1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2021 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include <uapi/drm/habanalabs_accel.h>
9#include "habanalabs.h"
10
11#include <linux/uaccess.h>
12#include <linux/slab.h>
13
14#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \
17 HL_CS_FLAGS_ENGINES_COMMAND | HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
18
19
20#define MAX_TS_ITER_NUM 100
21
22/**
23 * enum hl_cs_wait_status - cs wait status
24 * @CS_WAIT_STATUS_BUSY: cs was not completed yet
25 * @CS_WAIT_STATUS_COMPLETED: cs completed
26 * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
27 */
28enum hl_cs_wait_status {
29 CS_WAIT_STATUS_BUSY,
30 CS_WAIT_STATUS_COMPLETED,
31 CS_WAIT_STATUS_GONE
32};
33
34/*
35 * Data used while handling wait/timestamp nodes.
36 * The purpose of this struct is to store the needed data for both operations
37 * in one variable instead of passing large number of arguments to functions.
38 */
39struct wait_interrupt_data {
40 struct hl_user_interrupt *interrupt;
41 struct hl_mmap_mem_buf *buf;
42 struct hl_mem_mgr *mmg;
43 struct hl_cb *cq_cb;
44 u64 ts_handle;
45 u64 ts_offset;
46 u64 cq_handle;
47 u64 cq_offset;
48 u64 target_value;
49 u64 intr_timeout_us;
50};
51
52static void job_wq_completion(struct work_struct *work);
53static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
54 enum hl_cs_wait_status *status, s64 *timestamp);
55static void cs_do_release(struct kref *ref);
56
57static void hl_push_cs_outcome(struct hl_device *hdev,
58 struct hl_cs_outcome_store *outcome_store,
59 u64 seq, ktime_t ts, int error)
60{
61 struct hl_cs_outcome *node;
62 unsigned long flags;
63
64 /*
65 * CS outcome store supports the following operations:
66 * push outcome - store a recent CS outcome in the store
67 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
68 * It uses 2 lists: used list and free list.
69 * It has a pre-allocated amount of nodes, each node stores
70 * a single CS outcome.
71 * Initially, all the nodes are in the free list.
72 * On push outcome, a node (any) is taken from the free list, its
73 * information is filled in, and the node is moved to the used list.
74 * It is possible, that there are no nodes left in the free list.
75 * In this case, we will lose some information about old outcomes. We
76 * will pop the OLDEST node from the used list, and make it free.
77 * On pop, the node is searched for in the used list (using a search
78 * index).
79 * If found, the node is then removed from the used list, and moved
80 * back to the free list. The outcome data that the node contained is
81 * returned back to the user.
82 */
83
84 spin_lock_irqsave(&outcome_store->db_lock, flags);
85
86 if (list_empty(head: &outcome_store->free_list)) {
87 node = list_last_entry(&outcome_store->used_list,
88 struct hl_cs_outcome, list_link);
89 hash_del(node: &node->map_link);
90 dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
91 } else {
92 node = list_last_entry(&outcome_store->free_list,
93 struct hl_cs_outcome, list_link);
94 }
95
96 list_del_init(entry: &node->list_link);
97
98 node->seq = seq;
99 node->ts = ts;
100 node->error = error;
101
102 list_add(new: &node->list_link, head: &outcome_store->used_list);
103 hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
104
105 spin_unlock_irqrestore(lock: &outcome_store->db_lock, flags);
106}
107
108static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
109 u64 seq, ktime_t *ts, int *error)
110{
111 struct hl_cs_outcome *node;
112 unsigned long flags;
113
114 spin_lock_irqsave(&outcome_store->db_lock, flags);
115
116 hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
117 if (node->seq == seq) {
118 *ts = node->ts;
119 *error = node->error;
120
121 hash_del(node: &node->map_link);
122 list_del_init(entry: &node->list_link);
123 list_add(new: &node->list_link, head: &outcome_store->free_list);
124
125 spin_unlock_irqrestore(lock: &outcome_store->db_lock, flags);
126
127 return true;
128 }
129
130 spin_unlock_irqrestore(lock: &outcome_store->db_lock, flags);
131
132 return false;
133}
134
135static void hl_sob_reset(struct kref *ref)
136{
137 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
138 kref);
139 struct hl_device *hdev = hw_sob->hdev;
140
141 dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
142
143 hdev->asic_funcs->reset_sob(hdev, hw_sob);
144
145 hw_sob->need_reset = false;
146}
147
148void hl_sob_reset_error(struct kref *ref)
149{
150 struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
151 kref);
152 struct hl_device *hdev = hw_sob->hdev;
153
154 dev_crit(hdev->dev,
155 "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
156 hw_sob->q_idx, hw_sob->sob_id);
157}
158
159void hw_sob_put(struct hl_hw_sob *hw_sob)
160{
161 if (hw_sob)
162 kref_put(kref: &hw_sob->kref, release: hl_sob_reset);
163}
164
165static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
166{
167 if (hw_sob)
168 kref_put(kref: &hw_sob->kref, release: hl_sob_reset_error);
169}
170
171void hw_sob_get(struct hl_hw_sob *hw_sob)
172{
173 if (hw_sob)
174 kref_get(kref: &hw_sob->kref);
175}
176
177/**
178 * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
179 * @sob_base: sob base id
180 * @sob_mask: sob user mask, each bit represents a sob offset from sob base
181 * @mask: generated mask
182 *
183 * Return: 0 if given parameters are valid
184 */
185int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
186{
187 int i;
188
189 if (sob_mask == 0)
190 return -EINVAL;
191
192 if (sob_mask == 0x1) {
193 *mask = ~(1 << (sob_base & 0x7));
194 } else {
195 /* find msb in order to verify sob range is valid */
196 for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
197 if (BIT(i) & sob_mask)
198 break;
199
200 if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
201 return -EINVAL;
202
203 *mask = ~sob_mask;
204 }
205
206 return 0;
207}
208
209static void hl_fence_release(struct kref *kref)
210{
211 struct hl_fence *fence =
212 container_of(kref, struct hl_fence, refcount);
213 struct hl_cs_compl *hl_cs_cmpl =
214 container_of(fence, struct hl_cs_compl, base_fence);
215
216 kfree(objp: hl_cs_cmpl);
217}
218
219void hl_fence_put(struct hl_fence *fence)
220{
221 if (IS_ERR_OR_NULL(ptr: fence))
222 return;
223 kref_put(kref: &fence->refcount, release: hl_fence_release);
224}
225
226void hl_fences_put(struct hl_fence **fence, int len)
227{
228 int i;
229
230 for (i = 0; i < len; i++, fence++)
231 hl_fence_put(fence: *fence);
232}
233
234void hl_fence_get(struct hl_fence *fence)
235{
236 if (fence)
237 kref_get(kref: &fence->refcount);
238}
239
240static void hl_fence_init(struct hl_fence *fence, u64 sequence)
241{
242 kref_init(kref: &fence->refcount);
243 fence->cs_sequence = sequence;
244 fence->error = 0;
245 fence->timestamp = ktime_set(secs: 0, nsecs: 0);
246 fence->mcs_handling_done = false;
247 init_completion(x: &fence->completion);
248}
249
250void cs_get(struct hl_cs *cs)
251{
252 kref_get(kref: &cs->refcount);
253}
254
255static int cs_get_unless_zero(struct hl_cs *cs)
256{
257 return kref_get_unless_zero(kref: &cs->refcount);
258}
259
260static void cs_put(struct hl_cs *cs)
261{
262 kref_put(kref: &cs->refcount, release: cs_do_release);
263}
264
265static void cs_job_do_release(struct kref *ref)
266{
267 struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
268
269 kfree(objp: job);
270}
271
272static void hl_cs_job_put(struct hl_cs_job *job)
273{
274 kref_put(kref: &job->refcount, release: cs_job_do_release);
275}
276
277bool cs_needs_completion(struct hl_cs *cs)
278{
279 /* In case this is a staged CS, only the last CS in sequence should
280 * get a completion, any non staged CS will always get a completion
281 */
282 if (cs->staged_cs && !cs->staged_last)
283 return false;
284
285 return true;
286}
287
288bool cs_needs_timeout(struct hl_cs *cs)
289{
290 /* In case this is a staged CS, only the first CS in sequence should
291 * get a timeout, any non staged CS will always get a timeout
292 */
293 if (cs->staged_cs && !cs->staged_first)
294 return false;
295
296 return true;
297}
298
299static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
300{
301 /* Patched CB is created for external queues jobs */
302 return (job->queue_type == QUEUE_TYPE_EXT);
303}
304
305/*
306 * cs_parser - parse the user command submission
307 *
308 * @hpriv : pointer to the private data of the fd
309 * @job : pointer to the job that holds the command submission info
310 *
311 * The function parses the command submission of the user. It calls the
312 * ASIC specific parser, which returns a list of memory blocks to send
313 * to the device as different command buffers
314 *
315 */
316static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
317{
318 struct hl_device *hdev = hpriv->hdev;
319 struct hl_cs_parser parser;
320 int rc;
321
322 parser.ctx_id = job->cs->ctx->asid;
323 parser.cs_sequence = job->cs->sequence;
324 parser.job_id = job->id;
325
326 parser.hw_queue_id = job->hw_queue_id;
327 parser.job_userptr_list = &job->userptr_list;
328 parser.patched_cb = NULL;
329 parser.user_cb = job->user_cb;
330 parser.user_cb_size = job->user_cb_size;
331 parser.queue_type = job->queue_type;
332 parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
333 job->patched_cb = NULL;
334 parser.completion = cs_needs_completion(cs: job->cs);
335
336 rc = hdev->asic_funcs->cs_parser(hdev, &parser);
337
338 if (is_cb_patched(hdev, job)) {
339 if (!rc) {
340 job->patched_cb = parser.patched_cb;
341 job->job_cb_size = parser.patched_cb_size;
342 job->contains_dma_pkt = parser.contains_dma_pkt;
343 atomic_inc(v: &job->patched_cb->cs_cnt);
344 }
345
346 /*
347 * Whether the parsing worked or not, we don't need the
348 * original CB anymore because it was already parsed and
349 * won't be accessed again for this CS
350 */
351 atomic_dec(v: &job->user_cb->cs_cnt);
352 hl_cb_put(cb: job->user_cb);
353 job->user_cb = NULL;
354 } else if (!rc) {
355 job->job_cb_size = job->user_cb_size;
356 }
357
358 return rc;
359}
360
361static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
362{
363 struct hl_cs *cs = job->cs;
364
365 if (is_cb_patched(hdev, job)) {
366 hl_userptr_delete_list(hdev, userptr_list: &job->userptr_list);
367
368 /*
369 * We might arrive here from rollback and patched CB wasn't
370 * created, so we need to check it's not NULL
371 */
372 if (job->patched_cb) {
373 atomic_dec(v: &job->patched_cb->cs_cnt);
374 hl_cb_put(cb: job->patched_cb);
375 }
376 }
377
378 /* For H/W queue jobs, if a user CB was allocated by driver,
379 * the user CB isn't released in cs_parser() and thus should be
380 * released here. This is also true for INT queues jobs which were
381 * allocated by driver.
382 */
383 if (job->is_kernel_allocated_cb &&
384 (job->queue_type == QUEUE_TYPE_HW || job->queue_type == QUEUE_TYPE_INT)) {
385 atomic_dec(v: &job->user_cb->cs_cnt);
386 hl_cb_put(cb: job->user_cb);
387 }
388
389 /*
390 * This is the only place where there can be multiple threads
391 * modifying the list at the same time
392 */
393 spin_lock(lock: &cs->job_lock);
394 list_del(entry: &job->cs_node);
395 spin_unlock(lock: &cs->job_lock);
396
397 hl_debugfs_remove_job(hdev, job);
398
399 /* We decrement reference only for a CS that gets completion
400 * because the reference was incremented only for this kind of CS
401 * right before it was scheduled.
402 *
403 * In staged submission, only the last CS marked as 'staged_last'
404 * gets completion, hence its release function will be called from here.
405 * As for all the rest CS's in the staged submission which do not get
406 * completion, their CS reference will be decremented by the
407 * 'staged_last' CS during the CS release flow.
408 * All relevant PQ CI counters will be incremented during the CS release
409 * flow by calling 'hl_hw_queue_update_ci'.
410 */
411 if (cs_needs_completion(cs) &&
412 (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) {
413
414 /* In CS based completions, the timestamp is already available,
415 * so no need to extract it from job
416 */
417 if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB)
418 cs->completion_timestamp = job->timestamp;
419
420 cs_put(cs);
421 }
422
423 hl_cs_job_put(job);
424}
425
426/*
427 * hl_staged_cs_find_first - locate the first CS in this staged submission
428 *
429 * @hdev: pointer to device structure
430 * @cs_seq: staged submission sequence number
431 *
432 * @note: This function must be called under 'hdev->cs_mirror_lock'
433 *
434 * Find and return a CS pointer with the given sequence
435 */
436struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
437{
438 struct hl_cs *cs;
439
440 list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
441 if (cs->staged_cs && cs->staged_first &&
442 cs->sequence == cs_seq)
443 return cs;
444
445 return NULL;
446}
447
448/*
449 * is_staged_cs_last_exists - returns true if the last CS in sequence exists
450 *
451 * @hdev: pointer to device structure
452 * @cs: staged submission member
453 *
454 */
455bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
456{
457 struct hl_cs *last_entry;
458
459 last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
460 staged_cs_node);
461
462 if (last_entry->staged_last)
463 return true;
464
465 return false;
466}
467
468/*
469 * staged_cs_get - get CS reference if this CS is a part of a staged CS
470 *
471 * @hdev: pointer to device structure
472 * @cs: current CS
473 * @cs_seq: staged submission sequence number
474 *
475 * Increment CS reference for every CS in this staged submission except for
476 * the CS which get completion.
477 */
478static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
479{
480 /* Only the last CS in this staged submission will get a completion.
481 * We must increment the reference for all other CS's in this
482 * staged submission.
483 * Once we get a completion we will release the whole staged submission.
484 */
485 if (!cs->staged_last)
486 cs_get(cs);
487}
488
489/*
490 * staged_cs_put - put a CS in case it is part of staged submission
491 *
492 * @hdev: pointer to device structure
493 * @cs: CS to put
494 *
495 * This function decrements a CS reference (for a non completion CS)
496 */
497static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
498{
499 /* We release all CS's in a staged submission except the last
500 * CS which we have never incremented its reference.
501 */
502 if (!cs_needs_completion(cs))
503 cs_put(cs);
504}
505
506static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
507{
508 struct hl_cs *next = NULL, *iter, *first_cs;
509
510 if (!cs_needs_timeout(cs))
511 return;
512
513 spin_lock(lock: &hdev->cs_mirror_lock);
514
515 /* We need to handle tdr only once for the complete staged submission.
516 * Hence, we choose the CS that reaches this function first which is
517 * the CS marked as 'staged_last'.
518 * In case single staged cs was submitted which has both first and last
519 * indications, then "cs_find_first" below will return NULL, since we
520 * removed the cs node from the list before getting here,
521 * in such cases just continue with the cs to cancel it's TDR work.
522 */
523 if (cs->staged_cs && cs->staged_last) {
524 first_cs = hl_staged_cs_find_first(hdev, cs_seq: cs->staged_sequence);
525 if (first_cs)
526 cs = first_cs;
527 }
528
529 spin_unlock(lock: &hdev->cs_mirror_lock);
530
531 /* Don't cancel TDR in case this CS was timedout because we might be
532 * running from the TDR context
533 */
534 if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
535 return;
536
537 if (cs->tdr_active)
538 cancel_delayed_work_sync(dwork: &cs->work_tdr);
539
540 spin_lock(lock: &hdev->cs_mirror_lock);
541
542 /* queue TDR for next CS */
543 list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
544 if (cs_needs_timeout(cs: iter)) {
545 next = iter;
546 break;
547 }
548
549 if (next && !next->tdr_active) {
550 next->tdr_active = true;
551 schedule_delayed_work(dwork: &next->work_tdr, delay: next->timeout_jiffies);
552 }
553
554 spin_unlock(lock: &hdev->cs_mirror_lock);
555}
556
557/*
558 * force_complete_multi_cs - complete all contexts that wait on multi-CS
559 *
560 * @hdev: pointer to habanalabs device structure
561 */
562static void force_complete_multi_cs(struct hl_device *hdev)
563{
564 int i;
565
566 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
567 struct multi_cs_completion *mcs_compl;
568
569 mcs_compl = &hdev->multi_cs_completion[i];
570
571 spin_lock(lock: &mcs_compl->lock);
572
573 if (!mcs_compl->used) {
574 spin_unlock(lock: &mcs_compl->lock);
575 continue;
576 }
577
578 /* when calling force complete no context should be waiting on
579 * multi-cS.
580 * We are calling the function as a protection for such case
581 * to free any pending context and print error message
582 */
583 dev_err(hdev->dev,
584 "multi-CS completion context %d still waiting when calling force completion\n",
585 i);
586 complete_all(&mcs_compl->completion);
587 spin_unlock(lock: &mcs_compl->lock);
588 }
589}
590
591/*
592 * complete_multi_cs - complete all waiting entities on multi-CS
593 *
594 * @hdev: pointer to habanalabs device structure
595 * @cs: CS structure
596 * The function signals a waiting entity that has an overlapping stream masters
597 * with the completed CS.
598 * For example:
599 * - a completed CS worked on stream master QID 4, multi CS completion
600 * is actively waiting on stream master QIDs 3, 5. don't send signal as no
601 * common stream master QID
602 * - a completed CS worked on stream master QID 4, multi CS completion
603 * is actively waiting on stream master QIDs 3, 4. send signal as stream
604 * master QID 4 is common
605 */
606static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
607{
608 struct hl_fence *fence = cs->fence;
609 int i;
610
611 /* in case of multi CS check for completion only for the first CS */
612 if (cs->staged_cs && !cs->staged_first)
613 return;
614
615 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
616 struct multi_cs_completion *mcs_compl;
617
618 mcs_compl = &hdev->multi_cs_completion[i];
619 if (!mcs_compl->used)
620 continue;
621
622 spin_lock(lock: &mcs_compl->lock);
623
624 /*
625 * complete if:
626 * 1. still waiting for completion
627 * 2. the completed CS has at least one overlapping stream
628 * master with the stream masters in the completion
629 */
630 if (mcs_compl->used &&
631 (fence->stream_master_qid_map &
632 mcs_compl->stream_master_qid_map)) {
633 /* extract the timestamp only of first completed CS */
634 if (!mcs_compl->timestamp)
635 mcs_compl->timestamp = ktime_to_ns(kt: fence->timestamp);
636
637 complete_all(&mcs_compl->completion);
638
639 /*
640 * Setting mcs_handling_done inside the lock ensures
641 * at least one fence have mcs_handling_done set to
642 * true before wait for mcs finish. This ensures at
643 * least one CS will be set as completed when polling
644 * mcs fences.
645 */
646 fence->mcs_handling_done = true;
647 }
648
649 spin_unlock(lock: &mcs_compl->lock);
650 }
651 /* In case CS completed without mcs completion initialized */
652 fence->mcs_handling_done = true;
653}
654
655static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
656 struct hl_cs *cs,
657 struct hl_cs_compl *hl_cs_cmpl)
658{
659 /* Skip this handler if the cs wasn't submitted, to avoid putting
660 * the hw_sob twice, since this case already handled at this point,
661 * also skip if the hw_sob pointer wasn't set.
662 */
663 if (!hl_cs_cmpl->hw_sob || !cs->submitted)
664 return;
665
666 spin_lock(lock: &hl_cs_cmpl->lock);
667
668 /*
669 * we get refcount upon reservation of signals or signal/wait cs for the
670 * hw_sob object, and need to put it when the first staged cs
671 * (which contains the encaps signals) or cs signal/wait is completed.
672 */
673 if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
674 (hl_cs_cmpl->type == CS_TYPE_WAIT) ||
675 (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
676 (!!hl_cs_cmpl->encaps_signals)) {
677 dev_dbg(hdev->dev,
678 "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
679 hl_cs_cmpl->cs_seq,
680 hl_cs_cmpl->type,
681 hl_cs_cmpl->hw_sob->sob_id,
682 hl_cs_cmpl->sob_val);
683
684 hw_sob_put(hw_sob: hl_cs_cmpl->hw_sob);
685
686 if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
687 hdev->asic_funcs->reset_sob_group(hdev,
688 hl_cs_cmpl->sob_group);
689 }
690
691 spin_unlock(lock: &hl_cs_cmpl->lock);
692}
693
694static void cs_do_release(struct kref *ref)
695{
696 struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
697 struct hl_device *hdev = cs->ctx->hdev;
698 struct hl_cs_job *job, *tmp;
699 struct hl_cs_compl *hl_cs_cmpl =
700 container_of(cs->fence, struct hl_cs_compl, base_fence);
701
702 cs->completed = true;
703
704 /*
705 * Although if we reached here it means that all external jobs have
706 * finished, because each one of them took refcnt to CS, we still
707 * need to go over the internal jobs and complete them. Otherwise, we
708 * will have leaked memory and what's worse, the CS object (and
709 * potentially the CTX object) could be released, while the JOB
710 * still holds a pointer to them (but no reference).
711 */
712 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
713 hl_complete_job(hdev, job);
714
715 if (!cs->submitted) {
716 /*
717 * In case the wait for signal CS was submitted, the fence put
718 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
719 * right before hanging on the PQ.
720 */
721 if (cs->type == CS_TYPE_WAIT ||
722 cs->type == CS_TYPE_COLLECTIVE_WAIT)
723 hl_fence_put(fence: cs->signal_fence);
724
725 goto out;
726 }
727
728 /* Need to update CI for all queue jobs that does not get completion */
729 hl_hw_queue_update_ci(cs);
730
731 /* remove CS from CS mirror list */
732 spin_lock(lock: &hdev->cs_mirror_lock);
733 list_del_init(entry: &cs->mirror_node);
734 spin_unlock(lock: &hdev->cs_mirror_lock);
735
736 cs_handle_tdr(hdev, cs);
737
738 if (cs->staged_cs) {
739 /* the completion CS decrements reference for the entire
740 * staged submission
741 */
742 if (cs->staged_last) {
743 struct hl_cs *staged_cs, *tmp_cs;
744
745 list_for_each_entry_safe(staged_cs, tmp_cs,
746 &cs->staged_cs_node, staged_cs_node)
747 staged_cs_put(hdev, cs: staged_cs);
748 }
749
750 /* A staged CS will be a member in the list only after it
751 * was submitted. We used 'cs_mirror_lock' when inserting
752 * it to list so we will use it again when removing it
753 */
754 if (cs->submitted) {
755 spin_lock(lock: &hdev->cs_mirror_lock);
756 list_del(entry: &cs->staged_cs_node);
757 spin_unlock(lock: &hdev->cs_mirror_lock);
758 }
759
760 /* decrement refcount to handle when first staged cs
761 * with encaps signals is completed.
762 */
763 if (hl_cs_cmpl->encaps_signals)
764 kref_put(kref: &hl_cs_cmpl->encaps_sig_hdl->refcount,
765 release: hl_encaps_release_handle_and_put_ctx);
766 }
767
768 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals)
769 kref_put(kref: &cs->encaps_sig_hdl->refcount, release: hl_encaps_release_handle_and_put_ctx);
770
771out:
772 /* Must be called before hl_ctx_put because inside we use ctx to get
773 * the device
774 */
775 hl_debugfs_remove_cs(cs);
776
777 hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
778
779 /* We need to mark an error for not submitted because in that case
780 * the hl fence release flow is different. Mainly, we don't need
781 * to handle hw_sob for signal/wait
782 */
783 if (cs->timedout)
784 cs->fence->error = -ETIMEDOUT;
785 else if (cs->aborted)
786 cs->fence->error = -EIO;
787 else if (!cs->submitted)
788 cs->fence->error = -EBUSY;
789
790 if (unlikely(cs->skip_reset_on_timeout)) {
791 dev_err(hdev->dev,
792 "Command submission %llu completed after %llu (s)\n",
793 cs->sequence,
794 div_u64(jiffies - cs->submission_time_jiffies, HZ));
795 }
796
797 if (cs->timestamp) {
798 cs->fence->timestamp = cs->completion_timestamp;
799 hl_push_cs_outcome(hdev, outcome_store: &cs->ctx->outcome_store, seq: cs->sequence,
800 ts: cs->fence->timestamp, error: cs->fence->error);
801 }
802
803 hl_ctx_put(ctx: cs->ctx);
804
805 complete_all(&cs->fence->completion);
806 complete_multi_cs(hdev, cs);
807
808 cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
809
810 hl_fence_put(fence: cs->fence);
811
812 kfree(objp: cs->jobs_in_queue_cnt);
813 kfree(objp: cs);
814}
815
816static void cs_timedout(struct work_struct *work)
817{
818 struct hl_cs *cs = container_of(work, struct hl_cs, work_tdr.work);
819 bool skip_reset_on_timeout, device_reset = false;
820 struct hl_device *hdev;
821 u64 event_mask = 0x0;
822 uint timeout_sec;
823 int rc;
824
825 skip_reset_on_timeout = cs->skip_reset_on_timeout;
826
827 rc = cs_get_unless_zero(cs);
828 if (!rc)
829 return;
830
831 if ((!cs->submitted) || (cs->completed)) {
832 cs_put(cs);
833 return;
834 }
835
836 hdev = cs->ctx->hdev;
837
838 if (likely(!skip_reset_on_timeout)) {
839 if (hdev->reset_on_lockup)
840 device_reset = true;
841 else
842 hdev->reset_info.needs_reset = true;
843
844 /* Mark the CS is timed out so we won't try to cancel its TDR */
845 cs->timedout = true;
846 }
847
848 /* Save only the first CS timeout parameters */
849 rc = atomic_cmpxchg(v: &hdev->captured_err_info.cs_timeout.write_enable, old: 1, new: 0);
850 if (rc) {
851 hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
852 hdev->captured_err_info.cs_timeout.seq = cs->sequence;
853 event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT;
854 }
855
856 timeout_sec = jiffies_to_msecs(j: hdev->timeout_jiffies) / 1000;
857
858 switch (cs->type) {
859 case CS_TYPE_SIGNAL:
860 dev_err(hdev->dev,
861 "Signal command submission %llu has not finished in %u seconds!\n",
862 cs->sequence, timeout_sec);
863 break;
864
865 case CS_TYPE_WAIT:
866 dev_err(hdev->dev,
867 "Wait command submission %llu has not finished in %u seconds!\n",
868 cs->sequence, timeout_sec);
869 break;
870
871 case CS_TYPE_COLLECTIVE_WAIT:
872 dev_err(hdev->dev,
873 "Collective Wait command submission %llu has not finished in %u seconds!\n",
874 cs->sequence, timeout_sec);
875 break;
876
877 default:
878 dev_err(hdev->dev,
879 "Command submission %llu has not finished in %u seconds!\n",
880 cs->sequence, timeout_sec);
881 break;
882 }
883
884 rc = hl_state_dump(hdev);
885 if (rc)
886 dev_err(hdev->dev, "Error during system state dump %d\n", rc);
887
888 cs_put(cs);
889
890 if (device_reset) {
891 event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET;
892 hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask);
893 } else if (event_mask) {
894 hl_notifier_event_send_all(hdev, event_mask);
895 }
896}
897
898static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
899 enum hl_cs_type cs_type, u64 user_sequence,
900 struct hl_cs **cs_new, u32 flags, u32 timeout)
901{
902 struct hl_cs_counters_atomic *cntr;
903 struct hl_fence *other = NULL;
904 struct hl_cs_compl *cs_cmpl;
905 struct hl_cs *cs;
906 int rc;
907
908 cntr = &hdev->aggregated_cs_counters;
909
910 cs = kzalloc(size: sizeof(*cs), GFP_ATOMIC);
911 if (!cs)
912 cs = kzalloc(size: sizeof(*cs), GFP_KERNEL);
913
914 if (!cs) {
915 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
916 atomic64_inc(v: &cntr->out_of_mem_drop_cnt);
917 return -ENOMEM;
918 }
919
920 /* increment refcnt for context */
921 hl_ctx_get(ctx);
922
923 cs->ctx = ctx;
924 cs->submitted = false;
925 cs->completed = false;
926 cs->type = cs_type;
927 cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
928 cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
929 cs->timeout_jiffies = timeout;
930 cs->skip_reset_on_timeout =
931 hdev->reset_info.skip_reset_on_timeout ||
932 !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
933 cs->submission_time_jiffies = jiffies;
934 INIT_LIST_HEAD(list: &cs->job_list);
935 INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
936 kref_init(kref: &cs->refcount);
937 spin_lock_init(&cs->job_lock);
938
939 cs_cmpl = kzalloc(size: sizeof(*cs_cmpl), GFP_ATOMIC);
940 if (!cs_cmpl)
941 cs_cmpl = kzalloc(size: sizeof(*cs_cmpl), GFP_KERNEL);
942
943 if (!cs_cmpl) {
944 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
945 atomic64_inc(v: &cntr->out_of_mem_drop_cnt);
946 rc = -ENOMEM;
947 goto free_cs;
948 }
949
950 cs->jobs_in_queue_cnt = kcalloc(n: hdev->asic_prop.max_queues,
951 size: sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
952 if (!cs->jobs_in_queue_cnt)
953 cs->jobs_in_queue_cnt = kcalloc(n: hdev->asic_prop.max_queues,
954 size: sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
955
956 if (!cs->jobs_in_queue_cnt) {
957 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
958 atomic64_inc(v: &cntr->out_of_mem_drop_cnt);
959 rc = -ENOMEM;
960 goto free_cs_cmpl;
961 }
962
963 cs_cmpl->hdev = hdev;
964 cs_cmpl->type = cs->type;
965 spin_lock_init(&cs_cmpl->lock);
966 cs->fence = &cs_cmpl->base_fence;
967
968 spin_lock(lock: &ctx->cs_lock);
969
970 cs_cmpl->cs_seq = ctx->cs_sequence;
971 other = ctx->cs_pending[cs_cmpl->cs_seq &
972 (hdev->asic_prop.max_pending_cs - 1)];
973
974 if (other && !completion_done(x: &other->completion)) {
975 /* If the following statement is true, it means we have reached
976 * a point in which only part of the staged submission was
977 * submitted and we don't have enough room in the 'cs_pending'
978 * array for the rest of the submission.
979 * This causes a deadlock because this CS will never be
980 * completed as it depends on future CS's for completion.
981 */
982 if (other->cs_sequence == user_sequence)
983 dev_crit_ratelimited(hdev->dev,
984 "Staged CS %llu deadlock due to lack of resources",
985 user_sequence);
986
987 dev_dbg_ratelimited(hdev->dev,
988 "Rejecting CS because of too many in-flights CS\n");
989 atomic64_inc(v: &ctx->cs_counters.max_cs_in_flight_drop_cnt);
990 atomic64_inc(v: &cntr->max_cs_in_flight_drop_cnt);
991 rc = -EAGAIN;
992 goto free_fence;
993 }
994
995 /* init hl_fence */
996 hl_fence_init(fence: &cs_cmpl->base_fence, sequence: cs_cmpl->cs_seq);
997
998 cs->sequence = cs_cmpl->cs_seq;
999
1000 ctx->cs_pending[cs_cmpl->cs_seq &
1001 (hdev->asic_prop.max_pending_cs - 1)] =
1002 &cs_cmpl->base_fence;
1003 ctx->cs_sequence++;
1004
1005 hl_fence_get(fence: &cs_cmpl->base_fence);
1006
1007 hl_fence_put(fence: other);
1008
1009 spin_unlock(lock: &ctx->cs_lock);
1010
1011 *cs_new = cs;
1012
1013 return 0;
1014
1015free_fence:
1016 spin_unlock(lock: &ctx->cs_lock);
1017 kfree(objp: cs->jobs_in_queue_cnt);
1018free_cs_cmpl:
1019 kfree(objp: cs_cmpl);
1020free_cs:
1021 kfree(objp: cs);
1022 hl_ctx_put(ctx);
1023 return rc;
1024}
1025
1026static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1027{
1028 struct hl_cs_job *job, *tmp;
1029
1030 staged_cs_put(hdev, cs);
1031
1032 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1033 hl_complete_job(hdev, job);
1034}
1035
1036/*
1037 * release_reserved_encaps_signals() - release reserved encapsulated signals.
1038 * @hdev: pointer to habanalabs device structure
1039 *
1040 * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with
1041 * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back.
1042 * For these signals need also to put the refcount of the H/W SOB which was taken at the
1043 * reservation.
1044 */
1045static void release_reserved_encaps_signals(struct hl_device *hdev)
1046{
1047 struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
1048 struct hl_cs_encaps_sig_handle *handle;
1049 struct hl_encaps_signals_mgr *mgr;
1050 u32 id;
1051
1052 if (!ctx)
1053 return;
1054
1055 mgr = &ctx->sig_mgr;
1056
1057 idr_for_each_entry(&mgr->handles, handle, id)
1058 if (handle->cs_seq == ULLONG_MAX)
1059 kref_put(kref: &handle->refcount, release: hl_encaps_release_handle_and_put_sob_ctx);
1060
1061 hl_ctx_put(ctx);
1062}
1063
1064void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1065{
1066 int i;
1067 struct hl_cs *cs, *tmp;
1068
1069 if (!skip_wq_flush) {
1070 flush_workqueue(hdev->ts_free_obj_wq);
1071
1072 /* flush all completions before iterating over the CS mirror list in
1073 * order to avoid a race with the release functions
1074 */
1075 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1076 flush_workqueue(hdev->cq_wq[i]);
1077
1078 flush_workqueue(hdev->cs_cmplt_wq);
1079 }
1080
1081 /* Make sure we don't have leftovers in the CS mirror list */
1082 list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1083 cs_get(cs);
1084 cs->aborted = true;
1085 dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1086 cs->ctx->asid, cs->sequence);
1087 cs_rollback(hdev, cs);
1088 cs_put(cs);
1089 }
1090
1091 force_complete_multi_cs(hdev);
1092
1093 release_reserved_encaps_signals(hdev);
1094}
1095
1096static void
1097wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1098{
1099 struct hl_user_pending_interrupt *pend, *temp;
1100 unsigned long flags;
1101
1102 spin_lock_irqsave(&interrupt->wait_list_lock, flags);
1103 list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, list_node) {
1104 pend->fence.error = -EIO;
1105 complete_all(&pend->fence.completion);
1106 }
1107 spin_unlock_irqrestore(lock: &interrupt->wait_list_lock, flags);
1108
1109 spin_lock_irqsave(&interrupt->ts_list_lock, flags);
1110 list_for_each_entry_safe(pend, temp, &interrupt->ts_list_head, list_node) {
1111 list_del(entry: &pend->list_node);
1112 hl_mmap_mem_buf_put(buf: pend->ts_reg_info.buf);
1113 hl_cb_put(cb: pend->ts_reg_info.cq_cb);
1114 }
1115 spin_unlock_irqrestore(lock: &interrupt->ts_list_lock, flags);
1116}
1117
1118void hl_release_pending_user_interrupts(struct hl_device *hdev)
1119{
1120 struct asic_fixed_properties *prop = &hdev->asic_prop;
1121 struct hl_user_interrupt *interrupt;
1122 int i;
1123
1124 if (!prop->user_interrupt_count)
1125 return;
1126
1127 /* We iterate through the user interrupt requests and waking up all
1128 * user threads waiting for interrupt completion. We iterate the
1129 * list under a lock, this is why all user threads, once awake,
1130 * will wait on the same lock and will release the waiting object upon
1131 * unlock.
1132 */
1133
1134 for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1135 interrupt = &hdev->user_interrupt[i];
1136 wake_pending_user_interrupt_threads(interrupt);
1137 }
1138
1139 interrupt = &hdev->common_user_cq_interrupt;
1140 wake_pending_user_interrupt_threads(interrupt);
1141
1142 interrupt = &hdev->common_decoder_interrupt;
1143 wake_pending_user_interrupt_threads(interrupt);
1144}
1145
1146static void force_complete_cs(struct hl_device *hdev)
1147{
1148 struct hl_cs *cs;
1149
1150 spin_lock(lock: &hdev->cs_mirror_lock);
1151
1152 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) {
1153 cs->fence->error = -EIO;
1154 complete_all(&cs->fence->completion);
1155 }
1156
1157 spin_unlock(lock: &hdev->cs_mirror_lock);
1158}
1159
1160void hl_abort_waiting_for_cs_completions(struct hl_device *hdev)
1161{
1162 force_complete_cs(hdev);
1163 force_complete_multi_cs(hdev);
1164}
1165
1166static void job_wq_completion(struct work_struct *work)
1167{
1168 struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1169 finish_work);
1170 struct hl_cs *cs = job->cs;
1171 struct hl_device *hdev = cs->ctx->hdev;
1172
1173 /* job is no longer needed */
1174 hl_complete_job(hdev, job);
1175}
1176
1177static void cs_completion(struct work_struct *work)
1178{
1179 struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1180 struct hl_device *hdev = cs->ctx->hdev;
1181 struct hl_cs_job *job, *tmp;
1182
1183 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1184 hl_complete_job(hdev, job);
1185}
1186
1187u32 hl_get_active_cs_num(struct hl_device *hdev)
1188{
1189 u32 active_cs_num = 0;
1190 struct hl_cs *cs;
1191
1192 spin_lock(lock: &hdev->cs_mirror_lock);
1193
1194 list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node)
1195 if (!cs->completed)
1196 active_cs_num++;
1197
1198 spin_unlock(lock: &hdev->cs_mirror_lock);
1199
1200 return active_cs_num;
1201}
1202
1203static int validate_queue_index(struct hl_device *hdev,
1204 struct hl_cs_chunk *chunk,
1205 enum hl_queue_type *queue_type,
1206 bool *is_kernel_allocated_cb)
1207{
1208 struct asic_fixed_properties *asic = &hdev->asic_prop;
1209 struct hw_queue_properties *hw_queue_prop;
1210
1211 /* This must be checked here to prevent out-of-bounds access to
1212 * hw_queues_props array
1213 */
1214 if (chunk->queue_index >= asic->max_queues) {
1215 dev_err(hdev->dev, "Queue index %d is invalid\n",
1216 chunk->queue_index);
1217 return -EINVAL;
1218 }
1219
1220 hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1221
1222 if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1223 dev_err(hdev->dev, "Queue index %d is not applicable\n",
1224 chunk->queue_index);
1225 return -EINVAL;
1226 }
1227
1228 if (hw_queue_prop->binned) {
1229 dev_err(hdev->dev, "Queue index %d is binned out\n",
1230 chunk->queue_index);
1231 return -EINVAL;
1232 }
1233
1234 if (hw_queue_prop->driver_only) {
1235 dev_err(hdev->dev,
1236 "Queue index %d is restricted for the kernel driver\n",
1237 chunk->queue_index);
1238 return -EINVAL;
1239 }
1240
1241 /* When hw queue type isn't QUEUE_TYPE_HW,
1242 * USER_ALLOC_CB flag shall be referred as "don't care".
1243 */
1244 if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1245 if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1246 if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1247 dev_err(hdev->dev,
1248 "Queue index %d doesn't support user CB\n",
1249 chunk->queue_index);
1250 return -EINVAL;
1251 }
1252
1253 *is_kernel_allocated_cb = false;
1254 } else {
1255 if (!(hw_queue_prop->cb_alloc_flags &
1256 CB_ALLOC_KERNEL)) {
1257 dev_err(hdev->dev,
1258 "Queue index %d doesn't support kernel CB\n",
1259 chunk->queue_index);
1260 return -EINVAL;
1261 }
1262
1263 *is_kernel_allocated_cb = true;
1264 }
1265 } else {
1266 *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1267 & CB_ALLOC_KERNEL);
1268 }
1269
1270 *queue_type = hw_queue_prop->type;
1271 return 0;
1272}
1273
1274static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1275 struct hl_mem_mgr *mmg,
1276 struct hl_cs_chunk *chunk)
1277{
1278 struct hl_cb *cb;
1279
1280 cb = hl_cb_get(mmg, handle: chunk->cb_handle);
1281 if (!cb) {
1282 dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1283 return NULL;
1284 }
1285
1286 if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1287 dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1288 goto release_cb;
1289 }
1290
1291 atomic_inc(v: &cb->cs_cnt);
1292
1293 return cb;
1294
1295release_cb:
1296 hl_cb_put(cb);
1297 return NULL;
1298}
1299
1300struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1301 enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1302{
1303 struct hl_cs_job *job;
1304
1305 job = kzalloc(size: sizeof(*job), GFP_ATOMIC);
1306 if (!job)
1307 job = kzalloc(size: sizeof(*job), GFP_KERNEL);
1308
1309 if (!job)
1310 return NULL;
1311
1312 kref_init(kref: &job->refcount);
1313 job->queue_type = queue_type;
1314 job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1315
1316 if (is_cb_patched(hdev, job))
1317 INIT_LIST_HEAD(list: &job->userptr_list);
1318
1319 if (job->queue_type == QUEUE_TYPE_EXT)
1320 INIT_WORK(&job->finish_work, job_wq_completion);
1321
1322 return job;
1323}
1324
1325static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1326{
1327 if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1328 return CS_TYPE_SIGNAL;
1329 else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1330 return CS_TYPE_WAIT;
1331 else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1332 return CS_TYPE_COLLECTIVE_WAIT;
1333 else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1334 return CS_RESERVE_SIGNALS;
1335 else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1336 return CS_UNRESERVE_SIGNALS;
1337 else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1338 return CS_TYPE_ENGINE_CORE;
1339 else if (cs_type_flags & HL_CS_FLAGS_ENGINES_COMMAND)
1340 return CS_TYPE_ENGINES;
1341 else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES)
1342 return CS_TYPE_FLUSH_PCI_HBW_WRITES;
1343 else
1344 return CS_TYPE_DEFAULT;
1345}
1346
1347static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1348{
1349 struct hl_device *hdev = hpriv->hdev;
1350 struct hl_ctx *ctx = hpriv->ctx;
1351 u32 cs_type_flags, num_chunks;
1352 enum hl_device_status status;
1353 enum hl_cs_type cs_type;
1354 bool is_sync_stream;
1355 int i;
1356
1357 for (i = 0 ; i < sizeof(args->in.pad) ; i++)
1358 if (args->in.pad[i]) {
1359 dev_dbg(hdev->dev, "Padding bytes must be 0\n");
1360 return -EINVAL;
1361 }
1362
1363 if (!hl_device_operational(hdev, status: &status))
1364 return -EBUSY;
1365
1366 if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1367 !hdev->supports_staged_submission) {
1368 dev_err(hdev->dev, "staged submission not supported");
1369 return -EPERM;
1370 }
1371
1372 cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1373
1374 if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1375 dev_err(hdev->dev,
1376 "CS type flags are mutually exclusive, context %d\n",
1377 ctx->asid);
1378 return -EINVAL;
1379 }
1380
1381 cs_type = hl_cs_get_cs_type(cs_type_flags);
1382 num_chunks = args->in.num_chunks_execute;
1383
1384 is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1385 cs_type == CS_TYPE_COLLECTIVE_WAIT);
1386
1387 if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1388 dev_err(hdev->dev, "Sync stream CS is not supported\n");
1389 return -EINVAL;
1390 }
1391
1392 if (cs_type == CS_TYPE_DEFAULT) {
1393 if (!num_chunks) {
1394 dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1395 return -EINVAL;
1396 }
1397 } else if (is_sync_stream && num_chunks != 1) {
1398 dev_err(hdev->dev,
1399 "Sync stream CS mandates one chunk only, context %d\n",
1400 ctx->asid);
1401 return -EINVAL;
1402 }
1403
1404 return 0;
1405}
1406
1407static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1408 struct hl_cs_chunk **cs_chunk_array,
1409 void __user *chunks, u32 num_chunks,
1410 struct hl_ctx *ctx)
1411{
1412 u32 size_to_copy;
1413
1414 if (num_chunks > HL_MAX_JOBS_PER_CS) {
1415 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
1416 atomic64_inc(v: &hdev->aggregated_cs_counters.validation_drop_cnt);
1417 dev_err(hdev->dev,
1418 "Number of chunks can NOT be larger than %d\n",
1419 HL_MAX_JOBS_PER_CS);
1420 return -EINVAL;
1421 }
1422
1423 *cs_chunk_array = kmalloc_array(n: num_chunks, size: sizeof(**cs_chunk_array),
1424 GFP_ATOMIC);
1425 if (!*cs_chunk_array)
1426 *cs_chunk_array = kmalloc_array(n: num_chunks,
1427 size: sizeof(**cs_chunk_array), GFP_KERNEL);
1428 if (!*cs_chunk_array) {
1429 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
1430 atomic64_inc(v: &hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1431 return -ENOMEM;
1432 }
1433
1434 size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1435 if (copy_from_user(to: *cs_chunk_array, from: chunks, n: size_to_copy)) {
1436 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
1437 atomic64_inc(v: &hdev->aggregated_cs_counters.validation_drop_cnt);
1438 dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1439 kfree(objp: *cs_chunk_array);
1440 return -EFAULT;
1441 }
1442
1443 return 0;
1444}
1445
1446static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1447 u64 sequence, u32 flags,
1448 u32 encaps_signal_handle)
1449{
1450 if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1451 return 0;
1452
1453 cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1454 cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1455
1456 if (cs->staged_first) {
1457 /* Staged CS sequence is the first CS sequence */
1458 INIT_LIST_HEAD(list: &cs->staged_cs_node);
1459 cs->staged_sequence = cs->sequence;
1460
1461 if (cs->encaps_signals)
1462 cs->encaps_sig_hdl_id = encaps_signal_handle;
1463 } else {
1464 /* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1465 * under the cs_mirror_lock
1466 */
1467 cs->staged_sequence = sequence;
1468 }
1469
1470 /* Increment CS reference if needed */
1471 staged_cs_get(hdev, cs);
1472
1473 cs->staged_cs = true;
1474
1475 return 0;
1476}
1477
1478static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1479{
1480 int i;
1481
1482 for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1483 if (qid == hdev->stream_master_qid_arr[i])
1484 return BIT(i);
1485
1486 return 0;
1487}
1488
1489static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1490 u32 num_chunks, u64 *cs_seq, u32 flags,
1491 u32 encaps_signals_handle, u32 timeout,
1492 u16 *signal_initial_sob_count)
1493{
1494 bool staged_mid, int_queues_only = true, using_hw_queues = false;
1495 struct hl_device *hdev = hpriv->hdev;
1496 struct hl_cs_chunk *cs_chunk_array;
1497 struct hl_cs_counters_atomic *cntr;
1498 struct hl_ctx *ctx = hpriv->ctx;
1499 struct hl_cs_job *job;
1500 struct hl_cs *cs;
1501 struct hl_cb *cb;
1502 u64 user_sequence;
1503 u8 stream_master_qid_map = 0;
1504 int rc, i;
1505
1506 cntr = &hdev->aggregated_cs_counters;
1507 user_sequence = *cs_seq;
1508 *cs_seq = ULLONG_MAX;
1509
1510 rc = hl_cs_copy_chunk_array(hdev, cs_chunk_array: &cs_chunk_array, chunks, num_chunks,
1511 ctx: hpriv->ctx);
1512 if (rc)
1513 goto out;
1514
1515 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1516 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1517 staged_mid = true;
1518 else
1519 staged_mid = false;
1520
1521 rc = allocate_cs(hdev, ctx: hpriv->ctx, cs_type: CS_TYPE_DEFAULT,
1522 user_sequence: staged_mid ? user_sequence : ULLONG_MAX, cs_new: &cs, flags,
1523 timeout);
1524 if (rc)
1525 goto free_cs_chunk_array;
1526
1527 *cs_seq = cs->sequence;
1528
1529 hl_debugfs_add_cs(cs);
1530
1531 rc = cs_staged_submission(hdev, cs, sequence: user_sequence, flags,
1532 encaps_signal_handle: encaps_signals_handle);
1533 if (rc)
1534 goto free_cs_object;
1535
1536 /* If this is a staged submission we must return the staged sequence
1537 * rather than the internal CS sequence
1538 */
1539 if (cs->staged_cs)
1540 *cs_seq = cs->staged_sequence;
1541
1542 /* Validate ALL the CS chunks before submitting the CS */
1543 for (i = 0 ; i < num_chunks ; i++) {
1544 struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1545 enum hl_queue_type queue_type;
1546 bool is_kernel_allocated_cb;
1547
1548 rc = validate_queue_index(hdev, chunk, queue_type: &queue_type,
1549 is_kernel_allocated_cb: &is_kernel_allocated_cb);
1550 if (rc) {
1551 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
1552 atomic64_inc(v: &cntr->validation_drop_cnt);
1553 goto free_cs_object;
1554 }
1555
1556 if (is_kernel_allocated_cb) {
1557 cb = get_cb_from_cs_chunk(hdev, mmg: &hpriv->mem_mgr, chunk);
1558 if (!cb) {
1559 atomic64_inc(
1560 v: &ctx->cs_counters.validation_drop_cnt);
1561 atomic64_inc(v: &cntr->validation_drop_cnt);
1562 rc = -EINVAL;
1563 goto free_cs_object;
1564 }
1565 } else {
1566 cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1567 }
1568
1569 if (queue_type == QUEUE_TYPE_EXT ||
1570 queue_type == QUEUE_TYPE_HW) {
1571 int_queues_only = false;
1572
1573 /*
1574 * store which stream are being used for external/HW
1575 * queues of this CS
1576 */
1577 if (hdev->supports_wait_for_multi_cs)
1578 stream_master_qid_map |=
1579 get_stream_master_qid_mask(hdev,
1580 qid: chunk->queue_index);
1581 }
1582
1583 if (queue_type == QUEUE_TYPE_HW)
1584 using_hw_queues = true;
1585
1586 job = hl_cs_allocate_job(hdev, queue_type,
1587 is_kernel_allocated_cb);
1588 if (!job) {
1589 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
1590 atomic64_inc(v: &cntr->out_of_mem_drop_cnt);
1591 dev_err(hdev->dev, "Failed to allocate a new job\n");
1592 rc = -ENOMEM;
1593 if (is_kernel_allocated_cb)
1594 goto release_cb;
1595
1596 goto free_cs_object;
1597 }
1598
1599 job->id = i + 1;
1600 job->cs = cs;
1601 job->user_cb = cb;
1602 job->user_cb_size = chunk->cb_size;
1603 job->hw_queue_id = chunk->queue_index;
1604
1605 cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1606 cs->jobs_cnt++;
1607
1608 list_add_tail(new: &job->cs_node, head: &cs->job_list);
1609
1610 /*
1611 * Increment CS reference. When CS reference is 0, CS is
1612 * done and can be signaled to user and free all its resources
1613 * Only increment for JOB on external or H/W queues, because
1614 * only for those JOBs we get completion
1615 */
1616 if (cs_needs_completion(cs) &&
1617 (job->queue_type == QUEUE_TYPE_EXT ||
1618 job->queue_type == QUEUE_TYPE_HW))
1619 cs_get(cs);
1620
1621 hl_debugfs_add_job(hdev, job);
1622
1623 rc = cs_parser(hpriv, job);
1624 if (rc) {
1625 atomic64_inc(v: &ctx->cs_counters.parsing_drop_cnt);
1626 atomic64_inc(v: &cntr->parsing_drop_cnt);
1627 dev_err(hdev->dev,
1628 "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1629 cs->ctx->asid, cs->sequence, job->id, rc);
1630 goto free_cs_object;
1631 }
1632 }
1633
1634 /* We allow a CS with any queue type combination as long as it does
1635 * not get a completion
1636 */
1637 if (int_queues_only && cs_needs_completion(cs)) {
1638 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
1639 atomic64_inc(v: &cntr->validation_drop_cnt);
1640 dev_err(hdev->dev,
1641 "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1642 cs->ctx->asid, cs->sequence);
1643 rc = -EINVAL;
1644 goto free_cs_object;
1645 }
1646
1647 if (using_hw_queues)
1648 INIT_WORK(&cs->finish_work, cs_completion);
1649
1650 /*
1651 * store the (external/HW queues) streams used by the CS in the
1652 * fence object for multi-CS completion
1653 */
1654 if (hdev->supports_wait_for_multi_cs)
1655 cs->fence->stream_master_qid_map = stream_master_qid_map;
1656
1657 rc = hl_hw_queue_schedule_cs(cs);
1658 if (rc) {
1659 if (rc != -EAGAIN)
1660 dev_err(hdev->dev,
1661 "Failed to submit CS %d.%llu to H/W queues, error %d\n",
1662 cs->ctx->asid, cs->sequence, rc);
1663 goto free_cs_object;
1664 }
1665
1666 *signal_initial_sob_count = cs->initial_sob_count;
1667
1668 rc = HL_CS_STATUS_SUCCESS;
1669 goto put_cs;
1670
1671release_cb:
1672 atomic_dec(v: &cb->cs_cnt);
1673 hl_cb_put(cb);
1674free_cs_object:
1675 cs_rollback(hdev, cs);
1676 *cs_seq = ULLONG_MAX;
1677 /* The path below is both for good and erroneous exits */
1678put_cs:
1679 /* We finished with the CS in this function, so put the ref */
1680 cs_put(cs);
1681free_cs_chunk_array:
1682 kfree(objp: cs_chunk_array);
1683out:
1684 return rc;
1685}
1686
1687static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1688 u64 *cs_seq)
1689{
1690 struct hl_device *hdev = hpriv->hdev;
1691 struct hl_ctx *ctx = hpriv->ctx;
1692 bool need_soft_reset = false;
1693 int rc = 0, do_ctx_switch = 0;
1694 void __user *chunks;
1695 u32 num_chunks, tmp;
1696 u16 sob_count;
1697 int ret;
1698
1699 if (hdev->supports_ctx_switch)
1700 do_ctx_switch = atomic_cmpxchg(v: &ctx->thread_ctx_switch_token, old: 1, new: 0);
1701
1702 if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1703 mutex_lock(&hpriv->restore_phase_mutex);
1704
1705 if (do_ctx_switch) {
1706 rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1707 if (rc) {
1708 dev_err_ratelimited(hdev->dev,
1709 "Failed to switch to context %d, rejecting CS! %d\n",
1710 ctx->asid, rc);
1711 /*
1712 * If we timedout, or if the device is not IDLE
1713 * while we want to do context-switch (-EBUSY),
1714 * we need to soft-reset because QMAN is
1715 * probably stuck. However, we can't call to
1716 * reset here directly because of deadlock, so
1717 * need to do it at the very end of this
1718 * function
1719 */
1720 if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1721 need_soft_reset = true;
1722 mutex_unlock(lock: &hpriv->restore_phase_mutex);
1723 goto out;
1724 }
1725 }
1726
1727 hdev->asic_funcs->restore_phase_topology(hdev);
1728
1729 chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1730 num_chunks = args->in.num_chunks_restore;
1731
1732 if (!num_chunks) {
1733 dev_dbg(hdev->dev,
1734 "Need to run restore phase but restore CS is empty\n");
1735 rc = 0;
1736 } else {
1737 rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1738 cs_seq, flags: 0, encaps_signals_handle: 0, timeout: hdev->timeout_jiffies, signal_initial_sob_count: &sob_count);
1739 }
1740
1741 mutex_unlock(lock: &hpriv->restore_phase_mutex);
1742
1743 if (rc) {
1744 dev_err(hdev->dev,
1745 "Failed to submit restore CS for context %d (%d)\n",
1746 ctx->asid, rc);
1747 goto out;
1748 }
1749
1750 /* Need to wait for restore completion before execution phase */
1751 if (num_chunks) {
1752 enum hl_cs_wait_status status;
1753
1754 ret = _hl_cs_wait_ioctl(hdev, ctx,
1755 timeout_us: jiffies_to_usecs(j: hdev->timeout_jiffies),
1756 seq: *cs_seq, status: &status, NULL);
1757 if (ret) {
1758 dev_err(hdev->dev,
1759 "Restore CS for context %d failed to complete %d\n",
1760 ctx->asid, ret);
1761 rc = -ENOEXEC;
1762 goto out;
1763 }
1764 }
1765
1766 if (hdev->supports_ctx_switch)
1767 ctx->thread_ctx_switch_wait_token = 1;
1768
1769 } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1770 rc = hl_poll_timeout_memory(hdev,
1771 &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1772 100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1773
1774 if (rc == -ETIMEDOUT) {
1775 dev_err(hdev->dev,
1776 "context switch phase timeout (%d)\n", tmp);
1777 goto out;
1778 }
1779 }
1780
1781out:
1782 if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1783 hl_device_reset(hdev, flags: 0);
1784
1785 return rc;
1786}
1787
1788/*
1789 * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1790 * if the SOB value reaches the max value move to the other SOB reserved
1791 * to the queue.
1792 * @hdev: pointer to device structure
1793 * @q_idx: stream queue index
1794 * @hw_sob: the H/W SOB used in this signal CS.
1795 * @count: signals count
1796 * @encaps_sig: tells whether it's reservation for encaps signals or not.
1797 *
1798 * Note that this function must be called while hw_queues_lock is taken.
1799 */
1800int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1801 struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1802
1803{
1804 struct hl_sync_stream_properties *prop;
1805 struct hl_hw_sob *sob = *hw_sob, *other_sob;
1806 u8 other_sob_offset;
1807
1808 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1809
1810 hw_sob_get(hw_sob: sob);
1811
1812 /* check for wraparound */
1813 if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1814 /*
1815 * Decrement as we reached the max value.
1816 * The release function won't be called here as we've
1817 * just incremented the refcount right before calling this
1818 * function.
1819 */
1820 hw_sob_put_err(hw_sob: sob);
1821
1822 /*
1823 * check the other sob value, if it still in use then fail
1824 * otherwise make the switch
1825 */
1826 other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1827 other_sob = &prop->hw_sob[other_sob_offset];
1828
1829 if (kref_read(kref: &other_sob->kref) != 1) {
1830 dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1831 q_idx);
1832 return -EINVAL;
1833 }
1834
1835 /*
1836 * next_sob_val always points to the next available signal
1837 * in the sob, so in encaps signals it will be the next one
1838 * after reserving the required amount.
1839 */
1840 if (encaps_sig)
1841 prop->next_sob_val = count + 1;
1842 else
1843 prop->next_sob_val = count;
1844
1845 /* only two SOBs are currently in use */
1846 prop->curr_sob_offset = other_sob_offset;
1847 *hw_sob = other_sob;
1848
1849 /*
1850 * check if other_sob needs reset, then do it before using it
1851 * for the reservation or the next signal cs.
1852 * we do it here, and for both encaps and regular signal cs
1853 * cases in order to avoid possible races of two kref_put
1854 * of the sob which can occur at the same time if we move the
1855 * sob reset(kref_put) to cs_do_release function.
1856 * in addition, if we have combination of cs signal and
1857 * encaps, and at the point we need to reset the sob there was
1858 * no more reservations and only signal cs keep coming,
1859 * in such case we need signal_cs to put the refcount and
1860 * reset the sob.
1861 */
1862 if (other_sob->need_reset)
1863 hw_sob_put(hw_sob: other_sob);
1864
1865 if (encaps_sig) {
1866 /* set reset indication for the sob */
1867 sob->need_reset = true;
1868 hw_sob_get(hw_sob: other_sob);
1869 }
1870
1871 dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1872 prop->curr_sob_offset, q_idx);
1873 } else {
1874 prop->next_sob_val += count;
1875 }
1876
1877 return 0;
1878}
1879
1880static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1881 struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1882 bool encaps_signals)
1883{
1884 u64 *signal_seq_arr = NULL;
1885 u32 size_to_copy, signal_seq_arr_len;
1886 int rc = 0;
1887
1888 if (encaps_signals) {
1889 *signal_seq = chunk->encaps_signal_seq;
1890 return 0;
1891 }
1892
1893 signal_seq_arr_len = chunk->num_signal_seq_arr;
1894
1895 /* currently only one signal seq is supported */
1896 if (signal_seq_arr_len != 1) {
1897 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
1898 atomic64_inc(v: &hdev->aggregated_cs_counters.validation_drop_cnt);
1899 dev_err(hdev->dev,
1900 "Wait for signal CS supports only one signal CS seq\n");
1901 return -EINVAL;
1902 }
1903
1904 signal_seq_arr = kmalloc_array(n: signal_seq_arr_len,
1905 size: sizeof(*signal_seq_arr),
1906 GFP_ATOMIC);
1907 if (!signal_seq_arr)
1908 signal_seq_arr = kmalloc_array(n: signal_seq_arr_len,
1909 size: sizeof(*signal_seq_arr),
1910 GFP_KERNEL);
1911 if (!signal_seq_arr) {
1912 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
1913 atomic64_inc(v: &hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1914 return -ENOMEM;
1915 }
1916
1917 size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1918 if (copy_from_user(to: signal_seq_arr,
1919 u64_to_user_ptr(chunk->signal_seq_arr),
1920 n: size_to_copy)) {
1921 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
1922 atomic64_inc(v: &hdev->aggregated_cs_counters.validation_drop_cnt);
1923 dev_err(hdev->dev,
1924 "Failed to copy signal seq array from user\n");
1925 rc = -EFAULT;
1926 goto out;
1927 }
1928
1929 /* currently it is guaranteed to have only one signal seq */
1930 *signal_seq = signal_seq_arr[0];
1931
1932out:
1933 kfree(objp: signal_seq_arr);
1934
1935 return rc;
1936}
1937
1938static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1939 struct hl_ctx *ctx, struct hl_cs *cs,
1940 enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1941{
1942 struct hl_cs_counters_atomic *cntr;
1943 struct hl_cs_job *job;
1944 struct hl_cb *cb;
1945 u32 cb_size;
1946
1947 cntr = &hdev->aggregated_cs_counters;
1948
1949 job = hl_cs_allocate_job(hdev, queue_type: q_type, is_kernel_allocated_cb: true);
1950 if (!job) {
1951 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
1952 atomic64_inc(v: &cntr->out_of_mem_drop_cnt);
1953 dev_err(hdev->dev, "Failed to allocate a new job\n");
1954 return -ENOMEM;
1955 }
1956
1957 if (cs->type == CS_TYPE_WAIT)
1958 cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1959 else
1960 cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1961
1962 cb = hl_cb_kernel_create(hdev, cb_size, internal_cb: q_type == QUEUE_TYPE_HW);
1963 if (!cb) {
1964 atomic64_inc(v: &ctx->cs_counters.out_of_mem_drop_cnt);
1965 atomic64_inc(v: &cntr->out_of_mem_drop_cnt);
1966 kfree(objp: job);
1967 return -EFAULT;
1968 }
1969
1970 job->id = 0;
1971 job->cs = cs;
1972 job->user_cb = cb;
1973 atomic_inc(v: &job->user_cb->cs_cnt);
1974 job->user_cb_size = cb_size;
1975 job->hw_queue_id = q_idx;
1976
1977 if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1978 && cs->encaps_signals)
1979 job->encaps_sig_wait_offset = encaps_signal_offset;
1980 /*
1981 * No need in parsing, user CB is the patched CB.
1982 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1983 * the CB idr anymore and to decrement its refcount as it was
1984 * incremented inside hl_cb_kernel_create().
1985 */
1986 job->patched_cb = job->user_cb;
1987 job->job_cb_size = job->user_cb_size;
1988 hl_cb_destroy(mmg: &hdev->kernel_mem_mgr, cb_handle: cb->buf->handle);
1989
1990 /* increment refcount as for external queues we get completion */
1991 cs_get(cs);
1992
1993 cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1994 cs->jobs_cnt++;
1995
1996 list_add_tail(new: &job->cs_node, head: &cs->job_list);
1997
1998 hl_debugfs_add_job(hdev, job);
1999
2000 return 0;
2001}
2002
2003static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
2004 u32 q_idx, u32 count,
2005 u32 *handle_id, u32 *sob_addr,
2006 u32 *signals_count)
2007{
2008 struct hw_queue_properties *hw_queue_prop;
2009 struct hl_sync_stream_properties *prop;
2010 struct hl_device *hdev = hpriv->hdev;
2011 struct hl_cs_encaps_sig_handle *handle;
2012 struct hl_encaps_signals_mgr *mgr;
2013 struct hl_hw_sob *hw_sob;
2014 int hdl_id;
2015 int rc = 0;
2016
2017 if (count >= HL_MAX_SOB_VAL) {
2018 dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
2019 count);
2020 rc = -EINVAL;
2021 goto out;
2022 }
2023
2024 if (q_idx >= hdev->asic_prop.max_queues) {
2025 dev_err(hdev->dev, "Queue index %d is invalid\n",
2026 q_idx);
2027 rc = -EINVAL;
2028 goto out;
2029 }
2030
2031 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2032
2033 if (!hw_queue_prop->supports_sync_stream) {
2034 dev_err(hdev->dev,
2035 "Queue index %d does not support sync stream operations\n",
2036 q_idx);
2037 rc = -EINVAL;
2038 goto out;
2039 }
2040
2041 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2042
2043 handle = kzalloc(size: sizeof(*handle), GFP_KERNEL);
2044 if (!handle) {
2045 rc = -ENOMEM;
2046 goto out;
2047 }
2048
2049 handle->count = count;
2050
2051 hl_ctx_get(ctx: hpriv->ctx);
2052 handle->ctx = hpriv->ctx;
2053 mgr = &hpriv->ctx->sig_mgr;
2054
2055 spin_lock(lock: &mgr->lock);
2056 hdl_id = idr_alloc(&mgr->handles, ptr: handle, start: 1, end: 0, GFP_ATOMIC);
2057 spin_unlock(lock: &mgr->lock);
2058
2059 if (hdl_id < 0) {
2060 dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
2061 rc = -EINVAL;
2062 goto put_ctx;
2063 }
2064
2065 handle->id = hdl_id;
2066 handle->q_idx = q_idx;
2067 handle->hdev = hdev;
2068 kref_init(kref: &handle->refcount);
2069
2070 hdev->asic_funcs->hw_queues_lock(hdev);
2071
2072 hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2073
2074 /*
2075 * Increment the SOB value by count by user request
2076 * to reserve those signals
2077 * check if the signals amount to reserve is not exceeding the max sob
2078 * value, if yes then switch sob.
2079 */
2080 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, hw_sob: &hw_sob, count,
2081 encaps_sig: true);
2082 if (rc) {
2083 dev_err(hdev->dev, "Failed to switch SOB\n");
2084 hdev->asic_funcs->hw_queues_unlock(hdev);
2085 rc = -EINVAL;
2086 goto remove_idr;
2087 }
2088 /* set the hw_sob to the handle after calling the sob wraparound handler
2089 * since sob could have changed.
2090 */
2091 handle->hw_sob = hw_sob;
2092
2093 /* store the current sob value for unreserve validity check, and
2094 * signal offset support
2095 */
2096 handle->pre_sob_val = prop->next_sob_val - handle->count;
2097
2098 handle->cs_seq = ULLONG_MAX;
2099
2100 *signals_count = prop->next_sob_val;
2101 hdev->asic_funcs->hw_queues_unlock(hdev);
2102
2103 *sob_addr = handle->hw_sob->sob_addr;
2104 *handle_id = hdl_id;
2105
2106 dev_dbg(hdev->dev,
2107 "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2108 hw_sob->sob_id, handle->hw_sob->sob_addr,
2109 prop->next_sob_val - 1, q_idx, hdl_id);
2110 goto out;
2111
2112remove_idr:
2113 spin_lock(lock: &mgr->lock);
2114 idr_remove(&mgr->handles, id: hdl_id);
2115 spin_unlock(lock: &mgr->lock);
2116
2117put_ctx:
2118 hl_ctx_put(ctx: handle->ctx);
2119 kfree(objp: handle);
2120
2121out:
2122 return rc;
2123}
2124
2125static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2126{
2127 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2128 struct hl_sync_stream_properties *prop;
2129 struct hl_device *hdev = hpriv->hdev;
2130 struct hl_encaps_signals_mgr *mgr;
2131 struct hl_hw_sob *hw_sob;
2132 u32 q_idx, sob_addr;
2133 int rc = 0;
2134
2135 mgr = &hpriv->ctx->sig_mgr;
2136
2137 spin_lock(lock: &mgr->lock);
2138 encaps_sig_hdl = idr_find(&mgr->handles, id: handle_id);
2139 if (encaps_sig_hdl) {
2140 dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2141 handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2142 encaps_sig_hdl->count);
2143
2144 hdev->asic_funcs->hw_queues_lock(hdev);
2145
2146 q_idx = encaps_sig_hdl->q_idx;
2147 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2148 hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2149 sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2150
2151 /* Check if sob_val got out of sync due to other
2152 * signal submission requests which were handled
2153 * between the reserve-unreserve calls or SOB switch
2154 * upon reaching SOB max value.
2155 */
2156 if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2157 != prop->next_sob_val ||
2158 sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2159 dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2160 encaps_sig_hdl->pre_sob_val,
2161 (prop->next_sob_val - encaps_sig_hdl->count));
2162
2163 hdev->asic_funcs->hw_queues_unlock(hdev);
2164 rc = -EINVAL;
2165 goto out_unlock;
2166 }
2167
2168 /*
2169 * Decrement the SOB value by count by user request
2170 * to unreserve those signals
2171 */
2172 prop->next_sob_val -= encaps_sig_hdl->count;
2173
2174 hdev->asic_funcs->hw_queues_unlock(hdev);
2175
2176 hw_sob_put(hw_sob);
2177
2178 /* Release the id and free allocated memory of the handle */
2179 idr_remove(&mgr->handles, id: handle_id);
2180
2181 /* unlock before calling ctx_put, where we might sleep */
2182 spin_unlock(lock: &mgr->lock);
2183 hl_ctx_put(ctx: encaps_sig_hdl->ctx);
2184 kfree(objp: encaps_sig_hdl);
2185 goto out;
2186 } else {
2187 rc = -EINVAL;
2188 dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2189 }
2190
2191out_unlock:
2192 spin_unlock(lock: &mgr->lock);
2193
2194out:
2195 return rc;
2196}
2197
2198static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2199 void __user *chunks, u32 num_chunks,
2200 u64 *cs_seq, u32 flags, u32 timeout,
2201 u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2202{
2203 struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2204 bool handle_found = false, is_wait_cs = false,
2205 wait_cs_submitted = false,
2206 cs_encaps_signals = false;
2207 struct hl_cs_chunk *cs_chunk_array, *chunk;
2208 bool staged_cs_with_encaps_signals = false;
2209 struct hw_queue_properties *hw_queue_prop;
2210 struct hl_device *hdev = hpriv->hdev;
2211 struct hl_cs_compl *sig_waitcs_cmpl;
2212 u32 q_idx, collective_engine_id = 0;
2213 struct hl_cs_counters_atomic *cntr;
2214 struct hl_fence *sig_fence = NULL;
2215 struct hl_ctx *ctx = hpriv->ctx;
2216 enum hl_queue_type q_type;
2217 struct hl_cs *cs;
2218 u64 signal_seq;
2219 int rc;
2220
2221 cntr = &hdev->aggregated_cs_counters;
2222 *cs_seq = ULLONG_MAX;
2223
2224 rc = hl_cs_copy_chunk_array(hdev, cs_chunk_array: &cs_chunk_array, chunks, num_chunks,
2225 ctx);
2226 if (rc)
2227 goto out;
2228
2229 /* currently it is guaranteed to have only one chunk */
2230 chunk = &cs_chunk_array[0];
2231
2232 if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2233 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2234 atomic64_inc(v: &cntr->validation_drop_cnt);
2235 dev_err(hdev->dev, "Queue index %d is invalid\n",
2236 chunk->queue_index);
2237 rc = -EINVAL;
2238 goto free_cs_chunk_array;
2239 }
2240
2241 q_idx = chunk->queue_index;
2242 hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2243 q_type = hw_queue_prop->type;
2244
2245 if (!hw_queue_prop->supports_sync_stream) {
2246 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2247 atomic64_inc(v: &cntr->validation_drop_cnt);
2248 dev_err(hdev->dev,
2249 "Queue index %d does not support sync stream operations\n",
2250 q_idx);
2251 rc = -EINVAL;
2252 goto free_cs_chunk_array;
2253 }
2254
2255 if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2256 if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2257 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2258 atomic64_inc(v: &cntr->validation_drop_cnt);
2259 dev_err(hdev->dev,
2260 "Queue index %d is invalid\n", q_idx);
2261 rc = -EINVAL;
2262 goto free_cs_chunk_array;
2263 }
2264
2265 if (!hdev->nic_ports_mask) {
2266 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2267 atomic64_inc(v: &cntr->validation_drop_cnt);
2268 dev_err(hdev->dev,
2269 "Collective operations not supported when NIC ports are disabled");
2270 rc = -EINVAL;
2271 goto free_cs_chunk_array;
2272 }
2273
2274 collective_engine_id = chunk->collective_engine_id;
2275 }
2276
2277 is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2278 cs_type == CS_TYPE_COLLECTIVE_WAIT);
2279
2280 cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2281
2282 if (is_wait_cs) {
2283 rc = cs_ioctl_extract_signal_seq(hdev, chunk, signal_seq: &signal_seq,
2284 ctx, encaps_signals: cs_encaps_signals);
2285 if (rc)
2286 goto free_cs_chunk_array;
2287
2288 if (cs_encaps_signals) {
2289 /* check if cs sequence has encapsulated
2290 * signals handle
2291 */
2292 struct idr *idp;
2293 u32 id;
2294
2295 spin_lock(lock: &ctx->sig_mgr.lock);
2296 idp = &ctx->sig_mgr.handles;
2297 idr_for_each_entry(idp, encaps_sig_hdl, id) {
2298 if (encaps_sig_hdl->cs_seq == signal_seq) {
2299 /* get refcount to protect removing this handle from idr,
2300 * needed when multiple wait cs are used with offset
2301 * to wait on reserved encaps signals.
2302 * Since kref_put of this handle is executed outside the
2303 * current lock, it is possible that the handle refcount
2304 * is 0 but it yet to be removed from the list. In this
2305 * case need to consider the handle as not valid.
2306 */
2307 if (kref_get_unless_zero(kref: &encaps_sig_hdl->refcount))
2308 handle_found = true;
2309 break;
2310 }
2311 }
2312 spin_unlock(lock: &ctx->sig_mgr.lock);
2313
2314 if (!handle_found) {
2315 /* treat as signal CS already finished */
2316 dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2317 signal_seq);
2318 rc = 0;
2319 goto free_cs_chunk_array;
2320 }
2321
2322 /* validate also the signal offset value */
2323 if (chunk->encaps_signal_offset >
2324 encaps_sig_hdl->count) {
2325 dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2326 chunk->encaps_signal_offset,
2327 encaps_sig_hdl->count);
2328 rc = -EINVAL;
2329 goto free_cs_chunk_array;
2330 }
2331 }
2332
2333 sig_fence = hl_ctx_get_fence(ctx, seq: signal_seq);
2334 if (IS_ERR(ptr: sig_fence)) {
2335 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2336 atomic64_inc(v: &cntr->validation_drop_cnt);
2337 dev_err(hdev->dev,
2338 "Failed to get signal CS with seq 0x%llx\n",
2339 signal_seq);
2340 rc = PTR_ERR(ptr: sig_fence);
2341 goto free_cs_chunk_array;
2342 }
2343
2344 if (!sig_fence) {
2345 /* signal CS already finished */
2346 rc = 0;
2347 goto free_cs_chunk_array;
2348 }
2349
2350 sig_waitcs_cmpl =
2351 container_of(sig_fence, struct hl_cs_compl, base_fence);
2352
2353 staged_cs_with_encaps_signals = !!
2354 (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2355 (flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2356
2357 if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2358 !staged_cs_with_encaps_signals) {
2359 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2360 atomic64_inc(v: &cntr->validation_drop_cnt);
2361 dev_err(hdev->dev,
2362 "CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2363 signal_seq);
2364 hl_fence_put(fence: sig_fence);
2365 rc = -EINVAL;
2366 goto free_cs_chunk_array;
2367 }
2368
2369 if (completion_done(x: &sig_fence->completion)) {
2370 /* signal CS already finished */
2371 hl_fence_put(fence: sig_fence);
2372 rc = 0;
2373 goto free_cs_chunk_array;
2374 }
2375 }
2376
2377 rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, cs_new: &cs, flags, timeout);
2378 if (rc) {
2379 if (is_wait_cs)
2380 hl_fence_put(fence: sig_fence);
2381
2382 goto free_cs_chunk_array;
2383 }
2384
2385 /*
2386 * Save the signal CS fence for later initialization right before
2387 * hanging the wait CS on the queue.
2388 * for encaps signals case, we save the cs sequence and handle pointer
2389 * for later initialization.
2390 */
2391 if (is_wait_cs) {
2392 cs->signal_fence = sig_fence;
2393 /* store the handle pointer, so we don't have to
2394 * look for it again, later on the flow
2395 * when we need to set SOB info in hw_queue.
2396 */
2397 if (cs->encaps_signals)
2398 cs->encaps_sig_hdl = encaps_sig_hdl;
2399 }
2400
2401 hl_debugfs_add_cs(cs);
2402
2403 *cs_seq = cs->sequence;
2404
2405 if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2406 rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2407 q_idx, encaps_signal_offset: chunk->encaps_signal_offset);
2408 else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2409 rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2410 cs, q_idx, collective_engine_id,
2411 chunk->encaps_signal_offset);
2412 else {
2413 atomic64_inc(v: &ctx->cs_counters.validation_drop_cnt);
2414 atomic64_inc(v: &cntr->validation_drop_cnt);
2415 rc = -EINVAL;
2416 }
2417
2418 if (rc)
2419 goto free_cs_object;
2420
2421 if (q_type == QUEUE_TYPE_HW)
2422 INIT_WORK(&cs->finish_work, cs_completion);
2423
2424 rc = hl_hw_queue_schedule_cs(cs);
2425 if (rc) {
2426 /* In case wait cs failed here, it means the signal cs
2427 * already completed. we want to free all it's related objects
2428 * but we don't want to fail the ioctl.
2429 */
2430 if (is_wait_cs)
2431 rc = 0;
2432 else if (rc != -EAGAIN)
2433 dev_err(hdev->dev,
2434 "Failed to submit CS %d.%llu to H/W queues, error %d\n",
2435 ctx->asid, cs->sequence, rc);
2436 goto free_cs_object;
2437 }
2438
2439 *signal_sob_addr_offset = cs->sob_addr_offset;
2440 *signal_initial_sob_count = cs->initial_sob_count;
2441
2442 rc = HL_CS_STATUS_SUCCESS;
2443 if (is_wait_cs)
2444 wait_cs_submitted = true;
2445 goto put_cs;
2446
2447free_cs_object:
2448 cs_rollback(hdev, cs);
2449 *cs_seq = ULLONG_MAX;
2450 /* The path below is both for good and erroneous exits */
2451put_cs:
2452 /* We finished with the CS in this function, so put the ref */
2453 cs_put(cs);
2454free_cs_chunk_array:
2455 if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs)
2456 kref_put(kref: &encaps_sig_hdl->refcount, release: hl_encaps_release_handle_and_put_ctx);
2457 kfree(objp: cs_chunk_array);
2458out:
2459 return rc;
2460}
2461
2462static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2463 u32 num_engine_cores, u32 core_command)
2464{
2465 struct hl_device *hdev = hpriv->hdev;
2466 void __user *engine_cores_arr;
2467 u32 *cores;
2468 int rc;
2469
2470 if (!hdev->asic_prop.supports_engine_modes)
2471 return -EPERM;
2472
2473 if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2474 dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2475 return -EINVAL;
2476 }
2477
2478 if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2479 dev_err(hdev->dev, "Engine core command is invalid\n");
2480 return -EINVAL;
2481 }
2482
2483 engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2484 cores = kmalloc_array(n: num_engine_cores, size: sizeof(u32), GFP_KERNEL);
2485 if (!cores)
2486 return -ENOMEM;
2487
2488 if (copy_from_user(to: cores, from: engine_cores_arr, n: num_engine_cores * sizeof(u32))) {
2489 dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2490 kfree(objp: cores);
2491 return -EFAULT;
2492 }
2493
2494 rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2495 kfree(objp: cores);
2496
2497 return rc;
2498}
2499
2500static int cs_ioctl_engines(struct hl_fpriv *hpriv, u64 engines_arr_user_addr,
2501 u32 num_engines, enum hl_engine_command command)
2502{
2503 struct hl_device *hdev = hpriv->hdev;
2504 u32 *engines, max_num_of_engines;
2505 void __user *engines_arr;
2506 int rc;
2507
2508 if (!hdev->asic_prop.supports_engine_modes)
2509 return -EPERM;
2510
2511 if (command >= HL_ENGINE_COMMAND_MAX) {
2512 dev_err(hdev->dev, "Engine command is invalid\n");
2513 return -EINVAL;
2514 }
2515
2516 max_num_of_engines = hdev->asic_prop.max_num_of_engines;
2517 if (command == HL_ENGINE_CORE_RUN || command == HL_ENGINE_CORE_HALT)
2518 max_num_of_engines = hdev->asic_prop.num_engine_cores;
2519
2520 if (!num_engines || num_engines > max_num_of_engines) {
2521 dev_err(hdev->dev, "Number of engines %d is invalid\n", num_engines);
2522 return -EINVAL;
2523 }
2524
2525 engines_arr = (void __user *) (uintptr_t) engines_arr_user_addr;
2526 engines = kmalloc_array(n: num_engines, size: sizeof(u32), GFP_KERNEL);
2527 if (!engines)
2528 return -ENOMEM;
2529
2530 if (copy_from_user(to: engines, from: engines_arr, n: num_engines * sizeof(u32))) {
2531 dev_err(hdev->dev, "Failed to copy engine-ids array from user\n");
2532 kfree(objp: engines);
2533 return -EFAULT;
2534 }
2535
2536 rc = hdev->asic_funcs->set_engines(hdev, engines, num_engines, command);
2537 kfree(objp: engines);
2538
2539 return rc;
2540}
2541
2542static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv)
2543{
2544 struct hl_device *hdev = hpriv->hdev;
2545 struct asic_fixed_properties *prop = &hdev->asic_prop;
2546
2547 if (!prop->hbw_flush_reg) {
2548 dev_dbg(hdev->dev, "HBW flush is not supported\n");
2549 return -EOPNOTSUPP;
2550 }
2551
2552 RREG32(prop->hbw_flush_reg);
2553
2554 return 0;
2555}
2556
2557int hl_cs_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
2558{
2559 struct hl_fpriv *hpriv = file_priv->driver_priv;
2560 union hl_cs_args *args = data;
2561 enum hl_cs_type cs_type = 0;
2562 u64 cs_seq = ULONG_MAX;
2563 void __user *chunks;
2564 u32 num_chunks, flags, timeout,
2565 signals_count = 0, sob_addr = 0, handle_id = 0;
2566 u16 sob_initial_count = 0;
2567 int rc;
2568
2569 rc = hl_cs_sanity_checks(hpriv, args);
2570 if (rc)
2571 goto out;
2572
2573 rc = hl_cs_ctx_switch(hpriv, args, cs_seq: &cs_seq);
2574 if (rc)
2575 goto out;
2576
2577 cs_type = hl_cs_get_cs_type(cs_type_flags: args->in.cs_flags &
2578 ~HL_CS_FLAGS_FORCE_RESTORE);
2579 chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2580 num_chunks = args->in.num_chunks_execute;
2581 flags = args->in.cs_flags;
2582
2583 /* In case this is a staged CS, user should supply the CS sequence */
2584 if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2585 !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2586 cs_seq = args->in.seq;
2587
2588 timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2589 ? msecs_to_jiffies(m: args->in.timeout * 1000)
2590 : hpriv->hdev->timeout_jiffies;
2591
2592 switch (cs_type) {
2593 case CS_TYPE_SIGNAL:
2594 case CS_TYPE_WAIT:
2595 case CS_TYPE_COLLECTIVE_WAIT:
2596 rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2597 cs_seq: &cs_seq, flags: args->in.cs_flags, timeout,
2598 signal_sob_addr_offset: &sob_addr, signal_initial_sob_count: &sob_initial_count);
2599 break;
2600 case CS_RESERVE_SIGNALS:
2601 rc = cs_ioctl_reserve_signals(hpriv,
2602 q_idx: args->in.encaps_signals_q_idx,
2603 count: args->in.encaps_signals_count,
2604 handle_id: &handle_id, sob_addr: &sob_addr, signals_count: &signals_count);
2605 break;
2606 case CS_UNRESERVE_SIGNALS:
2607 rc = cs_ioctl_unreserve_signals(hpriv,
2608 handle_id: args->in.encaps_sig_handle_id);
2609 break;
2610 case CS_TYPE_ENGINE_CORE:
2611 rc = cs_ioctl_engine_cores(hpriv, engine_cores: args->in.engine_cores,
2612 num_engine_cores: args->in.num_engine_cores, core_command: args->in.core_command);
2613 break;
2614 case CS_TYPE_ENGINES:
2615 rc = cs_ioctl_engines(hpriv, engines_arr_user_addr: args->in.engines,
2616 num_engines: args->in.num_engines, command: args->in.engine_command);
2617 break;
2618 case CS_TYPE_FLUSH_PCI_HBW_WRITES:
2619 rc = cs_ioctl_flush_pci_hbw_writes(hpriv);
2620 break;
2621 default:
2622 rc = cs_ioctl_default(hpriv, chunks, num_chunks, cs_seq: &cs_seq,
2623 flags: args->in.cs_flags,
2624 encaps_signals_handle: args->in.encaps_sig_handle_id,
2625 timeout, signal_initial_sob_count: &sob_initial_count);
2626 break;
2627 }
2628out:
2629 if (rc != -EAGAIN) {
2630 memset(args, 0, sizeof(*args));
2631
2632 switch (cs_type) {
2633 case CS_RESERVE_SIGNALS:
2634 args->out.handle_id = handle_id;
2635 args->out.sob_base_addr_offset = sob_addr;
2636 args->out.count = signals_count;
2637 break;
2638 case CS_TYPE_SIGNAL:
2639 args->out.sob_base_addr_offset = sob_addr;
2640 args->out.sob_count_before_submission = sob_initial_count;
2641 args->out.seq = cs_seq;
2642 break;
2643 case CS_TYPE_DEFAULT:
2644 args->out.sob_count_before_submission = sob_initial_count;
2645 args->out.seq = cs_seq;
2646 break;
2647 default:
2648 args->out.seq = cs_seq;
2649 break;
2650 }
2651
2652 args->out.status = rc;
2653 }
2654
2655 return rc;
2656}
2657
2658static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2659 enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2660{
2661 struct hl_device *hdev = ctx->hdev;
2662 ktime_t timestamp_kt;
2663 long completion_rc;
2664 int rc = 0, error;
2665
2666 if (IS_ERR(ptr: fence)) {
2667 rc = PTR_ERR(ptr: fence);
2668 if (rc == -EINVAL)
2669 dev_notice_ratelimited(hdev->dev,
2670 "Can't wait on CS %llu because current CS is at seq %llu\n",
2671 seq, ctx->cs_sequence);
2672 return rc;
2673 }
2674
2675 if (!fence) {
2676 if (!hl_pop_cs_outcome(outcome_store: &ctx->outcome_store, seq, ts: &timestamp_kt, error: &error)) {
2677 dev_dbg(hdev->dev,
2678 "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2679 seq, ctx->cs_sequence);
2680 *status = CS_WAIT_STATUS_GONE;
2681 return 0;
2682 }
2683
2684 completion_rc = 1;
2685 goto report_results;
2686 }
2687
2688 if (!timeout_us) {
2689 completion_rc = completion_done(x: &fence->completion);
2690 } else {
2691 unsigned long timeout;
2692
2693 timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2694 timeout_us : usecs_to_jiffies(u: timeout_us);
2695 completion_rc =
2696 wait_for_completion_interruptible_timeout(
2697 x: &fence->completion, timeout);
2698 }
2699
2700 error = fence->error;
2701 timestamp_kt = fence->timestamp;
2702
2703report_results:
2704 if (completion_rc > 0) {
2705 *status = CS_WAIT_STATUS_COMPLETED;
2706 if (timestamp)
2707 *timestamp = ktime_to_ns(kt: timestamp_kt);
2708 } else {
2709 *status = CS_WAIT_STATUS_BUSY;
2710 }
2711
2712 if (completion_rc == -ERESTARTSYS)
2713 rc = completion_rc;
2714 else if (error == -ETIMEDOUT || error == -EIO)
2715 rc = error;
2716
2717 return rc;
2718}
2719
2720/*
2721 * hl_cs_poll_fences - iterate CS fences to check for CS completion
2722 *
2723 * @mcs_data: multi-CS internal data
2724 * @mcs_compl: multi-CS completion structure
2725 *
2726 * @return 0 on success, otherwise non 0 error code
2727 *
2728 * The function iterates on all CS sequence in the list and set bit in
2729 * completion_bitmap for each completed CS.
2730 * While iterating, the function sets the stream map of each fence in the fence
2731 * array in the completion QID stream map to be used by CSs to perform
2732 * completion to the multi-CS context.
2733 * This function shall be called after taking context ref
2734 */
2735static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2736{
2737 struct hl_fence **fence_ptr = mcs_data->fence_arr;
2738 struct hl_device *hdev = mcs_data->ctx->hdev;
2739 int i, rc, arr_len = mcs_data->arr_len;
2740 u64 *seq_arr = mcs_data->seq_arr;
2741 ktime_t max_ktime, first_cs_time;
2742 enum hl_cs_wait_status status;
2743
2744 memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2745
2746 /* get all fences under the same lock */
2747 rc = hl_ctx_get_fences(ctx: mcs_data->ctx, seq_arr, fence: fence_ptr, arr_len);
2748 if (rc)
2749 return rc;
2750
2751 /*
2752 * re-initialize the completion here to handle 2 possible cases:
2753 * 1. CS will complete the multi-CS prior clearing the completion. in which
2754 * case the fence iteration is guaranteed to catch the CS completion.
2755 * 2. the completion will occur after re-init of the completion.
2756 * in which case we will wake up immediately in wait_for_completion.
2757 */
2758 reinit_completion(x: &mcs_compl->completion);
2759
2760 /*
2761 * set to maximum time to verify timestamp is valid: if at the end
2762 * this value is maintained- no timestamp was updated
2763 */
2764 max_ktime = ktime_set(KTIME_SEC_MAX, nsecs: 0);
2765 first_cs_time = max_ktime;
2766
2767 for (i = 0; i < arr_len; i++, fence_ptr++) {
2768 struct hl_fence *fence = *fence_ptr;
2769
2770 /*
2771 * In order to prevent case where we wait until timeout even though a CS associated
2772 * with the multi-CS actually completed we do things in the below order:
2773 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2774 * any CS can, potentially, complete the multi CS for the specific QID (note
2775 * that once completion is initialized, calling complete* and then wait on the
2776 * completion will cause it to return at once)
2777 * 2. only after allowing multi-CS completion for the specific QID we check whether
2778 * the specific CS already completed (and thus the wait for completion part will
2779 * be skipped). if the CS not completed it is guaranteed that completing CS will
2780 * wake up the completion.
2781 */
2782 if (fence)
2783 mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2784
2785 /*
2786 * function won't sleep as it is called with timeout 0 (i.e.
2787 * poll the fence)
2788 */
2789 rc = hl_wait_for_fence(ctx: mcs_data->ctx, seq: seq_arr[i], fence, status: &status, timeout_us: 0, NULL);
2790 if (rc) {
2791 dev_err(hdev->dev,
2792 "wait_for_fence error :%d for CS seq %llu\n",
2793 rc, seq_arr[i]);
2794 break;
2795 }
2796
2797 switch (status) {
2798 case CS_WAIT_STATUS_BUSY:
2799 /* CS did not finished, QID to wait on already stored */
2800 break;
2801 case CS_WAIT_STATUS_COMPLETED:
2802 /*
2803 * Using mcs_handling_done to avoid possibility of mcs_data
2804 * returns to user indicating CS completed before it finished
2805 * all of its mcs handling, to avoid race the next time the
2806 * user waits for mcs.
2807 * note: when reaching this case fence is definitely not NULL
2808 * but NULL check was added to overcome static analysis
2809 */
2810 if (fence && !fence->mcs_handling_done) {
2811 /*
2812 * in case multi CS is completed but MCS handling not done
2813 * we "complete" the multi CS to prevent it from waiting
2814 * until time-out and the "multi-CS handling done" will have
2815 * another chance at the next iteration
2816 */
2817 complete_all(&mcs_compl->completion);
2818 break;
2819 }
2820
2821 mcs_data->completion_bitmap |= BIT(i);
2822 /*
2823 * For all completed CSs we take the earliest timestamp.
2824 * For this we have to validate that the timestamp is
2825 * earliest of all timestamps so far.
2826 */
2827 if (fence && mcs_data->update_ts &&
2828 (ktime_compare(cmp1: fence->timestamp, cmp2: first_cs_time) < 0))
2829 first_cs_time = fence->timestamp;
2830 break;
2831 case CS_WAIT_STATUS_GONE:
2832 mcs_data->update_ts = false;
2833 mcs_data->gone_cs = true;
2834 /*
2835 * It is possible to get an old sequence numbers from user
2836 * which related to already completed CSs and their fences
2837 * already gone. In this case, CS set as completed but
2838 * no need to consider its QID for mcs completion.
2839 */
2840 mcs_data->completion_bitmap |= BIT(i);
2841 break;
2842 default:
2843 dev_err(hdev->dev, "Invalid fence status\n");
2844 rc = -EINVAL;
2845 break;
2846 }
2847
2848 }
2849
2850 hl_fences_put(fence: mcs_data->fence_arr, len: arr_len);
2851
2852 if (mcs_data->update_ts &&
2853 (ktime_compare(cmp1: first_cs_time, cmp2: max_ktime) != 0))
2854 mcs_data->timestamp = ktime_to_ns(kt: first_cs_time);
2855
2856 return rc;
2857}
2858
2859static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2860 enum hl_cs_wait_status *status, s64 *timestamp)
2861{
2862 struct hl_fence *fence;
2863 int rc = 0;
2864
2865 if (timestamp)
2866 *timestamp = 0;
2867
2868 hl_ctx_get(ctx);
2869
2870 fence = hl_ctx_get_fence(ctx, seq);
2871
2872 rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2873 hl_fence_put(fence);
2874 hl_ctx_put(ctx);
2875
2876 return rc;
2877}
2878
2879static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2880{
2881 if (usecs <= U32_MAX)
2882 return usecs_to_jiffies(u: usecs);
2883
2884 /*
2885 * If the value in nanoseconds is larger than 64 bit, use the largest
2886 * 64 bit value.
2887 */
2888 if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2889 return nsecs_to_jiffies(U64_MAX);
2890
2891 return nsecs_to_jiffies(n: usecs * NSEC_PER_USEC);
2892}
2893
2894/*
2895 * hl_wait_multi_cs_completion_init - init completion structure
2896 *
2897 * @hdev: pointer to habanalabs device structure
2898 * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2899 * master QID to wait on
2900 *
2901 * @return valid completion struct pointer on success, otherwise error pointer
2902 *
2903 * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2904 * the function gets the first available completion (by marking it "used")
2905 * and initialize its values.
2906 */
2907static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2908{
2909 struct multi_cs_completion *mcs_compl;
2910 int i;
2911
2912 /* find free multi_cs completion structure */
2913 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2914 mcs_compl = &hdev->multi_cs_completion[i];
2915 spin_lock(lock: &mcs_compl->lock);
2916 if (!mcs_compl->used) {
2917 mcs_compl->used = 1;
2918 mcs_compl->timestamp = 0;
2919 /*
2920 * init QID map to 0 to avoid completion by CSs. the actual QID map
2921 * to multi-CS CSs will be set incrementally at a later stage
2922 */
2923 mcs_compl->stream_master_qid_map = 0;
2924 spin_unlock(lock: &mcs_compl->lock);
2925 break;
2926 }
2927 spin_unlock(lock: &mcs_compl->lock);
2928 }
2929
2930 if (i == MULTI_CS_MAX_USER_CTX) {
2931 dev_err(hdev->dev, "no available multi-CS completion structure\n");
2932 return ERR_PTR(error: -ENOMEM);
2933 }
2934 return mcs_compl;
2935}
2936
2937/*
2938 * hl_wait_multi_cs_completion_fini - return completion structure and set as
2939 * unused
2940 *
2941 * @mcs_compl: pointer to the completion structure
2942 */
2943static void hl_wait_multi_cs_completion_fini(
2944 struct multi_cs_completion *mcs_compl)
2945{
2946 /*
2947 * free completion structure, do it under lock to be in-sync with the
2948 * thread that signals completion
2949 */
2950 spin_lock(lock: &mcs_compl->lock);
2951 mcs_compl->used = 0;
2952 spin_unlock(lock: &mcs_compl->lock);
2953}
2954
2955/*
2956 * hl_wait_multi_cs_completion - wait for first CS to complete
2957 *
2958 * @mcs_data: multi-CS internal data
2959 *
2960 * @return 0 on success, otherwise non 0 error code
2961 */
2962static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2963 struct multi_cs_completion *mcs_compl)
2964{
2965 long completion_rc;
2966
2967 completion_rc = wait_for_completion_interruptible_timeout(x: &mcs_compl->completion,
2968 timeout: mcs_data->timeout_jiffies);
2969
2970 /* update timestamp */
2971 if (completion_rc > 0)
2972 mcs_data->timestamp = mcs_compl->timestamp;
2973
2974 if (completion_rc == -ERESTARTSYS)
2975 return completion_rc;
2976
2977 mcs_data->wait_status = completion_rc;
2978
2979 return 0;
2980}
2981
2982/*
2983 * hl_multi_cs_completion_init - init array of multi-CS completion structures
2984 *
2985 * @hdev: pointer to habanalabs device structure
2986 */
2987void hl_multi_cs_completion_init(struct hl_device *hdev)
2988{
2989 struct multi_cs_completion *mcs_cmpl;
2990 int i;
2991
2992 for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2993 mcs_cmpl = &hdev->multi_cs_completion[i];
2994 mcs_cmpl->used = 0;
2995 spin_lock_init(&mcs_cmpl->lock);
2996 init_completion(x: &mcs_cmpl->completion);
2997 }
2998}
2999
3000/*
3001 * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
3002 *
3003 * @hpriv: pointer to the private data of the fd
3004 * @data: pointer to multi-CS wait ioctl in/out args
3005 *
3006 */
3007static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3008{
3009 struct multi_cs_completion *mcs_compl;
3010 struct hl_device *hdev = hpriv->hdev;
3011 struct multi_cs_data mcs_data = {};
3012 union hl_wait_cs_args *args = data;
3013 struct hl_ctx *ctx = hpriv->ctx;
3014 struct hl_fence **fence_arr;
3015 void __user *seq_arr;
3016 u32 size_to_copy;
3017 u64 *cs_seq_arr;
3018 u8 seq_arr_len;
3019 int rc, i;
3020
3021 for (i = 0 ; i < sizeof(args->in.pad) ; i++)
3022 if (args->in.pad[i]) {
3023 dev_dbg(hdev->dev, "Padding bytes must be 0\n");
3024 return -EINVAL;
3025 }
3026
3027 if (!hdev->supports_wait_for_multi_cs) {
3028 dev_err(hdev->dev, "Wait for multi CS is not supported\n");
3029 return -EPERM;
3030 }
3031
3032 seq_arr_len = args->in.seq_arr_len;
3033
3034 if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
3035 dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
3036 HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
3037 return -EINVAL;
3038 }
3039
3040 /* allocate memory for sequence array */
3041 cs_seq_arr =
3042 kmalloc_array(n: seq_arr_len, size: sizeof(*cs_seq_arr), GFP_KERNEL);
3043 if (!cs_seq_arr)
3044 return -ENOMEM;
3045
3046 /* copy CS sequence array from user */
3047 seq_arr = (void __user *) (uintptr_t) args->in.seq;
3048 size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
3049 if (copy_from_user(to: cs_seq_arr, from: seq_arr, n: size_to_copy)) {
3050 dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
3051 rc = -EFAULT;
3052 goto free_seq_arr;
3053 }
3054
3055 /* allocate array for the fences */
3056 fence_arr = kmalloc_array(n: seq_arr_len, size: sizeof(struct hl_fence *), GFP_KERNEL);
3057 if (!fence_arr) {
3058 rc = -ENOMEM;
3059 goto free_seq_arr;
3060 }
3061
3062 /* initialize the multi-CS internal data */
3063 mcs_data.ctx = ctx;
3064 mcs_data.seq_arr = cs_seq_arr;
3065 mcs_data.fence_arr = fence_arr;
3066 mcs_data.arr_len = seq_arr_len;
3067
3068 hl_ctx_get(ctx);
3069
3070 /* wait (with timeout) for the first CS to be completed */
3071 mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(usecs: args->in.timeout_us);
3072 mcs_compl = hl_wait_multi_cs_completion_init(hdev);
3073 if (IS_ERR(ptr: mcs_compl)) {
3074 rc = PTR_ERR(ptr: mcs_compl);
3075 goto put_ctx;
3076 }
3077
3078 /* poll all CS fences, extract timestamp */
3079 mcs_data.update_ts = true;
3080 rc = hl_cs_poll_fences(mcs_data: &mcs_data, mcs_compl);
3081 /*
3082 * skip wait for CS completion when one of the below is true:
3083 * - an error on the poll function
3084 * - one or more CS in the list completed
3085 * - the user called ioctl with timeout 0
3086 */
3087 if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
3088 goto completion_fini;
3089
3090 while (true) {
3091 rc = hl_wait_multi_cs_completion(mcs_data: &mcs_data, mcs_compl);
3092 if (rc || (mcs_data.wait_status == 0))
3093 break;
3094
3095 /*
3096 * poll fences once again to update the CS map.
3097 * no timestamp should be updated this time.
3098 */
3099 mcs_data.update_ts = false;
3100 rc = hl_cs_poll_fences(mcs_data: &mcs_data, mcs_compl);
3101
3102 if (rc || mcs_data.completion_bitmap)
3103 break;
3104
3105 /*
3106 * if hl_wait_multi_cs_completion returned before timeout (i.e.
3107 * it got a completion) it either got completed by CS in the multi CS list
3108 * (in which case the indication will be non empty completion_bitmap) or it
3109 * got completed by CS submitted to one of the shared stream master but
3110 * not in the multi CS list (in which case we should wait again but modify
3111 * the timeout and set timestamp as zero to let a CS related to the current
3112 * multi-CS set a new, relevant, timestamp)
3113 */
3114 mcs_data.timeout_jiffies = mcs_data.wait_status;
3115 mcs_compl->timestamp = 0;
3116 }
3117
3118completion_fini:
3119 hl_wait_multi_cs_completion_fini(mcs_compl);
3120
3121put_ctx:
3122 hl_ctx_put(ctx);
3123 kfree(objp: fence_arr);
3124
3125free_seq_arr:
3126 kfree(objp: cs_seq_arr);
3127
3128 if (rc == -ERESTARTSYS) {
3129 dev_err_ratelimited(hdev->dev,
3130 "user process got signal while waiting for Multi-CS\n");
3131 rc = -EINTR;
3132 }
3133
3134 if (rc)
3135 return rc;
3136
3137 /* update output args */
3138 memset(args, 0, sizeof(*args));
3139
3140 if (mcs_data.completion_bitmap) {
3141 args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3142 args->out.cs_completion_map = mcs_data.completion_bitmap;
3143
3144 /* if timestamp not 0- it's valid */
3145 if (mcs_data.timestamp) {
3146 args->out.timestamp_nsec = mcs_data.timestamp;
3147 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3148 }
3149
3150 /* update if some CS was gone */
3151 if (!mcs_data.timestamp)
3152 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3153 } else {
3154 args->out.status = HL_WAIT_CS_STATUS_BUSY;
3155 }
3156
3157 return 0;
3158}
3159
3160static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3161{
3162 struct hl_device *hdev = hpriv->hdev;
3163 union hl_wait_cs_args *args = data;
3164 enum hl_cs_wait_status status;
3165 u64 seq = args->in.seq;
3166 s64 timestamp;
3167 int rc;
3168
3169 rc = _hl_cs_wait_ioctl(hdev, ctx: hpriv->ctx, timeout_us: args->in.timeout_us, seq, status: &status, timestamp: &timestamp);
3170
3171 if (rc == -ERESTARTSYS) {
3172 dev_err_ratelimited(hdev->dev,
3173 "user process got signal while waiting for CS handle %llu\n",
3174 seq);
3175 return -EINTR;
3176 }
3177
3178 memset(args, 0, sizeof(*args));
3179
3180 if (rc) {
3181 if (rc == -ETIMEDOUT) {
3182 dev_err_ratelimited(hdev->dev,
3183 "CS %llu has timed-out while user process is waiting for it\n",
3184 seq);
3185 args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3186 } else if (rc == -EIO) {
3187 dev_err_ratelimited(hdev->dev,
3188 "CS %llu has been aborted while user process is waiting for it\n",
3189 seq);
3190 args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3191 }
3192 return rc;
3193 }
3194
3195 if (timestamp) {
3196 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3197 args->out.timestamp_nsec = timestamp;
3198 }
3199
3200 switch (status) {
3201 case CS_WAIT_STATUS_GONE:
3202 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3203 fallthrough;
3204 case CS_WAIT_STATUS_COMPLETED:
3205 args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3206 break;
3207 case CS_WAIT_STATUS_BUSY:
3208 default:
3209 args->out.status = HL_WAIT_CS_STATUS_BUSY;
3210 break;
3211 }
3212
3213 return 0;
3214}
3215
3216static inline void set_record_cq_info(struct hl_user_pending_interrupt *record,
3217 struct hl_cb *cq_cb, u32 cq_offset, u32 target_value)
3218{
3219 record->ts_reg_info.cq_cb = cq_cb;
3220 record->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_offset;
3221 record->cq_target_value = target_value;
3222}
3223
3224static int validate_and_get_ts_record(struct device *dev,
3225 struct hl_ts_buff *ts_buff, u64 ts_offset,
3226 struct hl_user_pending_interrupt **req_event_record)
3227{
3228 struct hl_user_pending_interrupt *ts_cb_last;
3229
3230 *req_event_record = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3231 ts_offset;
3232 ts_cb_last = (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3233 (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3234
3235 /* Validate ts_offset not exceeding last max */
3236 if (*req_event_record >= ts_cb_last) {
3237 dev_err(dev, "Ts offset(%llu) exceeds max CB offset(0x%llx)\n",
3238 ts_offset, (u64)(uintptr_t)ts_cb_last);
3239 return -EINVAL;
3240 }
3241
3242 return 0;
3243}
3244
3245static void unregister_timestamp_node(struct hl_device *hdev,
3246 struct hl_user_pending_interrupt *record, bool need_lock)
3247{
3248 struct hl_user_interrupt *interrupt = record->ts_reg_info.interrupt;
3249 bool ts_rec_found = false;
3250 unsigned long flags;
3251
3252 if (need_lock)
3253 spin_lock_irqsave(&interrupt->ts_list_lock, flags);
3254
3255 if (record->ts_reg_info.in_use) {
3256 record->ts_reg_info.in_use = false;
3257 list_del(entry: &record->list_node);
3258 ts_rec_found = true;
3259 }
3260
3261 if (need_lock)
3262 spin_unlock_irqrestore(lock: &interrupt->ts_list_lock, flags);
3263
3264 /* Put refcounts that were taken when we registered the event */
3265 if (ts_rec_found) {
3266 hl_mmap_mem_buf_put(buf: record->ts_reg_info.buf);
3267 hl_cb_put(cb: record->ts_reg_info.cq_cb);
3268 }
3269}
3270
3271static int ts_get_and_handle_kernel_record(struct hl_device *hdev, struct hl_ctx *ctx,
3272 struct wait_interrupt_data *data, unsigned long *flags,
3273 struct hl_user_pending_interrupt **pend)
3274{
3275 struct hl_user_pending_interrupt *req_offset_record;
3276 struct hl_ts_buff *ts_buff = data->buf->private;
3277 bool need_lock = false;
3278 int rc;
3279
3280 rc = validate_and_get_ts_record(dev: data->buf->mmg->dev, ts_buff, ts_offset: data->ts_offset,
3281 req_event_record: &req_offset_record);
3282 if (rc)
3283 return rc;
3284
3285 /* In case the node already registered, need to unregister first then re-use */
3286 if (req_offset_record->ts_reg_info.in_use) {
3287 dev_dbg(data->buf->mmg->dev,
3288 "Requested record %p is in use on irq: %u ts addr: %p, unregister first then put on irq: %u\n",
3289 req_offset_record,
3290 req_offset_record->ts_reg_info.interrupt->interrupt_id,
3291 req_offset_record->ts_reg_info.timestamp_kernel_addr,
3292 data->interrupt->interrupt_id);
3293 /*
3294 * Since interrupt here can be different than the one the node currently registered
3295 * on, and we don't want to lock two lists while we're doing unregister, so
3296 * unlock the new interrupt wait list here and acquire the lock again after you done
3297 */
3298 if (data->interrupt->interrupt_id !=
3299 req_offset_record->ts_reg_info.interrupt->interrupt_id) {
3300
3301 need_lock = true;
3302 spin_unlock_irqrestore(lock: &data->interrupt->ts_list_lock, flags: *flags);
3303 }
3304
3305 unregister_timestamp_node(hdev, record: req_offset_record, need_lock);
3306
3307 if (need_lock)
3308 spin_lock_irqsave(&data->interrupt->ts_list_lock, *flags);
3309 }
3310
3311 /* Fill up the new registration node info and add it to the list */
3312 req_offset_record->ts_reg_info.in_use = true;
3313 req_offset_record->ts_reg_info.buf = data->buf;
3314 req_offset_record->ts_reg_info.timestamp_kernel_addr =
3315 (u64 *) ts_buff->user_buff_address + data->ts_offset;
3316 req_offset_record->ts_reg_info.interrupt = data->interrupt;
3317 set_record_cq_info(record: req_offset_record, cq_cb: data->cq_cb, cq_offset: data->cq_offset,
3318 target_value: data->target_value);
3319
3320 *pend = req_offset_record;
3321
3322 return rc;
3323}
3324
3325static int _hl_interrupt_ts_reg_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3326 struct wait_interrupt_data *data,
3327 u32 *status, u64 *timestamp)
3328{
3329 struct hl_user_pending_interrupt *pend;
3330 unsigned long flags;
3331 int rc = 0;
3332
3333 hl_ctx_get(ctx);
3334
3335 data->cq_cb = hl_cb_get(mmg: data->mmg, handle: data->cq_handle);
3336 if (!data->cq_cb) {
3337 rc = -EINVAL;
3338 goto put_ctx;
3339 }
3340
3341 /* Validate the cq offset */
3342 if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >=
3343 ((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) {
3344 rc = -EINVAL;
3345 goto put_cq_cb;
3346 }
3347
3348 dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, handle: 0x%llx, ts offset: %llu, cq_offset: %llu\n",
3349 data->interrupt->interrupt_id, data->ts_handle,
3350 data->ts_offset, data->cq_offset);
3351
3352 data->buf = hl_mmap_mem_buf_get(mmg: data->mmg, handle: data->ts_handle);
3353 if (!data->buf) {
3354 rc = -EINVAL;
3355 goto put_cq_cb;
3356 }
3357
3358 spin_lock_irqsave(&data->interrupt->ts_list_lock, flags);
3359
3360 /* get ts buffer record */
3361 rc = ts_get_and_handle_kernel_record(hdev, ctx, data, flags: &flags, pend: &pend);
3362 if (rc) {
3363 spin_unlock_irqrestore(lock: &data->interrupt->ts_list_lock, flags);
3364 goto put_ts_buff;
3365 }
3366
3367 /* We check for completion value as interrupt could have been received
3368 * before we add the timestamp node to the ts list.
3369 */
3370 if (*pend->cq_kernel_addr >= data->target_value) {
3371 spin_unlock_irqrestore(lock: &data->interrupt->ts_list_lock, flags);
3372
3373 dev_dbg(hdev->dev, "Target value already reached release ts record: pend: %p, offset: %llu, interrupt: %u\n",
3374 pend, data->ts_offset, data->interrupt->interrupt_id);
3375
3376 pend->ts_reg_info.in_use = 0;
3377 *status = HL_WAIT_CS_STATUS_COMPLETED;
3378 *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3379
3380 goto put_ts_buff;
3381 }
3382
3383 list_add_tail(new: &pend->list_node, head: &data->interrupt->ts_list_head);
3384 spin_unlock_irqrestore(lock: &data->interrupt->ts_list_lock, flags);
3385
3386 rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3387
3388 hl_ctx_put(ctx);
3389
3390 return rc;
3391
3392put_ts_buff:
3393 hl_mmap_mem_buf_put(buf: data->buf);
3394put_cq_cb:
3395 hl_cb_put(cb: data->cq_cb);
3396put_ctx:
3397 hl_ctx_put(ctx);
3398
3399 return rc;
3400}
3401
3402static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3403 struct wait_interrupt_data *data,
3404 u32 *status, u64 *timestamp)
3405{
3406 struct hl_user_pending_interrupt *pend;
3407 unsigned long timeout, flags;
3408 long completion_rc;
3409 int rc = 0;
3410
3411 timeout = hl_usecs64_to_jiffies(usecs: data->intr_timeout_us);
3412
3413 hl_ctx_get(ctx);
3414
3415 data->cq_cb = hl_cb_get(mmg: data->mmg, handle: data->cq_handle);
3416 if (!data->cq_cb) {
3417 rc = -EINVAL;
3418 goto put_ctx;
3419 }
3420
3421 /* Validate the cq offset */
3422 if (((u64 *) data->cq_cb->kernel_address + data->cq_offset) >=
3423 ((u64 *) data->cq_cb->kernel_address + (data->cq_cb->size / sizeof(u64)))) {
3424 rc = -EINVAL;
3425 goto put_cq_cb;
3426 }
3427
3428 pend = kzalloc(size: sizeof(*pend), GFP_KERNEL);
3429 if (!pend) {
3430 rc = -ENOMEM;
3431 goto put_cq_cb;
3432 }
3433
3434 hl_fence_init(fence: &pend->fence, ULONG_MAX);
3435 pend->cq_kernel_addr = (u64 *) data->cq_cb->kernel_address + data->cq_offset;
3436 pend->cq_target_value = data->target_value;
3437 spin_lock_irqsave(&data->interrupt->wait_list_lock, flags);
3438
3439
3440 /* We check for completion value as interrupt could have been received
3441 * before we add the wait node to the wait list.
3442 */
3443 if (*pend->cq_kernel_addr >= data->target_value || (!data->intr_timeout_us)) {
3444 spin_unlock_irqrestore(lock: &data->interrupt->wait_list_lock, flags);
3445
3446 if (*pend->cq_kernel_addr >= data->target_value)
3447 *status = HL_WAIT_CS_STATUS_COMPLETED;
3448 else
3449 *status = HL_WAIT_CS_STATUS_BUSY;
3450
3451 pend->fence.timestamp = ktime_get();
3452 goto set_timestamp;
3453 }
3454
3455 /* Add pending user interrupt to relevant list for the interrupt
3456 * handler to monitor.
3457 * Note that we cannot have sorted list by target value,
3458 * in order to shorten the list pass loop, since
3459 * same list could have nodes for different cq counter handle.
3460 */
3461 list_add_tail(new: &pend->list_node, head: &data->interrupt->wait_list_head);
3462 spin_unlock_irqrestore(lock: &data->interrupt->wait_list_lock, flags);
3463
3464 /* Wait for interrupt handler to signal completion */
3465 completion_rc = wait_for_completion_interruptible_timeout(x: &pend->fence.completion,
3466 timeout);
3467 if (completion_rc > 0) {
3468 if (pend->fence.error == -EIO) {
3469 dev_err_ratelimited(hdev->dev,
3470 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3471 pend->fence.error);
3472 rc = -EIO;
3473 *status = HL_WAIT_CS_STATUS_ABORTED;
3474 } else {
3475 *status = HL_WAIT_CS_STATUS_COMPLETED;
3476 }
3477 } else {
3478 if (completion_rc == -ERESTARTSYS) {
3479 dev_err_ratelimited(hdev->dev,
3480 "user process got signal while waiting for interrupt ID %d\n",
3481 data->interrupt->interrupt_id);
3482 rc = -EINTR;
3483 *status = HL_WAIT_CS_STATUS_ABORTED;
3484 } else {
3485 /* The wait has timed-out. We don't know anything beyond that
3486 * because the workload was not submitted through the driver.
3487 * Therefore, from driver's perspective, the workload is still
3488 * executing.
3489 */
3490 rc = 0;
3491 *status = HL_WAIT_CS_STATUS_BUSY;
3492 }
3493 }
3494
3495 /*
3496 * We keep removing the node from list here, and not at the irq handler
3497 * for completion timeout case. and if it's a registration
3498 * for ts record, the node will be deleted in the irq handler after
3499 * we reach the target value.
3500 */
3501 spin_lock_irqsave(&data->interrupt->wait_list_lock, flags);
3502 list_del(entry: &pend->list_node);
3503 spin_unlock_irqrestore(lock: &data->interrupt->wait_list_lock, flags);
3504
3505set_timestamp:
3506 *timestamp = ktime_to_ns(kt: pend->fence.timestamp);
3507 kfree(objp: pend);
3508 hl_cb_put(cb: data->cq_cb);
3509 hl_ctx_put(ctx);
3510
3511 return rc;
3512
3513put_cq_cb:
3514 hl_cb_put(cb: data->cq_cb);
3515put_ctx:
3516 hl_ctx_put(ctx);
3517
3518 return rc;
3519}
3520
3521static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3522 u64 timeout_us, u64 user_address,
3523 u64 target_value, struct hl_user_interrupt *interrupt,
3524 u32 *status,
3525 u64 *timestamp)
3526{
3527 struct hl_user_pending_interrupt *pend;
3528 unsigned long timeout, flags;
3529 u64 completion_value;
3530 long completion_rc;
3531 int rc = 0;
3532
3533 timeout = hl_usecs64_to_jiffies(usecs: timeout_us);
3534
3535 hl_ctx_get(ctx);
3536
3537 pend = kzalloc(size: sizeof(*pend), GFP_KERNEL);
3538 if (!pend) {
3539 hl_ctx_put(ctx);
3540 return -ENOMEM;
3541 }
3542
3543 hl_fence_init(fence: &pend->fence, ULONG_MAX);
3544
3545 /* Add pending user interrupt to relevant list for the interrupt
3546 * handler to monitor
3547 */
3548 spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3549 list_add_tail(new: &pend->list_node, head: &interrupt->wait_list_head);
3550 spin_unlock_irqrestore(lock: &interrupt->wait_list_lock, flags);
3551
3552 /* We check for completion value as interrupt could have been received
3553 * before we added the node to the wait list
3554 */
3555 if (copy_from_user(to: &completion_value, u64_to_user_ptr(user_address), n: 8)) {
3556 dev_err(hdev->dev, "Failed to copy completion value from user\n");
3557 rc = -EFAULT;
3558 goto remove_pending_user_interrupt;
3559 }
3560
3561 if (completion_value >= target_value) {
3562 *status = HL_WAIT_CS_STATUS_COMPLETED;
3563 /* There was no interrupt, we assume the completion is now. */
3564 pend->fence.timestamp = ktime_get();
3565 } else {
3566 *status = HL_WAIT_CS_STATUS_BUSY;
3567 }
3568
3569 if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3570 goto remove_pending_user_interrupt;
3571
3572wait_again:
3573 /* Wait for interrupt handler to signal completion */
3574 completion_rc = wait_for_completion_interruptible_timeout(x: &pend->fence.completion,
3575 timeout);
3576
3577 /* If timeout did not expire we need to perform the comparison.
3578 * If comparison fails, keep waiting until timeout expires
3579 */
3580 if (completion_rc > 0) {
3581 spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3582 /* reinit_completion must be called before we check for user
3583 * completion value, otherwise, if interrupt is received after
3584 * the comparison and before the next wait_for_completion,
3585 * we will reach timeout and fail
3586 */
3587 reinit_completion(x: &pend->fence.completion);
3588 spin_unlock_irqrestore(lock: &interrupt->wait_list_lock, flags);
3589
3590 if (copy_from_user(to: &completion_value, u64_to_user_ptr(user_address), n: 8)) {
3591 dev_err(hdev->dev, "Failed to copy completion value from user\n");
3592 rc = -EFAULT;
3593
3594 goto remove_pending_user_interrupt;
3595 }
3596
3597 if (completion_value >= target_value) {
3598 *status = HL_WAIT_CS_STATUS_COMPLETED;
3599 } else if (pend->fence.error) {
3600 dev_err_ratelimited(hdev->dev,
3601 "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3602 pend->fence.error);
3603 /* set the command completion status as ABORTED */
3604 *status = HL_WAIT_CS_STATUS_ABORTED;
3605 } else {
3606 timeout = completion_rc;
3607 goto wait_again;
3608 }
3609 } else if (completion_rc == -ERESTARTSYS) {
3610 dev_err_ratelimited(hdev->dev,
3611 "user process got signal while waiting for interrupt ID %d\n",
3612 interrupt->interrupt_id);
3613 rc = -EINTR;
3614 } else {
3615 /* The wait has timed-out. We don't know anything beyond that
3616 * because the workload wasn't submitted through the driver.
3617 * Therefore, from driver's perspective, the workload is still
3618 * executing.
3619 */
3620 rc = 0;
3621 *status = HL_WAIT_CS_STATUS_BUSY;
3622 }
3623
3624remove_pending_user_interrupt:
3625 spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3626 list_del(entry: &pend->list_node);
3627 spin_unlock_irqrestore(lock: &interrupt->wait_list_lock, flags);
3628
3629 *timestamp = ktime_to_ns(kt: pend->fence.timestamp);
3630
3631 kfree(objp: pend);
3632 hl_ctx_put(ctx);
3633
3634 return rc;
3635}
3636
3637static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3638{
3639 u16 interrupt_id, first_interrupt, last_interrupt;
3640 struct hl_device *hdev = hpriv->hdev;
3641 struct asic_fixed_properties *prop;
3642 struct hl_user_interrupt *interrupt;
3643 union hl_wait_cs_args *args = data;
3644 u32 status = HL_WAIT_CS_STATUS_BUSY;
3645 u64 timestamp = 0;
3646 int rc, int_idx;
3647
3648 prop = &hdev->asic_prop;
3649
3650 if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3651 dev_err(hdev->dev, "no user interrupts allowed");
3652 return -EPERM;
3653 }
3654
3655 interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3656
3657 first_interrupt = prop->first_available_user_interrupt;
3658 last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3659
3660 if (interrupt_id < prop->user_dec_intr_count) {
3661
3662 /* Check if the requested core is enabled */
3663 if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3664 dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3665 interrupt_id);
3666 return -EINVAL;
3667 }
3668
3669 interrupt = &hdev->user_interrupt[interrupt_id];
3670
3671 } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3672
3673 int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3674 interrupt = &hdev->user_interrupt[int_idx];
3675
3676 } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3677 interrupt = &hdev->common_user_cq_interrupt;
3678 } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3679 interrupt = &hdev->common_decoder_interrupt;
3680 } else {
3681 dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3682 return -EINVAL;
3683 }
3684
3685 if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) {
3686 struct wait_interrupt_data wait_intr_data = {0};
3687
3688 wait_intr_data.interrupt = interrupt;
3689 wait_intr_data.mmg = &hpriv->mem_mgr;
3690 wait_intr_data.cq_handle = args->in.cq_counters_handle;
3691 wait_intr_data.cq_offset = args->in.cq_counters_offset;
3692 wait_intr_data.ts_handle = args->in.timestamp_handle;
3693 wait_intr_data.ts_offset = args->in.timestamp_offset;
3694 wait_intr_data.target_value = args->in.target;
3695 wait_intr_data.intr_timeout_us = args->in.interrupt_timeout_us;
3696
3697 if (args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT) {
3698 /*
3699 * Allow only one registration at a time. this is needed in order to prevent
3700 * issues while handling the flow of re-use of the same offset.
3701 * Since the registration flow is protected only by the interrupt lock,
3702 * re-use flow might request to move ts node to another interrupt list,
3703 * and in such case we're not protected.
3704 */
3705 mutex_lock(&hpriv->ctx->ts_reg_lock);
3706
3707 rc = _hl_interrupt_ts_reg_ioctl(hdev, ctx: hpriv->ctx, data: &wait_intr_data,
3708 status: &status, timestamp: &timestamp);
3709
3710 mutex_unlock(lock: &hpriv->ctx->ts_reg_lock);
3711 } else
3712 rc = _hl_interrupt_wait_ioctl(hdev, ctx: hpriv->ctx, data: &wait_intr_data,
3713 status: &status, timestamp: &timestamp);
3714 } else {
3715 rc = _hl_interrupt_wait_ioctl_user_addr(hdev, ctx: hpriv->ctx,
3716 timeout_us: args->in.interrupt_timeout_us, user_address: args->in.addr,
3717 target_value: args->in.target, interrupt, status: &status,
3718 timestamp: &timestamp);
3719 }
3720
3721 if (rc)
3722 return rc;
3723
3724 memset(args, 0, sizeof(*args));
3725 args->out.status = status;
3726
3727 if (timestamp) {
3728 args->out.timestamp_nsec = timestamp;
3729 args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3730 }
3731
3732 return 0;
3733}
3734
3735int hl_wait_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
3736{
3737 struct hl_fpriv *hpriv = file_priv->driver_priv;
3738 struct hl_device *hdev = hpriv->hdev;
3739 union hl_wait_cs_args *args = data;
3740 u32 flags = args->in.flags;
3741 int rc;
3742
3743 /* If the device is not operational, or if an error has happened and user should release the
3744 * device, there is no point in waiting for any command submission or user interrupt.
3745 */
3746 if (!hl_device_operational(hdev: hpriv->hdev, NULL) || hdev->reset_info.watchdog_active)
3747 return -EBUSY;
3748
3749 if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3750 rc = hl_interrupt_wait_ioctl(hpriv, data);
3751 else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3752 rc = hl_multi_cs_wait_ioctl(hpriv, data);
3753 else
3754 rc = hl_cs_wait_ioctl(hpriv, data);
3755
3756 return rc;
3757}
3758

source code of linux/drivers/accel/habanalabs/common/command_submission.c