| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* KVM paravirtual clock driver. A clocksource implementation |
| 3 | Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc. |
| 4 | */ |
| 5 | |
| 6 | #include <linux/clocksource.h> |
| 7 | #include <linux/kvm_para.h> |
| 8 | #include <asm/pvclock.h> |
| 9 | #include <asm/msr.h> |
| 10 | #include <asm/apic.h> |
| 11 | #include <linux/percpu.h> |
| 12 | #include <linux/hardirq.h> |
| 13 | #include <linux/cpuhotplug.h> |
| 14 | #include <linux/sched.h> |
| 15 | #include <linux/sched/clock.h> |
| 16 | #include <linux/mm.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/set_memory.h> |
| 19 | #include <linux/cc_platform.h> |
| 20 | |
| 21 | #include <asm/hypervisor.h> |
| 22 | #include <asm/x86_init.h> |
| 23 | #include <asm/kvmclock.h> |
| 24 | |
| 25 | static int kvmclock __initdata = 1; |
| 26 | static int kvmclock_vsyscall __initdata = 1; |
| 27 | static int msr_kvm_system_time __ro_after_init; |
| 28 | static int msr_kvm_wall_clock __ro_after_init; |
| 29 | static u64 kvm_sched_clock_offset __ro_after_init; |
| 30 | |
| 31 | static int __init parse_no_kvmclock(char *arg) |
| 32 | { |
| 33 | kvmclock = 0; |
| 34 | return 0; |
| 35 | } |
| 36 | early_param("no-kvmclock" , parse_no_kvmclock); |
| 37 | |
| 38 | static int __init parse_no_kvmclock_vsyscall(char *arg) |
| 39 | { |
| 40 | kvmclock_vsyscall = 0; |
| 41 | return 0; |
| 42 | } |
| 43 | early_param("no-kvmclock-vsyscall" , parse_no_kvmclock_vsyscall); |
| 44 | |
| 45 | /* Aligned to page sizes to match what's mapped via vsyscalls to userspace */ |
| 46 | #define HVC_BOOT_ARRAY_SIZE \ |
| 47 | (PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info)) |
| 48 | |
| 49 | static struct pvclock_vsyscall_time_info |
| 50 | hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __bss_decrypted __aligned(PAGE_SIZE); |
| 51 | static struct pvclock_wall_clock wall_clock __bss_decrypted; |
| 52 | static struct pvclock_vsyscall_time_info *hvclock_mem; |
| 53 | DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu); |
| 54 | EXPORT_PER_CPU_SYMBOL_GPL(hv_clock_per_cpu); |
| 55 | |
| 56 | /* |
| 57 | * The wallclock is the time of day when we booted. Since then, some time may |
| 58 | * have elapsed since the hypervisor wrote the data. So we try to account for |
| 59 | * that with system time |
| 60 | */ |
| 61 | static void kvm_get_wallclock(struct timespec64 *now) |
| 62 | { |
| 63 | wrmsrq(msr: msr_kvm_wall_clock, val: slow_virt_to_phys(address: &wall_clock)); |
| 64 | preempt_disable(); |
| 65 | pvclock_read_wallclock(wall: &wall_clock, vcpu: this_cpu_pvti(), ts: now); |
| 66 | preempt_enable(); |
| 67 | } |
| 68 | |
| 69 | static int kvm_set_wallclock(const struct timespec64 *now) |
| 70 | { |
| 71 | return -ENODEV; |
| 72 | } |
| 73 | |
| 74 | static u64 kvm_clock_read(void) |
| 75 | { |
| 76 | u64 ret; |
| 77 | |
| 78 | preempt_disable_notrace(); |
| 79 | ret = pvclock_clocksource_read_nowd(src: this_cpu_pvti()); |
| 80 | preempt_enable_notrace(); |
| 81 | return ret; |
| 82 | } |
| 83 | |
| 84 | static u64 kvm_clock_get_cycles(struct clocksource *cs) |
| 85 | { |
| 86 | return kvm_clock_read(); |
| 87 | } |
| 88 | |
| 89 | static noinstr u64 kvm_sched_clock_read(void) |
| 90 | { |
| 91 | return pvclock_clocksource_read_nowd(src: this_cpu_pvti()) - kvm_sched_clock_offset; |
| 92 | } |
| 93 | |
| 94 | static inline void kvm_sched_clock_init(bool stable) |
| 95 | { |
| 96 | if (!stable) |
| 97 | clear_sched_clock_stable(); |
| 98 | kvm_sched_clock_offset = kvm_clock_read(); |
| 99 | paravirt_set_sched_clock(func: kvm_sched_clock_read); |
| 100 | |
| 101 | pr_info("kvm-clock: using sched offset of %llu cycles" , |
| 102 | kvm_sched_clock_offset); |
| 103 | |
| 104 | BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) > |
| 105 | sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time)); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * If we don't do that, there is the possibility that the guest |
| 110 | * will calibrate under heavy load - thus, getting a lower lpj - |
| 111 | * and execute the delays themselves without load. This is wrong, |
| 112 | * because no delay loop can finish beforehand. |
| 113 | * Any heuristics is subject to fail, because ultimately, a large |
| 114 | * poll of guests can be running and trouble each other. So we preset |
| 115 | * lpj here |
| 116 | */ |
| 117 | static unsigned long kvm_get_tsc_khz(void) |
| 118 | { |
| 119 | setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); |
| 120 | return pvclock_tsc_khz(src: this_cpu_pvti()); |
| 121 | } |
| 122 | |
| 123 | static void __init kvm_get_preset_lpj(void) |
| 124 | { |
| 125 | unsigned long khz; |
| 126 | u64 lpj; |
| 127 | |
| 128 | khz = kvm_get_tsc_khz(); |
| 129 | |
| 130 | lpj = ((u64)khz * 1000); |
| 131 | do_div(lpj, HZ); |
| 132 | preset_lpj = lpj; |
| 133 | } |
| 134 | |
| 135 | bool kvm_check_and_clear_guest_paused(void) |
| 136 | { |
| 137 | struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); |
| 138 | bool ret = false; |
| 139 | |
| 140 | if (!src) |
| 141 | return ret; |
| 142 | |
| 143 | if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) { |
| 144 | src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED; |
| 145 | pvclock_touch_watchdogs(); |
| 146 | ret = true; |
| 147 | } |
| 148 | return ret; |
| 149 | } |
| 150 | |
| 151 | static int kvm_cs_enable(struct clocksource *cs) |
| 152 | { |
| 153 | vclocks_set_used(which: VDSO_CLOCKMODE_PVCLOCK); |
| 154 | return 0; |
| 155 | } |
| 156 | |
| 157 | static struct clocksource kvm_clock = { |
| 158 | .name = "kvm-clock" , |
| 159 | .read = kvm_clock_get_cycles, |
| 160 | .rating = 400, |
| 161 | .mask = CLOCKSOURCE_MASK(64), |
| 162 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 163 | .id = CSID_X86_KVM_CLK, |
| 164 | .enable = kvm_cs_enable, |
| 165 | }; |
| 166 | |
| 167 | static void kvm_register_clock(char *txt) |
| 168 | { |
| 169 | struct pvclock_vsyscall_time_info *src = this_cpu_hvclock(); |
| 170 | u64 pa; |
| 171 | |
| 172 | if (!src) |
| 173 | return; |
| 174 | |
| 175 | pa = slow_virt_to_phys(address: &src->pvti) | 0x01ULL; |
| 176 | wrmsrq(msr: msr_kvm_system_time, val: pa); |
| 177 | pr_debug("kvm-clock: cpu %d, msr %llx, %s" , smp_processor_id(), pa, txt); |
| 178 | } |
| 179 | |
| 180 | static void kvm_save_sched_clock_state(void) |
| 181 | { |
| 182 | } |
| 183 | |
| 184 | static void kvm_restore_sched_clock_state(void) |
| 185 | { |
| 186 | kvm_register_clock(txt: "primary cpu clock, resume" ); |
| 187 | } |
| 188 | |
| 189 | #ifdef CONFIG_X86_LOCAL_APIC |
| 190 | static void kvm_setup_secondary_clock(void) |
| 191 | { |
| 192 | kvm_register_clock(txt: "secondary cpu clock" ); |
| 193 | } |
| 194 | #endif |
| 195 | |
| 196 | void kvmclock_disable(void) |
| 197 | { |
| 198 | if (msr_kvm_system_time) |
| 199 | native_write_msr(msr: msr_kvm_system_time, val: 0); |
| 200 | } |
| 201 | |
| 202 | static void __init kvmclock_init_mem(void) |
| 203 | { |
| 204 | unsigned long ncpus; |
| 205 | unsigned int order; |
| 206 | struct page *p; |
| 207 | int r; |
| 208 | |
| 209 | if (HVC_BOOT_ARRAY_SIZE >= num_possible_cpus()) |
| 210 | return; |
| 211 | |
| 212 | ncpus = num_possible_cpus() - HVC_BOOT_ARRAY_SIZE; |
| 213 | order = get_order(size: ncpus * sizeof(*hvclock_mem)); |
| 214 | |
| 215 | p = alloc_pages(GFP_KERNEL, order); |
| 216 | if (!p) { |
| 217 | pr_warn("%s: failed to alloc %d pages" , __func__, (1U << order)); |
| 218 | return; |
| 219 | } |
| 220 | |
| 221 | hvclock_mem = page_address(p); |
| 222 | |
| 223 | /* |
| 224 | * hvclock is shared between the guest and the hypervisor, must |
| 225 | * be mapped decrypted. |
| 226 | */ |
| 227 | if (cc_platform_has(attr: CC_ATTR_GUEST_MEM_ENCRYPT)) { |
| 228 | r = set_memory_decrypted(addr: (unsigned long) hvclock_mem, |
| 229 | numpages: 1UL << order); |
| 230 | if (r) { |
| 231 | __free_pages(page: p, order); |
| 232 | hvclock_mem = NULL; |
| 233 | pr_warn("kvmclock: set_memory_decrypted() failed. Disabling\n" ); |
| 234 | return; |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | memset(hvclock_mem, 0, PAGE_SIZE << order); |
| 239 | } |
| 240 | |
| 241 | static int __init kvm_setup_vsyscall_timeinfo(void) |
| 242 | { |
| 243 | if (!kvm_para_available() || !kvmclock || nopv) |
| 244 | return 0; |
| 245 | |
| 246 | kvmclock_init_mem(); |
| 247 | |
| 248 | #ifdef CONFIG_X86_64 |
| 249 | if (per_cpu(hv_clock_per_cpu, 0) && kvmclock_vsyscall) { |
| 250 | u8 flags; |
| 251 | |
| 252 | flags = pvclock_read_flags(src: &hv_clock_boot[0].pvti); |
| 253 | if (!(flags & PVCLOCK_TSC_STABLE_BIT)) |
| 254 | return 0; |
| 255 | |
| 256 | kvm_clock.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK; |
| 257 | } |
| 258 | #endif |
| 259 | |
| 260 | return 0; |
| 261 | } |
| 262 | early_initcall(kvm_setup_vsyscall_timeinfo); |
| 263 | |
| 264 | static int kvmclock_setup_percpu(unsigned int cpu) |
| 265 | { |
| 266 | struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu); |
| 267 | |
| 268 | /* |
| 269 | * The per cpu area setup replicates CPU0 data to all cpu |
| 270 | * pointers. So carefully check. CPU0 has been set up in init |
| 271 | * already. |
| 272 | */ |
| 273 | if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0))) |
| 274 | return 0; |
| 275 | |
| 276 | /* Use the static page for the first CPUs, allocate otherwise */ |
| 277 | if (cpu < HVC_BOOT_ARRAY_SIZE) |
| 278 | p = &hv_clock_boot[cpu]; |
| 279 | else if (hvclock_mem) |
| 280 | p = hvclock_mem + cpu - HVC_BOOT_ARRAY_SIZE; |
| 281 | else |
| 282 | return -ENOMEM; |
| 283 | |
| 284 | per_cpu(hv_clock_per_cpu, cpu) = p; |
| 285 | return p ? 0 : -ENOMEM; |
| 286 | } |
| 287 | |
| 288 | void __init kvmclock_init(void) |
| 289 | { |
| 290 | u8 flags; |
| 291 | |
| 292 | if (!kvm_para_available() || !kvmclock) |
| 293 | return; |
| 294 | |
| 295 | if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) { |
| 296 | msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW; |
| 297 | msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW; |
| 298 | } else if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) { |
| 299 | msr_kvm_system_time = MSR_KVM_SYSTEM_TIME; |
| 300 | msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK; |
| 301 | } else { |
| 302 | return; |
| 303 | } |
| 304 | |
| 305 | if (cpuhp_setup_state(state: CPUHP_BP_PREPARE_DYN, name: "kvmclock:setup_percpu" , |
| 306 | startup: kvmclock_setup_percpu, NULL) < 0) { |
| 307 | return; |
| 308 | } |
| 309 | |
| 310 | pr_info("kvm-clock: Using msrs %x and %x" , |
| 311 | msr_kvm_system_time, msr_kvm_wall_clock); |
| 312 | |
| 313 | this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]); |
| 314 | kvm_register_clock(txt: "primary cpu clock" ); |
| 315 | pvclock_set_pvti_cpu0_va(pvti: hv_clock_boot); |
| 316 | |
| 317 | if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT)) |
| 318 | pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); |
| 319 | |
| 320 | flags = pvclock_read_flags(src: &hv_clock_boot[0].pvti); |
| 321 | kvm_sched_clock_init(stable: flags & PVCLOCK_TSC_STABLE_BIT); |
| 322 | |
| 323 | x86_platform.calibrate_tsc = kvm_get_tsc_khz; |
| 324 | x86_platform.calibrate_cpu = kvm_get_tsc_khz; |
| 325 | x86_platform.get_wallclock = kvm_get_wallclock; |
| 326 | x86_platform.set_wallclock = kvm_set_wallclock; |
| 327 | #ifdef CONFIG_X86_LOCAL_APIC |
| 328 | x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock; |
| 329 | #endif |
| 330 | x86_platform.save_sched_clock_state = kvm_save_sched_clock_state; |
| 331 | x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state; |
| 332 | kvm_get_preset_lpj(); |
| 333 | |
| 334 | /* |
| 335 | * X86_FEATURE_NONSTOP_TSC is TSC runs at constant rate |
| 336 | * with P/T states and does not stop in deep C-states. |
| 337 | * |
| 338 | * Invariant TSC exposed by host means kvmclock is not necessary: |
| 339 | * can use TSC as clocksource. |
| 340 | * |
| 341 | */ |
| 342 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && |
| 343 | boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && |
| 344 | !check_tsc_unstable()) |
| 345 | kvm_clock.rating = 299; |
| 346 | |
| 347 | clocksource_register_hz(cs: &kvm_clock, NSEC_PER_SEC); |
| 348 | pv_info.name = "KVM" ; |
| 349 | } |
| 350 | |