1// SPDX-License-Identifier: GPL-2.0
2#define DISABLE_BRANCH_PROFILING
3#define pr_fmt(fmt) "kasan: " fmt
4
5/* cpu_feature_enabled() cannot be used this early */
6#define USE_EARLY_PGTABLE_L5
7
8#include <linux/memblock.h>
9#include <linux/kasan.h>
10#include <linux/kdebug.h>
11#include <linux/mm.h>
12#include <linux/sched.h>
13#include <linux/sched/task.h>
14#include <linux/vmalloc.h>
15
16#include <asm/e820/types.h>
17#include <asm/pgalloc.h>
18#include <asm/tlbflush.h>
19#include <asm/sections.h>
20#include <asm/cpu_entry_area.h>
21
22extern struct range pfn_mapped[E820_MAX_ENTRIES];
23
24static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
25
26static __init void *early_alloc(size_t size, int nid, bool should_panic)
27{
28 void *ptr = memblock_alloc_try_nid(size, align: size,
29 __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
30
31 if (!ptr && should_panic)
32 panic(fmt: "%pS: Failed to allocate page, nid=%d from=%lx\n",
33 (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
34
35 return ptr;
36}
37
38static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
39 unsigned long end, int nid)
40{
41 pte_t *pte;
42
43 if (pmd_none(pmd: *pmd)) {
44 void *p;
45
46 if (boot_cpu_has(X86_FEATURE_PSE) &&
47 ((end - addr) == PMD_SIZE) &&
48 IS_ALIGNED(addr, PMD_SIZE)) {
49 p = early_alloc(PMD_SIZE, nid, should_panic: false);
50 if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
51 return;
52 memblock_free(ptr: p, PMD_SIZE);
53 }
54
55 p = early_alloc(PAGE_SIZE, nid, should_panic: true);
56 pmd_populate_kernel(mm: &init_mm, pmd, pte: p);
57 }
58
59 pte = pte_offset_kernel(pmd, address: addr);
60 do {
61 pte_t entry;
62 void *p;
63
64 if (!pte_none(pte: *pte))
65 continue;
66
67 p = early_alloc(PAGE_SIZE, nid, should_panic: true);
68 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
69 set_pte_at(&init_mm, addr, pte, entry);
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
73static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
74 unsigned long end, int nid)
75{
76 pmd_t *pmd;
77 unsigned long next;
78
79 if (pud_none(pud: *pud)) {
80 void *p;
81
82 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
83 ((end - addr) == PUD_SIZE) &&
84 IS_ALIGNED(addr, PUD_SIZE)) {
85 p = early_alloc(PUD_SIZE, nid, should_panic: false);
86 if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
87 return;
88 memblock_free(ptr: p, PUD_SIZE);
89 }
90
91 p = early_alloc(PAGE_SIZE, nid, should_panic: true);
92 pud_populate(mm: &init_mm, pud, pmd: p);
93 }
94
95 pmd = pmd_offset(pud, address: addr);
96 do {
97 next = pmd_addr_end(addr, end);
98 if (!pmd_large(pte: *pmd))
99 kasan_populate_pmd(pmd, addr, end: next, nid);
100 } while (pmd++, addr = next, addr != end);
101}
102
103static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
104 unsigned long end, int nid)
105{
106 pud_t *pud;
107 unsigned long next;
108
109 if (p4d_none(p4d: *p4d)) {
110 void *p = early_alloc(PAGE_SIZE, nid, should_panic: true);
111
112 p4d_populate(mm: &init_mm, p4d, pud: p);
113 }
114
115 pud = pud_offset(p4d, address: addr);
116 do {
117 next = pud_addr_end(addr, end);
118 if (!pud_large(pud: *pud))
119 kasan_populate_pud(pud, addr, end: next, nid);
120 } while (pud++, addr = next, addr != end);
121}
122
123static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
124 unsigned long end, int nid)
125{
126 void *p;
127 p4d_t *p4d;
128 unsigned long next;
129
130 if (pgd_none(pgd: *pgd)) {
131 p = early_alloc(PAGE_SIZE, nid, should_panic: true);
132 pgd_populate(mm: &init_mm, pgd, p4d: p);
133 }
134
135 p4d = p4d_offset(pgd, address: addr);
136 do {
137 next = p4d_addr_end(addr, end);
138 kasan_populate_p4d(p4d, addr, end: next, nid);
139 } while (p4d++, addr = next, addr != end);
140}
141
142static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
143 int nid)
144{
145 pgd_t *pgd;
146 unsigned long next;
147
148 addr = addr & PAGE_MASK;
149 end = round_up(end, PAGE_SIZE);
150 pgd = pgd_offset_k(addr);
151 do {
152 next = pgd_addr_end(addr, end);
153 kasan_populate_pgd(pgd, addr, end: next, nid);
154 } while (pgd++, addr = next, addr != end);
155}
156
157static void __init map_range(struct range *range)
158{
159 unsigned long start;
160 unsigned long end;
161
162 start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
163 end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
164
165 kasan_populate_shadow(addr: start, end, nid: early_pfn_to_nid(pfn: range->start));
166}
167
168static void __init clear_pgds(unsigned long start,
169 unsigned long end)
170{
171 pgd_t *pgd;
172 /* See comment in kasan_init() */
173 unsigned long pgd_end = end & PGDIR_MASK;
174
175 for (; start < pgd_end; start += PGDIR_SIZE) {
176 pgd = pgd_offset_k(start);
177 /*
178 * With folded p4d, pgd_clear() is nop, use p4d_clear()
179 * instead.
180 */
181 if (pgtable_l5_enabled())
182 pgd_clear(pgd);
183 else
184 p4d_clear(p4dp: p4d_offset(pgd, address: start));
185 }
186
187 pgd = pgd_offset_k(start);
188 for (; start < end; start += P4D_SIZE)
189 p4d_clear(p4dp: p4d_offset(pgd, address: start));
190}
191
192static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
193{
194 unsigned long p4d;
195
196 if (!pgtable_l5_enabled())
197 return (p4d_t *)pgd;
198
199 p4d = pgd_val(pgd: *pgd) & PTE_PFN_MASK;
200 p4d += __START_KERNEL_map - phys_base;
201 return (p4d_t *)p4d + p4d_index(address: addr);
202}
203
204static void __init kasan_early_p4d_populate(pgd_t *pgd,
205 unsigned long addr,
206 unsigned long end)
207{
208 pgd_t pgd_entry;
209 p4d_t *p4d, p4d_entry;
210 unsigned long next;
211
212 if (pgd_none(pgd: *pgd)) {
213 pgd_entry = __pgd(_KERNPG_TABLE |
214 __pa_nodebug(kasan_early_shadow_p4d));
215 set_pgd(pgd, pgd_entry);
216 }
217
218 p4d = early_p4d_offset(pgd, addr);
219 do {
220 next = p4d_addr_end(addr, end);
221
222 if (!p4d_none(p4d: *p4d))
223 continue;
224
225 p4d_entry = __p4d(_KERNPG_TABLE |
226 __pa_nodebug(kasan_early_shadow_pud));
227 set_p4d(p4dp: p4d, p4d: p4d_entry);
228 } while (p4d++, addr = next, addr != end && p4d_none(p4d: *p4d));
229}
230
231static void __init kasan_map_early_shadow(pgd_t *pgd)
232{
233 /* See comment in kasan_init() */
234 unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
235 unsigned long end = KASAN_SHADOW_END;
236 unsigned long next;
237
238 pgd += pgd_index(addr);
239 do {
240 next = pgd_addr_end(addr, end);
241 kasan_early_p4d_populate(pgd, addr, end: next);
242 } while (pgd++, addr = next, addr != end);
243}
244
245static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
246 unsigned long addr,
247 unsigned long end)
248{
249 p4d_t *p4d;
250 unsigned long next;
251 void *p;
252
253 p4d = p4d_offset(pgd, address: addr);
254 do {
255 next = p4d_addr_end(addr, end);
256
257 if (p4d_none(p4d: *p4d)) {
258 p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, should_panic: true);
259 p4d_populate(mm: &init_mm, p4d, pud: p);
260 }
261 } while (p4d++, addr = next, addr != end);
262}
263
264static void __init kasan_shallow_populate_pgds(void *start, void *end)
265{
266 unsigned long addr, next;
267 pgd_t *pgd;
268 void *p;
269
270 addr = (unsigned long)start;
271 pgd = pgd_offset_k(addr);
272 do {
273 next = pgd_addr_end(addr, (unsigned long)end);
274
275 if (pgd_none(pgd: *pgd)) {
276 p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, should_panic: true);
277 pgd_populate(mm: &init_mm, pgd, p4d: p);
278 }
279
280 /*
281 * we need to populate p4ds to be synced when running in
282 * four level mode - see sync_global_pgds_l4()
283 */
284 kasan_shallow_populate_p4ds(pgd, addr, end: next);
285 } while (pgd++, addr = next, addr != (unsigned long)end);
286}
287
288void __init kasan_early_init(void)
289{
290 int i;
291 pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
292 __PAGE_KERNEL | _PAGE_ENC;
293 pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
294 pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
295 p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
296
297 /* Mask out unsupported __PAGE_KERNEL bits: */
298 pte_val &= __default_kernel_pte_mask;
299 pmd_val &= __default_kernel_pte_mask;
300 pud_val &= __default_kernel_pte_mask;
301 p4d_val &= __default_kernel_pte_mask;
302
303 for (i = 0; i < PTRS_PER_PTE; i++)
304 kasan_early_shadow_pte[i] = __pte(pte_val);
305
306 for (i = 0; i < PTRS_PER_PMD; i++)
307 kasan_early_shadow_pmd[i] = __pmd(pmd_val);
308
309 for (i = 0; i < PTRS_PER_PUD; i++)
310 kasan_early_shadow_pud[i] = __pud(pud_val);
311
312 for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
313 kasan_early_shadow_p4d[i] = __p4d(p4d_val);
314
315 kasan_map_early_shadow(pgd: early_top_pgt);
316 kasan_map_early_shadow(pgd: init_top_pgt);
317}
318
319static unsigned long kasan_mem_to_shadow_align_down(unsigned long va)
320{
321 unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
322
323 return round_down(shadow, PAGE_SIZE);
324}
325
326static unsigned long kasan_mem_to_shadow_align_up(unsigned long va)
327{
328 unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
329
330 return round_up(shadow, PAGE_SIZE);
331}
332
333void __init kasan_populate_shadow_for_vaddr(void *va, size_t size, int nid)
334{
335 unsigned long shadow_start, shadow_end;
336
337 shadow_start = kasan_mem_to_shadow_align_down(va: (unsigned long)va);
338 shadow_end = kasan_mem_to_shadow_align_up(va: (unsigned long)va + size);
339 kasan_populate_shadow(addr: shadow_start, end: shadow_end, nid);
340}
341
342void __init kasan_init(void)
343{
344 unsigned long shadow_cea_begin, shadow_cea_per_cpu_begin, shadow_cea_end;
345 int i;
346
347 memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
348
349 /*
350 * We use the same shadow offset for 4- and 5-level paging to
351 * facilitate boot-time switching between paging modes.
352 * As result in 5-level paging mode KASAN_SHADOW_START and
353 * KASAN_SHADOW_END are not aligned to PGD boundary.
354 *
355 * KASAN_SHADOW_START doesn't share PGD with anything else.
356 * We claim whole PGD entry to make things easier.
357 *
358 * KASAN_SHADOW_END lands in the last PGD entry and it collides with
359 * bunch of things like kernel code, modules, EFI mapping, etc.
360 * We need to take extra steps to not overwrite them.
361 */
362 if (pgtable_l5_enabled()) {
363 void *ptr;
364
365 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
366 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
367 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
368 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
369 }
370
371 load_cr3(pgdir: early_top_pgt);
372 __flush_tlb_all();
373
374 clear_pgds(start: KASAN_SHADOW_START & PGDIR_MASK, end: KASAN_SHADOW_END);
375
376 kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
377 kasan_mem_to_shadow((void *)PAGE_OFFSET));
378
379 for (i = 0; i < E820_MAX_ENTRIES; i++) {
380 if (pfn_mapped[i].end == 0)
381 break;
382
383 map_range(range: &pfn_mapped[i]);
384 }
385
386 shadow_cea_begin = kasan_mem_to_shadow_align_down(CPU_ENTRY_AREA_BASE);
387 shadow_cea_per_cpu_begin = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_PER_CPU);
388 shadow_cea_end = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_BASE +
389 CPU_ENTRY_AREA_MAP_SIZE);
390
391 kasan_populate_early_shadow(
392 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
393 kasan_mem_to_shadow((void *)VMALLOC_START));
394
395 /*
396 * If we're in full vmalloc mode, don't back vmalloc space with early
397 * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
398 * the global table and we can populate the lower levels on demand.
399 */
400 if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
401 kasan_shallow_populate_pgds(
402 start: kasan_mem_to_shadow((void *)VMALLOC_START),
403 end: kasan_mem_to_shadow((void *)VMALLOC_END));
404 else
405 kasan_populate_early_shadow(
406 kasan_mem_to_shadow((void *)VMALLOC_START),
407 kasan_mem_to_shadow((void *)VMALLOC_END));
408
409 kasan_populate_early_shadow(
410 kasan_mem_to_shadow((void *)VMALLOC_END + 1),
411 (void *)shadow_cea_begin);
412
413 /*
414 * Populate the shadow for the shared portion of the CPU entry area.
415 * Shadows for the per-CPU areas are mapped on-demand, as each CPU's
416 * area is randomly placed somewhere in the 512GiB range and mapping
417 * the entire 512GiB range is prohibitively expensive.
418 */
419 kasan_populate_shadow(addr: shadow_cea_begin,
420 end: shadow_cea_per_cpu_begin, nid: 0);
421
422 kasan_populate_early_shadow((void *)shadow_cea_end,
423 kasan_mem_to_shadow((void *)__START_KERNEL_map));
424
425 kasan_populate_shadow(addr: (unsigned long)kasan_mem_to_shadow(_stext),
426 end: (unsigned long)kasan_mem_to_shadow(_end),
427 nid: early_pfn_to_nid(__pa(_stext)));
428
429 kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
430 (void *)KASAN_SHADOW_END);
431
432 load_cr3(pgdir: init_top_pgt);
433 __flush_tlb_all();
434
435 /*
436 * kasan_early_shadow_page has been used as early shadow memory, thus
437 * it may contain some garbage. Now we can clear and write protect it,
438 * since after the TLB flush no one should write to it.
439 */
440 memset(kasan_early_shadow_page, 0, PAGE_SIZE);
441 for (i = 0; i < PTRS_PER_PTE; i++) {
442 pte_t pte;
443 pgprot_t prot;
444
445 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
446 pgprot_val(prot) &= __default_kernel_pte_mask;
447
448 pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
449 set_pte(&kasan_early_shadow_pte[i], pte);
450 }
451 /* Flush TLBs again to be sure that write protection applied. */
452 __flush_tlb_all();
453
454 init_task.kasan_depth = 0;
455 pr_info("KernelAddressSanitizer initialized\n");
456}
457

source code of linux/arch/x86/mm/kasan_init_64.c