) == 0) |
| 240 | csa->prob.spu_status_R = SPU_STATUS_RUNNING; |
| 241 | else |
| 242 | csa->prob.spu_status_R = in_be32(&prob->spu_status_R); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | static inline void save_mfc_stopped_status(struct spu_state *csa, |
| 247 | struct spu *spu) |
| 248 | { |
| 249 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 250 | const u64 mask = MFC_CNTL_DECREMENTER_RUNNING | |
| 251 | MFC_CNTL_DMA_QUEUES_EMPTY; |
| 252 | |
| 253 | /* Save, Step 12: |
| 254 | * Read MFC_CNTL[Ds]. Update saved copy of |
| 255 | * CSA.MFC_CNTL[Ds]. |
| 256 | * |
| 257 | * update: do the same with MFC_CNTL[Q]. |
| 258 | */ |
| 259 | csa->priv2.mfc_control_RW &= ~mask; |
| 260 | csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask; |
| 261 | } |
| 262 | |
| 263 | static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu) |
| 264 | { |
| 265 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 266 | |
| 267 | /* Save, Step 13: |
| 268 | * Write MFC_CNTL[Dh] set to a '1' to halt |
| 269 | * the decrementer. |
| 270 | */ |
| 271 | out_be64(&priv2->mfc_control_RW, |
| 272 | MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK); |
| 273 | eieio(); |
| 274 | } |
| 275 | |
| 276 | static inline void save_timebase(struct spu_state *csa, struct spu *spu) |
| 277 | { |
| 278 | /* Save, Step 14: |
| 279 | * Read PPE Timebase High and Timebase low registers |
| 280 | * and save in CSA. TBD. |
| 281 | */ |
| 282 | csa->suspend_time = get_cycles(); |
| 283 | } |
| 284 | |
| 285 | static inline void remove_other_spu_access(struct spu_state *csa, |
| 286 | struct spu *spu) |
| 287 | { |
| 288 | /* Save, Step 15: |
| 289 | * Remove other SPU access to this SPU by unmapping |
| 290 | * this SPU's pages from their address space. TBD. |
| 291 | */ |
| 292 | } |
| 293 | |
| 294 | static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu) |
| 295 | { |
| 296 | struct spu_problem __iomem *prob = spu->problem; |
| 297 | |
| 298 | /* Save, Step 16: |
| 299 | * Restore, Step 11. |
| 300 | * Write SPU_MSSync register. Poll SPU_MSSync[P] |
| 301 | * for a value of 0. |
| 302 | */ |
| 303 | out_be64(&prob->spc_mssync_RW, 1UL); |
| 304 | POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING); |
| 305 | } |
| 306 | |
| 307 | static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu) |
| 308 | { |
| 309 | /* Save, Step 17: |
| 310 | * Restore, Step 12. |
| 311 | * Restore, Step 48. |
| 312 | * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register. |
| 313 | * Then issue a PPE sync instruction. |
| 314 | */ |
| 315 | spu_tlb_invalidate(spu); |
| 316 | mb(); |
| 317 | } |
| 318 | |
| 319 | static inline void handle_pending_interrupts(struct spu_state *csa, |
| 320 | struct spu *spu) |
| 321 | { |
| 322 | /* Save, Step 18: |
| 323 | * Handle any pending interrupts from this SPU |
| 324 | * here. This is OS or hypervisor specific. One |
| 325 | * option is to re-enable interrupts to handle any |
| 326 | * pending interrupts, with the interrupt handlers |
| 327 | * recognizing the software Context Switch Pending |
| 328 | * flag, to ensure the SPU execution or MFC command |
| 329 | * queue is not restarted. TBD. |
| 330 | */ |
| 331 | } |
| 332 | |
| 333 | static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu) |
| 334 | { |
| 335 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 336 | int i; |
| 337 | |
| 338 | /* Save, Step 19: |
| 339 | * If MFC_Cntl[Se]=0 then save |
| 340 | * MFC command queues. |
| 341 | */ |
| 342 | if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) { |
| 343 | for (i = 0; i < 8; i++) { |
| 344 | csa->priv2.puq[i].mfc_cq_data0_RW = |
| 345 | in_be64(&priv2->puq[i].mfc_cq_data0_RW); |
| 346 | csa->priv2.puq[i].mfc_cq_data1_RW = |
| 347 | in_be64(&priv2->puq[i].mfc_cq_data1_RW); |
| 348 | csa->priv2.puq[i].mfc_cq_data2_RW = |
| 349 | in_be64(&priv2->puq[i].mfc_cq_data2_RW); |
| 350 | csa->priv2.puq[i].mfc_cq_data3_RW = |
| 351 | in_be64(&priv2->puq[i].mfc_cq_data3_RW); |
| 352 | } |
| 353 | for (i = 0; i < 16; i++) { |
| 354 | csa->priv2.spuq[i].mfc_cq_data0_RW = |
| 355 | in_be64(&priv2->spuq[i].mfc_cq_data0_RW); |
| 356 | csa->priv2.spuq[i].mfc_cq_data1_RW = |
| 357 | in_be64(&priv2->spuq[i].mfc_cq_data1_RW); |
| 358 | csa->priv2.spuq[i].mfc_cq_data2_RW = |
| 359 | in_be64(&priv2->spuq[i].mfc_cq_data2_RW); |
| 360 | csa->priv2.spuq[i].mfc_cq_data3_RW = |
| 361 | in_be64(&priv2->spuq[i].mfc_cq_data3_RW); |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu) |
| 367 | { |
| 368 | struct spu_problem __iomem *prob = spu->problem; |
| 369 | |
| 370 | /* Save, Step 20: |
| 371 | * Save the PPU_QueryMask register |
| 372 | * in the CSA. |
| 373 | */ |
| 374 | csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW); |
| 375 | } |
| 376 | |
| 377 | static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu) |
| 378 | { |
| 379 | struct spu_problem __iomem *prob = spu->problem; |
| 380 | |
| 381 | /* Save, Step 21: |
| 382 | * Save the PPU_QueryType register |
| 383 | * in the CSA. |
| 384 | */ |
| 385 | csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW); |
| 386 | } |
| 387 | |
| 388 | static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu) |
| 389 | { |
| 390 | struct spu_problem __iomem *prob = spu->problem; |
| 391 | |
| 392 | /* Save the Prxy_TagStatus register in the CSA. |
| 393 | * |
| 394 | * It is unnecessary to restore dma_tagstatus_R, however, |
| 395 | * dma_tagstatus_R in the CSA is accessed via backing_ops, so |
| 396 | * we must save it. |
| 397 | */ |
| 398 | csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R); |
| 399 | } |
| 400 | |
| 401 | static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) |
| 402 | { |
| 403 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 404 | |
| 405 | /* Save, Step 22: |
| 406 | * Save the MFC_CSR_TSQ register |
| 407 | * in the LSCSA. |
| 408 | */ |
| 409 | csa->priv2.spu_tag_status_query_RW = |
| 410 | in_be64(&priv2->spu_tag_status_query_RW); |
| 411 | } |
| 412 | |
| 413 | static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) |
| 414 | { |
| 415 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 416 | |
| 417 | /* Save, Step 23: |
| 418 | * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2 |
| 419 | * registers in the CSA. |
| 420 | */ |
| 421 | csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW); |
| 422 | csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW); |
| 423 | } |
| 424 | |
| 425 | static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu) |
| 426 | { |
| 427 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 428 | |
| 429 | /* Save, Step 24: |
| 430 | * Save the MFC_CSR_ATO register in |
| 431 | * the CSA. |
| 432 | */ |
| 433 | csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW); |
| 434 | } |
| 435 | |
| 436 | static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu) |
| 437 | { |
| 438 | /* Save, Step 25: |
| 439 | * Save the MFC_TCLASS_ID register in |
| 440 | * the CSA. |
| 441 | */ |
| 442 | csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu); |
| 443 | } |
| 444 | |
| 445 | static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu) |
| 446 | { |
| 447 | /* Save, Step 26: |
| 448 | * Restore, Step 23. |
| 449 | * Write the MFC_TCLASS_ID register with |
| 450 | * the value 0x10000000. |
| 451 | */ |
| 452 | spu_mfc_tclass_id_set(spu, 0x10000000); |
| 453 | eieio(); |
| 454 | } |
| 455 | |
| 456 | static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu) |
| 457 | { |
| 458 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 459 | |
| 460 | /* Save, Step 27: |
| 461 | * Restore, Step 14. |
| 462 | * Write MFC_CNTL[Pc]=1 (purge queue). |
| 463 | */ |
| 464 | out_be64(&priv2->mfc_control_RW, |
| 465 | MFC_CNTL_PURGE_DMA_REQUEST | |
| 466 | MFC_CNTL_SUSPEND_MASK); |
| 467 | eieio(); |
| 468 | } |
| 469 | |
| 470 | static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu) |
| 471 | { |
| 472 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 473 | |
| 474 | /* Save, Step 28: |
| 475 | * Poll MFC_CNTL[Ps] until value '11' is read |
| 476 | * (purge complete). |
| 477 | */ |
| 478 | POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| 479 | MFC_CNTL_PURGE_DMA_STATUS_MASK) == |
| 480 | MFC_CNTL_PURGE_DMA_COMPLETE); |
| 481 | } |
| 482 | |
| 483 | static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu) |
| 484 | { |
| 485 | /* Save, Step 30: |
| 486 | * Restore, Step 18: |
| 487 | * Write MFC_SR1 with MFC_SR1[D=0,S=1] and |
| 488 | * MFC_SR1[TL,R,Pr,T] set correctly for the |
| 489 | * OS specific environment. |
| 490 | * |
| 491 | * Implementation note: The SPU-side code |
| 492 | * for save/restore is privileged, so the |
| 493 | * MFC_SR1[Pr] bit is not set. |
| 494 | * |
| 495 | */ |
| 496 | spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK | |
| 497 | MFC_STATE1_RELOCATE_MASK | |
| 498 | MFC_STATE1_BUS_TLBIE_MASK)); |
| 499 | } |
| 500 | |
| 501 | static inline void save_spu_npc(struct spu_state *csa, struct spu *spu) |
| 502 | { |
| 503 | struct spu_problem __iomem *prob = spu->problem; |
| 504 | |
| 505 | /* Save, Step 31: |
| 506 | * Save SPU_NPC in the CSA. |
| 507 | */ |
| 508 | csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW); |
| 509 | } |
| 510 | |
| 511 | static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu) |
| 512 | { |
| 513 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 514 | |
| 515 | /* Save, Step 32: |
| 516 | * Save SPU_PrivCntl in the CSA. |
| 517 | */ |
| 518 | csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW); |
| 519 | } |
| 520 | |
| 521 | static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu) |
| 522 | { |
| 523 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 524 | |
| 525 | /* Save, Step 33: |
| 526 | * Restore, Step 16: |
| 527 | * Write SPU_PrivCntl[S,Le,A] fields reset to 0. |
| 528 | */ |
| 529 | out_be64(&priv2->spu_privcntl_RW, 0UL); |
| 530 | eieio(); |
| 531 | } |
| 532 | |
| 533 | static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu) |
| 534 | { |
| 535 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 536 | |
| 537 | /* Save, Step 34: |
| 538 | * Save SPU_LSLR in the CSA. |
| 539 | */ |
| 540 | csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW); |
| 541 | } |
| 542 | |
| 543 | static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu) |
| 544 | { |
| 545 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 546 | |
| 547 | /* Save, Step 35: |
| 548 | * Restore, Step 17. |
| 549 | * Reset SPU_LSLR. |
| 550 | */ |
| 551 | out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK); |
| 552 | eieio(); |
| 553 | } |
| 554 | |
| 555 | static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu) |
| 556 | { |
| 557 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 558 | |
| 559 | /* Save, Step 36: |
| 560 | * Save SPU_Cfg in the CSA. |
| 561 | */ |
| 562 | csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW); |
| 563 | } |
| 564 | |
| 565 | static inline void save_pm_trace(struct spu_state *csa, struct spu *spu) |
| 566 | { |
| 567 | /* Save, Step 37: |
| 568 | * Save PM_Trace_Tag_Wait_Mask in the CSA. |
| 569 | * Not performed by this implementation. |
| 570 | */ |
| 571 | } |
| 572 | |
| 573 | static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu) |
| 574 | { |
| 575 | /* Save, Step 38: |
| 576 | * Save RA_GROUP_ID register and the |
| 577 | * RA_ENABLE reigster in the CSA. |
| 578 | */ |
| 579 | csa->priv1.resource_allocation_groupID_RW = |
| 580 | spu_resource_allocation_groupID_get(spu); |
| 581 | csa->priv1.resource_allocation_enable_RW = |
| 582 | spu_resource_allocation_enable_get(spu); |
| 583 | } |
| 584 | |
| 585 | static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu) |
| 586 | { |
| 587 | struct spu_problem __iomem *prob = spu->problem; |
| 588 | |
| 589 | /* Save, Step 39: |
| 590 | * Save MB_Stat register in the CSA. |
| 591 | */ |
| 592 | csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R); |
| 593 | } |
| 594 | |
| 595 | static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu) |
| 596 | { |
| 597 | struct spu_problem __iomem *prob = spu->problem; |
| 598 | |
| 599 | /* Save, Step 40: |
| 600 | * Save the PPU_MB register in the CSA. |
| 601 | */ |
| 602 | csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R); |
| 603 | } |
| 604 | |
| 605 | static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu) |
| 606 | { |
| 607 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 608 | |
| 609 | /* Save, Step 41: |
| 610 | * Save the PPUINT_MB register in the CSA. |
| 611 | */ |
| 612 | csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R); |
| 613 | } |
| 614 | |
| 615 | static inline void save_ch_part1(struct spu_state *csa, struct spu *spu) |
| 616 | { |
| 617 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 618 | u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; |
| 619 | int i; |
| 620 | |
| 621 | /* Save, Step 42: |
| 622 | */ |
| 623 | |
| 624 | /* Save CH 1, without channel count */ |
| 625 | out_be64(&priv2->spu_chnlcntptr_RW, 1); |
| 626 | csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW); |
| 627 | |
| 628 | /* Save the following CH: [0,3,4,24,25,27] */ |
| 629 | for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { |
| 630 | idx = ch_indices[i]; |
| 631 | out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| 632 | eieio(); |
| 633 | csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW); |
| 634 | csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW); |
| 635 | out_be64(&priv2->spu_chnldata_RW, 0UL); |
| 636 | out_be64(&priv2->spu_chnlcnt_RW, 0UL); |
| 637 | eieio(); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | static inline void save_spu_mb(struct spu_state *csa, struct spu *spu) |
| 642 | { |
| 643 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 644 | int i; |
| 645 | |
| 646 | /* Save, Step 43: |
| 647 | * Save SPU Read Mailbox Channel. |
| 648 | */ |
| 649 | out_be64(&priv2->spu_chnlcntptr_RW, 29UL); |
| 650 | eieio(); |
| 651 | csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW); |
| 652 | for (i = 0; i < 4; i++) { |
| 653 | csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW); |
| 654 | } |
| 655 | out_be64(&priv2->spu_chnlcnt_RW, 0UL); |
| 656 | eieio(); |
| 657 | } |
| 658 | |
| 659 | static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu) |
| 660 | { |
| 661 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 662 | |
| 663 | /* Save, Step 44: |
| 664 | * Save MFC_CMD Channel. |
| 665 | */ |
| 666 | out_be64(&priv2->spu_chnlcntptr_RW, 21UL); |
| 667 | eieio(); |
| 668 | csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW); |
| 669 | eieio(); |
| 670 | } |
| 671 | |
| 672 | static inline void reset_ch(struct spu_state *csa, struct spu *spu) |
| 673 | { |
| 674 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 675 | u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL }; |
| 676 | u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL }; |
| 677 | u64 idx; |
| 678 | int i; |
| 679 | |
| 680 | /* Save, Step 45: |
| 681 | * Reset the following CH: [21, 23, 28, 30] |
| 682 | */ |
| 683 | for (i = 0; i < 4; i++) { |
| 684 | idx = ch_indices[i]; |
| 685 | out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| 686 | eieio(); |
| 687 | out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); |
| 688 | eieio(); |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu) |
| 693 | { |
| 694 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 695 | |
| 696 | /* Save, Step 46: |
| 697 | * Restore, Step 25. |
| 698 | * Write MFC_CNTL[Sc]=0 (resume queue processing). |
| 699 | */ |
| 700 | out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE); |
| 701 | } |
| 702 | |
| 703 | static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu, |
| 704 | unsigned int *code, int code_size) |
| 705 | { |
| 706 | /* Save, Step 47: |
| 707 | * Restore, Step 30. |
| 708 | * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All |
| 709 | * register, then initialize SLB_VSID and SLB_ESID |
| 710 | * to provide access to SPU context save code and |
| 711 | * LSCSA. |
| 712 | * |
| 713 | * This implementation places both the context |
| 714 | * switch code and LSCSA in kernel address space. |
| 715 | * |
| 716 | * Further this implementation assumes that the |
| 717 | * MFC_SR1[R]=1 (in other words, assume that |
| 718 | * translation is desired by OS environment). |
| 719 | */ |
| 720 | spu_invalidate_slbs(spu); |
| 721 | spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size); |
| 722 | } |
| 723 | |
| 724 | static inline void set_switch_active(struct spu_state *csa, struct spu *spu) |
| 725 | { |
| 726 | /* Save, Step 48: |
| 727 | * Restore, Step 23. |
| 728 | * Change the software context switch pending flag |
| 729 | * to context switch active. This implementation does |
| 730 | * not uses a switch active flag. |
| 731 | * |
| 732 | * Now that we have saved the mfc in the csa, we can add in the |
| 733 | * restart command if an exception occurred. |
| 734 | */ |
| 735 | if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags)) |
| 736 | csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND; |
| 737 | clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags); |
| 738 | mb(); |
| 739 | } |
| 740 | |
| 741 | static inline void enable_interrupts(struct spu_state *csa, struct spu *spu) |
| 742 | { |
| 743 | unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR | |
| 744 | CLASS1_ENABLE_STORAGE_FAULT_INTR; |
| 745 | |
| 746 | /* Save, Step 49: |
| 747 | * Restore, Step 22: |
| 748 | * Reset and then enable interrupts, as |
| 749 | * needed by OS. |
| 750 | * |
| 751 | * This implementation enables only class1 |
| 752 | * (translation) interrupts. |
| 753 | */ |
| 754 | spin_lock_irq(lock: &spu->register_lock); |
| 755 | spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| 756 | spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); |
| 757 | spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| 758 | spu_int_mask_set(spu, 0, 0ul); |
| 759 | spu_int_mask_set(spu, 1, class1_mask); |
| 760 | spu_int_mask_set(spu, 2, 0ul); |
| 761 | spin_unlock_irq(lock: &spu->register_lock); |
| 762 | } |
| 763 | |
| 764 | static inline int send_mfc_dma(struct spu *spu, unsigned long ea, |
| 765 | unsigned int ls_offset, unsigned int size, |
| 766 | unsigned int tag, unsigned int rclass, |
| 767 | unsigned int cmd) |
| 768 | { |
| 769 | struct spu_problem __iomem *prob = spu->problem; |
| 770 | union mfc_tag_size_class_cmd command; |
| 771 | unsigned int transfer_size; |
| 772 | volatile unsigned int status = 0x0; |
| 773 | |
| 774 | while (size > 0) { |
| 775 | transfer_size = |
| 776 | (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size; |
| 777 | command.u.mfc_size = transfer_size; |
| 778 | command.u.mfc_tag = tag; |
| 779 | command.u.mfc_rclassid = rclass; |
| 780 | command.u.mfc_cmd = cmd; |
| 781 | do { |
| 782 | out_be32(&prob->mfc_lsa_W, ls_offset); |
| 783 | out_be64(&prob->mfc_ea_W, ea); |
| 784 | out_be64(&prob->mfc_union_W.all64, command.all64); |
| 785 | status = |
| 786 | in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32); |
| 787 | if (unlikely(status & 0x2)) { |
| 788 | cpu_relax(); |
| 789 | } |
| 790 | } while (status & 0x3); |
| 791 | size -= transfer_size; |
| 792 | ea += transfer_size; |
| 793 | ls_offset += transfer_size; |
| 794 | } |
| 795 | return 0; |
| 796 | } |
| 797 | |
| 798 | static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu) |
| 799 | { |
| 800 | unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; |
| 801 | unsigned int ls_offset = 0x0; |
| 802 | unsigned int size = 16384; |
| 803 | unsigned int tag = 0; |
| 804 | unsigned int rclass = 0; |
| 805 | unsigned int cmd = MFC_PUT_CMD; |
| 806 | |
| 807 | /* Save, Step 50: |
| 808 | * Issue a DMA command to copy the first 16K bytes |
| 809 | * of local storage to the CSA. |
| 810 | */ |
| 811 | send_mfc_dma(spu, ea: addr, ls_offset, size, tag, rclass, cmd); |
| 812 | } |
| 813 | |
| 814 | static inline void set_spu_npc(struct spu_state *csa, struct spu *spu) |
| 815 | { |
| 816 | struct spu_problem __iomem *prob = spu->problem; |
| 817 | |
| 818 | /* Save, Step 51: |
| 819 | * Restore, Step 31. |
| 820 | * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry |
| 821 | * point address of context save code in local |
| 822 | * storage. |
| 823 | * |
| 824 | * This implementation uses SPU-side save/restore |
| 825 | * programs with entry points at LSA of 0. |
| 826 | */ |
| 827 | out_be32(&prob->spu_npc_RW, 0); |
| 828 | eieio(); |
| 829 | } |
| 830 | |
| 831 | static inline void set_signot1(struct spu_state *csa, struct spu *spu) |
| 832 | { |
| 833 | struct spu_problem __iomem *prob = spu->problem; |
| 834 | union { |
| 835 | u64 ull; |
| 836 | u32 ui[2]; |
| 837 | } addr64; |
| 838 | |
| 839 | /* Save, Step 52: |
| 840 | * Restore, Step 32: |
| 841 | * Write SPU_Sig_Notify_1 register with upper 32-bits |
| 842 | * of the CSA.LSCSA effective address. |
| 843 | */ |
| 844 | addr64.ull = (u64) csa->lscsa; |
| 845 | out_be32(&prob->signal_notify1, addr64.ui[0]); |
| 846 | eieio(); |
| 847 | } |
| 848 | |
| 849 | static inline void set_signot2(struct spu_state *csa, struct spu *spu) |
| 850 | { |
| 851 | struct spu_problem __iomem *prob = spu->problem; |
| 852 | union { |
| 853 | u64 ull; |
| 854 | u32 ui[2]; |
| 855 | } addr64; |
| 856 | |
| 857 | /* Save, Step 53: |
| 858 | * Restore, Step 33: |
| 859 | * Write SPU_Sig_Notify_2 register with lower 32-bits |
| 860 | * of the CSA.LSCSA effective address. |
| 861 | */ |
| 862 | addr64.ull = (u64) csa->lscsa; |
| 863 | out_be32(&prob->signal_notify2, addr64.ui[1]); |
| 864 | eieio(); |
| 865 | } |
| 866 | |
| 867 | static inline void send_save_code(struct spu_state *csa, struct spu *spu) |
| 868 | { |
| 869 | unsigned long addr = (unsigned long)&spu_save_code[0]; |
| 870 | unsigned int ls_offset = 0x0; |
| 871 | unsigned int size = sizeof(spu_save_code); |
| 872 | unsigned int tag = 0; |
| 873 | unsigned int rclass = 0; |
| 874 | unsigned int cmd = MFC_GETFS_CMD; |
| 875 | |
| 876 | /* Save, Step 54: |
| 877 | * Issue a DMA command to copy context save code |
| 878 | * to local storage and start SPU. |
| 879 | */ |
| 880 | send_mfc_dma(spu, ea: addr, ls_offset, size, tag, rclass, cmd); |
| 881 | } |
| 882 | |
| 883 | static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu) |
| 884 | { |
| 885 | struct spu_problem __iomem *prob = spu->problem; |
| 886 | |
| 887 | /* Save, Step 55: |
| 888 | * Restore, Step 38. |
| 889 | * Write PPU_QueryMask=1 (enable Tag Group 0) |
| 890 | * and issue eieio instruction. |
| 891 | */ |
| 892 | out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0)); |
| 893 | eieio(); |
| 894 | } |
| 895 | |
| 896 | static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu) |
| 897 | { |
| 898 | struct spu_problem __iomem *prob = spu->problem; |
| 899 | u32 mask = MFC_TAGID_TO_TAGMASK(0); |
| 900 | unsigned long flags; |
| 901 | |
| 902 | /* Save, Step 56: |
| 903 | * Restore, Step 39. |
| 904 | * Restore, Step 39. |
| 905 | * Restore, Step 46. |
| 906 | * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete) |
| 907 | * or write PPU_QueryType[TS]=01 and wait for Tag Group |
| 908 | * Complete Interrupt. Write INT_Stat_Class0 or |
| 909 | * INT_Stat_Class2 with value of 'handled'. |
| 910 | */ |
| 911 | POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask); |
| 912 | |
| 913 | local_irq_save(flags); |
| 914 | spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| 915 | spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| 916 | local_irq_restore(flags); |
| 917 | } |
| 918 | |
| 919 | static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu) |
| 920 | { |
| 921 | struct spu_problem __iomem *prob = spu->problem; |
| 922 | unsigned long flags; |
| 923 | |
| 924 | /* Save, Step 57: |
| 925 | * Restore, Step 40. |
| 926 | * Poll until SPU_Status[R]=0 or wait for SPU Class 0 |
| 927 | * or SPU Class 2 interrupt. Write INT_Stat_class0 |
| 928 | * or INT_Stat_class2 with value of handled. |
| 929 | */ |
| 930 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); |
| 931 | |
| 932 | local_irq_save(flags); |
| 933 | spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| 934 | spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| 935 | local_irq_restore(flags); |
| 936 | } |
| 937 | |
| 938 | static inline int check_save_status(struct spu_state *csa, struct spu *spu) |
| 939 | { |
| 940 | struct spu_problem __iomem *prob = spu->problem; |
| 941 | u32 complete; |
| 942 | |
| 943 | /* Save, Step 54: |
| 944 | * If SPU_Status[P]=1 and SPU_Status[SC] = "success", |
| 945 | * context save succeeded, otherwise context save |
| 946 | * failed. |
| 947 | */ |
| 948 | complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) | |
| 949 | SPU_STATUS_STOPPED_BY_STOP); |
| 950 | return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; |
| 951 | } |
| 952 | |
| 953 | static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu) |
| 954 | { |
| 955 | /* Restore, Step 4: |
| 956 | * If required, notify the "using application" that |
| 957 | * the SPU task has been terminated. TBD. |
| 958 | */ |
| 959 | } |
| 960 | |
| 961 | static inline void suspend_mfc_and_halt_decr(struct spu_state *csa, |
| 962 | struct spu *spu) |
| 963 | { |
| 964 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 965 | |
| 966 | /* Restore, Step 7: |
| 967 | * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend |
| 968 | * the queue and halt the decrementer. |
| 969 | */ |
| 970 | out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE | |
| 971 | MFC_CNTL_DECREMENTER_HALTED); |
| 972 | eieio(); |
| 973 | } |
| 974 | |
| 975 | static inline void wait_suspend_mfc_complete(struct spu_state *csa, |
| 976 | struct spu *spu) |
| 977 | { |
| 978 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 979 | |
| 980 | /* Restore, Step 8: |
| 981 | * Restore, Step 47. |
| 982 | * Poll MFC_CNTL[Ss] until 11 is returned. |
| 983 | */ |
| 984 | POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) & |
| 985 | MFC_CNTL_SUSPEND_DMA_STATUS_MASK) == |
| 986 | MFC_CNTL_SUSPEND_COMPLETE); |
| 987 | } |
| 988 | |
| 989 | static inline int suspend_spe(struct spu_state *csa, struct spu *spu) |
| 990 | { |
| 991 | struct spu_problem __iomem *prob = spu->problem; |
| 992 | |
| 993 | /* Restore, Step 9: |
| 994 | * If SPU_Status[R]=1, stop SPU execution |
| 995 | * and wait for stop to complete. |
| 996 | * |
| 997 | * Returns 1 if SPU_Status[R]=1 on entry. |
| 998 | * 0 otherwise |
| 999 | */ |
| 1000 | if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) { |
| 1001 | if (in_be32(&prob->spu_status_R) & |
| 1002 | SPU_STATUS_ISOLATED_EXIT_STATUS) { |
| 1003 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1004 | SPU_STATUS_RUNNING); |
| 1005 | } |
| 1006 | if ((in_be32(&prob->spu_status_R) & |
| 1007 | SPU_STATUS_ISOLATED_LOAD_STATUS) |
| 1008 | || (in_be32(&prob->spu_status_R) & |
| 1009 | SPU_STATUS_ISOLATED_STATE)) { |
| 1010 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| 1011 | eieio(); |
| 1012 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1013 | SPU_STATUS_RUNNING); |
| 1014 | out_be32(&prob->spu_runcntl_RW, 0x2); |
| 1015 | eieio(); |
| 1016 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1017 | SPU_STATUS_RUNNING); |
| 1018 | } |
| 1019 | if (in_be32(&prob->spu_status_R) & |
| 1020 | SPU_STATUS_WAITING_FOR_CHANNEL) { |
| 1021 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| 1022 | eieio(); |
| 1023 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1024 | SPU_STATUS_RUNNING); |
| 1025 | } |
| 1026 | return 1; |
| 1027 | } |
| 1028 | return 0; |
| 1029 | } |
| 1030 | |
| 1031 | static inline void clear_spu_status(struct spu_state *csa, struct spu *spu) |
| 1032 | { |
| 1033 | struct spu_problem __iomem *prob = spu->problem; |
| 1034 | |
| 1035 | /* Restore, Step 10: |
| 1036 | * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1, |
| 1037 | * release SPU from isolate state. |
| 1038 | */ |
| 1039 | if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) { |
| 1040 | if (in_be32(&prob->spu_status_R) & |
| 1041 | SPU_STATUS_ISOLATED_EXIT_STATUS) { |
| 1042 | spu_mfc_sr1_set(spu, |
| 1043 | MFC_STATE1_MASTER_RUN_CONTROL_MASK); |
| 1044 | eieio(); |
| 1045 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| 1046 | eieio(); |
| 1047 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1048 | SPU_STATUS_RUNNING); |
| 1049 | } |
| 1050 | if ((in_be32(&prob->spu_status_R) & |
| 1051 | SPU_STATUS_ISOLATED_LOAD_STATUS) |
| 1052 | || (in_be32(&prob->spu_status_R) & |
| 1053 | SPU_STATUS_ISOLATED_STATE)) { |
| 1054 | spu_mfc_sr1_set(spu, |
| 1055 | MFC_STATE1_MASTER_RUN_CONTROL_MASK); |
| 1056 | eieio(); |
| 1057 | out_be32(&prob->spu_runcntl_RW, 0x2); |
| 1058 | eieio(); |
| 1059 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1060 | SPU_STATUS_RUNNING); |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu) |
| 1066 | { |
| 1067 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1068 | u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; |
| 1069 | u64 idx; |
| 1070 | int i; |
| 1071 | |
| 1072 | /* Restore, Step 20: |
| 1073 | */ |
| 1074 | |
| 1075 | /* Reset CH 1 */ |
| 1076 | out_be64(&priv2->spu_chnlcntptr_RW, 1); |
| 1077 | out_be64(&priv2->spu_chnldata_RW, 0UL); |
| 1078 | |
| 1079 | /* Reset the following CH: [0,3,4,24,25,27] */ |
| 1080 | for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { |
| 1081 | idx = ch_indices[i]; |
| 1082 | out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| 1083 | eieio(); |
| 1084 | out_be64(&priv2->spu_chnldata_RW, 0UL); |
| 1085 | out_be64(&priv2->spu_chnlcnt_RW, 0UL); |
| 1086 | eieio(); |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu) |
| 1091 | { |
| 1092 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1093 | u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL }; |
| 1094 | u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL }; |
| 1095 | u64 idx; |
| 1096 | int i; |
| 1097 | |
| 1098 | /* Restore, Step 21: |
| 1099 | * Reset the following CH: [21, 23, 28, 29, 30] |
| 1100 | */ |
| 1101 | for (i = 0; i < 5; i++) { |
| 1102 | idx = ch_indices[i]; |
| 1103 | out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| 1104 | eieio(); |
| 1105 | out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); |
| 1106 | eieio(); |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | static inline void setup_spu_status_part1(struct spu_state *csa, |
| 1111 | struct spu *spu) |
| 1112 | { |
| 1113 | u32 status_P = SPU_STATUS_STOPPED_BY_STOP; |
| 1114 | u32 status_I = SPU_STATUS_INVALID_INSTR; |
| 1115 | u32 status_H = SPU_STATUS_STOPPED_BY_HALT; |
| 1116 | u32 status_S = SPU_STATUS_SINGLE_STEP; |
| 1117 | u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR; |
| 1118 | u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP; |
| 1119 | u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP; |
| 1120 | u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR; |
| 1121 | u32 status_code; |
| 1122 | |
| 1123 | /* Restore, Step 27: |
| 1124 | * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct |
| 1125 | * instruction sequence to the end of the SPU based restore |
| 1126 | * code (after the "context restored" stop and signal) to |
| 1127 | * restore the correct SPU status. |
| 1128 | * |
| 1129 | * NOTE: Rather than modifying the SPU executable, we |
| 1130 | * instead add a new 'stopped_status' field to the |
| 1131 | * LSCSA. The SPU-side restore reads this field and |
| 1132 | * takes the appropriate action when exiting. |
| 1133 | */ |
| 1134 | |
| 1135 | status_code = |
| 1136 | (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF; |
| 1137 | if ((csa->prob.spu_status_R & status_P_I) == status_P_I) { |
| 1138 | |
| 1139 | /* SPU_Status[P,I]=1 - Illegal Instruction followed |
| 1140 | * by Stop and Signal instruction, followed by 'br -4'. |
| 1141 | * |
| 1142 | */ |
| 1143 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I; |
| 1144 | csa->lscsa->stopped_status.slot[1] = status_code; |
| 1145 | |
| 1146 | } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) { |
| 1147 | |
| 1148 | /* SPU_Status[P,H]=1 - Halt Conditional, followed |
| 1149 | * by Stop and Signal instruction, followed by |
| 1150 | * 'br -4'. |
| 1151 | */ |
| 1152 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H; |
| 1153 | csa->lscsa->stopped_status.slot[1] = status_code; |
| 1154 | |
| 1155 | } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) { |
| 1156 | |
| 1157 | /* SPU_Status[S,P]=1 - Stop and Signal instruction |
| 1158 | * followed by 'br -4'. |
| 1159 | */ |
| 1160 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P; |
| 1161 | csa->lscsa->stopped_status.slot[1] = status_code; |
| 1162 | |
| 1163 | } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) { |
| 1164 | |
| 1165 | /* SPU_Status[S,I]=1 - Illegal instruction followed |
| 1166 | * by 'br -4'. |
| 1167 | */ |
| 1168 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I; |
| 1169 | csa->lscsa->stopped_status.slot[1] = status_code; |
| 1170 | |
| 1171 | } else if ((csa->prob.spu_status_R & status_P) == status_P) { |
| 1172 | |
| 1173 | /* SPU_Status[P]=1 - Stop and Signal instruction |
| 1174 | * followed by 'br -4'. |
| 1175 | */ |
| 1176 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P; |
| 1177 | csa->lscsa->stopped_status.slot[1] = status_code; |
| 1178 | |
| 1179 | } else if ((csa->prob.spu_status_R & status_H) == status_H) { |
| 1180 | |
| 1181 | /* SPU_Status[H]=1 - Halt Conditional, followed |
| 1182 | * by 'br -4'. |
| 1183 | */ |
| 1184 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H; |
| 1185 | |
| 1186 | } else if ((csa->prob.spu_status_R & status_S) == status_S) { |
| 1187 | |
| 1188 | /* SPU_Status[S]=1 - Two nop instructions. |
| 1189 | */ |
| 1190 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S; |
| 1191 | |
| 1192 | } else if ((csa->prob.spu_status_R & status_I) == status_I) { |
| 1193 | |
| 1194 | /* SPU_Status[I]=1 - Illegal instruction followed |
| 1195 | * by 'br -4'. |
| 1196 | */ |
| 1197 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I; |
| 1198 | |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | static inline void setup_spu_status_part2(struct spu_state *csa, |
| 1203 | struct spu *spu) |
| 1204 | { |
| 1205 | u32 mask; |
| 1206 | |
| 1207 | /* Restore, Step 28: |
| 1208 | * If the CSA.SPU_Status[I,S,H,P,R]=0 then |
| 1209 | * add a 'br *' instruction to the end of |
| 1210 | * the SPU based restore code. |
| 1211 | * |
| 1212 | * NOTE: Rather than modifying the SPU executable, we |
| 1213 | * instead add a new 'stopped_status' field to the |
| 1214 | * LSCSA. The SPU-side restore reads this field and |
| 1215 | * takes the appropriate action when exiting. |
| 1216 | */ |
| 1217 | mask = SPU_STATUS_INVALID_INSTR | |
| 1218 | SPU_STATUS_SINGLE_STEP | |
| 1219 | SPU_STATUS_STOPPED_BY_HALT | |
| 1220 | SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; |
| 1221 | if (!(csa->prob.spu_status_R & mask)) { |
| 1222 | csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R; |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu) |
| 1227 | { |
| 1228 | /* Restore, Step 29: |
| 1229 | * Restore RA_GROUP_ID register and the |
| 1230 | * RA_ENABLE reigster from the CSA. |
| 1231 | */ |
| 1232 | spu_resource_allocation_groupID_set(spu, |
| 1233 | csa->priv1.resource_allocation_groupID_RW); |
| 1234 | spu_resource_allocation_enable_set(spu, |
| 1235 | csa->priv1.resource_allocation_enable_RW); |
| 1236 | } |
| 1237 | |
| 1238 | static inline void send_restore_code(struct spu_state *csa, struct spu *spu) |
| 1239 | { |
| 1240 | unsigned long addr = (unsigned long)&spu_restore_code[0]; |
| 1241 | unsigned int ls_offset = 0x0; |
| 1242 | unsigned int size = sizeof(spu_restore_code); |
| 1243 | unsigned int tag = 0; |
| 1244 | unsigned int rclass = 0; |
| 1245 | unsigned int cmd = MFC_GETFS_CMD; |
| 1246 | |
| 1247 | /* Restore, Step 37: |
| 1248 | * Issue MFC DMA command to copy context |
| 1249 | * restore code to local storage. |
| 1250 | */ |
| 1251 | send_mfc_dma(spu, ea: addr, ls_offset, size, tag, rclass, cmd); |
| 1252 | } |
| 1253 | |
| 1254 | static inline void setup_decr(struct spu_state *csa, struct spu *spu) |
| 1255 | { |
| 1256 | /* Restore, Step 34: |
| 1257 | * If CSA.MFC_CNTL[Ds]=1 (decrementer was |
| 1258 | * running) then adjust decrementer, set |
| 1259 | * decrementer running status in LSCSA, |
| 1260 | * and set decrementer "wrapped" status |
| 1261 | * in LSCSA. |
| 1262 | */ |
| 1263 | if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) { |
| 1264 | cycles_t resume_time = get_cycles(); |
| 1265 | cycles_t delta_time = resume_time - csa->suspend_time; |
| 1266 | |
| 1267 | csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING; |
| 1268 | if (csa->lscsa->decr.slot[0] < delta_time) { |
| 1269 | csa->lscsa->decr_status.slot[0] |= |
| 1270 | SPU_DECR_STATUS_WRAPPED; |
| 1271 | } |
| 1272 | |
| 1273 | csa->lscsa->decr.slot[0] -= delta_time; |
| 1274 | } else { |
| 1275 | csa->lscsa->decr_status.slot[0] = 0; |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu) |
| 1280 | { |
| 1281 | /* Restore, Step 35: |
| 1282 | * Copy the CSA.PU_MB data into the LSCSA. |
| 1283 | */ |
| 1284 | csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R; |
| 1285 | } |
| 1286 | |
| 1287 | static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu) |
| 1288 | { |
| 1289 | /* Restore, Step 36: |
| 1290 | * Copy the CSA.PUINT_MB data into the LSCSA. |
| 1291 | */ |
| 1292 | csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R; |
| 1293 | } |
| 1294 | |
| 1295 | static inline int check_restore_status(struct spu_state *csa, struct spu *spu) |
| 1296 | { |
| 1297 | struct spu_problem __iomem *prob = spu->problem; |
| 1298 | u32 complete; |
| 1299 | |
| 1300 | /* Restore, Step 40: |
| 1301 | * If SPU_Status[P]=1 and SPU_Status[SC] = "success", |
| 1302 | * context restore succeeded, otherwise context restore |
| 1303 | * failed. |
| 1304 | */ |
| 1305 | complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) | |
| 1306 | SPU_STATUS_STOPPED_BY_STOP); |
| 1307 | return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0; |
| 1308 | } |
| 1309 | |
| 1310 | static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu) |
| 1311 | { |
| 1312 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1313 | |
| 1314 | /* Restore, Step 41: |
| 1315 | * Restore SPU_PrivCntl from the CSA. |
| 1316 | */ |
| 1317 | out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW); |
| 1318 | eieio(); |
| 1319 | } |
| 1320 | |
| 1321 | static inline void restore_status_part1(struct spu_state *csa, struct spu *spu) |
| 1322 | { |
| 1323 | struct spu_problem __iomem *prob = spu->problem; |
| 1324 | u32 mask; |
| 1325 | |
| 1326 | /* Restore, Step 42: |
| 1327 | * If any CSA.SPU_Status[I,S,H,P]=1, then |
| 1328 | * restore the error or single step state. |
| 1329 | */ |
| 1330 | mask = SPU_STATUS_INVALID_INSTR | |
| 1331 | SPU_STATUS_SINGLE_STEP | |
| 1332 | SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP; |
| 1333 | if (csa->prob.spu_status_R & mask) { |
| 1334 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| 1335 | eieio(); |
| 1336 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1337 | SPU_STATUS_RUNNING); |
| 1338 | } |
| 1339 | } |
| 1340 | |
| 1341 | static inline void restore_status_part2(struct spu_state *csa, struct spu *spu) |
| 1342 | { |
| 1343 | struct spu_problem __iomem *prob = spu->problem; |
| 1344 | u32 mask; |
| 1345 | |
| 1346 | /* Restore, Step 43: |
| 1347 | * If all CSA.SPU_Status[I,S,H,P,R]=0 then write |
| 1348 | * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1, |
| 1349 | * then write '00' to SPU_RunCntl[R0R1] and wait |
| 1350 | * for SPU_Status[R]=0. |
| 1351 | */ |
| 1352 | mask = SPU_STATUS_INVALID_INSTR | |
| 1353 | SPU_STATUS_SINGLE_STEP | |
| 1354 | SPU_STATUS_STOPPED_BY_HALT | |
| 1355 | SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING; |
| 1356 | if (!(csa->prob.spu_status_R & mask)) { |
| 1357 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| 1358 | eieio(); |
| 1359 | POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) & |
| 1360 | SPU_STATUS_RUNNING); |
| 1361 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| 1362 | eieio(); |
| 1363 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & |
| 1364 | SPU_STATUS_RUNNING); |
| 1365 | } |
| 1366 | } |
| 1367 | |
| 1368 | static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu) |
| 1369 | { |
| 1370 | unsigned long addr = (unsigned long)&csa->lscsa->ls[0]; |
| 1371 | unsigned int ls_offset = 0x0; |
| 1372 | unsigned int size = 16384; |
| 1373 | unsigned int tag = 0; |
| 1374 | unsigned int rclass = 0; |
| 1375 | unsigned int cmd = MFC_GET_CMD; |
| 1376 | |
| 1377 | /* Restore, Step 44: |
| 1378 | * Issue a DMA command to restore the first |
| 1379 | * 16kb of local storage from CSA. |
| 1380 | */ |
| 1381 | send_mfc_dma(spu, ea: addr, ls_offset, size, tag, rclass, cmd); |
| 1382 | } |
| 1383 | |
| 1384 | static inline void suspend_mfc(struct spu_state *csa, struct spu *spu) |
| 1385 | { |
| 1386 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1387 | |
| 1388 | /* Restore, Step 47. |
| 1389 | * Write MFC_Cntl[Sc,Sm]='1','0' to suspend |
| 1390 | * the queue. |
| 1391 | */ |
| 1392 | out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE); |
| 1393 | eieio(); |
| 1394 | } |
| 1395 | |
| 1396 | static inline void clear_interrupts(struct spu_state *csa, struct spu *spu) |
| 1397 | { |
| 1398 | /* Restore, Step 49: |
| 1399 | * Write INT_MASK_class0 with value of 0. |
| 1400 | * Write INT_MASK_class1 with value of 0. |
| 1401 | * Write INT_MASK_class2 with value of 0. |
| 1402 | * Write INT_STAT_class0 with value of -1. |
| 1403 | * Write INT_STAT_class1 with value of -1. |
| 1404 | * Write INT_STAT_class2 with value of -1. |
| 1405 | */ |
| 1406 | spin_lock_irq(lock: &spu->register_lock); |
| 1407 | spu_int_mask_set(spu, 0, 0ul); |
| 1408 | spu_int_mask_set(spu, 1, 0ul); |
| 1409 | spu_int_mask_set(spu, 2, 0ul); |
| 1410 | spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK); |
| 1411 | spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK); |
| 1412 | spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK); |
| 1413 | spin_unlock_irq(lock: &spu->register_lock); |
| 1414 | } |
| 1415 | |
| 1416 | static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu) |
| 1417 | { |
| 1418 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1419 | int i; |
| 1420 | |
| 1421 | /* Restore, Step 50: |
| 1422 | * If MFC_Cntl[Se]!=0 then restore |
| 1423 | * MFC command queues. |
| 1424 | */ |
| 1425 | if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) { |
| 1426 | for (i = 0; i < 8; i++) { |
| 1427 | out_be64(&priv2->puq[i].mfc_cq_data0_RW, |
| 1428 | csa->priv2.puq[i].mfc_cq_data0_RW); |
| 1429 | out_be64(&priv2->puq[i].mfc_cq_data1_RW, |
| 1430 | csa->priv2.puq[i].mfc_cq_data1_RW); |
| 1431 | out_be64(&priv2->puq[i].mfc_cq_data2_RW, |
| 1432 | csa->priv2.puq[i].mfc_cq_data2_RW); |
| 1433 | out_be64(&priv2->puq[i].mfc_cq_data3_RW, |
| 1434 | csa->priv2.puq[i].mfc_cq_data3_RW); |
| 1435 | } |
| 1436 | for (i = 0; i < 16; i++) { |
| 1437 | out_be64(&priv2->spuq[i].mfc_cq_data0_RW, |
| 1438 | csa->priv2.spuq[i].mfc_cq_data0_RW); |
| 1439 | out_be64(&priv2->spuq[i].mfc_cq_data1_RW, |
| 1440 | csa->priv2.spuq[i].mfc_cq_data1_RW); |
| 1441 | out_be64(&priv2->spuq[i].mfc_cq_data2_RW, |
| 1442 | csa->priv2.spuq[i].mfc_cq_data2_RW); |
| 1443 | out_be64(&priv2->spuq[i].mfc_cq_data3_RW, |
| 1444 | csa->priv2.spuq[i].mfc_cq_data3_RW); |
| 1445 | } |
| 1446 | } |
| 1447 | eieio(); |
| 1448 | } |
| 1449 | |
| 1450 | static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu) |
| 1451 | { |
| 1452 | struct spu_problem __iomem *prob = spu->problem; |
| 1453 | |
| 1454 | /* Restore, Step 51: |
| 1455 | * Restore the PPU_QueryMask register from CSA. |
| 1456 | */ |
| 1457 | out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW); |
| 1458 | eieio(); |
| 1459 | } |
| 1460 | |
| 1461 | static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu) |
| 1462 | { |
| 1463 | struct spu_problem __iomem *prob = spu->problem; |
| 1464 | |
| 1465 | /* Restore, Step 52: |
| 1466 | * Restore the PPU_QueryType register from CSA. |
| 1467 | */ |
| 1468 | out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW); |
| 1469 | eieio(); |
| 1470 | } |
| 1471 | |
| 1472 | static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu) |
| 1473 | { |
| 1474 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1475 | |
| 1476 | /* Restore, Step 53: |
| 1477 | * Restore the MFC_CSR_TSQ register from CSA. |
| 1478 | */ |
| 1479 | out_be64(&priv2->spu_tag_status_query_RW, |
| 1480 | csa->priv2.spu_tag_status_query_RW); |
| 1481 | eieio(); |
| 1482 | } |
| 1483 | |
| 1484 | static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu) |
| 1485 | { |
| 1486 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1487 | |
| 1488 | /* Restore, Step 54: |
| 1489 | * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2 |
| 1490 | * registers from CSA. |
| 1491 | */ |
| 1492 | out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW); |
| 1493 | out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW); |
| 1494 | eieio(); |
| 1495 | } |
| 1496 | |
| 1497 | static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu) |
| 1498 | { |
| 1499 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1500 | |
| 1501 | /* Restore, Step 55: |
| 1502 | * Restore the MFC_CSR_ATO register from CSA. |
| 1503 | */ |
| 1504 | out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW); |
| 1505 | } |
| 1506 | |
| 1507 | static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu) |
| 1508 | { |
| 1509 | /* Restore, Step 56: |
| 1510 | * Restore the MFC_TCLASS_ID register from CSA. |
| 1511 | */ |
| 1512 | spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW); |
| 1513 | eieio(); |
| 1514 | } |
| 1515 | |
| 1516 | static inline void set_llr_event(struct spu_state *csa, struct spu *spu) |
| 1517 | { |
| 1518 | u64 ch0_cnt, ch0_data; |
| 1519 | u64 ch1_data; |
| 1520 | |
| 1521 | /* Restore, Step 57: |
| 1522 | * Set the Lock Line Reservation Lost Event by: |
| 1523 | * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1. |
| 1524 | * 2. If CSA.SPU_Channel_0_Count=0 and |
| 1525 | * CSA.SPU_Wr_Event_Mask[Lr]=1 and |
| 1526 | * CSA.SPU_Event_Status[Lr]=0 then set |
| 1527 | * CSA.SPU_Event_Status_Count=1. |
| 1528 | */ |
| 1529 | ch0_cnt = csa->spu_chnlcnt_RW[0]; |
| 1530 | ch0_data = csa->spu_chnldata_RW[0]; |
| 1531 | ch1_data = csa->spu_chnldata_RW[1]; |
| 1532 | csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT; |
| 1533 | if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) && |
| 1534 | (ch1_data & MFC_LLR_LOST_EVENT)) { |
| 1535 | csa->spu_chnlcnt_RW[0] = 1; |
| 1536 | } |
| 1537 | } |
| 1538 | |
| 1539 | static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu) |
| 1540 | { |
| 1541 | /* Restore, Step 58: |
| 1542 | * If the status of the CSA software decrementer |
| 1543 | * "wrapped" flag is set, OR in a '1' to |
| 1544 | * CSA.SPU_Event_Status[Tm]. |
| 1545 | */ |
| 1546 | if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED)) |
| 1547 | return; |
| 1548 | |
| 1549 | if ((csa->spu_chnlcnt_RW[0] == 0) && |
| 1550 | (csa->spu_chnldata_RW[1] & 0x20) && |
| 1551 | !(csa->spu_chnldata_RW[0] & 0x20)) |
| 1552 | csa->spu_chnlcnt_RW[0] = 1; |
| 1553 | |
| 1554 | csa->spu_chnldata_RW[0] |= 0x20; |
| 1555 | } |
| 1556 | |
| 1557 | static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu) |
| 1558 | { |
| 1559 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1560 | u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL }; |
| 1561 | int i; |
| 1562 | |
| 1563 | /* Restore, Step 59: |
| 1564 | * Restore the following CH: [0,3,4,24,25,27] |
| 1565 | */ |
| 1566 | for (i = 0; i < ARRAY_SIZE(ch_indices); i++) { |
| 1567 | idx = ch_indices[i]; |
| 1568 | out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| 1569 | eieio(); |
| 1570 | out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]); |
| 1571 | out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]); |
| 1572 | eieio(); |
| 1573 | } |
| 1574 | } |
| 1575 | |
| 1576 | static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu) |
| 1577 | { |
| 1578 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1579 | u64 ch_indices[3] = { 9UL, 21UL, 23UL }; |
| 1580 | u64 ch_counts[3] = { 1UL, 16UL, 1UL }; |
| 1581 | u64 idx; |
| 1582 | int i; |
| 1583 | |
| 1584 | /* Restore, Step 60: |
| 1585 | * Restore the following CH: [9,21,23]. |
| 1586 | */ |
| 1587 | ch_counts[0] = 1UL; |
| 1588 | ch_counts[1] = csa->spu_chnlcnt_RW[21]; |
| 1589 | ch_counts[2] = 1UL; |
| 1590 | for (i = 0; i < 3; i++) { |
| 1591 | idx = ch_indices[i]; |
| 1592 | out_be64(&priv2->spu_chnlcntptr_RW, idx); |
| 1593 | eieio(); |
| 1594 | out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]); |
| 1595 | eieio(); |
| 1596 | } |
| 1597 | } |
| 1598 | |
| 1599 | static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu) |
| 1600 | { |
| 1601 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1602 | |
| 1603 | /* Restore, Step 61: |
| 1604 | * Restore the SPU_LSLR register from CSA. |
| 1605 | */ |
| 1606 | out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW); |
| 1607 | eieio(); |
| 1608 | } |
| 1609 | |
| 1610 | static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu) |
| 1611 | { |
| 1612 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1613 | |
| 1614 | /* Restore, Step 62: |
| 1615 | * Restore the SPU_Cfg register from CSA. |
| 1616 | */ |
| 1617 | out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW); |
| 1618 | eieio(); |
| 1619 | } |
| 1620 | |
| 1621 | static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu) |
| 1622 | { |
| 1623 | /* Restore, Step 63: |
| 1624 | * Restore PM_Trace_Tag_Wait_Mask from CSA. |
| 1625 | * Not performed by this implementation. |
| 1626 | */ |
| 1627 | } |
| 1628 | |
| 1629 | static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu) |
| 1630 | { |
| 1631 | struct spu_problem __iomem *prob = spu->problem; |
| 1632 | |
| 1633 | /* Restore, Step 64: |
| 1634 | * Restore SPU_NPC from CSA. |
| 1635 | */ |
| 1636 | out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW); |
| 1637 | eieio(); |
| 1638 | } |
| 1639 | |
| 1640 | static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu) |
| 1641 | { |
| 1642 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1643 | int i; |
| 1644 | |
| 1645 | /* Restore, Step 65: |
| 1646 | * Restore MFC_RdSPU_MB from CSA. |
| 1647 | */ |
| 1648 | out_be64(&priv2->spu_chnlcntptr_RW, 29UL); |
| 1649 | eieio(); |
| 1650 | out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]); |
| 1651 | for (i = 0; i < 4; i++) { |
| 1652 | out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]); |
| 1653 | } |
| 1654 | eieio(); |
| 1655 | } |
| 1656 | |
| 1657 | static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu) |
| 1658 | { |
| 1659 | struct spu_problem __iomem *prob = spu->problem; |
| 1660 | |
| 1661 | /* Restore, Step 66: |
| 1662 | * If CSA.MB_Stat[P]=0 (mailbox empty) then |
| 1663 | * read from the PPU_MB register. |
| 1664 | */ |
| 1665 | if ((csa->prob.mb_stat_R & 0xFF) == 0) { |
| 1666 | in_be32(&prob->pu_mb_R); |
| 1667 | eieio(); |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu) |
| 1672 | { |
| 1673 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1674 | |
| 1675 | /* Restore, Step 66: |
| 1676 | * If CSA.MB_Stat[I]=0 (mailbox empty) then |
| 1677 | * read from the PPUINT_MB register. |
| 1678 | */ |
| 1679 | if ((csa->prob.mb_stat_R & 0xFF0000) == 0) { |
| 1680 | in_be64(&priv2->puint_mb_R); |
| 1681 | eieio(); |
| 1682 | spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR); |
| 1683 | eieio(); |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu) |
| 1688 | { |
| 1689 | /* Restore, Step 69: |
| 1690 | * Restore the MFC_SR1 register from CSA. |
| 1691 | */ |
| 1692 | spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW); |
| 1693 | eieio(); |
| 1694 | } |
| 1695 | |
| 1696 | static inline void set_int_route(struct spu_state *csa, struct spu *spu) |
| 1697 | { |
| 1698 | struct spu_context *ctx = spu->ctx; |
| 1699 | |
| 1700 | spu_cpu_affinity_set(spu, ctx->last_ran); |
| 1701 | } |
| 1702 | |
| 1703 | static inline void restore_other_spu_access(struct spu_state *csa, |
| 1704 | struct spu *spu) |
| 1705 | { |
| 1706 | /* Restore, Step 70: |
| 1707 | * Restore other SPU mappings to this SPU. TBD. |
| 1708 | */ |
| 1709 | } |
| 1710 | |
| 1711 | static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu) |
| 1712 | { |
| 1713 | struct spu_problem __iomem *prob = spu->problem; |
| 1714 | |
| 1715 | /* Restore, Step 71: |
| 1716 | * If CSA.SPU_Status[R]=1 then write |
| 1717 | * SPU_RunCntl[R0R1]='01'. |
| 1718 | */ |
| 1719 | if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) { |
| 1720 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE); |
| 1721 | eieio(); |
| 1722 | } |
| 1723 | } |
| 1724 | |
| 1725 | static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu) |
| 1726 | { |
| 1727 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1728 | |
| 1729 | /* Restore, Step 72: |
| 1730 | * Restore the MFC_CNTL register for the CSA. |
| 1731 | */ |
| 1732 | out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW); |
| 1733 | eieio(); |
| 1734 | |
| 1735 | /* |
| 1736 | * The queue is put back into the same state that was evident prior to |
| 1737 | * the context switch. The suspend flag is added to the saved state in |
| 1738 | * the csa, if the operational state was suspending or suspended. In |
| 1739 | * this case, the code that suspended the mfc is responsible for |
| 1740 | * continuing it. Note that SPE faults do not change the operational |
| 1741 | * state of the spu. |
| 1742 | */ |
| 1743 | } |
| 1744 | |
| 1745 | static inline void enable_user_access(struct spu_state *csa, struct spu *spu) |
| 1746 | { |
| 1747 | /* Restore, Step 73: |
| 1748 | * Enable user-space access (if provided) to this |
| 1749 | * SPU by mapping the virtual pages assigned to |
| 1750 | * the SPU memory-mapped I/O (MMIO) for problem |
| 1751 | * state. TBD. |
| 1752 | */ |
| 1753 | } |
| 1754 | |
| 1755 | static inline void reset_switch_active(struct spu_state *csa, struct spu *spu) |
| 1756 | { |
| 1757 | /* Restore, Step 74: |
| 1758 | * Reset the "context switch active" flag. |
| 1759 | * Not performed by this implementation. |
| 1760 | */ |
| 1761 | } |
| 1762 | |
| 1763 | static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu) |
| 1764 | { |
| 1765 | /* Restore, Step 75: |
| 1766 | * Re-enable SPU interrupts. |
| 1767 | */ |
| 1768 | spin_lock_irq(lock: &spu->register_lock); |
| 1769 | spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW); |
| 1770 | spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW); |
| 1771 | spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW); |
| 1772 | spin_unlock_irq(lock: &spu->register_lock); |
| 1773 | } |
| 1774 | |
| 1775 | static int quiece_spu(struct spu_state *prev, struct spu *spu) |
| 1776 | { |
| 1777 | /* |
| 1778 | * Combined steps 2-18 of SPU context save sequence, which |
| 1779 | * quiesce the SPU state (disable SPU execution, MFC command |
| 1780 | * queues, decrementer, SPU interrupts, etc.). |
| 1781 | * |
| 1782 | * Returns 0 on success. |
| 1783 | * 2 if failed step 2. |
| 1784 | * 6 if failed step 6. |
| 1785 | */ |
| 1786 | |
| 1787 | if (check_spu_isolate(csa: prev, spu)) { /* Step 2. */ |
| 1788 | return 2; |
| 1789 | } |
| 1790 | disable_interrupts(csa: prev, spu); /* Step 3. */ |
| 1791 | set_watchdog_timer(csa: prev, spu); /* Step 4. */ |
| 1792 | inhibit_user_access(csa: prev, spu); /* Step 5. */ |
| 1793 | if (check_spu_isolate(csa: prev, spu)) { /* Step 6. */ |
| 1794 | return 6; |
| 1795 | } |
| 1796 | set_switch_pending(csa: prev, spu); /* Step 7. */ |
| 1797 | save_mfc_cntl(csa: prev, spu); /* Step 8. */ |
| 1798 | save_spu_runcntl(csa: prev, spu); /* Step 9. */ |
| 1799 | save_mfc_sr1(csa: prev, spu); /* Step 10. */ |
| 1800 | save_spu_status(csa: prev, spu); /* Step 11. */ |
| 1801 | save_mfc_stopped_status(csa: prev, spu); /* Step 12. */ |
| 1802 | halt_mfc_decr(csa: prev, spu); /* Step 13. */ |
| 1803 | save_timebase(csa: prev, spu); /* Step 14. */ |
| 1804 | remove_other_spu_access(csa: prev, spu); /* Step 15. */ |
| 1805 | do_mfc_mssync(csa: prev, spu); /* Step 16. */ |
| 1806 | issue_mfc_tlbie(csa: prev, spu); /* Step 17. */ |
| 1807 | handle_pending_interrupts(csa: prev, spu); /* Step 18. */ |
| 1808 | |
| 1809 | return 0; |
| 1810 | } |
| 1811 | |
| 1812 | static void save_csa(struct spu_state *prev, struct spu *spu) |
| 1813 | { |
| 1814 | /* |
| 1815 | * Combine steps 19-44 of SPU context save sequence, which |
| 1816 | * save regions of the privileged & problem state areas. |
| 1817 | */ |
| 1818 | |
| 1819 | save_mfc_queues(csa: prev, spu); /* Step 19. */ |
| 1820 | save_ppu_querymask(csa: prev, spu); /* Step 20. */ |
| 1821 | save_ppu_querytype(csa: prev, spu); /* Step 21. */ |
| 1822 | save_ppu_tagstatus(csa: prev, spu); /* NEW. */ |
| 1823 | save_mfc_csr_tsq(csa: prev, spu); /* Step 22. */ |
| 1824 | save_mfc_csr_cmd(csa: prev, spu); /* Step 23. */ |
| 1825 | save_mfc_csr_ato(csa: prev, spu); /* Step 24. */ |
| 1826 | save_mfc_tclass_id(csa: prev, spu); /* Step 25. */ |
| 1827 | set_mfc_tclass_id(csa: prev, spu); /* Step 26. */ |
| 1828 | save_mfc_cmd(csa: prev, spu); /* Step 26a - moved from 44. */ |
| 1829 | purge_mfc_queue(csa: prev, spu); /* Step 27. */ |
| 1830 | wait_purge_complete(csa: prev, spu); /* Step 28. */ |
| 1831 | setup_mfc_sr1(csa: prev, spu); /* Step 30. */ |
| 1832 | save_spu_npc(csa: prev, spu); /* Step 31. */ |
| 1833 | save_spu_privcntl(csa: prev, spu); /* Step 32. */ |
| 1834 | reset_spu_privcntl(csa: prev, spu); /* Step 33. */ |
| 1835 | save_spu_lslr(csa: prev, spu); /* Step 34. */ |
| 1836 | reset_spu_lslr(csa: prev, spu); /* Step 35. */ |
| 1837 | save_spu_cfg(csa: prev, spu); /* Step 36. */ |
| 1838 | save_pm_trace(csa: prev, spu); /* Step 37. */ |
| 1839 | save_mfc_rag(csa: prev, spu); /* Step 38. */ |
| 1840 | save_ppu_mb_stat(csa: prev, spu); /* Step 39. */ |
| 1841 | save_ppu_mb(csa: prev, spu); /* Step 40. */ |
| 1842 | save_ppuint_mb(csa: prev, spu); /* Step 41. */ |
| 1843 | save_ch_part1(csa: prev, spu); /* Step 42. */ |
| 1844 | save_spu_mb(csa: prev, spu); /* Step 43. */ |
| 1845 | reset_ch(csa: prev, spu); /* Step 45. */ |
| 1846 | } |
| 1847 | |
| 1848 | static void save_lscsa(struct spu_state *prev, struct spu *spu) |
| 1849 | { |
| 1850 | /* |
| 1851 | * Perform steps 46-57 of SPU context save sequence, |
| 1852 | * which save regions of the local store and register |
| 1853 | * file. |
| 1854 | */ |
| 1855 | |
| 1856 | resume_mfc_queue(csa: prev, spu); /* Step 46. */ |
| 1857 | /* Step 47. */ |
| 1858 | setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code)); |
| 1859 | set_switch_active(csa: prev, spu); /* Step 48. */ |
| 1860 | enable_interrupts(csa: prev, spu); /* Step 49. */ |
| 1861 | save_ls_16kb(csa: prev, spu); /* Step 50. */ |
| 1862 | set_spu_npc(csa: prev, spu); /* Step 51. */ |
| 1863 | set_signot1(csa: prev, spu); /* Step 52. */ |
| 1864 | set_signot2(csa: prev, spu); /* Step 53. */ |
| 1865 | send_save_code(csa: prev, spu); /* Step 54. */ |
| 1866 | set_ppu_querymask(csa: prev, spu); /* Step 55. */ |
| 1867 | wait_tag_complete(csa: prev, spu); /* Step 56. */ |
| 1868 | wait_spu_stopped(csa: prev, spu); /* Step 57. */ |
| 1869 | } |
| 1870 | |
| 1871 | static void force_spu_isolate_exit(struct spu *spu) |
| 1872 | { |
| 1873 | struct spu_problem __iomem *prob = spu->problem; |
| 1874 | struct spu_priv2 __iomem *priv2 = spu->priv2; |
| 1875 | |
| 1876 | /* Stop SPE execution and wait for completion. */ |
| 1877 | out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP); |
| 1878 | iobarrier_rw(); |
| 1879 | POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING); |
| 1880 | |
| 1881 | /* Restart SPE master runcntl. */ |
| 1882 | spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK); |
| 1883 | iobarrier_w(); |
| 1884 | |
| 1885 | /* Initiate isolate exit request and wait for completion. */ |
| 1886 | out_be64(&priv2->spu_privcntl_RW, 4LL); |
| 1887 | iobarrier_w(); |
| 1888 | out_be32(&prob->spu_runcntl_RW, 2); |
| 1889 | iobarrier_rw(); |
| 1890 | POLL_WHILE_FALSE((in_be32(&prob->spu_status_R) |
| 1891 | & SPU_STATUS_STOPPED_BY_STOP)); |
| 1892 | |
| 1893 | /* Reset load request to normal. */ |
| 1894 | out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL); |
| 1895 | iobarrier_w(); |
| 1896 | } |
| 1897 | |
| 1898 | /** |
| 1899 | * stop_spu_isolate |
| 1900 | * Check SPU run-control state and force isolated |
| 1901 | * exit function as necessary. |
| 1902 | */ |
| 1903 | static void stop_spu_isolate(struct spu *spu) |
| 1904 | { |
| 1905 | struct spu_problem __iomem *prob = spu->problem; |
| 1906 | |
| 1907 | if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) { |
| 1908 | /* The SPU is in isolated state; the only way |
| 1909 | * to get it out is to perform an isolated |
| 1910 | * exit (clean) operation. |
| 1911 | */ |
| 1912 | force_spu_isolate_exit(spu); |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | static void harvest(struct spu_state *prev, struct spu *spu) |
| 1917 | { |
| 1918 | /* |
| 1919 | * Perform steps 2-25 of SPU context restore sequence, |
| 1920 | * which resets an SPU either after a failed save, or |
| 1921 | * when using SPU for first time. |
| 1922 | */ |
| 1923 | |
| 1924 | disable_interrupts(csa: prev, spu); /* Step 2. */ |
| 1925 | inhibit_user_access(csa: prev, spu); /* Step 3. */ |
| 1926 | terminate_spu_app(csa: prev, spu); /* Step 4. */ |
| 1927 | set_switch_pending(csa: prev, spu); /* Step 5. */ |
| 1928 | stop_spu_isolate(spu); /* NEW. */ |
| 1929 | remove_other_spu_access(csa: prev, spu); /* Step 6. */ |
| 1930 | suspend_mfc_and_halt_decr(csa: prev, spu); /* Step 7. */ |
| 1931 | wait_suspend_mfc_complete(csa: prev, spu); /* Step 8. */ |
| 1932 | if (!suspend_spe(csa: prev, spu)) /* Step 9. */ |
| 1933 | clear_spu_status(csa: prev, spu); /* Step 10. */ |
| 1934 | do_mfc_mssync(csa: prev, spu); /* Step 11. */ |
| 1935 | issue_mfc_tlbie(csa: prev, spu); /* Step 12. */ |
| 1936 | handle_pending_interrupts(csa: prev, spu); /* Step 13. */ |
| 1937 | purge_mfc_queue(csa: prev, spu); /* Step 14. */ |
| 1938 | wait_purge_complete(csa: prev, spu); /* Step 15. */ |
| 1939 | reset_spu_privcntl(csa: prev, spu); /* Step 16. */ |
| 1940 | reset_spu_lslr(csa: prev, spu); /* Step 17. */ |
| 1941 | setup_mfc_sr1(csa: prev, spu); /* Step 18. */ |
| 1942 | spu_invalidate_slbs(spu); /* Step 19. */ |
| 1943 | reset_ch_part1(csa: prev, spu); /* Step 20. */ |
| 1944 | reset_ch_part2(csa: prev, spu); /* Step 21. */ |
| 1945 | enable_interrupts(csa: prev, spu); /* Step 22. */ |
| 1946 | set_switch_active(csa: prev, spu); /* Step 23. */ |
| 1947 | set_mfc_tclass_id(csa: prev, spu); /* Step 24. */ |
| 1948 | resume_mfc_queue(csa: prev, spu); /* Step 25. */ |
| 1949 | } |
| 1950 | |
| 1951 | static void restore_lscsa(struct spu_state *next, struct spu *spu) |
| 1952 | { |
| 1953 | /* |
| 1954 | * Perform steps 26-40 of SPU context restore sequence, |
| 1955 | * which restores regions of the local store and register |
| 1956 | * file. |
| 1957 | */ |
| 1958 | |
| 1959 | set_watchdog_timer(csa: next, spu); /* Step 26. */ |
| 1960 | setup_spu_status_part1(csa: next, spu); /* Step 27. */ |
| 1961 | setup_spu_status_part2(csa: next, spu); /* Step 28. */ |
| 1962 | restore_mfc_rag(csa: next, spu); /* Step 29. */ |
| 1963 | /* Step 30. */ |
| 1964 | setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code)); |
| 1965 | set_spu_npc(csa: next, spu); /* Step 31. */ |
| 1966 | set_signot1(csa: next, spu); /* Step 32. */ |
| 1967 | set_signot2(csa: next, spu); /* Step 33. */ |
| 1968 | setup_decr(csa: next, spu); /* Step 34. */ |
| 1969 | setup_ppu_mb(csa: next, spu); /* Step 35. */ |
| 1970 | setup_ppuint_mb(csa: next, spu); /* Step 36. */ |
| 1971 | send_restore_code(csa: next, spu); /* Step 37. */ |
| 1972 | set_ppu_querymask(csa: next, spu); /* Step 38. */ |
| 1973 | wait_tag_complete(csa: next, spu); /* Step 39. */ |
| 1974 | wait_spu_stopped(csa: next, spu); /* Step 40. */ |
| 1975 | } |
| 1976 | |
| 1977 | static void restore_csa(struct spu_state *next, struct spu *spu) |
| 1978 | { |
| 1979 | /* |
| 1980 | * Combine steps 41-76 of SPU context restore sequence, which |
| 1981 | * restore regions of the privileged & problem state areas. |
| 1982 | */ |
| 1983 | |
| 1984 | restore_spu_privcntl(csa: next, spu); /* Step 41. */ |
| 1985 | restore_status_part1(csa: next, spu); /* Step 42. */ |
| 1986 | restore_status_part2(csa: next, spu); /* Step 43. */ |
| 1987 | restore_ls_16kb(csa: next, spu); /* Step 44. */ |
| 1988 | wait_tag_complete(csa: next, spu); /* Step 45. */ |
| 1989 | suspend_mfc(csa: next, spu); /* Step 46. */ |
| 1990 | wait_suspend_mfc_complete(csa: next, spu); /* Step 47. */ |
| 1991 | issue_mfc_tlbie(csa: next, spu); /* Step 48. */ |
| 1992 | clear_interrupts(csa: next, spu); /* Step 49. */ |
| 1993 | restore_mfc_queues(csa: next, spu); /* Step 50. */ |
| 1994 | restore_ppu_querymask(csa: next, spu); /* Step 51. */ |
| 1995 | restore_ppu_querytype(csa: next, spu); /* Step 52. */ |
| 1996 | restore_mfc_csr_tsq(csa: next, spu); /* Step 53. */ |
| 1997 | restore_mfc_csr_cmd(csa: next, spu); /* Step 54. */ |
| 1998 | restore_mfc_csr_ato(csa: next, spu); /* Step 55. */ |
| 1999 | restore_mfc_tclass_id(csa: next, spu); /* Step 56. */ |
| 2000 | set_llr_event(csa: next, spu); /* Step 57. */ |
| 2001 | restore_decr_wrapped(csa: next, spu); /* Step 58. */ |
| 2002 | restore_ch_part1(csa: next, spu); /* Step 59. */ |
| 2003 | restore_ch_part2(csa: next, spu); /* Step 60. */ |
| 2004 | restore_spu_lslr(csa: next, spu); /* Step 61. */ |
| 2005 | restore_spu_cfg(csa: next, spu); /* Step 62. */ |
| 2006 | restore_pm_trace(csa: next, spu); /* Step 63. */ |
| 2007 | restore_spu_npc(csa: next, spu); /* Step 64. */ |
| 2008 | restore_spu_mb(csa: next, spu); /* Step 65. */ |
| 2009 | check_ppu_mb_stat(csa: next, spu); /* Step 66. */ |
| 2010 | check_ppuint_mb_stat(csa: next, spu); /* Step 67. */ |
| 2011 | spu_invalidate_slbs(spu); /* Modified Step 68. */ |
| 2012 | restore_mfc_sr1(csa: next, spu); /* Step 69. */ |
| 2013 | set_int_route(csa: next, spu); /* NEW */ |
| 2014 | restore_other_spu_access(csa: next, spu); /* Step 70. */ |
| 2015 | restore_spu_runcntl(csa: next, spu); /* Step 71. */ |
| 2016 | restore_mfc_cntl(csa: next, spu); /* Step 72. */ |
| 2017 | enable_user_access(csa: next, spu); /* Step 73. */ |
| 2018 | reset_switch_active(csa: next, spu); /* Step 74. */ |
| 2019 | reenable_interrupts(csa: next, spu); /* Step 75. */ |
| 2020 | } |
| 2021 | |
| 2022 | static int __do_spu_save(struct spu_state *prev, struct spu *spu) |
| 2023 | { |
| 2024 | int rc; |
| 2025 | |
| 2026 | /* |
| 2027 | * SPU context save can be broken into three phases: |
| 2028 | * |
| 2029 | * (a) quiesce [steps 2-16]. |
| 2030 | * (b) save of CSA, performed by PPE [steps 17-42] |
| 2031 | * (c) save of LSCSA, mostly performed by SPU [steps 43-52]. |
| 2032 | * |
| 2033 | * Returns 0 on success. |
| 2034 | * 2,6 if failed to quiece SPU |
| 2035 | * 53 if SPU-side of save failed. |
| 2036 | */ |
| 2037 | |
| 2038 | rc = quiece_spu(prev, spu); /* Steps 2-16. */ |
| 2039 | switch (rc) { |
| 2040 | default: |
| 2041 | case 2: |
| 2042 | case 6: |
| 2043 | harvest(prev, spu); |
| 2044 | return rc; |
| 2045 | break; |
| 2046 | case 0: |
| 2047 | break; |
| 2048 | } |
| 2049 | save_csa(prev, spu); /* Steps 17-43. */ |
| 2050 | save_lscsa(prev, spu); /* Steps 44-53. */ |
| 2051 | return check_save_status(csa: prev, spu); /* Step 54. */ |
| 2052 | } |
| 2053 | |
| 2054 | static int __do_spu_restore(struct spu_state *next, struct spu *spu) |
| 2055 | { |
| 2056 | int rc; |
| 2057 | |
| 2058 | /* |
| 2059 | * SPU context restore can be broken into three phases: |
| 2060 | * |
| 2061 | * (a) harvest (or reset) SPU [steps 2-24]. |
| 2062 | * (b) restore LSCSA [steps 25-40], mostly performed by SPU. |
| 2063 | * (c) restore CSA [steps 41-76], performed by PPE. |
| 2064 | * |
| 2065 | * The 'harvest' step is not performed here, but rather |
| 2066 | * as needed below. |
| 2067 | */ |
| 2068 | |
| 2069 | restore_lscsa(next, spu); /* Steps 24-39. */ |
| 2070 | rc = check_restore_status(csa: next, spu); /* Step 40. */ |
| 2071 | switch (rc) { |
| 2072 | default: |
| 2073 | /* Failed. Return now. */ |
| 2074 | return rc; |
| 2075 | break; |
| 2076 | case 0: |
| 2077 | /* Fall through to next step. */ |
| 2078 | break; |
| 2079 | } |
| 2080 | restore_csa(next, spu); |
| 2081 | |
| 2082 | return 0; |
| 2083 | } |
| 2084 | |
| 2085 | /** |
| 2086 | * spu_save - SPU context save, with locking. |
| 2087 | * @prev: pointer to SPU context save area, to be saved. |
| 2088 | * @spu: pointer to SPU iomem structure. |
| 2089 | * |
| 2090 | * Acquire locks, perform the save operation then return. |
| 2091 | */ |
| 2092 | int spu_save(struct spu_state *prev, struct spu *spu) |
| 2093 | { |
| 2094 | int rc; |
| 2095 | |
| 2096 | acquire_spu_lock(spu); /* Step 1. */ |
| 2097 | rc = __do_spu_save(prev, spu); /* Steps 2-53. */ |
| 2098 | release_spu_lock(spu); |
| 2099 | if (rc != 0 && rc != 2 && rc != 6) { |
| 2100 | panic(fmt: "%s failed on SPU[%d], rc=%d.\n" , |
| 2101 | __func__, spu->number, rc); |
| 2102 | } |
| 2103 | return 0; |
| 2104 | } |
| 2105 | EXPORT_SYMBOL_GPL(spu_save); |
| 2106 | |
| 2107 | /** |
| 2108 | * spu_restore - SPU context restore, with harvest and locking. |
| 2109 | * @new: pointer to SPU context save area, to be restored. |
| 2110 | * @spu: pointer to SPU iomem structure. |
| 2111 | * |
| 2112 | * Perform harvest + restore, as we may not be coming |
| 2113 | * from a previous successful save operation, and the |
| 2114 | * hardware state is unknown. |
| 2115 | */ |
| 2116 | int spu_restore(struct spu_state *new, struct spu *spu) |
| 2117 | { |
| 2118 | int rc; |
| 2119 | |
| 2120 | acquire_spu_lock(spu); |
| 2121 | harvest(NULL, spu); |
| 2122 | spu->slb_replace = 0; |
| 2123 | rc = __do_spu_restore(next: new, spu); |
| 2124 | release_spu_lock(spu); |
| 2125 | if (rc) { |
| 2126 | panic(fmt: "%s failed on SPU[%d] rc=%d.\n" , |
| 2127 | __func__, spu->number, rc); |
| 2128 | } |
| 2129 | return rc; |
| 2130 | } |
| 2131 | EXPORT_SYMBOL_GPL(spu_restore); |
| 2132 | |
| 2133 | static void init_prob(struct spu_state *csa) |
| 2134 | { |
| 2135 | csa->spu_chnlcnt_RW[9] = 1; |
| 2136 | csa->spu_chnlcnt_RW[21] = 16; |
| 2137 | csa->spu_chnlcnt_RW[23] = 1; |
| 2138 | csa->spu_chnlcnt_RW[28] = 1; |
| 2139 | csa->spu_chnlcnt_RW[30] = 1; |
| 2140 | csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP; |
| 2141 | csa->prob.mb_stat_R = 0x000400; |
| 2142 | } |
| 2143 | |
| 2144 | static void init_priv1(struct spu_state *csa) |
| 2145 | { |
| 2146 | /* Enable decode, relocate, tlbie response, master runcntl. */ |
| 2147 | csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK | |
| 2148 | MFC_STATE1_MASTER_RUN_CONTROL_MASK | |
| 2149 | MFC_STATE1_PROBLEM_STATE_MASK | |
| 2150 | MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK; |
| 2151 | |
| 2152 | /* Enable OS-specific set of interrupts. */ |
| 2153 | csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR | |
| 2154 | CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR | |
| 2155 | CLASS0_ENABLE_SPU_ERROR_INTR; |
| 2156 | csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR | |
| 2157 | CLASS1_ENABLE_STORAGE_FAULT_INTR; |
| 2158 | csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR | |
| 2159 | CLASS2_ENABLE_SPU_HALT_INTR | |
| 2160 | CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR; |
| 2161 | } |
| 2162 | |
| 2163 | static void init_priv2(struct spu_state *csa) |
| 2164 | { |
| 2165 | csa->priv2.spu_lslr_RW = LS_ADDR_MASK; |
| 2166 | csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE | |
| 2167 | MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION | |
| 2168 | MFC_CNTL_DMA_QUEUES_EMPTY_MASK; |
| 2169 | } |
| 2170 | |
| 2171 | /** |
| 2172 | * spu_alloc_csa - allocate and initialize an SPU context save area. |
| 2173 | * |
| 2174 | * Allocate and initialize the contents of an SPU context save area. |
| 2175 | * This includes enabling address translation, interrupt masks, etc., |
| 2176 | * as appropriate for the given OS environment. |
| 2177 | * |
| 2178 | * Note that storage for the 'lscsa' is allocated separately, |
| 2179 | * as it is by far the largest of the context save regions, |
| 2180 | * and may need to be pinned or otherwise specially aligned. |
| 2181 | */ |
| 2182 | int spu_init_csa(struct spu_state *csa) |
| 2183 | { |
| 2184 | int rc; |
| 2185 | |
| 2186 | if (!csa) |
| 2187 | return -EINVAL; |
| 2188 | memset(csa, 0, sizeof(struct spu_state)); |
| 2189 | |
| 2190 | rc = spu_alloc_lscsa(csa); |
| 2191 | if (rc) |
| 2192 | return rc; |
| 2193 | |
| 2194 | spin_lock_init(&csa->register_lock); |
| 2195 | |
| 2196 | init_prob(csa); |
| 2197 | init_priv1(csa); |
| 2198 | init_priv2(csa); |
| 2199 | |
| 2200 | return 0; |
| 2201 | } |
| 2202 | |
| 2203 | void spu_fini_csa(struct spu_state *csa) |
| 2204 | { |
| 2205 | spu_free_lscsa(csa); |
| 2206 | } |
| 2207 | |