1// SPDX-License-Identifier: GPL-2.0
2//
3// Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
4//
5// Refer to drivers/dma/imx-sdma.c
6
7#include <linux/init.h>
8#include <linux/types.h>
9#include <linux/mm.h>
10#include <linux/interrupt.h>
11#include <linux/clk.h>
12#include <linux/wait.h>
13#include <linux/sched.h>
14#include <linux/semaphore.h>
15#include <linux/device.h>
16#include <linux/dma-mapping.h>
17#include <linux/slab.h>
18#include <linux/platform_device.h>
19#include <linux/dmaengine.h>
20#include <linux/delay.h>
21#include <linux/module.h>
22#include <linux/stmp_device.h>
23#include <linux/of.h>
24#include <linux/of_dma.h>
25#include <linux/list.h>
26#include <linux/dma/mxs-dma.h>
27
28#include <asm/irq.h>
29
30#include "dmaengine.h"
31
32/*
33 * NOTE: The term "PIO" throughout the mxs-dma implementation means
34 * PIO mode of mxs apbh-dma and apbx-dma. With this working mode,
35 * dma can program the controller registers of peripheral devices.
36 */
37
38#define dma_is_apbh(mxs_dma) ((mxs_dma)->type == MXS_DMA_APBH)
39#define apbh_is_old(mxs_dma) ((mxs_dma)->dev_id == IMX23_DMA)
40
41#define HW_APBHX_CTRL0 0x000
42#define BM_APBH_CTRL0_APB_BURST8_EN (1 << 29)
43#define BM_APBH_CTRL0_APB_BURST_EN (1 << 28)
44#define BP_APBH_CTRL0_RESET_CHANNEL 16
45#define HW_APBHX_CTRL1 0x010
46#define HW_APBHX_CTRL2 0x020
47#define HW_APBHX_CHANNEL_CTRL 0x030
48#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL 16
49/*
50 * The offset of NXTCMDAR register is different per both dma type and version,
51 * while stride for each channel is all the same 0x70.
52 */
53#define HW_APBHX_CHn_NXTCMDAR(d, n) \
54 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
55#define HW_APBHX_CHn_SEMA(d, n) \
56 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
57#define HW_APBHX_CHn_BAR(d, n) \
58 (((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
59#define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
60
61/*
62 * ccw bits definitions
63 *
64 * COMMAND: 0..1 (2)
65 * CHAIN: 2 (1)
66 * IRQ: 3 (1)
67 * NAND_LOCK: 4 (1) - not implemented
68 * NAND_WAIT4READY: 5 (1) - not implemented
69 * DEC_SEM: 6 (1)
70 * WAIT4END: 7 (1)
71 * HALT_ON_TERMINATE: 8 (1)
72 * TERMINATE_FLUSH: 9 (1)
73 * RESERVED: 10..11 (2)
74 * PIO_NUM: 12..15 (4)
75 */
76#define BP_CCW_COMMAND 0
77#define BM_CCW_COMMAND (3 << 0)
78#define CCW_CHAIN (1 << 2)
79#define CCW_IRQ (1 << 3)
80#define CCW_WAIT4RDY (1 << 5)
81#define CCW_DEC_SEM (1 << 6)
82#define CCW_WAIT4END (1 << 7)
83#define CCW_HALT_ON_TERM (1 << 8)
84#define CCW_TERM_FLUSH (1 << 9)
85#define BP_CCW_PIO_NUM 12
86#define BM_CCW_PIO_NUM (0xf << 12)
87
88#define BF_CCW(value, field) (((value) << BP_CCW_##field) & BM_CCW_##field)
89
90#define MXS_DMA_CMD_NO_XFER 0
91#define MXS_DMA_CMD_WRITE 1
92#define MXS_DMA_CMD_READ 2
93#define MXS_DMA_CMD_DMA_SENSE 3 /* not implemented */
94
95struct mxs_dma_ccw {
96 u32 next;
97 u16 bits;
98 u16 xfer_bytes;
99#define MAX_XFER_BYTES 0xff00
100 u32 bufaddr;
101#define MXS_PIO_WORDS 16
102 u32 pio_words[MXS_PIO_WORDS];
103};
104
105#define CCW_BLOCK_SIZE (4 * PAGE_SIZE)
106#define NUM_CCW (int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
107
108struct mxs_dma_chan {
109 struct mxs_dma_engine *mxs_dma;
110 struct dma_chan chan;
111 struct dma_async_tx_descriptor desc;
112 struct tasklet_struct tasklet;
113 unsigned int chan_irq;
114 struct mxs_dma_ccw *ccw;
115 dma_addr_t ccw_phys;
116 int desc_count;
117 enum dma_status status;
118 unsigned int flags;
119 bool reset;
120#define MXS_DMA_SG_LOOP (1 << 0)
121#define MXS_DMA_USE_SEMAPHORE (1 << 1)
122};
123
124#define MXS_DMA_CHANNELS 16
125#define MXS_DMA_CHANNELS_MASK 0xffff
126
127enum mxs_dma_devtype {
128 MXS_DMA_APBH,
129 MXS_DMA_APBX,
130};
131
132enum mxs_dma_id {
133 IMX23_DMA,
134 IMX28_DMA,
135};
136
137struct mxs_dma_engine {
138 enum mxs_dma_id dev_id;
139 enum mxs_dma_devtype type;
140 void __iomem *base;
141 struct clk *clk;
142 struct dma_device dma_device;
143 struct mxs_dma_chan mxs_chans[MXS_DMA_CHANNELS];
144 struct platform_device *pdev;
145 unsigned int nr_channels;
146};
147
148struct mxs_dma_type {
149 enum mxs_dma_id id;
150 enum mxs_dma_devtype type;
151};
152
153static struct mxs_dma_type mxs_dma_types[] = {
154 {
155 .id = IMX23_DMA,
156 .type = MXS_DMA_APBH,
157 }, {
158 .id = IMX23_DMA,
159 .type = MXS_DMA_APBX,
160 }, {
161 .id = IMX28_DMA,
162 .type = MXS_DMA_APBH,
163 }, {
164 .id = IMX28_DMA,
165 .type = MXS_DMA_APBX,
166 }
167};
168
169static const struct of_device_id mxs_dma_dt_ids[] = {
170 { .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], },
171 { .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], },
172 { .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], },
173 { .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], },
174 { /* sentinel */ }
175};
176MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
177
178static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
179{
180 return container_of(chan, struct mxs_dma_chan, chan);
181}
182
183static void mxs_dma_reset_chan(struct dma_chan *chan)
184{
185 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
186 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
187 int chan_id = mxs_chan->chan.chan_id;
188
189 /*
190 * mxs dma channel resets can cause a channel stall. To recover from a
191 * channel stall, we have to reset the whole DMA engine. To avoid this,
192 * we use cyclic DMA with semaphores, that are enhanced in
193 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
194 * into the semaphore counter.
195 */
196 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
197 mxs_chan->flags & MXS_DMA_SG_LOOP) {
198 mxs_chan->reset = true;
199 } else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
200 writel(val: 1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
201 addr: mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
202 } else {
203 unsigned long elapsed = 0;
204 const unsigned long max_wait = 50000; /* 50ms */
205 void __iomem *reg_dbg1 = mxs_dma->base +
206 HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
207
208 /*
209 * On i.MX28 APBX, the DMA channel can stop working if we reset
210 * the channel while it is in READ_FLUSH (0x08) state.
211 * We wait here until we leave the state. Then we trigger the
212 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
213 * because of this.
214 */
215 while ((readl(addr: reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
216 udelay(100);
217 elapsed += 100;
218 }
219
220 if (elapsed >= max_wait)
221 dev_err(&mxs_chan->mxs_dma->pdev->dev,
222 "Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
223 chan_id);
224
225 writel(val: 1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
226 addr: mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
227 }
228
229 mxs_chan->status = DMA_COMPLETE;
230}
231
232static void mxs_dma_enable_chan(struct dma_chan *chan)
233{
234 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
235 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
236 int chan_id = mxs_chan->chan.chan_id;
237
238 /* set cmd_addr up */
239 writel(val: mxs_chan->ccw_phys,
240 addr: mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
241
242 /* write 1 to SEMA to kick off the channel */
243 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
244 mxs_chan->flags & MXS_DMA_SG_LOOP) {
245 /* A cyclic DMA consists of at least 2 segments, so initialize
246 * the semaphore with 2 so we have enough time to add 1 to the
247 * semaphore if we need to */
248 writel(val: 2, addr: mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
249 } else {
250 writel(val: 1, addr: mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
251 }
252 mxs_chan->reset = false;
253}
254
255static void mxs_dma_disable_chan(struct dma_chan *chan)
256{
257 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
258
259 mxs_chan->status = DMA_COMPLETE;
260}
261
262static int mxs_dma_pause_chan(struct dma_chan *chan)
263{
264 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
265 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
266 int chan_id = mxs_chan->chan.chan_id;
267
268 /* freeze the channel */
269 if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
270 writel(val: 1 << chan_id,
271 addr: mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
272 else
273 writel(val: 1 << chan_id,
274 addr: mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
275
276 mxs_chan->status = DMA_PAUSED;
277 return 0;
278}
279
280static int mxs_dma_resume_chan(struct dma_chan *chan)
281{
282 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
283 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
284 int chan_id = mxs_chan->chan.chan_id;
285
286 /* unfreeze the channel */
287 if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
288 writel(val: 1 << chan_id,
289 addr: mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
290 else
291 writel(val: 1 << chan_id,
292 addr: mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
293
294 mxs_chan->status = DMA_IN_PROGRESS;
295 return 0;
296}
297
298static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
299{
300 return dma_cookie_assign(tx);
301}
302
303static void mxs_dma_tasklet(struct tasklet_struct *t)
304{
305 struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet);
306
307 dmaengine_desc_get_callback_invoke(tx: &mxs_chan->desc, NULL);
308}
309
310static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
311{
312 int i;
313
314 for (i = 0; i != mxs_dma->nr_channels; ++i)
315 if (mxs_dma->mxs_chans[i].chan_irq == irq)
316 return i;
317
318 return -EINVAL;
319}
320
321static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
322{
323 struct mxs_dma_engine *mxs_dma = dev_id;
324 struct mxs_dma_chan *mxs_chan;
325 u32 completed;
326 u32 err;
327 int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
328
329 if (chan < 0)
330 return IRQ_NONE;
331
332 /* completion status */
333 completed = readl(addr: mxs_dma->base + HW_APBHX_CTRL1);
334 completed = (completed >> chan) & 0x1;
335
336 /* Clear interrupt */
337 writel(val: (1 << chan),
338 addr: mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
339
340 /* error status */
341 err = readl(addr: mxs_dma->base + HW_APBHX_CTRL2);
342 err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
343
344 /*
345 * error status bit is in the upper 16 bits, error irq bit in the lower
346 * 16 bits. We transform it into a simpler error code:
347 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
348 */
349 err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
350
351 /* Clear error irq */
352 writel(val: (1 << chan),
353 addr: mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
354
355 /*
356 * When both completion and error of termination bits set at the
357 * same time, we do not take it as an error. IOW, it only becomes
358 * an error we need to handle here in case of either it's a bus
359 * error or a termination error with no completion. 0x01 is termination
360 * error, so we can subtract err & completed to get the real error case.
361 */
362 err -= err & completed;
363
364 mxs_chan = &mxs_dma->mxs_chans[chan];
365
366 if (err) {
367 dev_dbg(mxs_dma->dma_device.dev,
368 "%s: error in channel %d\n", __func__,
369 chan);
370 mxs_chan->status = DMA_ERROR;
371 mxs_dma_reset_chan(chan: &mxs_chan->chan);
372 } else if (mxs_chan->status != DMA_COMPLETE) {
373 if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
374 mxs_chan->status = DMA_IN_PROGRESS;
375 if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
376 writel(val: 1, addr: mxs_dma->base +
377 HW_APBHX_CHn_SEMA(mxs_dma, chan));
378 } else {
379 mxs_chan->status = DMA_COMPLETE;
380 }
381 }
382
383 if (mxs_chan->status == DMA_COMPLETE) {
384 if (mxs_chan->reset)
385 return IRQ_HANDLED;
386 dma_cookie_complete(tx: &mxs_chan->desc);
387 }
388
389 /* schedule tasklet on this channel */
390 tasklet_schedule(t: &mxs_chan->tasklet);
391
392 return IRQ_HANDLED;
393}
394
395static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
396{
397 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
398 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
399 int ret;
400
401 mxs_chan->ccw = dma_alloc_coherent(dev: mxs_dma->dma_device.dev,
402 CCW_BLOCK_SIZE,
403 dma_handle: &mxs_chan->ccw_phys, GFP_KERNEL);
404 if (!mxs_chan->ccw) {
405 ret = -ENOMEM;
406 goto err_alloc;
407 }
408
409 ret = request_irq(irq: mxs_chan->chan_irq, handler: mxs_dma_int_handler,
410 flags: 0, name: "mxs-dma", dev: mxs_dma);
411 if (ret)
412 goto err_irq;
413
414 ret = clk_prepare_enable(clk: mxs_dma->clk);
415 if (ret)
416 goto err_clk;
417
418 mxs_dma_reset_chan(chan);
419
420 dma_async_tx_descriptor_init(tx: &mxs_chan->desc, chan);
421 mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
422
423 /* the descriptor is ready */
424 async_tx_ack(tx: &mxs_chan->desc);
425
426 return 0;
427
428err_clk:
429 free_irq(mxs_chan->chan_irq, mxs_dma);
430err_irq:
431 dma_free_coherent(dev: mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
432 cpu_addr: mxs_chan->ccw, dma_handle: mxs_chan->ccw_phys);
433err_alloc:
434 return ret;
435}
436
437static void mxs_dma_free_chan_resources(struct dma_chan *chan)
438{
439 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
440 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
441
442 mxs_dma_disable_chan(chan);
443
444 free_irq(mxs_chan->chan_irq, mxs_dma);
445
446 dma_free_coherent(dev: mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
447 cpu_addr: mxs_chan->ccw, dma_handle: mxs_chan->ccw_phys);
448
449 clk_disable_unprepare(clk: mxs_dma->clk);
450}
451
452/*
453 * How to use the flags for ->device_prep_slave_sg() :
454 * [1] If there is only one DMA command in the DMA chain, the code should be:
455 * ......
456 * ->device_prep_slave_sg(DMA_CTRL_ACK);
457 * ......
458 * [2] If there are two DMA commands in the DMA chain, the code should be
459 * ......
460 * ->device_prep_slave_sg(0);
461 * ......
462 * ->device_prep_slave_sg(DMA_CTRL_ACK);
463 * ......
464 * [3] If there are more than two DMA commands in the DMA chain, the code
465 * should be:
466 * ......
467 * ->device_prep_slave_sg(0); // First
468 * ......
469 * ->device_prep_slave_sg(DMA_CTRL_ACK]);
470 * ......
471 * ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
472 * ......
473 */
474static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
475 struct dma_chan *chan, struct scatterlist *sgl,
476 unsigned int sg_len, enum dma_transfer_direction direction,
477 unsigned long flags, void *context)
478{
479 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
480 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
481 struct mxs_dma_ccw *ccw;
482 struct scatterlist *sg;
483 u32 i, j;
484 u32 *pio;
485 int idx = 0;
486
487 if (mxs_chan->status == DMA_IN_PROGRESS)
488 idx = mxs_chan->desc_count;
489
490 if (sg_len + idx > NUM_CCW) {
491 dev_err(mxs_dma->dma_device.dev,
492 "maximum number of sg exceeded: %d > %d\n",
493 sg_len, NUM_CCW);
494 goto err_out;
495 }
496
497 mxs_chan->status = DMA_IN_PROGRESS;
498 mxs_chan->flags = 0;
499
500 /*
501 * If the sg is prepared with append flag set, the sg
502 * will be appended to the last prepared sg.
503 */
504 if (idx) {
505 BUG_ON(idx < 1);
506 ccw = &mxs_chan->ccw[idx - 1];
507 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
508 ccw->bits |= CCW_CHAIN;
509 ccw->bits &= ~CCW_IRQ;
510 ccw->bits &= ~CCW_DEC_SEM;
511 } else {
512 idx = 0;
513 }
514
515 if (direction == DMA_TRANS_NONE) {
516 ccw = &mxs_chan->ccw[idx++];
517 pio = (u32 *) sgl;
518
519 for (j = 0; j < sg_len;)
520 ccw->pio_words[j++] = *pio++;
521
522 ccw->bits = 0;
523 ccw->bits |= CCW_IRQ;
524 ccw->bits |= CCW_DEC_SEM;
525 if (flags & MXS_DMA_CTRL_WAIT4END)
526 ccw->bits |= CCW_WAIT4END;
527 ccw->bits |= CCW_HALT_ON_TERM;
528 ccw->bits |= CCW_TERM_FLUSH;
529 ccw->bits |= BF_CCW(sg_len, PIO_NUM);
530 ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
531 if (flags & MXS_DMA_CTRL_WAIT4RDY)
532 ccw->bits |= CCW_WAIT4RDY;
533 } else {
534 for_each_sg(sgl, sg, sg_len, i) {
535 if (sg_dma_len(sg) > MAX_XFER_BYTES) {
536 dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
537 sg_dma_len(sg), MAX_XFER_BYTES);
538 goto err_out;
539 }
540
541 ccw = &mxs_chan->ccw[idx++];
542
543 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
544 ccw->bufaddr = sg->dma_address;
545 ccw->xfer_bytes = sg_dma_len(sg);
546
547 ccw->bits = 0;
548 ccw->bits |= CCW_CHAIN;
549 ccw->bits |= CCW_HALT_ON_TERM;
550 ccw->bits |= CCW_TERM_FLUSH;
551 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
552 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
553 COMMAND);
554
555 if (i + 1 == sg_len) {
556 ccw->bits &= ~CCW_CHAIN;
557 ccw->bits |= CCW_IRQ;
558 ccw->bits |= CCW_DEC_SEM;
559 if (flags & MXS_DMA_CTRL_WAIT4END)
560 ccw->bits |= CCW_WAIT4END;
561 }
562 }
563 }
564 mxs_chan->desc_count = idx;
565
566 return &mxs_chan->desc;
567
568err_out:
569 mxs_chan->status = DMA_ERROR;
570 return NULL;
571}
572
573static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
574 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
575 size_t period_len, enum dma_transfer_direction direction,
576 unsigned long flags)
577{
578 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
579 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
580 u32 num_periods = buf_len / period_len;
581 u32 i = 0, buf = 0;
582
583 if (mxs_chan->status == DMA_IN_PROGRESS)
584 return NULL;
585
586 mxs_chan->status = DMA_IN_PROGRESS;
587 mxs_chan->flags |= MXS_DMA_SG_LOOP;
588 mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
589
590 if (num_periods > NUM_CCW) {
591 dev_err(mxs_dma->dma_device.dev,
592 "maximum number of sg exceeded: %d > %d\n",
593 num_periods, NUM_CCW);
594 goto err_out;
595 }
596
597 if (period_len > MAX_XFER_BYTES) {
598 dev_err(mxs_dma->dma_device.dev,
599 "maximum period size exceeded: %zu > %d\n",
600 period_len, MAX_XFER_BYTES);
601 goto err_out;
602 }
603
604 while (buf < buf_len) {
605 struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
606
607 if (i + 1 == num_periods)
608 ccw->next = mxs_chan->ccw_phys;
609 else
610 ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
611
612 ccw->bufaddr = dma_addr;
613 ccw->xfer_bytes = period_len;
614
615 ccw->bits = 0;
616 ccw->bits |= CCW_CHAIN;
617 ccw->bits |= CCW_IRQ;
618 ccw->bits |= CCW_HALT_ON_TERM;
619 ccw->bits |= CCW_TERM_FLUSH;
620 ccw->bits |= CCW_DEC_SEM;
621 ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
622 MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
623
624 dma_addr += period_len;
625 buf += period_len;
626
627 i++;
628 }
629 mxs_chan->desc_count = i;
630
631 return &mxs_chan->desc;
632
633err_out:
634 mxs_chan->status = DMA_ERROR;
635 return NULL;
636}
637
638static int mxs_dma_terminate_all(struct dma_chan *chan)
639{
640 mxs_dma_reset_chan(chan);
641 mxs_dma_disable_chan(chan);
642
643 return 0;
644}
645
646static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
647 dma_cookie_t cookie, struct dma_tx_state *txstate)
648{
649 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
650 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
651 u32 residue = 0;
652
653 if (mxs_chan->status == DMA_IN_PROGRESS &&
654 mxs_chan->flags & MXS_DMA_SG_LOOP) {
655 struct mxs_dma_ccw *last_ccw;
656 u32 bar;
657
658 last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
659 residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
660
661 bar = readl(addr: mxs_dma->base +
662 HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
663 residue -= bar;
664 }
665
666 dma_set_tx_state(st: txstate, last: chan->completed_cookie, used: chan->cookie,
667 residue);
668
669 return mxs_chan->status;
670}
671
672static int mxs_dma_init(struct mxs_dma_engine *mxs_dma)
673{
674 int ret;
675
676 ret = clk_prepare_enable(clk: mxs_dma->clk);
677 if (ret)
678 return ret;
679
680 ret = stmp_reset_block(mxs_dma->base);
681 if (ret)
682 goto err_out;
683
684 /* enable apbh burst */
685 if (dma_is_apbh(mxs_dma)) {
686 writel(BM_APBH_CTRL0_APB_BURST_EN,
687 addr: mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
688 writel(BM_APBH_CTRL0_APB_BURST8_EN,
689 addr: mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
690 }
691
692 /* enable irq for all the channels */
693 writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
694 addr: mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
695
696err_out:
697 clk_disable_unprepare(clk: mxs_dma->clk);
698 return ret;
699}
700
701struct mxs_dma_filter_param {
702 unsigned int chan_id;
703};
704
705static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
706{
707 struct mxs_dma_filter_param *param = fn_param;
708 struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
709 struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
710 int chan_irq;
711
712 if (chan->chan_id != param->chan_id)
713 return false;
714
715 chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
716 if (chan_irq < 0)
717 return false;
718
719 mxs_chan->chan_irq = chan_irq;
720
721 return true;
722}
723
724static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
725 struct of_dma *ofdma)
726{
727 struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
728 dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
729 struct mxs_dma_filter_param param;
730
731 if (dma_spec->args_count != 1)
732 return NULL;
733
734 param.chan_id = dma_spec->args[0];
735
736 if (param.chan_id >= mxs_dma->nr_channels)
737 return NULL;
738
739 return __dma_request_channel(mask: &mask, fn: mxs_dma_filter_fn, fn_param: &param,
740 np: ofdma->of_node);
741}
742
743static int mxs_dma_probe(struct platform_device *pdev)
744{
745 struct device_node *np = pdev->dev.of_node;
746 const struct mxs_dma_type *dma_type;
747 struct mxs_dma_engine *mxs_dma;
748 int ret, i;
749
750 mxs_dma = devm_kzalloc(dev: &pdev->dev, size: sizeof(*mxs_dma), GFP_KERNEL);
751 if (!mxs_dma)
752 return -ENOMEM;
753
754 ret = of_property_read_u32(np, propname: "dma-channels", out_value: &mxs_dma->nr_channels);
755 if (ret) {
756 dev_err(&pdev->dev, "failed to read dma-channels\n");
757 return ret;
758 }
759
760 dma_type = (struct mxs_dma_type *)of_device_get_match_data(dev: &pdev->dev);
761 mxs_dma->type = dma_type->type;
762 mxs_dma->dev_id = dma_type->id;
763
764 mxs_dma->base = devm_platform_ioremap_resource(pdev, index: 0);
765 if (IS_ERR(ptr: mxs_dma->base))
766 return PTR_ERR(ptr: mxs_dma->base);
767
768 mxs_dma->clk = devm_clk_get(dev: &pdev->dev, NULL);
769 if (IS_ERR(ptr: mxs_dma->clk))
770 return PTR_ERR(ptr: mxs_dma->clk);
771
772 dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
773 dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
774
775 INIT_LIST_HEAD(list: &mxs_dma->dma_device.channels);
776
777 /* Initialize channel parameters */
778 for (i = 0; i < MXS_DMA_CHANNELS; i++) {
779 struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
780
781 mxs_chan->mxs_dma = mxs_dma;
782 mxs_chan->chan.device = &mxs_dma->dma_device;
783 dma_cookie_init(chan: &mxs_chan->chan);
784
785 tasklet_setup(t: &mxs_chan->tasklet, callback: mxs_dma_tasklet);
786
787
788 /* Add the channel to mxs_chan list */
789 list_add_tail(new: &mxs_chan->chan.device_node,
790 head: &mxs_dma->dma_device.channels);
791 }
792
793 ret = mxs_dma_init(mxs_dma);
794 if (ret)
795 return ret;
796
797 mxs_dma->pdev = pdev;
798 mxs_dma->dma_device.dev = &pdev->dev;
799
800 /* mxs_dma gets 65535 bytes maximum sg size */
801 dma_set_max_seg_size(dev: mxs_dma->dma_device.dev, MAX_XFER_BYTES);
802
803 mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
804 mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
805 mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
806 mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
807 mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
808 mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
809 mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
810 mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
811 mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
812 mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
813 mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
814 mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
815 mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
816
817 ret = dmaenginem_async_device_register(device: &mxs_dma->dma_device);
818 if (ret) {
819 dev_err(mxs_dma->dma_device.dev, "unable to register\n");
820 return ret;
821 }
822
823 ret = of_dma_controller_register(np, of_dma_xlate: mxs_dma_xlate, data: mxs_dma);
824 if (ret) {
825 dev_err(mxs_dma->dma_device.dev,
826 "failed to register controller\n");
827 }
828
829 dev_info(mxs_dma->dma_device.dev, "initialized\n");
830
831 return 0;
832}
833
834static struct platform_driver mxs_dma_driver = {
835 .driver = {
836 .name = "mxs-dma",
837 .of_match_table = mxs_dma_dt_ids,
838 },
839 .probe = mxs_dma_probe,
840};
841
842builtin_platform_driver(mxs_dma_driver);
843

source code of linux/drivers/dma/mxs-dma.c