1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5
6#include <linux/arm-smccc.h>
7#include <linux/clk.h>
8#include <linux/completion.h>
9#include <linux/cpumask.h>
10#include <linux/dma-mapping.h>
11#include <linux/export.h>
12#include <linux/firmware/qcom/qcom_scm.h>
13#include <linux/init.h>
14#include <linux/interconnect.h>
15#include <linux/interrupt.h>
16#include <linux/module.h>
17#include <linux/of.h>
18#include <linux/of_address.h>
19#include <linux/of_irq.h>
20#include <linux/of_platform.h>
21#include <linux/platform_device.h>
22#include <linux/reset-controller.h>
23#include <linux/types.h>
24
25#include "qcom_scm.h"
26
27static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
28module_param(download_mode, bool, 0);
29
30struct qcom_scm {
31 struct device *dev;
32 struct clk *core_clk;
33 struct clk *iface_clk;
34 struct clk *bus_clk;
35 struct icc_path *path;
36 struct completion waitq_comp;
37 struct reset_controller_dev reset;
38
39 /* control access to the interconnect path */
40 struct mutex scm_bw_lock;
41 int scm_vote_count;
42
43 u64 dload_mode_addr;
44};
45
46struct qcom_scm_current_perm_info {
47 __le32 vmid;
48 __le32 perm;
49 __le64 ctx;
50 __le32 ctx_size;
51 __le32 unused;
52};
53
54struct qcom_scm_mem_map_info {
55 __le64 mem_addr;
56 __le64 mem_size;
57};
58
59/**
60 * struct qcom_scm_qseecom_resp - QSEECOM SCM call response.
61 * @result: Result or status of the SCM call. See &enum qcom_scm_qseecom_result.
62 * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type.
63 * @data: Response data. The type of this data is given in @resp_type.
64 */
65struct qcom_scm_qseecom_resp {
66 u64 result;
67 u64 resp_type;
68 u64 data;
69};
70
71enum qcom_scm_qseecom_result {
72 QSEECOM_RESULT_SUCCESS = 0,
73 QSEECOM_RESULT_INCOMPLETE = 1,
74 QSEECOM_RESULT_BLOCKED_ON_LISTENER = 2,
75 QSEECOM_RESULT_FAILURE = 0xFFFFFFFF,
76};
77
78enum qcom_scm_qseecom_resp_type {
79 QSEECOM_SCM_RES_APP_ID = 0xEE01,
80 QSEECOM_SCM_RES_QSEOS_LISTENER_ID = 0xEE02,
81};
82
83enum qcom_scm_qseecom_tz_owner {
84 QSEECOM_TZ_OWNER_SIP = 2,
85 QSEECOM_TZ_OWNER_TZ_APPS = 48,
86 QSEECOM_TZ_OWNER_QSEE_OS = 50
87};
88
89enum qcom_scm_qseecom_tz_svc {
90 QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER = 0,
91 QSEECOM_TZ_SVC_APP_MGR = 1,
92 QSEECOM_TZ_SVC_INFO = 6,
93};
94
95enum qcom_scm_qseecom_tz_cmd_app {
96 QSEECOM_TZ_CMD_APP_SEND = 1,
97 QSEECOM_TZ_CMD_APP_LOOKUP = 3,
98};
99
100enum qcom_scm_qseecom_tz_cmd_info {
101 QSEECOM_TZ_CMD_INFO_VERSION = 3,
102};
103
104#define QSEECOM_MAX_APP_NAME_SIZE 64
105
106/* Each bit configures cold/warm boot address for one of the 4 CPUs */
107static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
108 0, BIT(0), BIT(3), BIT(5)
109};
110static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
111 BIT(2), BIT(1), BIT(4), BIT(6)
112};
113
114#define QCOM_SMC_WAITQ_FLAG_WAKE_ONE BIT(0)
115#define QCOM_SMC_WAITQ_FLAG_WAKE_ALL BIT(1)
116
117static const char * const qcom_scm_convention_names[] = {
118 [SMC_CONVENTION_UNKNOWN] = "unknown",
119 [SMC_CONVENTION_ARM_32] = "smc arm 32",
120 [SMC_CONVENTION_ARM_64] = "smc arm 64",
121 [SMC_CONVENTION_LEGACY] = "smc legacy",
122};
123
124static struct qcom_scm *__scm;
125
126static int qcom_scm_clk_enable(void)
127{
128 int ret;
129
130 ret = clk_prepare_enable(clk: __scm->core_clk);
131 if (ret)
132 goto bail;
133
134 ret = clk_prepare_enable(clk: __scm->iface_clk);
135 if (ret)
136 goto disable_core;
137
138 ret = clk_prepare_enable(clk: __scm->bus_clk);
139 if (ret)
140 goto disable_iface;
141
142 return 0;
143
144disable_iface:
145 clk_disable_unprepare(clk: __scm->iface_clk);
146disable_core:
147 clk_disable_unprepare(clk: __scm->core_clk);
148bail:
149 return ret;
150}
151
152static void qcom_scm_clk_disable(void)
153{
154 clk_disable_unprepare(clk: __scm->core_clk);
155 clk_disable_unprepare(clk: __scm->iface_clk);
156 clk_disable_unprepare(clk: __scm->bus_clk);
157}
158
159static int qcom_scm_bw_enable(void)
160{
161 int ret = 0;
162
163 if (!__scm->path)
164 return 0;
165
166 if (IS_ERR(ptr: __scm->path))
167 return -EINVAL;
168
169 mutex_lock(&__scm->scm_bw_lock);
170 if (!__scm->scm_vote_count) {
171 ret = icc_set_bw(path: __scm->path, avg_bw: 0, UINT_MAX);
172 if (ret < 0) {
173 dev_err(__scm->dev, "failed to set bandwidth request\n");
174 goto err_bw;
175 }
176 }
177 __scm->scm_vote_count++;
178err_bw:
179 mutex_unlock(lock: &__scm->scm_bw_lock);
180
181 return ret;
182}
183
184static void qcom_scm_bw_disable(void)
185{
186 if (IS_ERR_OR_NULL(ptr: __scm->path))
187 return;
188
189 mutex_lock(&__scm->scm_bw_lock);
190 if (__scm->scm_vote_count-- == 1)
191 icc_set_bw(path: __scm->path, avg_bw: 0, peak_bw: 0);
192 mutex_unlock(lock: &__scm->scm_bw_lock);
193}
194
195enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
196static DEFINE_SPINLOCK(scm_query_lock);
197
198static enum qcom_scm_convention __get_convention(void)
199{
200 unsigned long flags;
201 struct qcom_scm_desc desc = {
202 .svc = QCOM_SCM_SVC_INFO,
203 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
204 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
205 QCOM_SCM_INFO_IS_CALL_AVAIL) |
206 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
207 .arginfo = QCOM_SCM_ARGS(1),
208 .owner = ARM_SMCCC_OWNER_SIP,
209 };
210 struct qcom_scm_res res;
211 enum qcom_scm_convention probed_convention;
212 int ret;
213 bool forced = false;
214
215 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
216 return qcom_scm_convention;
217
218 /*
219 * Per the "SMC calling convention specification", the 64-bit calling
220 * convention can only be used when the client is 64-bit, otherwise
221 * system will encounter the undefined behaviour.
222 */
223#if IS_ENABLED(CONFIG_ARM64)
224 /*
225 * Device isn't required as there is only one argument - no device
226 * needed to dma_map_single to secure world
227 */
228 probed_convention = SMC_CONVENTION_ARM_64;
229 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
230 if (!ret && res.result[0] == 1)
231 goto found;
232
233 /*
234 * Some SC7180 firmwares didn't implement the
235 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
236 * calling conventions on these firmwares. Luckily we don't make any
237 * early calls into the firmware on these SoCs so the device pointer
238 * will be valid here to check if the compatible matches.
239 */
240 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
241 forced = true;
242 goto found;
243 }
244#endif
245
246 probed_convention = SMC_CONVENTION_ARM_32;
247 ret = __scm_smc_call(NULL, desc: &desc, qcom_convention: probed_convention, res: &res, atomic: true);
248 if (!ret && res.result[0] == 1)
249 goto found;
250
251 probed_convention = SMC_CONVENTION_LEGACY;
252found:
253 spin_lock_irqsave(&scm_query_lock, flags);
254 if (probed_convention != qcom_scm_convention) {
255 qcom_scm_convention = probed_convention;
256 pr_info("qcom_scm: convention: %s%s\n",
257 qcom_scm_convention_names[qcom_scm_convention],
258 forced ? " (forced)" : "");
259 }
260 spin_unlock_irqrestore(lock: &scm_query_lock, flags);
261
262 return qcom_scm_convention;
263}
264
265/**
266 * qcom_scm_call() - Invoke a syscall in the secure world
267 * @dev: device
268 * @desc: Descriptor structure containing arguments and return values
269 * @res: Structure containing results from SMC/HVC call
270 *
271 * Sends a command to the SCM and waits for the command to finish processing.
272 * This should *only* be called in pre-emptible context.
273 */
274static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
275 struct qcom_scm_res *res)
276{
277 might_sleep();
278 switch (__get_convention()) {
279 case SMC_CONVENTION_ARM_32:
280 case SMC_CONVENTION_ARM_64:
281 return scm_smc_call(dev, desc, res, false);
282 case SMC_CONVENTION_LEGACY:
283 return scm_legacy_call(dev, desc, res);
284 default:
285 pr_err("Unknown current SCM calling convention.\n");
286 return -EINVAL;
287 }
288}
289
290/**
291 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
292 * @dev: device
293 * @desc: Descriptor structure containing arguments and return values
294 * @res: Structure containing results from SMC/HVC call
295 *
296 * Sends a command to the SCM and waits for the command to finish processing.
297 * This can be called in atomic context.
298 */
299static int qcom_scm_call_atomic(struct device *dev,
300 const struct qcom_scm_desc *desc,
301 struct qcom_scm_res *res)
302{
303 switch (__get_convention()) {
304 case SMC_CONVENTION_ARM_32:
305 case SMC_CONVENTION_ARM_64:
306 return scm_smc_call(dev, desc, res, true);
307 case SMC_CONVENTION_LEGACY:
308 return scm_legacy_call_atomic(dev, desc, res);
309 default:
310 pr_err("Unknown current SCM calling convention.\n");
311 return -EINVAL;
312 }
313}
314
315static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
316 u32 cmd_id)
317{
318 int ret;
319 struct qcom_scm_desc desc = {
320 .svc = QCOM_SCM_SVC_INFO,
321 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
322 .owner = ARM_SMCCC_OWNER_SIP,
323 };
324 struct qcom_scm_res res;
325
326 desc.arginfo = QCOM_SCM_ARGS(1);
327 switch (__get_convention()) {
328 case SMC_CONVENTION_ARM_32:
329 case SMC_CONVENTION_ARM_64:
330 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
331 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
332 break;
333 case SMC_CONVENTION_LEGACY:
334 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
335 break;
336 default:
337 pr_err("Unknown SMC convention being used\n");
338 return false;
339 }
340
341 ret = qcom_scm_call(dev, desc: &desc, res: &res);
342
343 return ret ? false : !!res.result[0];
344}
345
346static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
347{
348 int cpu;
349 unsigned int flags = 0;
350 struct qcom_scm_desc desc = {
351 .svc = QCOM_SCM_SVC_BOOT,
352 .cmd = QCOM_SCM_BOOT_SET_ADDR,
353 .arginfo = QCOM_SCM_ARGS(2),
354 .owner = ARM_SMCCC_OWNER_SIP,
355 };
356
357 for_each_present_cpu(cpu) {
358 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
359 return -EINVAL;
360 flags |= cpu_bits[cpu];
361 }
362
363 desc.args[0] = flags;
364 desc.args[1] = virt_to_phys(address: entry);
365
366 return qcom_scm_call_atomic(dev: __scm ? __scm->dev : NULL, desc: &desc, NULL);
367}
368
369static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
370{
371 struct qcom_scm_desc desc = {
372 .svc = QCOM_SCM_SVC_BOOT,
373 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
374 .owner = ARM_SMCCC_OWNER_SIP,
375 .arginfo = QCOM_SCM_ARGS(6),
376 .args = {
377 virt_to_phys(address: entry),
378 /* Apply to all CPUs in all affinity levels */
379 ~0ULL, ~0ULL, ~0ULL, ~0ULL,
380 flags,
381 },
382 };
383
384 /* Need a device for DMA of the additional arguments */
385 if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
386 return -EOPNOTSUPP;
387
388 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
389}
390
391/**
392 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
393 * @entry: Entry point function for the cpus
394 *
395 * Set the Linux entry point for the SCM to transfer control to when coming
396 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
397 */
398int qcom_scm_set_warm_boot_addr(void *entry)
399{
400 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
401 /* Fallback to old SCM call */
402 return qcom_scm_set_boot_addr(entry, cpu_bits: qcom_scm_cpu_warm_bits);
403 return 0;
404}
405EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr);
406
407/**
408 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
409 * @entry: Entry point function for the cpus
410 */
411int qcom_scm_set_cold_boot_addr(void *entry)
412{
413 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
414 /* Fallback to old SCM call */
415 return qcom_scm_set_boot_addr(entry, cpu_bits: qcom_scm_cpu_cold_bits);
416 return 0;
417}
418EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr);
419
420/**
421 * qcom_scm_cpu_power_down() - Power down the cpu
422 * @flags: Flags to flush cache
423 *
424 * This is an end point to power down cpu. If there was a pending interrupt,
425 * the control would return from this function, otherwise, the cpu jumps to the
426 * warm boot entry point set for this cpu upon reset.
427 */
428void qcom_scm_cpu_power_down(u32 flags)
429{
430 struct qcom_scm_desc desc = {
431 .svc = QCOM_SCM_SVC_BOOT,
432 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
433 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
434 .arginfo = QCOM_SCM_ARGS(1),
435 .owner = ARM_SMCCC_OWNER_SIP,
436 };
437
438 qcom_scm_call_atomic(dev: __scm ? __scm->dev : NULL, desc: &desc, NULL);
439}
440EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down);
441
442int qcom_scm_set_remote_state(u32 state, u32 id)
443{
444 struct qcom_scm_desc desc = {
445 .svc = QCOM_SCM_SVC_BOOT,
446 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
447 .arginfo = QCOM_SCM_ARGS(2),
448 .args[0] = state,
449 .args[1] = id,
450 .owner = ARM_SMCCC_OWNER_SIP,
451 };
452 struct qcom_scm_res res;
453 int ret;
454
455 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
456
457 return ret ? : res.result[0];
458}
459EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state);
460
461static int qcom_scm_disable_sdi(void)
462{
463 int ret;
464 struct qcom_scm_desc desc = {
465 .svc = QCOM_SCM_SVC_BOOT,
466 .cmd = QCOM_SCM_BOOT_SDI_CONFIG,
467 .args[0] = 1, /* Disable watchdog debug */
468 .args[1] = 0, /* Disable SDI */
469 .arginfo = QCOM_SCM_ARGS(2),
470 .owner = ARM_SMCCC_OWNER_SIP,
471 };
472 struct qcom_scm_res res;
473
474 ret = qcom_scm_clk_enable();
475 if (ret)
476 return ret;
477 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
478
479 qcom_scm_clk_disable();
480
481 return ret ? : res.result[0];
482}
483
484static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
485{
486 struct qcom_scm_desc desc = {
487 .svc = QCOM_SCM_SVC_BOOT,
488 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
489 .arginfo = QCOM_SCM_ARGS(2),
490 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
491 .owner = ARM_SMCCC_OWNER_SIP,
492 };
493
494 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
495
496 return qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, NULL);
497}
498
499static void qcom_scm_set_download_mode(bool enable)
500{
501 bool avail;
502 int ret = 0;
503
504 avail = __qcom_scm_is_call_available(dev: __scm->dev,
505 QCOM_SCM_SVC_BOOT,
506 QCOM_SCM_BOOT_SET_DLOAD_MODE);
507 if (avail) {
508 ret = __qcom_scm_set_dload_mode(dev: __scm->dev, enable);
509 } else if (__scm->dload_mode_addr) {
510 ret = qcom_scm_io_writel(addr: __scm->dload_mode_addr,
511 val: enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
512 } else {
513 dev_err(__scm->dev,
514 "No available mechanism for setting download mode\n");
515 }
516
517 if (ret)
518 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
519}
520
521/**
522 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
523 * state machine for a given peripheral, using the
524 * metadata
525 * @peripheral: peripheral id
526 * @metadata: pointer to memory containing ELF header, program header table
527 * and optional blob of data used for authenticating the metadata
528 * and the rest of the firmware
529 * @size: size of the metadata
530 * @ctx: optional metadata context
531 *
532 * Return: 0 on success.
533 *
534 * Upon successful return, the PAS metadata context (@ctx) will be used to
535 * track the metadata allocation, this needs to be released by invoking
536 * qcom_scm_pas_metadata_release() by the caller.
537 */
538int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
539 struct qcom_scm_pas_metadata *ctx)
540{
541 dma_addr_t mdata_phys;
542 void *mdata_buf;
543 int ret;
544 struct qcom_scm_desc desc = {
545 .svc = QCOM_SCM_SVC_PIL,
546 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
547 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
548 .args[0] = peripheral,
549 .owner = ARM_SMCCC_OWNER_SIP,
550 };
551 struct qcom_scm_res res;
552
553 /*
554 * During the scm call memory protection will be enabled for the meta
555 * data blob, so make sure it's physically contiguous, 4K aligned and
556 * non-cachable to avoid XPU violations.
557 */
558 mdata_buf = dma_alloc_coherent(dev: __scm->dev, size, dma_handle: &mdata_phys,
559 GFP_KERNEL);
560 if (!mdata_buf) {
561 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
562 return -ENOMEM;
563 }
564 memcpy(mdata_buf, metadata, size);
565
566 ret = qcom_scm_clk_enable();
567 if (ret)
568 goto out;
569
570 ret = qcom_scm_bw_enable();
571 if (ret)
572 return ret;
573
574 desc.args[1] = mdata_phys;
575
576 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
577
578 qcom_scm_bw_disable();
579 qcom_scm_clk_disable();
580
581out:
582 if (ret < 0 || !ctx) {
583 dma_free_coherent(dev: __scm->dev, size, cpu_addr: mdata_buf, dma_handle: mdata_phys);
584 } else if (ctx) {
585 ctx->ptr = mdata_buf;
586 ctx->phys = mdata_phys;
587 ctx->size = size;
588 }
589
590 return ret ? : res.result[0];
591}
592EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image);
593
594/**
595 * qcom_scm_pas_metadata_release() - release metadata context
596 * @ctx: metadata context
597 */
598void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
599{
600 if (!ctx->ptr)
601 return;
602
603 dma_free_coherent(dev: __scm->dev, size: ctx->size, cpu_addr: ctx->ptr, dma_handle: ctx->phys);
604
605 ctx->ptr = NULL;
606 ctx->phys = 0;
607 ctx->size = 0;
608}
609EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release);
610
611/**
612 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
613 * for firmware loading
614 * @peripheral: peripheral id
615 * @addr: start address of memory area to prepare
616 * @size: size of the memory area to prepare
617 *
618 * Returns 0 on success.
619 */
620int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
621{
622 int ret;
623 struct qcom_scm_desc desc = {
624 .svc = QCOM_SCM_SVC_PIL,
625 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
626 .arginfo = QCOM_SCM_ARGS(3),
627 .args[0] = peripheral,
628 .args[1] = addr,
629 .args[2] = size,
630 .owner = ARM_SMCCC_OWNER_SIP,
631 };
632 struct qcom_scm_res res;
633
634 ret = qcom_scm_clk_enable();
635 if (ret)
636 return ret;
637
638 ret = qcom_scm_bw_enable();
639 if (ret)
640 return ret;
641
642 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
643 qcom_scm_bw_disable();
644 qcom_scm_clk_disable();
645
646 return ret ? : res.result[0];
647}
648EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup);
649
650/**
651 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
652 * and reset the remote processor
653 * @peripheral: peripheral id
654 *
655 * Return 0 on success.
656 */
657int qcom_scm_pas_auth_and_reset(u32 peripheral)
658{
659 int ret;
660 struct qcom_scm_desc desc = {
661 .svc = QCOM_SCM_SVC_PIL,
662 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
663 .arginfo = QCOM_SCM_ARGS(1),
664 .args[0] = peripheral,
665 .owner = ARM_SMCCC_OWNER_SIP,
666 };
667 struct qcom_scm_res res;
668
669 ret = qcom_scm_clk_enable();
670 if (ret)
671 return ret;
672
673 ret = qcom_scm_bw_enable();
674 if (ret)
675 return ret;
676
677 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
678 qcom_scm_bw_disable();
679 qcom_scm_clk_disable();
680
681 return ret ? : res.result[0];
682}
683EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset);
684
685/**
686 * qcom_scm_pas_shutdown() - Shut down the remote processor
687 * @peripheral: peripheral id
688 *
689 * Returns 0 on success.
690 */
691int qcom_scm_pas_shutdown(u32 peripheral)
692{
693 int ret;
694 struct qcom_scm_desc desc = {
695 .svc = QCOM_SCM_SVC_PIL,
696 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
697 .arginfo = QCOM_SCM_ARGS(1),
698 .args[0] = peripheral,
699 .owner = ARM_SMCCC_OWNER_SIP,
700 };
701 struct qcom_scm_res res;
702
703 ret = qcom_scm_clk_enable();
704 if (ret)
705 return ret;
706
707 ret = qcom_scm_bw_enable();
708 if (ret)
709 return ret;
710
711 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
712
713 qcom_scm_bw_disable();
714 qcom_scm_clk_disable();
715
716 return ret ? : res.result[0];
717}
718EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown);
719
720/**
721 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
722 * available for the given peripherial
723 * @peripheral: peripheral id
724 *
725 * Returns true if PAS is supported for this peripheral, otherwise false.
726 */
727bool qcom_scm_pas_supported(u32 peripheral)
728{
729 int ret;
730 struct qcom_scm_desc desc = {
731 .svc = QCOM_SCM_SVC_PIL,
732 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
733 .arginfo = QCOM_SCM_ARGS(1),
734 .args[0] = peripheral,
735 .owner = ARM_SMCCC_OWNER_SIP,
736 };
737 struct qcom_scm_res res;
738
739 if (!__qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_PIL,
740 QCOM_SCM_PIL_PAS_IS_SUPPORTED))
741 return false;
742
743 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
744
745 return ret ? false : !!res.result[0];
746}
747EXPORT_SYMBOL_GPL(qcom_scm_pas_supported);
748
749static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
750{
751 struct qcom_scm_desc desc = {
752 .svc = QCOM_SCM_SVC_PIL,
753 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
754 .arginfo = QCOM_SCM_ARGS(2),
755 .args[0] = reset,
756 .args[1] = 0,
757 .owner = ARM_SMCCC_OWNER_SIP,
758 };
759 struct qcom_scm_res res;
760 int ret;
761
762 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
763
764 return ret ? : res.result[0];
765}
766
767static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
768 unsigned long idx)
769{
770 if (idx != 0)
771 return -EINVAL;
772
773 return __qcom_scm_pas_mss_reset(dev: __scm->dev, reset: 1);
774}
775
776static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
777 unsigned long idx)
778{
779 if (idx != 0)
780 return -EINVAL;
781
782 return __qcom_scm_pas_mss_reset(dev: __scm->dev, reset: 0);
783}
784
785static const struct reset_control_ops qcom_scm_pas_reset_ops = {
786 .assert = qcom_scm_pas_reset_assert,
787 .deassert = qcom_scm_pas_reset_deassert,
788};
789
790int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
791{
792 struct qcom_scm_desc desc = {
793 .svc = QCOM_SCM_SVC_IO,
794 .cmd = QCOM_SCM_IO_READ,
795 .arginfo = QCOM_SCM_ARGS(1),
796 .args[0] = addr,
797 .owner = ARM_SMCCC_OWNER_SIP,
798 };
799 struct qcom_scm_res res;
800 int ret;
801
802
803 ret = qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, res: &res);
804 if (ret >= 0)
805 *val = res.result[0];
806
807 return ret < 0 ? ret : 0;
808}
809EXPORT_SYMBOL_GPL(qcom_scm_io_readl);
810
811int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
812{
813 struct qcom_scm_desc desc = {
814 .svc = QCOM_SCM_SVC_IO,
815 .cmd = QCOM_SCM_IO_WRITE,
816 .arginfo = QCOM_SCM_ARGS(2),
817 .args[0] = addr,
818 .args[1] = val,
819 .owner = ARM_SMCCC_OWNER_SIP,
820 };
821
822 return qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, NULL);
823}
824EXPORT_SYMBOL_GPL(qcom_scm_io_writel);
825
826/**
827 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
828 * supports restore security config interface.
829 *
830 * Return true if restore-cfg interface is supported, false if not.
831 */
832bool qcom_scm_restore_sec_cfg_available(void)
833{
834 return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_MP,
835 QCOM_SCM_MP_RESTORE_SEC_CFG);
836}
837EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available);
838
839int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
840{
841 struct qcom_scm_desc desc = {
842 .svc = QCOM_SCM_SVC_MP,
843 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
844 .arginfo = QCOM_SCM_ARGS(2),
845 .args[0] = device_id,
846 .args[1] = spare,
847 .owner = ARM_SMCCC_OWNER_SIP,
848 };
849 struct qcom_scm_res res;
850 int ret;
851
852 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
853
854 return ret ? : res.result[0];
855}
856EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg);
857
858int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
859{
860 struct qcom_scm_desc desc = {
861 .svc = QCOM_SCM_SVC_MP,
862 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
863 .arginfo = QCOM_SCM_ARGS(1),
864 .args[0] = spare,
865 .owner = ARM_SMCCC_OWNER_SIP,
866 };
867 struct qcom_scm_res res;
868 int ret;
869
870 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
871
872 if (size)
873 *size = res.result[0];
874
875 return ret ? : res.result[1];
876}
877EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size);
878
879int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
880{
881 struct qcom_scm_desc desc = {
882 .svc = QCOM_SCM_SVC_MP,
883 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
884 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
885 QCOM_SCM_VAL),
886 .args[0] = addr,
887 .args[1] = size,
888 .args[2] = spare,
889 .owner = ARM_SMCCC_OWNER_SIP,
890 };
891 int ret;
892
893 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
894
895 /* the pg table has been initialized already, ignore the error */
896 if (ret == -EPERM)
897 ret = 0;
898
899 return ret;
900}
901EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init);
902
903int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
904{
905 struct qcom_scm_desc desc = {
906 .svc = QCOM_SCM_SVC_MP,
907 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
908 .arginfo = QCOM_SCM_ARGS(2),
909 .args[0] = size,
910 .args[1] = spare,
911 .owner = ARM_SMCCC_OWNER_SIP,
912 };
913
914 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
915}
916EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size);
917
918int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
919 u32 cp_nonpixel_start,
920 u32 cp_nonpixel_size)
921{
922 int ret;
923 struct qcom_scm_desc desc = {
924 .svc = QCOM_SCM_SVC_MP,
925 .cmd = QCOM_SCM_MP_VIDEO_VAR,
926 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
927 QCOM_SCM_VAL, QCOM_SCM_VAL),
928 .args[0] = cp_start,
929 .args[1] = cp_size,
930 .args[2] = cp_nonpixel_start,
931 .args[3] = cp_nonpixel_size,
932 .owner = ARM_SMCCC_OWNER_SIP,
933 };
934 struct qcom_scm_res res;
935
936 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
937
938 return ret ? : res.result[0];
939}
940EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var);
941
942static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
943 size_t mem_sz, phys_addr_t src, size_t src_sz,
944 phys_addr_t dest, size_t dest_sz)
945{
946 int ret;
947 struct qcom_scm_desc desc = {
948 .svc = QCOM_SCM_SVC_MP,
949 .cmd = QCOM_SCM_MP_ASSIGN,
950 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
951 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
952 QCOM_SCM_VAL, QCOM_SCM_VAL),
953 .args[0] = mem_region,
954 .args[1] = mem_sz,
955 .args[2] = src,
956 .args[3] = src_sz,
957 .args[4] = dest,
958 .args[5] = dest_sz,
959 .args[6] = 0,
960 .owner = ARM_SMCCC_OWNER_SIP,
961 };
962 struct qcom_scm_res res;
963
964 ret = qcom_scm_call(dev, desc: &desc, res: &res);
965
966 return ret ? : res.result[0];
967}
968
969/**
970 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
971 * @mem_addr: mem region whose ownership need to be reassigned
972 * @mem_sz: size of the region.
973 * @srcvm: vmid for current set of owners, each set bit in
974 * flag indicate a unique owner
975 * @newvm: array having new owners and corresponding permission
976 * flags
977 * @dest_cnt: number of owners in next set.
978 *
979 * Return negative errno on failure or 0 on success with @srcvm updated.
980 */
981int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
982 u64 *srcvm,
983 const struct qcom_scm_vmperm *newvm,
984 unsigned int dest_cnt)
985{
986 struct qcom_scm_current_perm_info *destvm;
987 struct qcom_scm_mem_map_info *mem_to_map;
988 phys_addr_t mem_to_map_phys;
989 phys_addr_t dest_phys;
990 dma_addr_t ptr_phys;
991 size_t mem_to_map_sz;
992 size_t dest_sz;
993 size_t src_sz;
994 size_t ptr_sz;
995 int next_vm;
996 __le32 *src;
997 void *ptr;
998 int ret, i, b;
999 u64 srcvm_bits = *srcvm;
1000
1001 src_sz = hweight64(srcvm_bits) * sizeof(*src);
1002 mem_to_map_sz = sizeof(*mem_to_map);
1003 dest_sz = dest_cnt * sizeof(*destvm);
1004 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
1005 ALIGN(dest_sz, SZ_64);
1006
1007 ptr = dma_alloc_coherent(dev: __scm->dev, size: ptr_sz, dma_handle: &ptr_phys, GFP_KERNEL);
1008 if (!ptr)
1009 return -ENOMEM;
1010
1011 /* Fill source vmid detail */
1012 src = ptr;
1013 i = 0;
1014 for (b = 0; b < BITS_PER_TYPE(u64); b++) {
1015 if (srcvm_bits & BIT(b))
1016 src[i++] = cpu_to_le32(b);
1017 }
1018
1019 /* Fill details of mem buff to map */
1020 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
1021 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
1022 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
1023 mem_to_map->mem_size = cpu_to_le64(mem_sz);
1024
1025 next_vm = 0;
1026 /* Fill details of next vmid detail */
1027 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1028 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
1029 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
1030 destvm->vmid = cpu_to_le32(newvm->vmid);
1031 destvm->perm = cpu_to_le32(newvm->perm);
1032 destvm->ctx = 0;
1033 destvm->ctx_size = 0;
1034 next_vm |= BIT(newvm->vmid);
1035 }
1036
1037 ret = __qcom_scm_assign_mem(dev: __scm->dev, mem_region: mem_to_map_phys, mem_sz: mem_to_map_sz,
1038 src: ptr_phys, src_sz, dest: dest_phys, dest_sz);
1039 dma_free_coherent(dev: __scm->dev, size: ptr_sz, cpu_addr: ptr, dma_handle: ptr_phys);
1040 if (ret) {
1041 dev_err(__scm->dev,
1042 "Assign memory protection call failed %d\n", ret);
1043 return -EINVAL;
1044 }
1045
1046 *srcvm = next_vm;
1047 return 0;
1048}
1049EXPORT_SYMBOL_GPL(qcom_scm_assign_mem);
1050
1051/**
1052 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
1053 */
1054bool qcom_scm_ocmem_lock_available(void)
1055{
1056 return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_OCMEM,
1057 QCOM_SCM_OCMEM_LOCK_CMD);
1058}
1059EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available);
1060
1061/**
1062 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
1063 * region to the specified initiator
1064 *
1065 * @id: tz initiator id
1066 * @offset: OCMEM offset
1067 * @size: OCMEM size
1068 * @mode: access mode (WIDE/NARROW)
1069 */
1070int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
1071 u32 mode)
1072{
1073 struct qcom_scm_desc desc = {
1074 .svc = QCOM_SCM_SVC_OCMEM,
1075 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
1076 .args[0] = id,
1077 .args[1] = offset,
1078 .args[2] = size,
1079 .args[3] = mode,
1080 .arginfo = QCOM_SCM_ARGS(4),
1081 };
1082
1083 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1084}
1085EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock);
1086
1087/**
1088 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1089 * region from the specified initiator
1090 *
1091 * @id: tz initiator id
1092 * @offset: OCMEM offset
1093 * @size: OCMEM size
1094 */
1095int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1096{
1097 struct qcom_scm_desc desc = {
1098 .svc = QCOM_SCM_SVC_OCMEM,
1099 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1100 .args[0] = id,
1101 .args[1] = offset,
1102 .args[2] = size,
1103 .arginfo = QCOM_SCM_ARGS(3),
1104 };
1105
1106 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1107}
1108EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock);
1109
1110/**
1111 * qcom_scm_ice_available() - Is the ICE key programming interface available?
1112 *
1113 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1114 * qcom_scm_ice_set_key() are available.
1115 */
1116bool qcom_scm_ice_available(void)
1117{
1118 return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES,
1119 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1120 __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES,
1121 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1122}
1123EXPORT_SYMBOL_GPL(qcom_scm_ice_available);
1124
1125/**
1126 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1127 * @index: the keyslot to invalidate
1128 *
1129 * The UFSHCI and eMMC standards define a standard way to do this, but it
1130 * doesn't work on these SoCs; only this SCM call does.
1131 *
1132 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1133 * call doesn't specify which ICE instance the keyslot belongs to.
1134 *
1135 * Return: 0 on success; -errno on failure.
1136 */
1137int qcom_scm_ice_invalidate_key(u32 index)
1138{
1139 struct qcom_scm_desc desc = {
1140 .svc = QCOM_SCM_SVC_ES,
1141 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1142 .arginfo = QCOM_SCM_ARGS(1),
1143 .args[0] = index,
1144 .owner = ARM_SMCCC_OWNER_SIP,
1145 };
1146
1147 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1148}
1149EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key);
1150
1151/**
1152 * qcom_scm_ice_set_key() - Set an inline encryption key
1153 * @index: the keyslot into which to set the key
1154 * @key: the key to program
1155 * @key_size: the size of the key in bytes
1156 * @cipher: the encryption algorithm the key is for
1157 * @data_unit_size: the encryption data unit size, i.e. the size of each
1158 * individual plaintext and ciphertext. Given in 512-byte
1159 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1160 *
1161 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1162 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1163 *
1164 * The UFSHCI and eMMC standards define a standard way to do this, but it
1165 * doesn't work on these SoCs; only this SCM call does.
1166 *
1167 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1168 * call doesn't specify which ICE instance the keyslot belongs to.
1169 *
1170 * Return: 0 on success; -errno on failure.
1171 */
1172int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1173 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1174{
1175 struct qcom_scm_desc desc = {
1176 .svc = QCOM_SCM_SVC_ES,
1177 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1178 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1179 QCOM_SCM_VAL, QCOM_SCM_VAL,
1180 QCOM_SCM_VAL),
1181 .args[0] = index,
1182 .args[2] = key_size,
1183 .args[3] = cipher,
1184 .args[4] = data_unit_size,
1185 .owner = ARM_SMCCC_OWNER_SIP,
1186 };
1187 void *keybuf;
1188 dma_addr_t key_phys;
1189 int ret;
1190
1191 /*
1192 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1193 * physical address that's been properly flushed. The sanctioned way to
1194 * do this is by using the DMA API. But as is best practice for crypto
1195 * keys, we also must wipe the key after use. This makes kmemdup() +
1196 * dma_map_single() not clearly correct, since the DMA API can use
1197 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1198 * keys is normally rare and thus not performance-critical.
1199 */
1200
1201 keybuf = dma_alloc_coherent(dev: __scm->dev, size: key_size, dma_handle: &key_phys,
1202 GFP_KERNEL);
1203 if (!keybuf)
1204 return -ENOMEM;
1205 memcpy(keybuf, key, key_size);
1206 desc.args[1] = key_phys;
1207
1208 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1209
1210 memzero_explicit(s: keybuf, count: key_size);
1211
1212 dma_free_coherent(dev: __scm->dev, size: key_size, cpu_addr: keybuf, dma_handle: key_phys);
1213 return ret;
1214}
1215EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key);
1216
1217/**
1218 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1219 *
1220 * Return true if HDCP is supported, false if not.
1221 */
1222bool qcom_scm_hdcp_available(void)
1223{
1224 bool avail;
1225 int ret = qcom_scm_clk_enable();
1226
1227 if (ret)
1228 return ret;
1229
1230 avail = __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_HDCP,
1231 QCOM_SCM_HDCP_INVOKE);
1232
1233 qcom_scm_clk_disable();
1234
1235 return avail;
1236}
1237EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available);
1238
1239/**
1240 * qcom_scm_hdcp_req() - Send HDCP request.
1241 * @req: HDCP request array
1242 * @req_cnt: HDCP request array count
1243 * @resp: response buffer passed to SCM
1244 *
1245 * Write HDCP register(s) through SCM.
1246 */
1247int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1248{
1249 int ret;
1250 struct qcom_scm_desc desc = {
1251 .svc = QCOM_SCM_SVC_HDCP,
1252 .cmd = QCOM_SCM_HDCP_INVOKE,
1253 .arginfo = QCOM_SCM_ARGS(10),
1254 .args = {
1255 req[0].addr,
1256 req[0].val,
1257 req[1].addr,
1258 req[1].val,
1259 req[2].addr,
1260 req[2].val,
1261 req[3].addr,
1262 req[3].val,
1263 req[4].addr,
1264 req[4].val
1265 },
1266 .owner = ARM_SMCCC_OWNER_SIP,
1267 };
1268 struct qcom_scm_res res;
1269
1270 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1271 return -ERANGE;
1272
1273 ret = qcom_scm_clk_enable();
1274 if (ret)
1275 return ret;
1276
1277 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res);
1278 *resp = res.result[0];
1279
1280 qcom_scm_clk_disable();
1281
1282 return ret;
1283}
1284EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req);
1285
1286int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1287{
1288 struct qcom_scm_desc desc = {
1289 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1290 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1291 .arginfo = QCOM_SCM_ARGS(3),
1292 .args[0] = sec_id,
1293 .args[1] = ctx_num,
1294 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1295 .owner = ARM_SMCCC_OWNER_SIP,
1296 };
1297
1298 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1299}
1300EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format);
1301
1302int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1303{
1304 struct qcom_scm_desc desc = {
1305 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1306 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1307 .arginfo = QCOM_SCM_ARGS(2),
1308 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1309 .args[1] = en,
1310 .owner = ARM_SMCCC_OWNER_SIP,
1311 };
1312
1313
1314 return qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, NULL);
1315}
1316EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle);
1317
1318bool qcom_scm_lmh_dcvsh_available(void)
1319{
1320 return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1321}
1322EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available);
1323
1324int qcom_scm_lmh_profile_change(u32 profile_id)
1325{
1326 struct qcom_scm_desc desc = {
1327 .svc = QCOM_SCM_SVC_LMH,
1328 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1329 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1330 .args[0] = profile_id,
1331 .owner = ARM_SMCCC_OWNER_SIP,
1332 };
1333
1334 return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1335}
1336EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change);
1337
1338int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1339 u64 limit_node, u32 node_id, u64 version)
1340{
1341 dma_addr_t payload_phys;
1342 u32 *payload_buf;
1343 int ret, payload_size = 5 * sizeof(u32);
1344
1345 struct qcom_scm_desc desc = {
1346 .svc = QCOM_SCM_SVC_LMH,
1347 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1348 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1349 QCOM_SCM_VAL, QCOM_SCM_VAL),
1350 .args[1] = payload_size,
1351 .args[2] = limit_node,
1352 .args[3] = node_id,
1353 .args[4] = version,
1354 .owner = ARM_SMCCC_OWNER_SIP,
1355 };
1356
1357 payload_buf = dma_alloc_coherent(dev: __scm->dev, size: payload_size, dma_handle: &payload_phys, GFP_KERNEL);
1358 if (!payload_buf)
1359 return -ENOMEM;
1360
1361 payload_buf[0] = payload_fn;
1362 payload_buf[1] = 0;
1363 payload_buf[2] = payload_reg;
1364 payload_buf[3] = 1;
1365 payload_buf[4] = payload_val;
1366
1367 desc.args[0] = payload_phys;
1368
1369 ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL);
1370
1371 dma_free_coherent(dev: __scm->dev, size: payload_size, cpu_addr: payload_buf, dma_handle: payload_phys);
1372 return ret;
1373}
1374EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh);
1375
1376static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1377{
1378 struct device_node *tcsr;
1379 struct device_node *np = dev->of_node;
1380 struct resource res;
1381 u32 offset;
1382 int ret;
1383
1384 tcsr = of_parse_phandle(np, phandle_name: "qcom,dload-mode", index: 0);
1385 if (!tcsr)
1386 return 0;
1387
1388 ret = of_address_to_resource(dev: tcsr, index: 0, r: &res);
1389 of_node_put(node: tcsr);
1390 if (ret)
1391 return ret;
1392
1393 ret = of_property_read_u32_index(np, propname: "qcom,dload-mode", index: 1, out_value: &offset);
1394 if (ret < 0)
1395 return ret;
1396
1397 *addr = res.start + offset;
1398
1399 return 0;
1400}
1401
1402#ifdef CONFIG_QCOM_QSEECOM
1403
1404/* Lock for QSEECOM SCM call executions */
1405static DEFINE_MUTEX(qcom_scm_qseecom_call_lock);
1406
1407static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1408 struct qcom_scm_qseecom_resp *res)
1409{
1410 struct qcom_scm_res scm_res = {};
1411 int status;
1412
1413 /*
1414 * QSEECOM SCM calls should not be executed concurrently. Therefore, we
1415 * require the respective call lock to be held.
1416 */
1417 lockdep_assert_held(&qcom_scm_qseecom_call_lock);
1418
1419 status = qcom_scm_call(dev: __scm->dev, desc, res: &scm_res);
1420
1421 res->result = scm_res.result[0];
1422 res->resp_type = scm_res.result[1];
1423 res->data = scm_res.result[2];
1424
1425 if (status)
1426 return status;
1427
1428 return 0;
1429}
1430
1431/**
1432 * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call.
1433 * @desc: SCM call descriptor.
1434 * @res: SCM call response (output).
1435 *
1436 * Performs the QSEECOM SCM call described by @desc, returning the response in
1437 * @rsp.
1438 *
1439 * Return: Zero on success, nonzero on failure.
1440 */
1441static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc,
1442 struct qcom_scm_qseecom_resp *res)
1443{
1444 int status;
1445
1446 /*
1447 * Note: Multiple QSEECOM SCM calls should not be executed same time,
1448 * so lock things here. This needs to be extended to callback/listener
1449 * handling when support for that is implemented.
1450 */
1451
1452 mutex_lock(&qcom_scm_qseecom_call_lock);
1453 status = __qcom_scm_qseecom_call(desc, res);
1454 mutex_unlock(lock: &qcom_scm_qseecom_call_lock);
1455
1456 dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n",
1457 __func__, desc->owner, desc->svc, desc->cmd, res->result,
1458 res->resp_type, res->data);
1459
1460 if (status) {
1461 dev_err(__scm->dev, "qseecom: scm call failed with error %d\n", status);
1462 return status;
1463 }
1464
1465 /*
1466 * TODO: Handle incomplete and blocked calls:
1467 *
1468 * Incomplete and blocked calls are not supported yet. Some devices
1469 * and/or commands require those, some don't. Let's warn about them
1470 * prominently in case someone attempts to try these commands with a
1471 * device/command combination that isn't supported yet.
1472 */
1473 WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE);
1474 WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER);
1475
1476 return 0;
1477}
1478
1479/**
1480 * qcom_scm_qseecom_get_version() - Query the QSEECOM version.
1481 * @version: Pointer where the QSEECOM version will be stored.
1482 *
1483 * Performs the QSEECOM SCM querying the QSEECOM version currently running in
1484 * the TrustZone.
1485 *
1486 * Return: Zero on success, nonzero on failure.
1487 */
1488static int qcom_scm_qseecom_get_version(u32 *version)
1489{
1490 struct qcom_scm_desc desc = {};
1491 struct qcom_scm_qseecom_resp res = {};
1492 u32 feature = 10;
1493 int ret;
1494
1495 desc.owner = QSEECOM_TZ_OWNER_SIP;
1496 desc.svc = QSEECOM_TZ_SVC_INFO;
1497 desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION;
1498 desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL);
1499 desc.args[0] = feature;
1500
1501 ret = qcom_scm_qseecom_call(desc: &desc, res: &res);
1502 if (ret)
1503 return ret;
1504
1505 *version = res.result;
1506 return 0;
1507}
1508
1509/**
1510 * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name.
1511 * @app_name: The name of the app.
1512 * @app_id: The returned app ID.
1513 *
1514 * Query and return the application ID of the SEE app identified by the given
1515 * name. This returned ID is the unique identifier of the app required for
1516 * subsequent communication.
1517 *
1518 * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been
1519 * loaded or could not be found.
1520 */
1521int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id)
1522{
1523 unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE;
1524 unsigned long app_name_len = strlen(app_name);
1525 struct qcom_scm_desc desc = {};
1526 struct qcom_scm_qseecom_resp res = {};
1527 dma_addr_t name_buf_phys;
1528 char *name_buf;
1529 int status;
1530
1531 if (app_name_len >= name_buf_size)
1532 return -EINVAL;
1533
1534 name_buf = kzalloc(size: name_buf_size, GFP_KERNEL);
1535 if (!name_buf)
1536 return -ENOMEM;
1537
1538 memcpy(name_buf, app_name, app_name_len);
1539
1540 name_buf_phys = dma_map_single(__scm->dev, name_buf, name_buf_size, DMA_TO_DEVICE);
1541 status = dma_mapping_error(dev: __scm->dev, dma_addr: name_buf_phys);
1542 if (status) {
1543 kfree(objp: name_buf);
1544 dev_err(__scm->dev, "qseecom: failed to map dma address\n");
1545 return status;
1546 }
1547
1548 desc.owner = QSEECOM_TZ_OWNER_QSEE_OS;
1549 desc.svc = QSEECOM_TZ_SVC_APP_MGR;
1550 desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP;
1551 desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL);
1552 desc.args[0] = name_buf_phys;
1553 desc.args[1] = app_name_len;
1554
1555 status = qcom_scm_qseecom_call(desc: &desc, res: &res);
1556 dma_unmap_single(__scm->dev, name_buf_phys, name_buf_size, DMA_TO_DEVICE);
1557 kfree(objp: name_buf);
1558
1559 if (status)
1560 return status;
1561
1562 if (res.result == QSEECOM_RESULT_FAILURE)
1563 return -ENOENT;
1564
1565 if (res.result != QSEECOM_RESULT_SUCCESS)
1566 return -EINVAL;
1567
1568 if (res.resp_type != QSEECOM_SCM_RES_APP_ID)
1569 return -EINVAL;
1570
1571 *app_id = res.data;
1572 return 0;
1573}
1574EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id);
1575
1576/**
1577 * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app.
1578 * @app_id: The ID of the target app.
1579 * @req: Request buffer sent to the app (must be DMA-mappable).
1580 * @req_size: Size of the request buffer.
1581 * @rsp: Response buffer, written to by the app (must be DMA-mappable).
1582 * @rsp_size: Size of the response buffer.
1583 *
1584 * Sends a request to the QSEE app associated with the given ID and read back
1585 * its response. The caller must provide two DMA memory regions, one for the
1586 * request and one for the response, and fill out the @req region with the
1587 * respective (app-specific) request data. The QSEE app reads this and returns
1588 * its response in the @rsp region.
1589 *
1590 * Return: Zero on success, nonzero on failure.
1591 */
1592int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size, void *rsp,
1593 size_t rsp_size)
1594{
1595 struct qcom_scm_qseecom_resp res = {};
1596 struct qcom_scm_desc desc = {};
1597 dma_addr_t req_phys;
1598 dma_addr_t rsp_phys;
1599 int status;
1600
1601 /* Map request buffer */
1602 req_phys = dma_map_single(__scm->dev, req, req_size, DMA_TO_DEVICE);
1603 status = dma_mapping_error(dev: __scm->dev, dma_addr: req_phys);
1604 if (status) {
1605 dev_err(__scm->dev, "qseecom: failed to map request buffer\n");
1606 return status;
1607 }
1608
1609 /* Map response buffer */
1610 rsp_phys = dma_map_single(__scm->dev, rsp, rsp_size, DMA_FROM_DEVICE);
1611 status = dma_mapping_error(dev: __scm->dev, dma_addr: rsp_phys);
1612 if (status) {
1613 dma_unmap_single(__scm->dev, req_phys, req_size, DMA_TO_DEVICE);
1614 dev_err(__scm->dev, "qseecom: failed to map response buffer\n");
1615 return status;
1616 }
1617
1618 /* Set up SCM call data */
1619 desc.owner = QSEECOM_TZ_OWNER_TZ_APPS;
1620 desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER;
1621 desc.cmd = QSEECOM_TZ_CMD_APP_SEND;
1622 desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL,
1623 QCOM_SCM_RW, QCOM_SCM_VAL,
1624 QCOM_SCM_RW, QCOM_SCM_VAL);
1625 desc.args[0] = app_id;
1626 desc.args[1] = req_phys;
1627 desc.args[2] = req_size;
1628 desc.args[3] = rsp_phys;
1629 desc.args[4] = rsp_size;
1630
1631 /* Perform call */
1632 status = qcom_scm_qseecom_call(desc: &desc, res: &res);
1633
1634 /* Unmap buffers */
1635 dma_unmap_single(__scm->dev, rsp_phys, rsp_size, DMA_FROM_DEVICE);
1636 dma_unmap_single(__scm->dev, req_phys, req_size, DMA_TO_DEVICE);
1637
1638 if (status)
1639 return status;
1640
1641 if (res.result != QSEECOM_RESULT_SUCCESS)
1642 return -EIO;
1643
1644 return 0;
1645}
1646EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send);
1647
1648/*
1649 * We do not yet support re-entrant calls via the qseecom interface. To prevent
1650 + any potential issues with this, only allow validated machines for now.
1651 */
1652static const struct of_device_id qcom_scm_qseecom_allowlist[] = {
1653 { .compatible = "lenovo,thinkpad-x13s", },
1654 { }
1655};
1656
1657static bool qcom_scm_qseecom_machine_is_allowed(void)
1658{
1659 struct device_node *np;
1660 bool match;
1661
1662 np = of_find_node_by_path(path: "/");
1663 if (!np)
1664 return false;
1665
1666 match = of_match_node(matches: qcom_scm_qseecom_allowlist, node: np);
1667 of_node_put(node: np);
1668
1669 return match;
1670}
1671
1672static void qcom_scm_qseecom_free(void *data)
1673{
1674 struct platform_device *qseecom_dev = data;
1675
1676 platform_device_del(pdev: qseecom_dev);
1677 platform_device_put(pdev: qseecom_dev);
1678}
1679
1680static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1681{
1682 struct platform_device *qseecom_dev;
1683 u32 version;
1684 int ret;
1685
1686 /*
1687 * Note: We do two steps of validation here: First, we try to query the
1688 * QSEECOM version as a check to see if the interface exists on this
1689 * device. Second, we check against known good devices due to current
1690 * driver limitations (see comment in qcom_scm_qseecom_allowlist).
1691 *
1692 * Note that we deliberately do the machine check after the version
1693 * check so that we can log potentially supported devices. This should
1694 * be safe as downstream sources indicate that the version query is
1695 * neither blocking nor reentrant.
1696 */
1697 ret = qcom_scm_qseecom_get_version(version: &version);
1698 if (ret)
1699 return 0;
1700
1701 dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n", version);
1702
1703 if (!qcom_scm_qseecom_machine_is_allowed()) {
1704 dev_info(scm->dev, "qseecom: untested machine, skipping\n");
1705 return 0;
1706 }
1707
1708 /*
1709 * Set up QSEECOM interface device. All application clients will be
1710 * set up and managed by the corresponding driver for it.
1711 */
1712 qseecom_dev = platform_device_alloc(name: "qcom_qseecom", id: -1);
1713 if (!qseecom_dev)
1714 return -ENOMEM;
1715
1716 qseecom_dev->dev.parent = scm->dev;
1717
1718 ret = platform_device_add(pdev: qseecom_dev);
1719 if (ret) {
1720 platform_device_put(pdev: qseecom_dev);
1721 return ret;
1722 }
1723
1724 return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev);
1725}
1726
1727#else /* CONFIG_QCOM_QSEECOM */
1728
1729static int qcom_scm_qseecom_init(struct qcom_scm *scm)
1730{
1731 return 0;
1732}
1733
1734#endif /* CONFIG_QCOM_QSEECOM */
1735
1736/**
1737 * qcom_scm_is_available() - Checks if SCM is available
1738 */
1739bool qcom_scm_is_available(void)
1740{
1741 return !!__scm;
1742}
1743EXPORT_SYMBOL_GPL(qcom_scm_is_available);
1744
1745static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx)
1746{
1747 /* FW currently only supports a single wq_ctx (zero).
1748 * TODO: Update this logic to include dynamic allocation and lookup of
1749 * completion structs when FW supports more wq_ctx values.
1750 */
1751 if (wq_ctx != 0) {
1752 dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n");
1753 return -EINVAL;
1754 }
1755
1756 return 0;
1757}
1758
1759int qcom_scm_wait_for_wq_completion(u32 wq_ctx)
1760{
1761 int ret;
1762
1763 ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1764 if (ret)
1765 return ret;
1766
1767 wait_for_completion(&__scm->waitq_comp);
1768
1769 return 0;
1770}
1771
1772static int qcom_scm_waitq_wakeup(struct qcom_scm *scm, unsigned int wq_ctx)
1773{
1774 int ret;
1775
1776 ret = qcom_scm_assert_valid_wq_ctx(wq_ctx);
1777 if (ret)
1778 return ret;
1779
1780 complete(&__scm->waitq_comp);
1781
1782 return 0;
1783}
1784
1785static irqreturn_t qcom_scm_irq_handler(int irq, void *data)
1786{
1787 int ret;
1788 struct qcom_scm *scm = data;
1789 u32 wq_ctx, flags, more_pending = 0;
1790
1791 do {
1792 ret = scm_get_wq_ctx(wq_ctx: &wq_ctx, flags: &flags, more_pending: &more_pending);
1793 if (ret) {
1794 dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n", ret);
1795 goto out;
1796 }
1797
1798 if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE &&
1799 flags != QCOM_SMC_WAITQ_FLAG_WAKE_ALL) {
1800 dev_err(scm->dev, "Invalid flags found for wq_ctx: %u\n", flags);
1801 goto out;
1802 }
1803
1804 ret = qcom_scm_waitq_wakeup(scm, wq_ctx);
1805 if (ret)
1806 goto out;
1807 } while (more_pending);
1808
1809out:
1810 return IRQ_HANDLED;
1811}
1812
1813static int qcom_scm_probe(struct platform_device *pdev)
1814{
1815 struct qcom_scm *scm;
1816 int irq, ret;
1817
1818 scm = devm_kzalloc(dev: &pdev->dev, size: sizeof(*scm), GFP_KERNEL);
1819 if (!scm)
1820 return -ENOMEM;
1821
1822 ret = qcom_scm_find_dload_address(dev: &pdev->dev, addr: &scm->dload_mode_addr);
1823 if (ret < 0)
1824 return ret;
1825
1826 mutex_init(&scm->scm_bw_lock);
1827
1828 scm->path = devm_of_icc_get(dev: &pdev->dev, NULL);
1829 if (IS_ERR(ptr: scm->path))
1830 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: scm->path),
1831 fmt: "failed to acquire interconnect path\n");
1832
1833 scm->core_clk = devm_clk_get_optional(dev: &pdev->dev, id: "core");
1834 if (IS_ERR(ptr: scm->core_clk))
1835 return PTR_ERR(ptr: scm->core_clk);
1836
1837 scm->iface_clk = devm_clk_get_optional(dev: &pdev->dev, id: "iface");
1838 if (IS_ERR(ptr: scm->iface_clk))
1839 return PTR_ERR(ptr: scm->iface_clk);
1840
1841 scm->bus_clk = devm_clk_get_optional(dev: &pdev->dev, id: "bus");
1842 if (IS_ERR(ptr: scm->bus_clk))
1843 return PTR_ERR(ptr: scm->bus_clk);
1844
1845 scm->reset.ops = &qcom_scm_pas_reset_ops;
1846 scm->reset.nr_resets = 1;
1847 scm->reset.of_node = pdev->dev.of_node;
1848 ret = devm_reset_controller_register(dev: &pdev->dev, rcdev: &scm->reset);
1849 if (ret)
1850 return ret;
1851
1852 /* vote for max clk rate for highest performance */
1853 ret = clk_set_rate(clk: scm->core_clk, INT_MAX);
1854 if (ret)
1855 return ret;
1856
1857 __scm = scm;
1858 __scm->dev = &pdev->dev;
1859
1860 init_completion(x: &__scm->waitq_comp);
1861
1862 irq = platform_get_irq_optional(pdev, 0);
1863 if (irq < 0) {
1864 if (irq != -ENXIO)
1865 return irq;
1866 } else {
1867 ret = devm_request_threaded_irq(dev: __scm->dev, irq, NULL, thread_fn: qcom_scm_irq_handler,
1868 IRQF_ONESHOT, devname: "qcom-scm", dev_id: __scm);
1869 if (ret < 0)
1870 return dev_err_probe(dev: scm->dev, err: ret, fmt: "Failed to request qcom-scm irq\n");
1871 }
1872
1873 __get_convention();
1874
1875 /*
1876 * If requested enable "download mode", from this point on warmboot
1877 * will cause the boot stages to enter download mode, unless
1878 * disabled below by a clean shutdown/reboot.
1879 */
1880 if (download_mode)
1881 qcom_scm_set_download_mode(enable: true);
1882
1883
1884 /*
1885 * Disable SDI if indicated by DT that it is enabled by default.
1886 */
1887 if (of_property_read_bool(np: pdev->dev.of_node, propname: "qcom,sdi-enabled"))
1888 qcom_scm_disable_sdi();
1889
1890 /*
1891 * Initialize the QSEECOM interface.
1892 *
1893 * Note: QSEECOM is fairly self-contained and this only adds the
1894 * interface device (the driver of which does most of the heavy
1895 * lifting). So any errors returned here should be either -ENOMEM or
1896 * -EINVAL (with the latter only in case there's a bug in our code).
1897 * This means that there is no need to bring down the whole SCM driver.
1898 * Just log the error instead and let SCM live.
1899 */
1900 ret = qcom_scm_qseecom_init(scm);
1901 WARN(ret < 0, "failed to initialize qseecom: %d\n", ret);
1902
1903 return 0;
1904}
1905
1906static void qcom_scm_shutdown(struct platform_device *pdev)
1907{
1908 /* Clean shutdown, disable download mode to allow normal restart */
1909 qcom_scm_set_download_mode(enable: false);
1910}
1911
1912static const struct of_device_id qcom_scm_dt_match[] = {
1913 { .compatible = "qcom,scm" },
1914
1915 /* Legacy entries kept for backwards compatibility */
1916 { .compatible = "qcom,scm-apq8064" },
1917 { .compatible = "qcom,scm-apq8084" },
1918 { .compatible = "qcom,scm-ipq4019" },
1919 { .compatible = "qcom,scm-msm8953" },
1920 { .compatible = "qcom,scm-msm8974" },
1921 { .compatible = "qcom,scm-msm8996" },
1922 {}
1923};
1924MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1925
1926static struct platform_driver qcom_scm_driver = {
1927 .driver = {
1928 .name = "qcom_scm",
1929 .of_match_table = qcom_scm_dt_match,
1930 .suppress_bind_attrs = true,
1931 },
1932 .probe = qcom_scm_probe,
1933 .shutdown = qcom_scm_shutdown,
1934};
1935
1936static int __init qcom_scm_init(void)
1937{
1938 return platform_driver_register(&qcom_scm_driver);
1939}
1940subsys_initcall(qcom_scm_init);
1941
1942MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1943MODULE_LICENSE("GPL v2");
1944

source code of linux/drivers/firmware/qcom/qcom_scm.c