1 | /* |
---|---|
2 | * Copyright (C) 1991, 1992 Linus Torvalds |
3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
4 | */ |
5 | #include <linux/kallsyms.h> |
6 | #include <linux/kprobes.h> |
7 | #include <linux/uaccess.h> |
8 | #include <linux/utsname.h> |
9 | #include <linux/hardirq.h> |
10 | #include <linux/kdebug.h> |
11 | #include <linux/module.h> |
12 | #include <linux/ptrace.h> |
13 | #include <linux/sched/debug.h> |
14 | #include <linux/sched/task_stack.h> |
15 | #include <linux/ftrace.h> |
16 | #include <linux/kexec.h> |
17 | #include <linux/bug.h> |
18 | #include <linux/nmi.h> |
19 | #include <linux/sysfs.h> |
20 | #include <linux/kasan.h> |
21 | |
22 | #include <asm/cpu_entry_area.h> |
23 | #include <asm/stacktrace.h> |
24 | #include <asm/unwind.h> |
25 | |
26 | int panic_on_unrecovered_nmi; |
27 | int panic_on_io_nmi; |
28 | static int die_counter; |
29 | |
30 | static struct pt_regs exec_summary_regs; |
31 | |
32 | bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task, |
33 | struct stack_info *info) |
34 | { |
35 | unsigned long *begin = task_stack_page(task); |
36 | unsigned long *end = task_stack_page(task) + THREAD_SIZE; |
37 | |
38 | if (stack < begin || stack >= end) |
39 | return false; |
40 | |
41 | info->type = STACK_TYPE_TASK; |
42 | info->begin = begin; |
43 | info->end = end; |
44 | info->next_sp = NULL; |
45 | |
46 | return true; |
47 | } |
48 | |
49 | /* Called from get_stack_info_noinstr - so must be noinstr too */ |
50 | bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info) |
51 | { |
52 | struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); |
53 | |
54 | void *begin = ss; |
55 | void *end = ss + 1; |
56 | |
57 | if ((void *)stack < begin || (void *)stack >= end) |
58 | return false; |
59 | |
60 | info->type = STACK_TYPE_ENTRY; |
61 | info->begin = begin; |
62 | info->end = end; |
63 | info->next_sp = NULL; |
64 | |
65 | return true; |
66 | } |
67 | |
68 | static void printk_stack_address(unsigned long address, int reliable, |
69 | const char *log_lvl) |
70 | { |
71 | touch_nmi_watchdog(); |
72 | printk("%s %s%pBb\n", log_lvl, reliable ? "": "? ", (void *)address); |
73 | } |
74 | |
75 | static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, |
76 | unsigned int nbytes) |
77 | { |
78 | if (!user_mode(regs)) |
79 | return copy_from_kernel_nofault(dst: buf, src: (u8 *)src, size: nbytes); |
80 | |
81 | /* The user space code from other tasks cannot be accessed. */ |
82 | if (regs != task_pt_regs(current)) |
83 | return -EPERM; |
84 | |
85 | /* |
86 | * Even if named copy_from_user_nmi() this can be invoked from |
87 | * other contexts and will not try to resolve a pagefault, which is |
88 | * the correct thing to do here as this code can be called from any |
89 | * context. |
90 | */ |
91 | return copy_from_user_nmi(to: buf, from: (void __user *)src, n: nbytes); |
92 | } |
93 | |
94 | /* |
95 | * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: |
96 | * |
97 | * In case where we don't have the exact kernel image (which, if we did, we can |
98 | * simply disassemble and navigate to the RIP), the purpose of the bigger |
99 | * prologue is to have more context and to be able to correlate the code from |
100 | * the different toolchains better. |
101 | * |
102 | * In addition, it helps in recreating the register allocation of the failing |
103 | * kernel and thus make sense of the register dump. |
104 | * |
105 | * What is more, the additional complication of a variable length insn arch like |
106 | * x86 warrants having longer byte sequence before rIP so that the disassembler |
107 | * can "sync" up properly and find instruction boundaries when decoding the |
108 | * opcode bytes. |
109 | * |
110 | * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random |
111 | * guesstimate in attempt to achieve all of the above. |
112 | */ |
113 | void show_opcodes(struct pt_regs *regs, const char *loglvl) |
114 | { |
115 | #define PROLOGUE_SIZE 42 |
116 | #define EPILOGUE_SIZE 21 |
117 | #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) |
118 | u8 opcodes[OPCODE_BUFSIZE]; |
119 | unsigned long prologue = regs->ip - PROLOGUE_SIZE; |
120 | |
121 | switch (copy_code(regs, buf: opcodes, src: prologue, nbytes: sizeof(opcodes))) { |
122 | case 0: |
123 | printk("%sCode: %"__stringify(PROLOGUE_SIZE) "ph <%02x> %" |
124 | __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, |
125 | opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); |
126 | break; |
127 | case -EPERM: |
128 | /* No access to the user space stack of other tasks. Ignore. */ |
129 | break; |
130 | default: |
131 | printk("%sCode: Unable to access opcode bytes at 0x%lx.\n", |
132 | loglvl, prologue); |
133 | break; |
134 | } |
135 | } |
136 | |
137 | void show_ip(struct pt_regs *regs, const char *loglvl) |
138 | { |
139 | #ifdef CONFIG_X86_32 |
140 | printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); |
141 | #else |
142 | printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); |
143 | #endif |
144 | show_opcodes(regs, loglvl); |
145 | } |
146 | |
147 | void show_iret_regs(struct pt_regs *regs, const char *log_lvl) |
148 | { |
149 | show_ip(regs, loglvl: log_lvl); |
150 | printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss, |
151 | regs->sp, regs->flags); |
152 | } |
153 | |
154 | static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, |
155 | bool partial, const char *log_lvl) |
156 | { |
157 | /* |
158 | * These on_stack() checks aren't strictly necessary: the unwind code |
159 | * has already validated the 'regs' pointer. The checks are done for |
160 | * ordering reasons: if the registers are on the next stack, we don't |
161 | * want to print them out yet. Otherwise they'll be shown as part of |
162 | * the wrong stack. Later, when show_trace_log_lvl() switches to the |
163 | * next stack, this function will be called again with the same regs so |
164 | * they can be printed in the right context. |
165 | */ |
166 | if (!partial && on_stack(info, addr: regs, len: sizeof(*regs))) { |
167 | __show_regs(regs, SHOW_REGS_SHORT, log_lvl); |
168 | |
169 | } else if (partial && on_stack(info, addr: (void *)regs + IRET_FRAME_OFFSET, |
170 | IRET_FRAME_SIZE)) { |
171 | /* |
172 | * When an interrupt or exception occurs in entry code, the |
173 | * full pt_regs might not have been saved yet. In that case |
174 | * just print the iret frame. |
175 | */ |
176 | show_iret_regs(regs, log_lvl); |
177 | } |
178 | } |
179 | |
180 | /* |
181 | * This function reads pointers from the stack and dereferences them. The |
182 | * pointers may not have their KMSAN shadow set up properly, which may result |
183 | * in false positive reports. Disable instrumentation to avoid those. |
184 | */ |
185 | __no_kmsan_checks |
186 | static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, |
187 | unsigned long *stack, const char *log_lvl) |
188 | { |
189 | struct unwind_state state; |
190 | struct stack_info stack_info = {0}; |
191 | unsigned long visit_mask = 0; |
192 | int graph_idx = 0; |
193 | bool partial = false; |
194 | |
195 | printk("%sCall Trace:\n", log_lvl); |
196 | |
197 | unwind_start(state: &state, task, regs, first_frame: stack); |
198 | regs = unwind_get_entry_regs(state: &state, partial: &partial); |
199 | |
200 | /* |
201 | * Iterate through the stacks, starting with the current stack pointer. |
202 | * Each stack has a pointer to the next one. |
203 | * |
204 | * x86-64 can have several stacks: |
205 | * - task stack |
206 | * - interrupt stack |
207 | * - HW exception stacks (double fault, nmi, debug, mce) |
208 | * - entry stack |
209 | * |
210 | * x86-32 can have up to four stacks: |
211 | * - task stack |
212 | * - softirq stack |
213 | * - hardirq stack |
214 | * - entry stack |
215 | */ |
216 | for (stack = stack ?: get_stack_pointer(task, regs); |
217 | stack; |
218 | stack = stack_info.next_sp) { |
219 | const char *stack_name; |
220 | |
221 | stack = PTR_ALIGN(stack, sizeof(long)); |
222 | |
223 | if (get_stack_info(stack, task, info: &stack_info, visit_mask: &visit_mask)) { |
224 | /* |
225 | * We weren't on a valid stack. It's possible that |
226 | * we overflowed a valid stack into a guard page. |
227 | * See if the next page up is valid so that we can |
228 | * generate some kind of backtrace if this happens. |
229 | */ |
230 | stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); |
231 | if (get_stack_info(stack, task, info: &stack_info, visit_mask: &visit_mask)) |
232 | break; |
233 | } |
234 | |
235 | stack_name = stack_type_name(type: stack_info.type); |
236 | if (stack_name) |
237 | printk("%s <%s>\n", log_lvl, stack_name); |
238 | |
239 | if (regs) |
240 | show_regs_if_on_stack(info: &stack_info, regs, partial, log_lvl); |
241 | |
242 | /* |
243 | * Scan the stack, printing any text addresses we find. At the |
244 | * same time, follow proper stack frames with the unwinder. |
245 | * |
246 | * Addresses found during the scan which are not reported by |
247 | * the unwinder are considered to be additional clues which are |
248 | * sometimes useful for debugging and are prefixed with '?'. |
249 | * This also serves as a failsafe option in case the unwinder |
250 | * goes off in the weeds. |
251 | */ |
252 | for (; stack < stack_info.end; stack++) { |
253 | unsigned long real_addr; |
254 | int reliable = 0; |
255 | unsigned long addr = READ_ONCE_NOCHECK(*stack); |
256 | unsigned long *ret_addr_p = |
257 | unwind_get_return_address_ptr(state: &state); |
258 | |
259 | if (!__kernel_text_address(addr)) |
260 | continue; |
261 | |
262 | /* |
263 | * Don't print regs->ip again if it was already printed |
264 | * by show_regs_if_on_stack(). |
265 | */ |
266 | if (regs && stack == ®s->ip) |
267 | goto next; |
268 | |
269 | if (stack == ret_addr_p) |
270 | reliable = 1; |
271 | |
272 | /* |
273 | * When function graph tracing is enabled for a |
274 | * function, its return address on the stack is |
275 | * replaced with the address of an ftrace handler |
276 | * (return_to_handler). In that case, before printing |
277 | * the "real" address, we want to print the handler |
278 | * address as an "unreliable" hint that function graph |
279 | * tracing was involved. |
280 | */ |
281 | real_addr = ftrace_graph_ret_addr(task, idx: &graph_idx, |
282 | ret: addr, retp: stack); |
283 | if (real_addr != addr) |
284 | printk_stack_address(address: addr, reliable: 0, log_lvl); |
285 | printk_stack_address(address: real_addr, reliable, log_lvl); |
286 | |
287 | if (!reliable) |
288 | continue; |
289 | |
290 | next: |
291 | /* |
292 | * Get the next frame from the unwinder. No need to |
293 | * check for an error: if anything goes wrong, the rest |
294 | * of the addresses will just be printed as unreliable. |
295 | */ |
296 | unwind_next_frame(state: &state); |
297 | |
298 | /* if the frame has entry regs, print them */ |
299 | regs = unwind_get_entry_regs(state: &state, partial: &partial); |
300 | if (regs) |
301 | show_regs_if_on_stack(info: &stack_info, regs, partial, log_lvl); |
302 | } |
303 | |
304 | if (stack_name) |
305 | printk("%s </%s>\n", log_lvl, stack_name); |
306 | } |
307 | } |
308 | |
309 | void show_stack(struct task_struct *task, unsigned long *sp, |
310 | const char *loglvl) |
311 | { |
312 | task = task ? : current; |
313 | |
314 | /* |
315 | * Stack frames below this one aren't interesting. Don't show them |
316 | * if we're printing for %current. |
317 | */ |
318 | if (!sp && task == current) |
319 | sp = get_stack_pointer(current, NULL); |
320 | |
321 | show_trace_log_lvl(task, NULL, stack: sp, log_lvl: loglvl); |
322 | } |
323 | |
324 | void show_stack_regs(struct pt_regs *regs) |
325 | { |
326 | show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); |
327 | } |
328 | |
329 | static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
330 | static int die_owner = -1; |
331 | static unsigned int die_nest_count; |
332 | |
333 | unsigned long oops_begin(void) |
334 | { |
335 | int cpu; |
336 | unsigned long flags; |
337 | |
338 | oops_enter(); |
339 | |
340 | /* racy, but better than risking deadlock. */ |
341 | raw_local_irq_save(flags); |
342 | cpu = smp_processor_id(); |
343 | if (!arch_spin_trylock(&die_lock)) { |
344 | if (cpu == die_owner) |
345 | /* nested oops. should stop eventually */; |
346 | else |
347 | arch_spin_lock(&die_lock); |
348 | } |
349 | die_nest_count++; |
350 | die_owner = cpu; |
351 | console_verbose(); |
352 | bust_spinlocks(yes: 1); |
353 | return flags; |
354 | } |
355 | NOKPROBE_SYMBOL(oops_begin); |
356 | |
357 | void __noreturn rewind_stack_and_make_dead(int signr); |
358 | |
359 | void oops_end(unsigned long flags, struct pt_regs *regs, int signr) |
360 | { |
361 | if (regs && kexec_should_crash(current)) |
362 | crash_kexec(regs); |
363 | |
364 | bust_spinlocks(yes: 0); |
365 | die_owner = -1; |
366 | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
367 | die_nest_count--; |
368 | if (!die_nest_count) |
369 | /* Nest count reaches zero, release the lock. */ |
370 | arch_spin_unlock(&die_lock); |
371 | raw_local_irq_restore(flags); |
372 | oops_exit(); |
373 | |
374 | /* Executive summary in case the oops scrolled away */ |
375 | __show_regs(regs: &exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT); |
376 | |
377 | if (!signr) |
378 | return; |
379 | if (in_interrupt()) |
380 | panic(fmt: "Fatal exception in interrupt"); |
381 | if (panic_on_oops) |
382 | panic(fmt: "Fatal exception"); |
383 | |
384 | /* |
385 | * We're not going to return, but we might be on an IST stack or |
386 | * have very little stack space left. Rewind the stack and kill |
387 | * the task. |
388 | * Before we rewind the stack, we have to tell KASAN that we're going to |
389 | * reuse the task stack and that existing poisons are invalid. |
390 | */ |
391 | kasan_unpoison_task_stack(current); |
392 | rewind_stack_and_make_dead(signr); |
393 | } |
394 | NOKPROBE_SYMBOL(oops_end); |
395 | |
396 | static void __die_header(const char *str, struct pt_regs *regs, long err) |
397 | { |
398 | const char *pr = ""; |
399 | |
400 | /* Save the regs of the first oops for the executive summary later. */ |
401 | if (!die_counter) |
402 | exec_summary_regs = *regs; |
403 | |
404 | if (IS_ENABLED(CONFIG_PREEMPTION)) |
405 | pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT": " PREEMPT"; |
406 | |
407 | printk(KERN_DEFAULT |
408 | "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, |
409 | pr, |
410 | IS_ENABLED(CONFIG_SMP) ? " SMP": "", |
411 | debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC": "", |
412 | IS_ENABLED(CONFIG_KASAN) ? " KASAN": "", |
413 | IS_ENABLED(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) ? |
414 | (boot_cpu_has(X86_FEATURE_PTI) ? " PTI": " NOPTI") : ""); |
415 | } |
416 | NOKPROBE_SYMBOL(__die_header); |
417 | |
418 | static int __die_body(const char *str, struct pt_regs *regs, long err) |
419 | { |
420 | show_regs(regs); |
421 | print_modules(); |
422 | |
423 | if (notify_die(val: DIE_OOPS, str, regs, err, |
424 | current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) |
425 | return 1; |
426 | |
427 | return 0; |
428 | } |
429 | NOKPROBE_SYMBOL(__die_body); |
430 | |
431 | int __die(const char *str, struct pt_regs *regs, long err) |
432 | { |
433 | __die_header(str, regs, err); |
434 | return __die_body(str, regs, err); |
435 | } |
436 | NOKPROBE_SYMBOL(__die); |
437 | |
438 | /* |
439 | * This is gone through when something in the kernel has done something bad |
440 | * and is about to be terminated: |
441 | */ |
442 | void die(const char *str, struct pt_regs *regs, long err) |
443 | { |
444 | unsigned long flags = oops_begin(); |
445 | int sig = SIGSEGV; |
446 | |
447 | if (__die(str, regs, err)) |
448 | sig = 0; |
449 | oops_end(flags, regs, signr: sig); |
450 | } |
451 | |
452 | void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) |
453 | { |
454 | unsigned long flags = oops_begin(); |
455 | int sig = SIGSEGV; |
456 | |
457 | __die_header(str, regs, err); |
458 | if (gp_addr) |
459 | kasan_non_canonical_hook(addr: gp_addr); |
460 | if (__die_body(str, regs, err)) |
461 | sig = 0; |
462 | oops_end(flags, regs, signr: sig); |
463 | } |
464 | |
465 | void show_regs(struct pt_regs *regs) |
466 | { |
467 | enum show_regs_mode print_kernel_regs; |
468 | |
469 | show_regs_print_info(KERN_DEFAULT); |
470 | |
471 | print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL; |
472 | __show_regs(regs, print_kernel_regs, KERN_DEFAULT); |
473 | |
474 | /* |
475 | * When in-kernel, we also print out the stack at the time of the fault.. |
476 | */ |
477 | if (!user_mode(regs)) |
478 | show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); |
479 | } |
480 |
Definitions
- panic_on_unrecovered_nmi
- panic_on_io_nmi
- die_counter
- exec_summary_regs
- in_task_stack
- in_entry_stack
- printk_stack_address
- copy_code
- show_opcodes
- show_ip
- show_iret_regs
- show_regs_if_on_stack
- show_trace_log_lvl
- show_stack
- show_stack_regs
- die_lock
- die_owner
- die_nest_count
- oops_begin
- oops_end
- __die_header
- __die_body
- __die
- die
- die_addr
Improve your Profiling and Debugging skills
Find out more