1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved. |
3 | * Copyright (C) 2015 Linaro Ltd. |
4 | */ |
5 | |
6 | #include <linux/arm-smccc.h> |
7 | #include <linux/bitfield.h> |
8 | #include <linux/bits.h> |
9 | #include <linux/cleanup.h> |
10 | #include <linux/clk.h> |
11 | #include <linux/completion.h> |
12 | #include <linux/cpumask.h> |
13 | #include <linux/dma-mapping.h> |
14 | #include <linux/err.h> |
15 | #include <linux/export.h> |
16 | #include <linux/firmware/qcom/qcom_scm.h> |
17 | #include <linux/firmware/qcom/qcom_tzmem.h> |
18 | #include <linux/init.h> |
19 | #include <linux/interconnect.h> |
20 | #include <linux/interrupt.h> |
21 | #include <linux/kstrtox.h> |
22 | #include <linux/module.h> |
23 | #include <linux/of.h> |
24 | #include <linux/of_address.h> |
25 | #include <linux/of_irq.h> |
26 | #include <linux/of_platform.h> |
27 | #include <linux/of_reserved_mem.h> |
28 | #include <linux/platform_device.h> |
29 | #include <linux/reset-controller.h> |
30 | #include <linux/sizes.h> |
31 | #include <linux/types.h> |
32 | |
33 | #include "qcom_scm.h" |
34 | #include "qcom_tzmem.h" |
35 | |
36 | static u32 download_mode; |
37 | |
38 | struct qcom_scm { |
39 | struct device *dev; |
40 | struct clk *core_clk; |
41 | struct clk *iface_clk; |
42 | struct clk *bus_clk; |
43 | struct icc_path *path; |
44 | struct completion waitq_comp; |
45 | struct reset_controller_dev reset; |
46 | |
47 | /* control access to the interconnect path */ |
48 | struct mutex scm_bw_lock; |
49 | int scm_vote_count; |
50 | |
51 | u64 dload_mode_addr; |
52 | |
53 | struct qcom_tzmem_pool *mempool; |
54 | }; |
55 | |
56 | struct qcom_scm_current_perm_info { |
57 | __le32 vmid; |
58 | __le32 perm; |
59 | __le64 ctx; |
60 | __le32 ctx_size; |
61 | __le32 unused; |
62 | }; |
63 | |
64 | struct qcom_scm_mem_map_info { |
65 | __le64 mem_addr; |
66 | __le64 mem_size; |
67 | }; |
68 | |
69 | /** |
70 | * struct qcom_scm_qseecom_resp - QSEECOM SCM call response. |
71 | * @result: Result or status of the SCM call. See &enum qcom_scm_qseecom_result. |
72 | * @resp_type: Type of the response. See &enum qcom_scm_qseecom_resp_type. |
73 | * @data: Response data. The type of this data is given in @resp_type. |
74 | */ |
75 | struct qcom_scm_qseecom_resp { |
76 | u64 result; |
77 | u64 resp_type; |
78 | u64 data; |
79 | }; |
80 | |
81 | enum qcom_scm_qseecom_result { |
82 | QSEECOM_RESULT_SUCCESS = 0, |
83 | QSEECOM_RESULT_INCOMPLETE = 1, |
84 | QSEECOM_RESULT_BLOCKED_ON_LISTENER = 2, |
85 | QSEECOM_RESULT_FAILURE = 0xFFFFFFFF, |
86 | }; |
87 | |
88 | enum qcom_scm_qseecom_resp_type { |
89 | QSEECOM_SCM_RES_APP_ID = 0xEE01, |
90 | QSEECOM_SCM_RES_QSEOS_LISTENER_ID = 0xEE02, |
91 | }; |
92 | |
93 | enum qcom_scm_qseecom_tz_owner { |
94 | QSEECOM_TZ_OWNER_SIP = 2, |
95 | QSEECOM_TZ_OWNER_TZ_APPS = 48, |
96 | QSEECOM_TZ_OWNER_QSEE_OS = 50 |
97 | }; |
98 | |
99 | enum qcom_scm_qseecom_tz_svc { |
100 | QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER = 0, |
101 | QSEECOM_TZ_SVC_APP_MGR = 1, |
102 | QSEECOM_TZ_SVC_INFO = 6, |
103 | }; |
104 | |
105 | enum qcom_scm_qseecom_tz_cmd_app { |
106 | QSEECOM_TZ_CMD_APP_SEND = 1, |
107 | QSEECOM_TZ_CMD_APP_LOOKUP = 3, |
108 | }; |
109 | |
110 | enum qcom_scm_qseecom_tz_cmd_info { |
111 | QSEECOM_TZ_CMD_INFO_VERSION = 3, |
112 | }; |
113 | |
114 | #define QSEECOM_MAX_APP_NAME_SIZE 64 |
115 | #define SHMBRIDGE_RESULT_NOTSUPP 4 |
116 | |
117 | /* Each bit configures cold/warm boot address for one of the 4 CPUs */ |
118 | static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = { |
119 | 0, BIT(0), BIT(3), BIT(5) |
120 | }; |
121 | static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = { |
122 | BIT(2), BIT(1), BIT(4), BIT(6) |
123 | }; |
124 | |
125 | #define QCOM_SMC_WAITQ_FLAG_WAKE_ONE BIT(0) |
126 | |
127 | #define QCOM_DLOAD_MASK GENMASK(5, 4) |
128 | #define QCOM_DLOAD_NODUMP 0 |
129 | #define QCOM_DLOAD_FULLDUMP 1 |
130 | #define QCOM_DLOAD_MINIDUMP 2 |
131 | #define QCOM_DLOAD_BOTHDUMP 3 |
132 | |
133 | static const char * const qcom_scm_convention_names[] = { |
134 | [SMC_CONVENTION_UNKNOWN] = "unknown" , |
135 | [SMC_CONVENTION_ARM_32] = "smc arm 32" , |
136 | [SMC_CONVENTION_ARM_64] = "smc arm 64" , |
137 | [SMC_CONVENTION_LEGACY] = "smc legacy" , |
138 | }; |
139 | |
140 | static const char * const download_mode_name[] = { |
141 | [QCOM_DLOAD_NODUMP] = "off" , |
142 | [QCOM_DLOAD_FULLDUMP] = "full" , |
143 | [QCOM_DLOAD_MINIDUMP] = "mini" , |
144 | [QCOM_DLOAD_BOTHDUMP] = "full,mini" , |
145 | }; |
146 | |
147 | static struct qcom_scm *__scm; |
148 | |
149 | static int qcom_scm_clk_enable(void) |
150 | { |
151 | int ret; |
152 | |
153 | ret = clk_prepare_enable(clk: __scm->core_clk); |
154 | if (ret) |
155 | goto bail; |
156 | |
157 | ret = clk_prepare_enable(clk: __scm->iface_clk); |
158 | if (ret) |
159 | goto disable_core; |
160 | |
161 | ret = clk_prepare_enable(clk: __scm->bus_clk); |
162 | if (ret) |
163 | goto disable_iface; |
164 | |
165 | return 0; |
166 | |
167 | disable_iface: |
168 | clk_disable_unprepare(clk: __scm->iface_clk); |
169 | disable_core: |
170 | clk_disable_unprepare(clk: __scm->core_clk); |
171 | bail: |
172 | return ret; |
173 | } |
174 | |
175 | static void qcom_scm_clk_disable(void) |
176 | { |
177 | clk_disable_unprepare(clk: __scm->core_clk); |
178 | clk_disable_unprepare(clk: __scm->iface_clk); |
179 | clk_disable_unprepare(clk: __scm->bus_clk); |
180 | } |
181 | |
182 | static int qcom_scm_bw_enable(void) |
183 | { |
184 | int ret = 0; |
185 | |
186 | if (!__scm->path) |
187 | return 0; |
188 | |
189 | mutex_lock(&__scm->scm_bw_lock); |
190 | if (!__scm->scm_vote_count) { |
191 | ret = icc_set_bw(path: __scm->path, avg_bw: 0, UINT_MAX); |
192 | if (ret < 0) { |
193 | dev_err(__scm->dev, "failed to set bandwidth request\n" ); |
194 | goto err_bw; |
195 | } |
196 | } |
197 | __scm->scm_vote_count++; |
198 | err_bw: |
199 | mutex_unlock(lock: &__scm->scm_bw_lock); |
200 | |
201 | return ret; |
202 | } |
203 | |
204 | static void qcom_scm_bw_disable(void) |
205 | { |
206 | if (!__scm->path) |
207 | return; |
208 | |
209 | mutex_lock(&__scm->scm_bw_lock); |
210 | if (__scm->scm_vote_count-- == 1) |
211 | icc_set_bw(path: __scm->path, avg_bw: 0, peak_bw: 0); |
212 | mutex_unlock(lock: &__scm->scm_bw_lock); |
213 | } |
214 | |
215 | enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN; |
216 | static DEFINE_SPINLOCK(scm_query_lock); |
217 | |
218 | struct qcom_tzmem_pool *qcom_scm_get_tzmem_pool(void) |
219 | { |
220 | if (!qcom_scm_is_available()) |
221 | return NULL; |
222 | |
223 | return __scm->mempool; |
224 | } |
225 | |
226 | static enum qcom_scm_convention __get_convention(void) |
227 | { |
228 | unsigned long flags; |
229 | struct qcom_scm_desc desc = { |
230 | .svc = QCOM_SCM_SVC_INFO, |
231 | .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, |
232 | .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO, |
233 | QCOM_SCM_INFO_IS_CALL_AVAIL) | |
234 | (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT), |
235 | .arginfo = QCOM_SCM_ARGS(1), |
236 | .owner = ARM_SMCCC_OWNER_SIP, |
237 | }; |
238 | struct qcom_scm_res res; |
239 | enum qcom_scm_convention probed_convention; |
240 | int ret; |
241 | bool forced = false; |
242 | |
243 | if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN)) |
244 | return qcom_scm_convention; |
245 | |
246 | /* |
247 | * Per the "SMC calling convention specification", the 64-bit calling |
248 | * convention can only be used when the client is 64-bit, otherwise |
249 | * system will encounter the undefined behaviour. |
250 | */ |
251 | #if IS_ENABLED(CONFIG_ARM64) |
252 | /* |
253 | * Device isn't required as there is only one argument - no device |
254 | * needed to dma_map_single to secure world |
255 | */ |
256 | probed_convention = SMC_CONVENTION_ARM_64; |
257 | ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); |
258 | if (!ret && res.result[0] == 1) |
259 | goto found; |
260 | |
261 | /* |
262 | * Some SC7180 firmwares didn't implement the |
263 | * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64 |
264 | * calling conventions on these firmwares. Luckily we don't make any |
265 | * early calls into the firmware on these SoCs so the device pointer |
266 | * will be valid here to check if the compatible matches. |
267 | */ |
268 | if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180" )) { |
269 | forced = true; |
270 | goto found; |
271 | } |
272 | #endif |
273 | |
274 | probed_convention = SMC_CONVENTION_ARM_32; |
275 | ret = __scm_smc_call(NULL, desc: &desc, qcom_convention: probed_convention, res: &res, atomic: true); |
276 | if (!ret && res.result[0] == 1) |
277 | goto found; |
278 | |
279 | probed_convention = SMC_CONVENTION_LEGACY; |
280 | found: |
281 | spin_lock_irqsave(&scm_query_lock, flags); |
282 | if (probed_convention != qcom_scm_convention) { |
283 | qcom_scm_convention = probed_convention; |
284 | pr_info("qcom_scm: convention: %s%s\n" , |
285 | qcom_scm_convention_names[qcom_scm_convention], |
286 | forced ? " (forced)" : "" ); |
287 | } |
288 | spin_unlock_irqrestore(lock: &scm_query_lock, flags); |
289 | |
290 | return qcom_scm_convention; |
291 | } |
292 | |
293 | /** |
294 | * qcom_scm_call() - Invoke a syscall in the secure world |
295 | * @dev: device |
296 | * @desc: Descriptor structure containing arguments and return values |
297 | * @res: Structure containing results from SMC/HVC call |
298 | * |
299 | * Sends a command to the SCM and waits for the command to finish processing. |
300 | * This should *only* be called in pre-emptible context. |
301 | */ |
302 | static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc, |
303 | struct qcom_scm_res *res) |
304 | { |
305 | might_sleep(); |
306 | switch (__get_convention()) { |
307 | case SMC_CONVENTION_ARM_32: |
308 | case SMC_CONVENTION_ARM_64: |
309 | return scm_smc_call(dev, desc, res, false); |
310 | case SMC_CONVENTION_LEGACY: |
311 | return scm_legacy_call(dev, desc, res); |
312 | default: |
313 | pr_err("Unknown current SCM calling convention.\n" ); |
314 | return -EINVAL; |
315 | } |
316 | } |
317 | |
318 | /** |
319 | * qcom_scm_call_atomic() - atomic variation of qcom_scm_call() |
320 | * @dev: device |
321 | * @desc: Descriptor structure containing arguments and return values |
322 | * @res: Structure containing results from SMC/HVC call |
323 | * |
324 | * Sends a command to the SCM and waits for the command to finish processing. |
325 | * This can be called in atomic context. |
326 | */ |
327 | static int qcom_scm_call_atomic(struct device *dev, |
328 | const struct qcom_scm_desc *desc, |
329 | struct qcom_scm_res *res) |
330 | { |
331 | switch (__get_convention()) { |
332 | case SMC_CONVENTION_ARM_32: |
333 | case SMC_CONVENTION_ARM_64: |
334 | return scm_smc_call(dev, desc, res, true); |
335 | case SMC_CONVENTION_LEGACY: |
336 | return scm_legacy_call_atomic(dev, desc, res); |
337 | default: |
338 | pr_err("Unknown current SCM calling convention.\n" ); |
339 | return -EINVAL; |
340 | } |
341 | } |
342 | |
343 | static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id, |
344 | u32 cmd_id) |
345 | { |
346 | int ret; |
347 | struct qcom_scm_desc desc = { |
348 | .svc = QCOM_SCM_SVC_INFO, |
349 | .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, |
350 | .owner = ARM_SMCCC_OWNER_SIP, |
351 | }; |
352 | struct qcom_scm_res res; |
353 | |
354 | desc.arginfo = QCOM_SCM_ARGS(1); |
355 | switch (__get_convention()) { |
356 | case SMC_CONVENTION_ARM_32: |
357 | case SMC_CONVENTION_ARM_64: |
358 | desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) | |
359 | (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); |
360 | break; |
361 | case SMC_CONVENTION_LEGACY: |
362 | desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id); |
363 | break; |
364 | default: |
365 | pr_err("Unknown SMC convention being used\n" ); |
366 | return false; |
367 | } |
368 | |
369 | ret = qcom_scm_call(dev, desc: &desc, res: &res); |
370 | |
371 | return ret ? false : !!res.result[0]; |
372 | } |
373 | |
374 | static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits) |
375 | { |
376 | int cpu; |
377 | unsigned int flags = 0; |
378 | struct qcom_scm_desc desc = { |
379 | .svc = QCOM_SCM_SVC_BOOT, |
380 | .cmd = QCOM_SCM_BOOT_SET_ADDR, |
381 | .arginfo = QCOM_SCM_ARGS(2), |
382 | .owner = ARM_SMCCC_OWNER_SIP, |
383 | }; |
384 | |
385 | for_each_present_cpu(cpu) { |
386 | if (cpu >= QCOM_SCM_BOOT_MAX_CPUS) |
387 | return -EINVAL; |
388 | flags |= cpu_bits[cpu]; |
389 | } |
390 | |
391 | desc.args[0] = flags; |
392 | desc.args[1] = virt_to_phys(address: entry); |
393 | |
394 | return qcom_scm_call_atomic(dev: __scm ? __scm->dev : NULL, desc: &desc, NULL); |
395 | } |
396 | |
397 | static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags) |
398 | { |
399 | struct qcom_scm_desc desc = { |
400 | .svc = QCOM_SCM_SVC_BOOT, |
401 | .cmd = QCOM_SCM_BOOT_SET_ADDR_MC, |
402 | .owner = ARM_SMCCC_OWNER_SIP, |
403 | .arginfo = QCOM_SCM_ARGS(6), |
404 | .args = { |
405 | virt_to_phys(address: entry), |
406 | /* Apply to all CPUs in all affinity levels */ |
407 | ~0ULL, ~0ULL, ~0ULL, ~0ULL, |
408 | flags, |
409 | }, |
410 | }; |
411 | |
412 | /* Need a device for DMA of the additional arguments */ |
413 | if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY) |
414 | return -EOPNOTSUPP; |
415 | |
416 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
417 | } |
418 | |
419 | /** |
420 | * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus |
421 | * @entry: Entry point function for the cpus |
422 | * |
423 | * Set the Linux entry point for the SCM to transfer control to when coming |
424 | * out of a power down. CPU power down may be executed on cpuidle or hotplug. |
425 | */ |
426 | int qcom_scm_set_warm_boot_addr(void *entry) |
427 | { |
428 | if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT)) |
429 | /* Fallback to old SCM call */ |
430 | return qcom_scm_set_boot_addr(entry, cpu_bits: qcom_scm_cpu_warm_bits); |
431 | return 0; |
432 | } |
433 | EXPORT_SYMBOL_GPL(qcom_scm_set_warm_boot_addr); |
434 | |
435 | /** |
436 | * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus |
437 | * @entry: Entry point function for the cpus |
438 | */ |
439 | int qcom_scm_set_cold_boot_addr(void *entry) |
440 | { |
441 | if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT)) |
442 | /* Fallback to old SCM call */ |
443 | return qcom_scm_set_boot_addr(entry, cpu_bits: qcom_scm_cpu_cold_bits); |
444 | return 0; |
445 | } |
446 | EXPORT_SYMBOL_GPL(qcom_scm_set_cold_boot_addr); |
447 | |
448 | /** |
449 | * qcom_scm_cpu_power_down() - Power down the cpu |
450 | * @flags: Flags to flush cache |
451 | * |
452 | * This is an end point to power down cpu. If there was a pending interrupt, |
453 | * the control would return from this function, otherwise, the cpu jumps to the |
454 | * warm boot entry point set for this cpu upon reset. |
455 | */ |
456 | void qcom_scm_cpu_power_down(u32 flags) |
457 | { |
458 | struct qcom_scm_desc desc = { |
459 | .svc = QCOM_SCM_SVC_BOOT, |
460 | .cmd = QCOM_SCM_BOOT_TERMINATE_PC, |
461 | .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK, |
462 | .arginfo = QCOM_SCM_ARGS(1), |
463 | .owner = ARM_SMCCC_OWNER_SIP, |
464 | }; |
465 | |
466 | qcom_scm_call_atomic(dev: __scm ? __scm->dev : NULL, desc: &desc, NULL); |
467 | } |
468 | EXPORT_SYMBOL_GPL(qcom_scm_cpu_power_down); |
469 | |
470 | int qcom_scm_set_remote_state(u32 state, u32 id) |
471 | { |
472 | struct qcom_scm_desc desc = { |
473 | .svc = QCOM_SCM_SVC_BOOT, |
474 | .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE, |
475 | .arginfo = QCOM_SCM_ARGS(2), |
476 | .args[0] = state, |
477 | .args[1] = id, |
478 | .owner = ARM_SMCCC_OWNER_SIP, |
479 | }; |
480 | struct qcom_scm_res res; |
481 | int ret; |
482 | |
483 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
484 | |
485 | return ret ? : res.result[0]; |
486 | } |
487 | EXPORT_SYMBOL_GPL(qcom_scm_set_remote_state); |
488 | |
489 | static int qcom_scm_disable_sdi(void) |
490 | { |
491 | int ret; |
492 | struct qcom_scm_desc desc = { |
493 | .svc = QCOM_SCM_SVC_BOOT, |
494 | .cmd = QCOM_SCM_BOOT_SDI_CONFIG, |
495 | .args[0] = 1, /* Disable watchdog debug */ |
496 | .args[1] = 0, /* Disable SDI */ |
497 | .arginfo = QCOM_SCM_ARGS(2), |
498 | .owner = ARM_SMCCC_OWNER_SIP, |
499 | }; |
500 | struct qcom_scm_res res; |
501 | |
502 | ret = qcom_scm_clk_enable(); |
503 | if (ret) |
504 | return ret; |
505 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
506 | |
507 | qcom_scm_clk_disable(); |
508 | |
509 | return ret ? : res.result[0]; |
510 | } |
511 | |
512 | static int __qcom_scm_set_dload_mode(struct device *dev, bool enable) |
513 | { |
514 | struct qcom_scm_desc desc = { |
515 | .svc = QCOM_SCM_SVC_BOOT, |
516 | .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE, |
517 | .arginfo = QCOM_SCM_ARGS(2), |
518 | .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE, |
519 | .owner = ARM_SMCCC_OWNER_SIP, |
520 | }; |
521 | |
522 | desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0; |
523 | |
524 | return qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, NULL); |
525 | } |
526 | |
527 | static int qcom_scm_io_rmw(phys_addr_t addr, unsigned int mask, unsigned int val) |
528 | { |
529 | unsigned int old; |
530 | unsigned int new; |
531 | int ret; |
532 | |
533 | ret = qcom_scm_io_readl(addr, val: &old); |
534 | if (ret) |
535 | return ret; |
536 | |
537 | new = (old & ~mask) | (val & mask); |
538 | |
539 | return qcom_scm_io_writel(addr, val: new); |
540 | } |
541 | |
542 | static void qcom_scm_set_download_mode(u32 dload_mode) |
543 | { |
544 | int ret = 0; |
545 | |
546 | if (__scm->dload_mode_addr) { |
547 | ret = qcom_scm_io_rmw(addr: __scm->dload_mode_addr, QCOM_DLOAD_MASK, |
548 | FIELD_PREP(QCOM_DLOAD_MASK, dload_mode)); |
549 | } else if (__qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_BOOT, |
550 | QCOM_SCM_BOOT_SET_DLOAD_MODE)) { |
551 | ret = __qcom_scm_set_dload_mode(dev: __scm->dev, enable: !!dload_mode); |
552 | } else if (dload_mode) { |
553 | dev_err(__scm->dev, |
554 | "No available mechanism for setting download mode\n" ); |
555 | } |
556 | |
557 | if (ret) |
558 | dev_err(__scm->dev, "failed to set download mode: %d\n" , ret); |
559 | } |
560 | |
561 | /** |
562 | * qcom_scm_pas_init_image() - Initialize peripheral authentication service |
563 | * state machine for a given peripheral, using the |
564 | * metadata |
565 | * @peripheral: peripheral id |
566 | * @metadata: pointer to memory containing ELF header, program header table |
567 | * and optional blob of data used for authenticating the metadata |
568 | * and the rest of the firmware |
569 | * @size: size of the metadata |
570 | * @ctx: optional metadata context |
571 | * |
572 | * Return: 0 on success. |
573 | * |
574 | * Upon successful return, the PAS metadata context (@ctx) will be used to |
575 | * track the metadata allocation, this needs to be released by invoking |
576 | * qcom_scm_pas_metadata_release() by the caller. |
577 | */ |
578 | int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size, |
579 | struct qcom_scm_pas_metadata *ctx) |
580 | { |
581 | dma_addr_t mdata_phys; |
582 | void *mdata_buf; |
583 | int ret; |
584 | struct qcom_scm_desc desc = { |
585 | .svc = QCOM_SCM_SVC_PIL, |
586 | .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE, |
587 | .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW), |
588 | .args[0] = peripheral, |
589 | .owner = ARM_SMCCC_OWNER_SIP, |
590 | }; |
591 | struct qcom_scm_res res; |
592 | |
593 | /* |
594 | * During the scm call memory protection will be enabled for the meta |
595 | * data blob, so make sure it's physically contiguous, 4K aligned and |
596 | * non-cachable to avoid XPU violations. |
597 | * |
598 | * For PIL calls the hypervisor creates SHM Bridges for the blob |
599 | * buffers on behalf of Linux so we must not do it ourselves hence |
600 | * not using the TZMem allocator here. |
601 | * |
602 | * If we pass a buffer that is already part of an SHM Bridge to this |
603 | * call, it will fail. |
604 | */ |
605 | mdata_buf = dma_alloc_coherent(dev: __scm->dev, size, dma_handle: &mdata_phys, |
606 | GFP_KERNEL); |
607 | if (!mdata_buf) |
608 | return -ENOMEM; |
609 | |
610 | memcpy(mdata_buf, metadata, size); |
611 | |
612 | ret = qcom_scm_clk_enable(); |
613 | if (ret) |
614 | goto out; |
615 | |
616 | ret = qcom_scm_bw_enable(); |
617 | if (ret) |
618 | goto disable_clk; |
619 | |
620 | desc.args[1] = mdata_phys; |
621 | |
622 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
623 | qcom_scm_bw_disable(); |
624 | |
625 | disable_clk: |
626 | qcom_scm_clk_disable(); |
627 | |
628 | out: |
629 | if (ret < 0 || !ctx) { |
630 | dma_free_coherent(dev: __scm->dev, size, cpu_addr: mdata_buf, dma_handle: mdata_phys); |
631 | } else if (ctx) { |
632 | ctx->ptr = mdata_buf; |
633 | ctx->phys = mdata_phys; |
634 | ctx->size = size; |
635 | } |
636 | |
637 | return ret ? : res.result[0]; |
638 | } |
639 | EXPORT_SYMBOL_GPL(qcom_scm_pas_init_image); |
640 | |
641 | /** |
642 | * qcom_scm_pas_metadata_release() - release metadata context |
643 | * @ctx: metadata context |
644 | */ |
645 | void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx) |
646 | { |
647 | if (!ctx->ptr) |
648 | return; |
649 | |
650 | dma_free_coherent(dev: __scm->dev, size: ctx->size, cpu_addr: ctx->ptr, dma_handle: ctx->phys); |
651 | |
652 | ctx->ptr = NULL; |
653 | ctx->phys = 0; |
654 | ctx->size = 0; |
655 | } |
656 | EXPORT_SYMBOL_GPL(qcom_scm_pas_metadata_release); |
657 | |
658 | /** |
659 | * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral |
660 | * for firmware loading |
661 | * @peripheral: peripheral id |
662 | * @addr: start address of memory area to prepare |
663 | * @size: size of the memory area to prepare |
664 | * |
665 | * Returns 0 on success. |
666 | */ |
667 | int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size) |
668 | { |
669 | int ret; |
670 | struct qcom_scm_desc desc = { |
671 | .svc = QCOM_SCM_SVC_PIL, |
672 | .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP, |
673 | .arginfo = QCOM_SCM_ARGS(3), |
674 | .args[0] = peripheral, |
675 | .args[1] = addr, |
676 | .args[2] = size, |
677 | .owner = ARM_SMCCC_OWNER_SIP, |
678 | }; |
679 | struct qcom_scm_res res; |
680 | |
681 | ret = qcom_scm_clk_enable(); |
682 | if (ret) |
683 | return ret; |
684 | |
685 | ret = qcom_scm_bw_enable(); |
686 | if (ret) |
687 | goto disable_clk; |
688 | |
689 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
690 | qcom_scm_bw_disable(); |
691 | |
692 | disable_clk: |
693 | qcom_scm_clk_disable(); |
694 | |
695 | return ret ? : res.result[0]; |
696 | } |
697 | EXPORT_SYMBOL_GPL(qcom_scm_pas_mem_setup); |
698 | |
699 | /** |
700 | * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware |
701 | * and reset the remote processor |
702 | * @peripheral: peripheral id |
703 | * |
704 | * Return 0 on success. |
705 | */ |
706 | int qcom_scm_pas_auth_and_reset(u32 peripheral) |
707 | { |
708 | int ret; |
709 | struct qcom_scm_desc desc = { |
710 | .svc = QCOM_SCM_SVC_PIL, |
711 | .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET, |
712 | .arginfo = QCOM_SCM_ARGS(1), |
713 | .args[0] = peripheral, |
714 | .owner = ARM_SMCCC_OWNER_SIP, |
715 | }; |
716 | struct qcom_scm_res res; |
717 | |
718 | ret = qcom_scm_clk_enable(); |
719 | if (ret) |
720 | return ret; |
721 | |
722 | ret = qcom_scm_bw_enable(); |
723 | if (ret) |
724 | goto disable_clk; |
725 | |
726 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
727 | qcom_scm_bw_disable(); |
728 | |
729 | disable_clk: |
730 | qcom_scm_clk_disable(); |
731 | |
732 | return ret ? : res.result[0]; |
733 | } |
734 | EXPORT_SYMBOL_GPL(qcom_scm_pas_auth_and_reset); |
735 | |
736 | /** |
737 | * qcom_scm_pas_shutdown() - Shut down the remote processor |
738 | * @peripheral: peripheral id |
739 | * |
740 | * Returns 0 on success. |
741 | */ |
742 | int qcom_scm_pas_shutdown(u32 peripheral) |
743 | { |
744 | int ret; |
745 | struct qcom_scm_desc desc = { |
746 | .svc = QCOM_SCM_SVC_PIL, |
747 | .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN, |
748 | .arginfo = QCOM_SCM_ARGS(1), |
749 | .args[0] = peripheral, |
750 | .owner = ARM_SMCCC_OWNER_SIP, |
751 | }; |
752 | struct qcom_scm_res res; |
753 | |
754 | ret = qcom_scm_clk_enable(); |
755 | if (ret) |
756 | return ret; |
757 | |
758 | ret = qcom_scm_bw_enable(); |
759 | if (ret) |
760 | goto disable_clk; |
761 | |
762 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
763 | qcom_scm_bw_disable(); |
764 | |
765 | disable_clk: |
766 | qcom_scm_clk_disable(); |
767 | |
768 | return ret ? : res.result[0]; |
769 | } |
770 | EXPORT_SYMBOL_GPL(qcom_scm_pas_shutdown); |
771 | |
772 | /** |
773 | * qcom_scm_pas_supported() - Check if the peripheral authentication service is |
774 | * available for the given peripherial |
775 | * @peripheral: peripheral id |
776 | * |
777 | * Returns true if PAS is supported for this peripheral, otherwise false. |
778 | */ |
779 | bool qcom_scm_pas_supported(u32 peripheral) |
780 | { |
781 | int ret; |
782 | struct qcom_scm_desc desc = { |
783 | .svc = QCOM_SCM_SVC_PIL, |
784 | .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED, |
785 | .arginfo = QCOM_SCM_ARGS(1), |
786 | .args[0] = peripheral, |
787 | .owner = ARM_SMCCC_OWNER_SIP, |
788 | }; |
789 | struct qcom_scm_res res; |
790 | |
791 | if (!__qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_PIL, |
792 | QCOM_SCM_PIL_PAS_IS_SUPPORTED)) |
793 | return false; |
794 | |
795 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
796 | |
797 | return ret ? false : !!res.result[0]; |
798 | } |
799 | EXPORT_SYMBOL_GPL(qcom_scm_pas_supported); |
800 | |
801 | static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) |
802 | { |
803 | struct qcom_scm_desc desc = { |
804 | .svc = QCOM_SCM_SVC_PIL, |
805 | .cmd = QCOM_SCM_PIL_PAS_MSS_RESET, |
806 | .arginfo = QCOM_SCM_ARGS(2), |
807 | .args[0] = reset, |
808 | .args[1] = 0, |
809 | .owner = ARM_SMCCC_OWNER_SIP, |
810 | }; |
811 | struct qcom_scm_res res; |
812 | int ret; |
813 | |
814 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
815 | |
816 | return ret ? : res.result[0]; |
817 | } |
818 | |
819 | static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev, |
820 | unsigned long idx) |
821 | { |
822 | if (idx != 0) |
823 | return -EINVAL; |
824 | |
825 | return __qcom_scm_pas_mss_reset(dev: __scm->dev, reset: 1); |
826 | } |
827 | |
828 | static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev, |
829 | unsigned long idx) |
830 | { |
831 | if (idx != 0) |
832 | return -EINVAL; |
833 | |
834 | return __qcom_scm_pas_mss_reset(dev: __scm->dev, reset: 0); |
835 | } |
836 | |
837 | static const struct reset_control_ops qcom_scm_pas_reset_ops = { |
838 | .assert = qcom_scm_pas_reset_assert, |
839 | .deassert = qcom_scm_pas_reset_deassert, |
840 | }; |
841 | |
842 | int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val) |
843 | { |
844 | struct qcom_scm_desc desc = { |
845 | .svc = QCOM_SCM_SVC_IO, |
846 | .cmd = QCOM_SCM_IO_READ, |
847 | .arginfo = QCOM_SCM_ARGS(1), |
848 | .args[0] = addr, |
849 | .owner = ARM_SMCCC_OWNER_SIP, |
850 | }; |
851 | struct qcom_scm_res res; |
852 | int ret; |
853 | |
854 | |
855 | ret = qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, res: &res); |
856 | if (ret >= 0) |
857 | *val = res.result[0]; |
858 | |
859 | return ret < 0 ? ret : 0; |
860 | } |
861 | EXPORT_SYMBOL_GPL(qcom_scm_io_readl); |
862 | |
863 | int qcom_scm_io_writel(phys_addr_t addr, unsigned int val) |
864 | { |
865 | struct qcom_scm_desc desc = { |
866 | .svc = QCOM_SCM_SVC_IO, |
867 | .cmd = QCOM_SCM_IO_WRITE, |
868 | .arginfo = QCOM_SCM_ARGS(2), |
869 | .args[0] = addr, |
870 | .args[1] = val, |
871 | .owner = ARM_SMCCC_OWNER_SIP, |
872 | }; |
873 | |
874 | return qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, NULL); |
875 | } |
876 | EXPORT_SYMBOL_GPL(qcom_scm_io_writel); |
877 | |
878 | /** |
879 | * qcom_scm_restore_sec_cfg_available() - Check if secure environment |
880 | * supports restore security config interface. |
881 | * |
882 | * Return true if restore-cfg interface is supported, false if not. |
883 | */ |
884 | bool qcom_scm_restore_sec_cfg_available(void) |
885 | { |
886 | return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_MP, |
887 | QCOM_SCM_MP_RESTORE_SEC_CFG); |
888 | } |
889 | EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg_available); |
890 | |
891 | int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare) |
892 | { |
893 | struct qcom_scm_desc desc = { |
894 | .svc = QCOM_SCM_SVC_MP, |
895 | .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG, |
896 | .arginfo = QCOM_SCM_ARGS(2), |
897 | .args[0] = device_id, |
898 | .args[1] = spare, |
899 | .owner = ARM_SMCCC_OWNER_SIP, |
900 | }; |
901 | struct qcom_scm_res res; |
902 | int ret; |
903 | |
904 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
905 | |
906 | return ret ? : res.result[0]; |
907 | } |
908 | EXPORT_SYMBOL_GPL(qcom_scm_restore_sec_cfg); |
909 | |
910 | #define QCOM_SCM_CP_APERTURE_CONTEXT_MASK GENMASK(7, 0) |
911 | |
912 | bool qcom_scm_set_gpu_smmu_aperture_is_available(void) |
913 | { |
914 | return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_MP, |
915 | QCOM_SCM_MP_CP_SMMU_APERTURE_ID); |
916 | } |
917 | EXPORT_SYMBOL_GPL(qcom_scm_set_gpu_smmu_aperture_is_available); |
918 | |
919 | int qcom_scm_set_gpu_smmu_aperture(unsigned int context_bank) |
920 | { |
921 | struct qcom_scm_desc desc = { |
922 | .svc = QCOM_SCM_SVC_MP, |
923 | .cmd = QCOM_SCM_MP_CP_SMMU_APERTURE_ID, |
924 | .arginfo = QCOM_SCM_ARGS(4), |
925 | .args[0] = 0xffff0000 | FIELD_PREP(QCOM_SCM_CP_APERTURE_CONTEXT_MASK, context_bank), |
926 | .args[1] = 0xffffffff, |
927 | .args[2] = 0xffffffff, |
928 | .args[3] = 0xffffffff, |
929 | .owner = ARM_SMCCC_OWNER_SIP |
930 | }; |
931 | |
932 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
933 | } |
934 | EXPORT_SYMBOL_GPL(qcom_scm_set_gpu_smmu_aperture); |
935 | |
936 | int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size) |
937 | { |
938 | struct qcom_scm_desc desc = { |
939 | .svc = QCOM_SCM_SVC_MP, |
940 | .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE, |
941 | .arginfo = QCOM_SCM_ARGS(1), |
942 | .args[0] = spare, |
943 | .owner = ARM_SMCCC_OWNER_SIP, |
944 | }; |
945 | struct qcom_scm_res res; |
946 | int ret; |
947 | |
948 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
949 | |
950 | if (size) |
951 | *size = res.result[0]; |
952 | |
953 | return ret ? : res.result[1]; |
954 | } |
955 | EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_size); |
956 | |
957 | int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare) |
958 | { |
959 | struct qcom_scm_desc desc = { |
960 | .svc = QCOM_SCM_SVC_MP, |
961 | .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT, |
962 | .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, |
963 | QCOM_SCM_VAL), |
964 | .args[0] = addr, |
965 | .args[1] = size, |
966 | .args[2] = spare, |
967 | .owner = ARM_SMCCC_OWNER_SIP, |
968 | }; |
969 | int ret; |
970 | |
971 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
972 | |
973 | /* the pg table has been initialized already, ignore the error */ |
974 | if (ret == -EPERM) |
975 | ret = 0; |
976 | |
977 | return ret; |
978 | } |
979 | EXPORT_SYMBOL_GPL(qcom_scm_iommu_secure_ptbl_init); |
980 | |
981 | int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size) |
982 | { |
983 | struct qcom_scm_desc desc = { |
984 | .svc = QCOM_SCM_SVC_MP, |
985 | .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE, |
986 | .arginfo = QCOM_SCM_ARGS(2), |
987 | .args[0] = size, |
988 | .args[1] = spare, |
989 | .owner = ARM_SMCCC_OWNER_SIP, |
990 | }; |
991 | |
992 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
993 | } |
994 | EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_cp_pool_size); |
995 | |
996 | int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size, |
997 | u32 cp_nonpixel_start, |
998 | u32 cp_nonpixel_size) |
999 | { |
1000 | int ret; |
1001 | struct qcom_scm_desc desc = { |
1002 | .svc = QCOM_SCM_SVC_MP, |
1003 | .cmd = QCOM_SCM_MP_VIDEO_VAR, |
1004 | .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, |
1005 | QCOM_SCM_VAL, QCOM_SCM_VAL), |
1006 | .args[0] = cp_start, |
1007 | .args[1] = cp_size, |
1008 | .args[2] = cp_nonpixel_start, |
1009 | .args[3] = cp_nonpixel_size, |
1010 | .owner = ARM_SMCCC_OWNER_SIP, |
1011 | }; |
1012 | struct qcom_scm_res res; |
1013 | |
1014 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
1015 | |
1016 | return ret ? : res.result[0]; |
1017 | } |
1018 | EXPORT_SYMBOL_GPL(qcom_scm_mem_protect_video_var); |
1019 | |
1020 | static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, |
1021 | size_t mem_sz, phys_addr_t src, size_t src_sz, |
1022 | phys_addr_t dest, size_t dest_sz) |
1023 | { |
1024 | int ret; |
1025 | struct qcom_scm_desc desc = { |
1026 | .svc = QCOM_SCM_SVC_MP, |
1027 | .cmd = QCOM_SCM_MP_ASSIGN, |
1028 | .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, |
1029 | QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, |
1030 | QCOM_SCM_VAL, QCOM_SCM_VAL), |
1031 | .args[0] = mem_region, |
1032 | .args[1] = mem_sz, |
1033 | .args[2] = src, |
1034 | .args[3] = src_sz, |
1035 | .args[4] = dest, |
1036 | .args[5] = dest_sz, |
1037 | .args[6] = 0, |
1038 | .owner = ARM_SMCCC_OWNER_SIP, |
1039 | }; |
1040 | struct qcom_scm_res res; |
1041 | |
1042 | ret = qcom_scm_call(dev, desc: &desc, res: &res); |
1043 | |
1044 | return ret ? : res.result[0]; |
1045 | } |
1046 | |
1047 | /** |
1048 | * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership |
1049 | * @mem_addr: mem region whose ownership need to be reassigned |
1050 | * @mem_sz: size of the region. |
1051 | * @srcvm: vmid for current set of owners, each set bit in |
1052 | * flag indicate a unique owner |
1053 | * @newvm: array having new owners and corresponding permission |
1054 | * flags |
1055 | * @dest_cnt: number of owners in next set. |
1056 | * |
1057 | * Return negative errno on failure or 0 on success with @srcvm updated. |
1058 | */ |
1059 | int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz, |
1060 | u64 *srcvm, |
1061 | const struct qcom_scm_vmperm *newvm, |
1062 | unsigned int dest_cnt) |
1063 | { |
1064 | struct qcom_scm_current_perm_info *destvm; |
1065 | struct qcom_scm_mem_map_info *mem_to_map; |
1066 | phys_addr_t mem_to_map_phys; |
1067 | phys_addr_t dest_phys; |
1068 | phys_addr_t ptr_phys; |
1069 | size_t mem_to_map_sz; |
1070 | size_t dest_sz; |
1071 | size_t src_sz; |
1072 | size_t ptr_sz; |
1073 | int next_vm; |
1074 | __le32 *src; |
1075 | int ret, i, b; |
1076 | u64 srcvm_bits = *srcvm; |
1077 | |
1078 | src_sz = hweight64(srcvm_bits) * sizeof(*src); |
1079 | mem_to_map_sz = sizeof(*mem_to_map); |
1080 | dest_sz = dest_cnt * sizeof(*destvm); |
1081 | ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) + |
1082 | ALIGN(dest_sz, SZ_64); |
1083 | |
1084 | void *ptr __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1085 | size: ptr_sz, GFP_KERNEL); |
1086 | if (!ptr) |
1087 | return -ENOMEM; |
1088 | |
1089 | ptr_phys = qcom_tzmem_to_phys(ptr); |
1090 | |
1091 | /* Fill source vmid detail */ |
1092 | src = ptr; |
1093 | i = 0; |
1094 | for (b = 0; b < BITS_PER_TYPE(u64); b++) { |
1095 | if (srcvm_bits & BIT(b)) |
1096 | src[i++] = cpu_to_le32(b); |
1097 | } |
1098 | |
1099 | /* Fill details of mem buff to map */ |
1100 | mem_to_map = ptr + ALIGN(src_sz, SZ_64); |
1101 | mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64); |
1102 | mem_to_map->mem_addr = cpu_to_le64(mem_addr); |
1103 | mem_to_map->mem_size = cpu_to_le64(mem_sz); |
1104 | |
1105 | next_vm = 0; |
1106 | /* Fill details of next vmid detail */ |
1107 | destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); |
1108 | dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); |
1109 | for (i = 0; i < dest_cnt; i++, destvm++, newvm++) { |
1110 | destvm->vmid = cpu_to_le32(newvm->vmid); |
1111 | destvm->perm = cpu_to_le32(newvm->perm); |
1112 | destvm->ctx = 0; |
1113 | destvm->ctx_size = 0; |
1114 | next_vm |= BIT(newvm->vmid); |
1115 | } |
1116 | |
1117 | ret = __qcom_scm_assign_mem(dev: __scm->dev, mem_region: mem_to_map_phys, mem_sz: mem_to_map_sz, |
1118 | src: ptr_phys, src_sz, dest: dest_phys, dest_sz); |
1119 | if (ret) { |
1120 | dev_err(__scm->dev, |
1121 | "Assign memory protection call failed %d\n" , ret); |
1122 | return -EINVAL; |
1123 | } |
1124 | |
1125 | *srcvm = next_vm; |
1126 | return 0; |
1127 | } |
1128 | EXPORT_SYMBOL_GPL(qcom_scm_assign_mem); |
1129 | |
1130 | /** |
1131 | * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available |
1132 | */ |
1133 | bool qcom_scm_ocmem_lock_available(void) |
1134 | { |
1135 | return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_OCMEM, |
1136 | QCOM_SCM_OCMEM_LOCK_CMD); |
1137 | } |
1138 | EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock_available); |
1139 | |
1140 | /** |
1141 | * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM |
1142 | * region to the specified initiator |
1143 | * |
1144 | * @id: tz initiator id |
1145 | * @offset: OCMEM offset |
1146 | * @size: OCMEM size |
1147 | * @mode: access mode (WIDE/NARROW) |
1148 | */ |
1149 | int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size, |
1150 | u32 mode) |
1151 | { |
1152 | struct qcom_scm_desc desc = { |
1153 | .svc = QCOM_SCM_SVC_OCMEM, |
1154 | .cmd = QCOM_SCM_OCMEM_LOCK_CMD, |
1155 | .args[0] = id, |
1156 | .args[1] = offset, |
1157 | .args[2] = size, |
1158 | .args[3] = mode, |
1159 | .arginfo = QCOM_SCM_ARGS(4), |
1160 | }; |
1161 | |
1162 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1163 | } |
1164 | EXPORT_SYMBOL_GPL(qcom_scm_ocmem_lock); |
1165 | |
1166 | /** |
1167 | * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM |
1168 | * region from the specified initiator |
1169 | * |
1170 | * @id: tz initiator id |
1171 | * @offset: OCMEM offset |
1172 | * @size: OCMEM size |
1173 | */ |
1174 | int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size) |
1175 | { |
1176 | struct qcom_scm_desc desc = { |
1177 | .svc = QCOM_SCM_SVC_OCMEM, |
1178 | .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD, |
1179 | .args[0] = id, |
1180 | .args[1] = offset, |
1181 | .args[2] = size, |
1182 | .arginfo = QCOM_SCM_ARGS(3), |
1183 | }; |
1184 | |
1185 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1186 | } |
1187 | EXPORT_SYMBOL_GPL(qcom_scm_ocmem_unlock); |
1188 | |
1189 | /** |
1190 | * qcom_scm_ice_available() - Is the ICE key programming interface available? |
1191 | * |
1192 | * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and |
1193 | * qcom_scm_ice_set_key() are available. |
1194 | */ |
1195 | bool qcom_scm_ice_available(void) |
1196 | { |
1197 | return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES, |
1198 | QCOM_SCM_ES_INVALIDATE_ICE_KEY) && |
1199 | __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES, |
1200 | QCOM_SCM_ES_CONFIG_SET_ICE_KEY); |
1201 | } |
1202 | EXPORT_SYMBOL_GPL(qcom_scm_ice_available); |
1203 | |
1204 | /** |
1205 | * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key |
1206 | * @index: the keyslot to invalidate |
1207 | * |
1208 | * The UFSHCI and eMMC standards define a standard way to do this, but it |
1209 | * doesn't work on these SoCs; only this SCM call does. |
1210 | * |
1211 | * It is assumed that the SoC has only one ICE instance being used, as this SCM |
1212 | * call doesn't specify which ICE instance the keyslot belongs to. |
1213 | * |
1214 | * Return: 0 on success; -errno on failure. |
1215 | */ |
1216 | int qcom_scm_ice_invalidate_key(u32 index) |
1217 | { |
1218 | struct qcom_scm_desc desc = { |
1219 | .svc = QCOM_SCM_SVC_ES, |
1220 | .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY, |
1221 | .arginfo = QCOM_SCM_ARGS(1), |
1222 | .args[0] = index, |
1223 | .owner = ARM_SMCCC_OWNER_SIP, |
1224 | }; |
1225 | |
1226 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1227 | } |
1228 | EXPORT_SYMBOL_GPL(qcom_scm_ice_invalidate_key); |
1229 | |
1230 | /** |
1231 | * qcom_scm_ice_set_key() - Set an inline encryption key |
1232 | * @index: the keyslot into which to set the key |
1233 | * @key: the key to program |
1234 | * @key_size: the size of the key in bytes |
1235 | * @cipher: the encryption algorithm the key is for |
1236 | * @data_unit_size: the encryption data unit size, i.e. the size of each |
1237 | * individual plaintext and ciphertext. Given in 512-byte |
1238 | * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc. |
1239 | * |
1240 | * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it |
1241 | * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline. |
1242 | * |
1243 | * The UFSHCI and eMMC standards define a standard way to do this, but it |
1244 | * doesn't work on these SoCs; only this SCM call does. |
1245 | * |
1246 | * It is assumed that the SoC has only one ICE instance being used, as this SCM |
1247 | * call doesn't specify which ICE instance the keyslot belongs to. |
1248 | * |
1249 | * Return: 0 on success; -errno on failure. |
1250 | */ |
1251 | int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size, |
1252 | enum qcom_scm_ice_cipher cipher, u32 data_unit_size) |
1253 | { |
1254 | struct qcom_scm_desc desc = { |
1255 | .svc = QCOM_SCM_SVC_ES, |
1256 | .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY, |
1257 | .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, |
1258 | QCOM_SCM_VAL, QCOM_SCM_VAL, |
1259 | QCOM_SCM_VAL), |
1260 | .args[0] = index, |
1261 | .args[2] = key_size, |
1262 | .args[3] = cipher, |
1263 | .args[4] = data_unit_size, |
1264 | .owner = ARM_SMCCC_OWNER_SIP, |
1265 | }; |
1266 | |
1267 | int ret; |
1268 | |
1269 | void *keybuf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1270 | size: key_size, |
1271 | GFP_KERNEL); |
1272 | if (!keybuf) |
1273 | return -ENOMEM; |
1274 | memcpy(keybuf, key, key_size); |
1275 | desc.args[1] = qcom_tzmem_to_phys(ptr: keybuf); |
1276 | |
1277 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1278 | |
1279 | memzero_explicit(s: keybuf, count: key_size); |
1280 | |
1281 | return ret; |
1282 | } |
1283 | EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key); |
1284 | |
1285 | bool qcom_scm_has_wrapped_key_support(void) |
1286 | { |
1287 | return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES, |
1288 | QCOM_SCM_ES_DERIVE_SW_SECRET) && |
1289 | __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES, |
1290 | QCOM_SCM_ES_GENERATE_ICE_KEY) && |
1291 | __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES, |
1292 | QCOM_SCM_ES_PREPARE_ICE_KEY) && |
1293 | __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_ES, |
1294 | QCOM_SCM_ES_IMPORT_ICE_KEY); |
1295 | } |
1296 | EXPORT_SYMBOL_GPL(qcom_scm_has_wrapped_key_support); |
1297 | |
1298 | /** |
1299 | * qcom_scm_derive_sw_secret() - Derive software secret from wrapped key |
1300 | * @eph_key: an ephemerally-wrapped key |
1301 | * @eph_key_size: size of @eph_key in bytes |
1302 | * @sw_secret: output buffer for the software secret |
1303 | * @sw_secret_size: size of the software secret to derive in bytes |
1304 | * |
1305 | * Derive a software secret from an ephemerally-wrapped key for software crypto |
1306 | * operations. This is done by calling into the secure execution environment, |
1307 | * which then calls into the hardware to unwrap and derive the secret. |
1308 | * |
1309 | * For more information on sw_secret, see the "Hardware-wrapped keys" section of |
1310 | * Documentation/block/inline-encryption.rst. |
1311 | * |
1312 | * Return: 0 on success; -errno on failure. |
1313 | */ |
1314 | int qcom_scm_derive_sw_secret(const u8 *eph_key, size_t eph_key_size, |
1315 | u8 *sw_secret, size_t sw_secret_size) |
1316 | { |
1317 | struct qcom_scm_desc desc = { |
1318 | .svc = QCOM_SCM_SVC_ES, |
1319 | .cmd = QCOM_SCM_ES_DERIVE_SW_SECRET, |
1320 | .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, QCOM_SCM_VAL, |
1321 | QCOM_SCM_RW, QCOM_SCM_VAL), |
1322 | .owner = ARM_SMCCC_OWNER_SIP, |
1323 | }; |
1324 | int ret; |
1325 | |
1326 | void *eph_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1327 | size: eph_key_size, |
1328 | GFP_KERNEL); |
1329 | if (!eph_key_buf) |
1330 | return -ENOMEM; |
1331 | |
1332 | void *sw_secret_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1333 | size: sw_secret_size, |
1334 | GFP_KERNEL); |
1335 | if (!sw_secret_buf) |
1336 | return -ENOMEM; |
1337 | |
1338 | memcpy(eph_key_buf, eph_key, eph_key_size); |
1339 | desc.args[0] = qcom_tzmem_to_phys(ptr: eph_key_buf); |
1340 | desc.args[1] = eph_key_size; |
1341 | desc.args[2] = qcom_tzmem_to_phys(ptr: sw_secret_buf); |
1342 | desc.args[3] = sw_secret_size; |
1343 | |
1344 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1345 | if (!ret) |
1346 | memcpy(sw_secret, sw_secret_buf, sw_secret_size); |
1347 | |
1348 | memzero_explicit(s: eph_key_buf, count: eph_key_size); |
1349 | memzero_explicit(s: sw_secret_buf, count: sw_secret_size); |
1350 | return ret; |
1351 | } |
1352 | EXPORT_SYMBOL_GPL(qcom_scm_derive_sw_secret); |
1353 | |
1354 | /** |
1355 | * qcom_scm_generate_ice_key() - Generate a wrapped key for storage encryption |
1356 | * @lt_key: output buffer for the long-term wrapped key |
1357 | * @lt_key_size: size of @lt_key in bytes. Must be the exact wrapped key size |
1358 | * used by the SoC. |
1359 | * |
1360 | * Generate a key using the built-in HW module in the SoC. The resulting key is |
1361 | * returned wrapped with the platform-specific Key Encryption Key. |
1362 | * |
1363 | * Return: 0 on success; -errno on failure. |
1364 | */ |
1365 | int qcom_scm_generate_ice_key(u8 *lt_key, size_t lt_key_size) |
1366 | { |
1367 | struct qcom_scm_desc desc = { |
1368 | .svc = QCOM_SCM_SVC_ES, |
1369 | .cmd = QCOM_SCM_ES_GENERATE_ICE_KEY, |
1370 | .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL), |
1371 | .owner = ARM_SMCCC_OWNER_SIP, |
1372 | }; |
1373 | int ret; |
1374 | |
1375 | void *lt_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1376 | size: lt_key_size, |
1377 | GFP_KERNEL); |
1378 | if (!lt_key_buf) |
1379 | return -ENOMEM; |
1380 | |
1381 | desc.args[0] = qcom_tzmem_to_phys(ptr: lt_key_buf); |
1382 | desc.args[1] = lt_key_size; |
1383 | |
1384 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1385 | if (!ret) |
1386 | memcpy(lt_key, lt_key_buf, lt_key_size); |
1387 | |
1388 | memzero_explicit(s: lt_key_buf, count: lt_key_size); |
1389 | return ret; |
1390 | } |
1391 | EXPORT_SYMBOL_GPL(qcom_scm_generate_ice_key); |
1392 | |
1393 | /** |
1394 | * qcom_scm_prepare_ice_key() - Re-wrap a key with the per-boot ephemeral key |
1395 | * @lt_key: a long-term wrapped key |
1396 | * @lt_key_size: size of @lt_key in bytes |
1397 | * @eph_key: output buffer for the ephemerally-wrapped key |
1398 | * @eph_key_size: size of @eph_key in bytes. Must be the exact wrapped key size |
1399 | * used by the SoC. |
1400 | * |
1401 | * Given a long-term wrapped key, re-wrap it with the per-boot ephemeral key for |
1402 | * added protection. The resulting key will only be valid for the current boot. |
1403 | * |
1404 | * Return: 0 on success; -errno on failure. |
1405 | */ |
1406 | int qcom_scm_prepare_ice_key(const u8 *lt_key, size_t lt_key_size, |
1407 | u8 *eph_key, size_t eph_key_size) |
1408 | { |
1409 | struct qcom_scm_desc desc = { |
1410 | .svc = QCOM_SCM_SVC_ES, |
1411 | .cmd = QCOM_SCM_ES_PREPARE_ICE_KEY, |
1412 | .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RO, QCOM_SCM_VAL, |
1413 | QCOM_SCM_RW, QCOM_SCM_VAL), |
1414 | .owner = ARM_SMCCC_OWNER_SIP, |
1415 | }; |
1416 | int ret; |
1417 | |
1418 | void *lt_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1419 | size: lt_key_size, |
1420 | GFP_KERNEL); |
1421 | if (!lt_key_buf) |
1422 | return -ENOMEM; |
1423 | |
1424 | void *eph_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1425 | size: eph_key_size, |
1426 | GFP_KERNEL); |
1427 | if (!eph_key_buf) |
1428 | return -ENOMEM; |
1429 | |
1430 | memcpy(lt_key_buf, lt_key, lt_key_size); |
1431 | desc.args[0] = qcom_tzmem_to_phys(ptr: lt_key_buf); |
1432 | desc.args[1] = lt_key_size; |
1433 | desc.args[2] = qcom_tzmem_to_phys(ptr: eph_key_buf); |
1434 | desc.args[3] = eph_key_size; |
1435 | |
1436 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1437 | if (!ret) |
1438 | memcpy(eph_key, eph_key_buf, eph_key_size); |
1439 | |
1440 | memzero_explicit(s: lt_key_buf, count: lt_key_size); |
1441 | memzero_explicit(s: eph_key_buf, count: eph_key_size); |
1442 | return ret; |
1443 | } |
1444 | EXPORT_SYMBOL_GPL(qcom_scm_prepare_ice_key); |
1445 | |
1446 | /** |
1447 | * qcom_scm_import_ice_key() - Import key for storage encryption |
1448 | * @raw_key: the raw key to import |
1449 | * @raw_key_size: size of @raw_key in bytes |
1450 | * @lt_key: output buffer for the long-term wrapped key |
1451 | * @lt_key_size: size of @lt_key in bytes. Must be the exact wrapped key size |
1452 | * used by the SoC. |
1453 | * |
1454 | * Import a raw key and return a long-term wrapped key. Uses the SoC's HWKM to |
1455 | * wrap the raw key using the platform-specific Key Encryption Key. |
1456 | * |
1457 | * Return: 0 on success; -errno on failure. |
1458 | */ |
1459 | int qcom_scm_import_ice_key(const u8 *raw_key, size_t raw_key_size, |
1460 | u8 *lt_key, size_t lt_key_size) |
1461 | { |
1462 | struct qcom_scm_desc desc = { |
1463 | .svc = QCOM_SCM_SVC_ES, |
1464 | .cmd = QCOM_SCM_ES_IMPORT_ICE_KEY, |
1465 | .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RO, QCOM_SCM_VAL, |
1466 | QCOM_SCM_RW, QCOM_SCM_VAL), |
1467 | .owner = ARM_SMCCC_OWNER_SIP, |
1468 | }; |
1469 | int ret; |
1470 | |
1471 | void *raw_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1472 | size: raw_key_size, |
1473 | GFP_KERNEL); |
1474 | if (!raw_key_buf) |
1475 | return -ENOMEM; |
1476 | |
1477 | void *lt_key_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1478 | size: lt_key_size, |
1479 | GFP_KERNEL); |
1480 | if (!lt_key_buf) |
1481 | return -ENOMEM; |
1482 | |
1483 | memcpy(raw_key_buf, raw_key, raw_key_size); |
1484 | desc.args[0] = qcom_tzmem_to_phys(ptr: raw_key_buf); |
1485 | desc.args[1] = raw_key_size; |
1486 | desc.args[2] = qcom_tzmem_to_phys(ptr: lt_key_buf); |
1487 | desc.args[3] = lt_key_size; |
1488 | |
1489 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1490 | if (!ret) |
1491 | memcpy(lt_key, lt_key_buf, lt_key_size); |
1492 | |
1493 | memzero_explicit(s: raw_key_buf, count: raw_key_size); |
1494 | memzero_explicit(s: lt_key_buf, count: lt_key_size); |
1495 | return ret; |
1496 | } |
1497 | EXPORT_SYMBOL_GPL(qcom_scm_import_ice_key); |
1498 | |
1499 | /** |
1500 | * qcom_scm_hdcp_available() - Check if secure environment supports HDCP. |
1501 | * |
1502 | * Return true if HDCP is supported, false if not. |
1503 | */ |
1504 | bool qcom_scm_hdcp_available(void) |
1505 | { |
1506 | bool avail; |
1507 | int ret = qcom_scm_clk_enable(); |
1508 | |
1509 | if (ret) |
1510 | return ret; |
1511 | |
1512 | avail = __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_HDCP, |
1513 | QCOM_SCM_HDCP_INVOKE); |
1514 | |
1515 | qcom_scm_clk_disable(); |
1516 | |
1517 | return avail; |
1518 | } |
1519 | EXPORT_SYMBOL_GPL(qcom_scm_hdcp_available); |
1520 | |
1521 | /** |
1522 | * qcom_scm_hdcp_req() - Send HDCP request. |
1523 | * @req: HDCP request array |
1524 | * @req_cnt: HDCP request array count |
1525 | * @resp: response buffer passed to SCM |
1526 | * |
1527 | * Write HDCP register(s) through SCM. |
1528 | */ |
1529 | int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) |
1530 | { |
1531 | int ret; |
1532 | struct qcom_scm_desc desc = { |
1533 | .svc = QCOM_SCM_SVC_HDCP, |
1534 | .cmd = QCOM_SCM_HDCP_INVOKE, |
1535 | .arginfo = QCOM_SCM_ARGS(10), |
1536 | .args = { |
1537 | req[0].addr, |
1538 | req[0].val, |
1539 | req[1].addr, |
1540 | req[1].val, |
1541 | req[2].addr, |
1542 | req[2].val, |
1543 | req[3].addr, |
1544 | req[3].val, |
1545 | req[4].addr, |
1546 | req[4].val |
1547 | }, |
1548 | .owner = ARM_SMCCC_OWNER_SIP, |
1549 | }; |
1550 | struct qcom_scm_res res; |
1551 | |
1552 | if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) |
1553 | return -ERANGE; |
1554 | |
1555 | ret = qcom_scm_clk_enable(); |
1556 | if (ret) |
1557 | return ret; |
1558 | |
1559 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
1560 | *resp = res.result[0]; |
1561 | |
1562 | qcom_scm_clk_disable(); |
1563 | |
1564 | return ret; |
1565 | } |
1566 | EXPORT_SYMBOL_GPL(qcom_scm_hdcp_req); |
1567 | |
1568 | int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt) |
1569 | { |
1570 | struct qcom_scm_desc desc = { |
1571 | .svc = QCOM_SCM_SVC_SMMU_PROGRAM, |
1572 | .cmd = QCOM_SCM_SMMU_PT_FORMAT, |
1573 | .arginfo = QCOM_SCM_ARGS(3), |
1574 | .args[0] = sec_id, |
1575 | .args[1] = ctx_num, |
1576 | .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */ |
1577 | .owner = ARM_SMCCC_OWNER_SIP, |
1578 | }; |
1579 | |
1580 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1581 | } |
1582 | EXPORT_SYMBOL_GPL(qcom_scm_iommu_set_pt_format); |
1583 | |
1584 | int qcom_scm_qsmmu500_wait_safe_toggle(bool en) |
1585 | { |
1586 | struct qcom_scm_desc desc = { |
1587 | .svc = QCOM_SCM_SVC_SMMU_PROGRAM, |
1588 | .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1, |
1589 | .arginfo = QCOM_SCM_ARGS(2), |
1590 | .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL, |
1591 | .args[1] = en, |
1592 | .owner = ARM_SMCCC_OWNER_SIP, |
1593 | }; |
1594 | |
1595 | |
1596 | return qcom_scm_call_atomic(dev: __scm->dev, desc: &desc, NULL); |
1597 | } |
1598 | EXPORT_SYMBOL_GPL(qcom_scm_qsmmu500_wait_safe_toggle); |
1599 | |
1600 | bool qcom_scm_lmh_dcvsh_available(void) |
1601 | { |
1602 | return __qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH); |
1603 | } |
1604 | EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh_available); |
1605 | |
1606 | int qcom_scm_shm_bridge_enable(void) |
1607 | { |
1608 | int ret; |
1609 | |
1610 | struct qcom_scm_desc desc = { |
1611 | .svc = QCOM_SCM_SVC_MP, |
1612 | .cmd = QCOM_SCM_MP_SHM_BRIDGE_ENABLE, |
1613 | .owner = ARM_SMCCC_OWNER_SIP |
1614 | }; |
1615 | |
1616 | struct qcom_scm_res res; |
1617 | |
1618 | if (!__qcom_scm_is_call_available(dev: __scm->dev, QCOM_SCM_SVC_MP, |
1619 | QCOM_SCM_MP_SHM_BRIDGE_ENABLE)) |
1620 | return -EOPNOTSUPP; |
1621 | |
1622 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
1623 | |
1624 | if (ret) |
1625 | return ret; |
1626 | |
1627 | if (res.result[0] == SHMBRIDGE_RESULT_NOTSUPP) |
1628 | return -EOPNOTSUPP; |
1629 | |
1630 | return res.result[0]; |
1631 | } |
1632 | EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_enable); |
1633 | |
1634 | int qcom_scm_shm_bridge_create(struct device *dev, u64 pfn_and_ns_perm_flags, |
1635 | u64 ipfn_and_s_perm_flags, u64 size_and_flags, |
1636 | u64 ns_vmids, u64 *handle) |
1637 | { |
1638 | struct qcom_scm_desc desc = { |
1639 | .svc = QCOM_SCM_SVC_MP, |
1640 | .cmd = QCOM_SCM_MP_SHM_BRIDGE_CREATE, |
1641 | .owner = ARM_SMCCC_OWNER_SIP, |
1642 | .args[0] = pfn_and_ns_perm_flags, |
1643 | .args[1] = ipfn_and_s_perm_flags, |
1644 | .args[2] = size_and_flags, |
1645 | .args[3] = ns_vmids, |
1646 | .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, |
1647 | QCOM_SCM_VAL, QCOM_SCM_VAL), |
1648 | }; |
1649 | |
1650 | struct qcom_scm_res res; |
1651 | int ret; |
1652 | |
1653 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, res: &res); |
1654 | |
1655 | if (handle && !ret) |
1656 | *handle = res.result[1]; |
1657 | |
1658 | return ret ?: res.result[0]; |
1659 | } |
1660 | EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_create); |
1661 | |
1662 | int qcom_scm_shm_bridge_delete(struct device *dev, u64 handle) |
1663 | { |
1664 | struct qcom_scm_desc desc = { |
1665 | .svc = QCOM_SCM_SVC_MP, |
1666 | .cmd = QCOM_SCM_MP_SHM_BRIDGE_DELETE, |
1667 | .owner = ARM_SMCCC_OWNER_SIP, |
1668 | .args[0] = handle, |
1669 | .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL), |
1670 | }; |
1671 | |
1672 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1673 | } |
1674 | EXPORT_SYMBOL_GPL(qcom_scm_shm_bridge_delete); |
1675 | |
1676 | int qcom_scm_lmh_profile_change(u32 profile_id) |
1677 | { |
1678 | struct qcom_scm_desc desc = { |
1679 | .svc = QCOM_SCM_SVC_LMH, |
1680 | .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE, |
1681 | .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL), |
1682 | .args[0] = profile_id, |
1683 | .owner = ARM_SMCCC_OWNER_SIP, |
1684 | }; |
1685 | |
1686 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1687 | } |
1688 | EXPORT_SYMBOL_GPL(qcom_scm_lmh_profile_change); |
1689 | |
1690 | int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val, |
1691 | u64 limit_node, u32 node_id, u64 version) |
1692 | { |
1693 | int ret, payload_size = 5 * sizeof(u32); |
1694 | |
1695 | struct qcom_scm_desc desc = { |
1696 | .svc = QCOM_SCM_SVC_LMH, |
1697 | .cmd = QCOM_SCM_LMH_LIMIT_DCVSH, |
1698 | .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL, |
1699 | QCOM_SCM_VAL, QCOM_SCM_VAL), |
1700 | .args[1] = payload_size, |
1701 | .args[2] = limit_node, |
1702 | .args[3] = node_id, |
1703 | .args[4] = version, |
1704 | .owner = ARM_SMCCC_OWNER_SIP, |
1705 | }; |
1706 | |
1707 | u32 *payload_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1708 | size: payload_size, |
1709 | GFP_KERNEL); |
1710 | if (!payload_buf) |
1711 | return -ENOMEM; |
1712 | |
1713 | payload_buf[0] = payload_fn; |
1714 | payload_buf[1] = 0; |
1715 | payload_buf[2] = payload_reg; |
1716 | payload_buf[3] = 1; |
1717 | payload_buf[4] = payload_val; |
1718 | |
1719 | desc.args[0] = qcom_tzmem_to_phys(ptr: payload_buf); |
1720 | |
1721 | ret = qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1722 | |
1723 | return ret; |
1724 | } |
1725 | EXPORT_SYMBOL_GPL(qcom_scm_lmh_dcvsh); |
1726 | |
1727 | int qcom_scm_gpu_init_regs(u32 gpu_req) |
1728 | { |
1729 | struct qcom_scm_desc desc = { |
1730 | .svc = QCOM_SCM_SVC_GPU, |
1731 | .cmd = QCOM_SCM_SVC_GPU_INIT_REGS, |
1732 | .arginfo = QCOM_SCM_ARGS(1), |
1733 | .args[0] = gpu_req, |
1734 | .owner = ARM_SMCCC_OWNER_SIP, |
1735 | }; |
1736 | |
1737 | return qcom_scm_call(dev: __scm->dev, desc: &desc, NULL); |
1738 | } |
1739 | EXPORT_SYMBOL_GPL(qcom_scm_gpu_init_regs); |
1740 | |
1741 | static int qcom_scm_find_dload_address(struct device *dev, u64 *addr) |
1742 | { |
1743 | struct device_node *tcsr; |
1744 | struct device_node *np = dev->of_node; |
1745 | struct resource res; |
1746 | u32 offset; |
1747 | int ret; |
1748 | |
1749 | tcsr = of_parse_phandle(np, phandle_name: "qcom,dload-mode" , index: 0); |
1750 | if (!tcsr) |
1751 | return 0; |
1752 | |
1753 | ret = of_address_to_resource(dev: tcsr, index: 0, r: &res); |
1754 | of_node_put(node: tcsr); |
1755 | if (ret) |
1756 | return ret; |
1757 | |
1758 | ret = of_property_read_u32_index(np, propname: "qcom,dload-mode" , index: 1, out_value: &offset); |
1759 | if (ret < 0) |
1760 | return ret; |
1761 | |
1762 | *addr = res.start + offset; |
1763 | |
1764 | return 0; |
1765 | } |
1766 | |
1767 | #ifdef CONFIG_QCOM_QSEECOM |
1768 | |
1769 | /* Lock for QSEECOM SCM call executions */ |
1770 | static DEFINE_MUTEX(qcom_scm_qseecom_call_lock); |
1771 | |
1772 | static int __qcom_scm_qseecom_call(const struct qcom_scm_desc *desc, |
1773 | struct qcom_scm_qseecom_resp *res) |
1774 | { |
1775 | struct qcom_scm_res scm_res = {}; |
1776 | int status; |
1777 | |
1778 | /* |
1779 | * QSEECOM SCM calls should not be executed concurrently. Therefore, we |
1780 | * require the respective call lock to be held. |
1781 | */ |
1782 | lockdep_assert_held(&qcom_scm_qseecom_call_lock); |
1783 | |
1784 | status = qcom_scm_call(dev: __scm->dev, desc, res: &scm_res); |
1785 | |
1786 | res->result = scm_res.result[0]; |
1787 | res->resp_type = scm_res.result[1]; |
1788 | res->data = scm_res.result[2]; |
1789 | |
1790 | if (status) |
1791 | return status; |
1792 | |
1793 | return 0; |
1794 | } |
1795 | |
1796 | /** |
1797 | * qcom_scm_qseecom_call() - Perform a QSEECOM SCM call. |
1798 | * @desc: SCM call descriptor. |
1799 | * @res: SCM call response (output). |
1800 | * |
1801 | * Performs the QSEECOM SCM call described by @desc, returning the response in |
1802 | * @rsp. |
1803 | * |
1804 | * Return: Zero on success, nonzero on failure. |
1805 | */ |
1806 | static int qcom_scm_qseecom_call(const struct qcom_scm_desc *desc, |
1807 | struct qcom_scm_qseecom_resp *res) |
1808 | { |
1809 | int status; |
1810 | |
1811 | /* |
1812 | * Note: Multiple QSEECOM SCM calls should not be executed same time, |
1813 | * so lock things here. This needs to be extended to callback/listener |
1814 | * handling when support for that is implemented. |
1815 | */ |
1816 | |
1817 | mutex_lock(&qcom_scm_qseecom_call_lock); |
1818 | status = __qcom_scm_qseecom_call(desc, res); |
1819 | mutex_unlock(lock: &qcom_scm_qseecom_call_lock); |
1820 | |
1821 | dev_dbg(__scm->dev, "%s: owner=%x, svc=%x, cmd=%x, result=%lld, type=%llx, data=%llx\n" , |
1822 | __func__, desc->owner, desc->svc, desc->cmd, res->result, |
1823 | res->resp_type, res->data); |
1824 | |
1825 | if (status) { |
1826 | dev_err(__scm->dev, "qseecom: scm call failed with error %d\n" , status); |
1827 | return status; |
1828 | } |
1829 | |
1830 | /* |
1831 | * TODO: Handle incomplete and blocked calls: |
1832 | * |
1833 | * Incomplete and blocked calls are not supported yet. Some devices |
1834 | * and/or commands require those, some don't. Let's warn about them |
1835 | * prominently in case someone attempts to try these commands with a |
1836 | * device/command combination that isn't supported yet. |
1837 | */ |
1838 | WARN_ON(res->result == QSEECOM_RESULT_INCOMPLETE); |
1839 | WARN_ON(res->result == QSEECOM_RESULT_BLOCKED_ON_LISTENER); |
1840 | |
1841 | return 0; |
1842 | } |
1843 | |
1844 | /** |
1845 | * qcom_scm_qseecom_get_version() - Query the QSEECOM version. |
1846 | * @version: Pointer where the QSEECOM version will be stored. |
1847 | * |
1848 | * Performs the QSEECOM SCM querying the QSEECOM version currently running in |
1849 | * the TrustZone. |
1850 | * |
1851 | * Return: Zero on success, nonzero on failure. |
1852 | */ |
1853 | static int qcom_scm_qseecom_get_version(u32 *version) |
1854 | { |
1855 | struct qcom_scm_desc desc = {}; |
1856 | struct qcom_scm_qseecom_resp res = {}; |
1857 | u32 feature = 10; |
1858 | int ret; |
1859 | |
1860 | desc.owner = QSEECOM_TZ_OWNER_SIP; |
1861 | desc.svc = QSEECOM_TZ_SVC_INFO; |
1862 | desc.cmd = QSEECOM_TZ_CMD_INFO_VERSION; |
1863 | desc.arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL); |
1864 | desc.args[0] = feature; |
1865 | |
1866 | ret = qcom_scm_qseecom_call(desc: &desc, res: &res); |
1867 | if (ret) |
1868 | return ret; |
1869 | |
1870 | *version = res.result; |
1871 | return 0; |
1872 | } |
1873 | |
1874 | /** |
1875 | * qcom_scm_qseecom_app_get_id() - Query the app ID for a given QSEE app name. |
1876 | * @app_name: The name of the app. |
1877 | * @app_id: The returned app ID. |
1878 | * |
1879 | * Query and return the application ID of the SEE app identified by the given |
1880 | * name. This returned ID is the unique identifier of the app required for |
1881 | * subsequent communication. |
1882 | * |
1883 | * Return: Zero on success, nonzero on failure, -ENOENT if the app has not been |
1884 | * loaded or could not be found. |
1885 | */ |
1886 | int qcom_scm_qseecom_app_get_id(const char *app_name, u32 *app_id) |
1887 | { |
1888 | unsigned long name_buf_size = QSEECOM_MAX_APP_NAME_SIZE; |
1889 | unsigned long app_name_len = strlen(app_name); |
1890 | struct qcom_scm_desc desc = {}; |
1891 | struct qcom_scm_qseecom_resp res = {}; |
1892 | int status; |
1893 | |
1894 | if (app_name_len >= name_buf_size) |
1895 | return -EINVAL; |
1896 | |
1897 | char *name_buf __free(qcom_tzmem) = qcom_tzmem_alloc(pool: __scm->mempool, |
1898 | size: name_buf_size, |
1899 | GFP_KERNEL); |
1900 | if (!name_buf) |
1901 | return -ENOMEM; |
1902 | |
1903 | memcpy(name_buf, app_name, app_name_len); |
1904 | |
1905 | desc.owner = QSEECOM_TZ_OWNER_QSEE_OS; |
1906 | desc.svc = QSEECOM_TZ_SVC_APP_MGR; |
1907 | desc.cmd = QSEECOM_TZ_CMD_APP_LOOKUP; |
1908 | desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_RW, QCOM_SCM_VAL); |
1909 | desc.args[0] = qcom_tzmem_to_phys(ptr: name_buf); |
1910 | desc.args[1] = app_name_len; |
1911 | |
1912 | status = qcom_scm_qseecom_call(desc: &desc, res: &res); |
1913 | |
1914 | if (status) |
1915 | return status; |
1916 | |
1917 | if (res.result == QSEECOM_RESULT_FAILURE) |
1918 | return -ENOENT; |
1919 | |
1920 | if (res.result != QSEECOM_RESULT_SUCCESS) |
1921 | return -EINVAL; |
1922 | |
1923 | if (res.resp_type != QSEECOM_SCM_RES_APP_ID) |
1924 | return -EINVAL; |
1925 | |
1926 | *app_id = res.data; |
1927 | return 0; |
1928 | } |
1929 | EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_get_id); |
1930 | |
1931 | /** |
1932 | * qcom_scm_qseecom_app_send() - Send to and receive data from a given QSEE app. |
1933 | * @app_id: The ID of the target app. |
1934 | * @req: Request buffer sent to the app (must be TZ memory) |
1935 | * @req_size: Size of the request buffer. |
1936 | * @rsp: Response buffer, written to by the app (must be TZ memory) |
1937 | * @rsp_size: Size of the response buffer. |
1938 | * |
1939 | * Sends a request to the QSEE app associated with the given ID and read back |
1940 | * its response. The caller must provide two DMA memory regions, one for the |
1941 | * request and one for the response, and fill out the @req region with the |
1942 | * respective (app-specific) request data. The QSEE app reads this and returns |
1943 | * its response in the @rsp region. |
1944 | * |
1945 | * Return: Zero on success, nonzero on failure. |
1946 | */ |
1947 | int qcom_scm_qseecom_app_send(u32 app_id, void *req, size_t req_size, |
1948 | void *rsp, size_t rsp_size) |
1949 | { |
1950 | struct qcom_scm_qseecom_resp res = {}; |
1951 | struct qcom_scm_desc desc = {}; |
1952 | phys_addr_t req_phys; |
1953 | phys_addr_t rsp_phys; |
1954 | int status; |
1955 | |
1956 | req_phys = qcom_tzmem_to_phys(ptr: req); |
1957 | rsp_phys = qcom_tzmem_to_phys(ptr: rsp); |
1958 | |
1959 | desc.owner = QSEECOM_TZ_OWNER_TZ_APPS; |
1960 | desc.svc = QSEECOM_TZ_SVC_APP_ID_PLACEHOLDER; |
1961 | desc.cmd = QSEECOM_TZ_CMD_APP_SEND; |
1962 | desc.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, |
1963 | QCOM_SCM_RW, QCOM_SCM_VAL, |
1964 | QCOM_SCM_RW, QCOM_SCM_VAL); |
1965 | desc.args[0] = app_id; |
1966 | desc.args[1] = req_phys; |
1967 | desc.args[2] = req_size; |
1968 | desc.args[3] = rsp_phys; |
1969 | desc.args[4] = rsp_size; |
1970 | |
1971 | status = qcom_scm_qseecom_call(desc: &desc, res: &res); |
1972 | |
1973 | if (status) |
1974 | return status; |
1975 | |
1976 | if (res.result != QSEECOM_RESULT_SUCCESS) |
1977 | return -EIO; |
1978 | |
1979 | return 0; |
1980 | } |
1981 | EXPORT_SYMBOL_GPL(qcom_scm_qseecom_app_send); |
1982 | |
1983 | /* |
1984 | * We do not yet support re-entrant calls via the qseecom interface. To prevent |
1985 | + any potential issues with this, only allow validated machines for now. |
1986 | */ |
1987 | static const struct of_device_id qcom_scm_qseecom_allowlist[] __maybe_unused = { |
1988 | { .compatible = "asus,vivobook-s15" }, |
1989 | { .compatible = "asus,zenbook-a14-ux3407qa" }, |
1990 | { .compatible = "asus,zenbook-a14-ux3407ra" }, |
1991 | { .compatible = "dell,xps13-9345" }, |
1992 | { .compatible = "hp,elitebook-ultra-g1q" }, |
1993 | { .compatible = "hp,omnibook-x14" }, |
1994 | { .compatible = "huawei,gaokun3" }, |
1995 | { .compatible = "lenovo,flex-5g" }, |
1996 | { .compatible = "lenovo,thinkpad-t14s" }, |
1997 | { .compatible = "lenovo,thinkpad-x13s" , }, |
1998 | { .compatible = "lenovo,yoga-slim7x" }, |
1999 | { .compatible = "microsoft,arcata" , }, |
2000 | { .compatible = "microsoft,blackrock" }, |
2001 | { .compatible = "microsoft,romulus13" , }, |
2002 | { .compatible = "microsoft,romulus15" , }, |
2003 | { .compatible = "qcom,sc8180x-primus" }, |
2004 | { .compatible = "qcom,x1e001de-devkit" }, |
2005 | { .compatible = "qcom,x1e80100-crd" }, |
2006 | { .compatible = "qcom,x1e80100-qcp" }, |
2007 | { .compatible = "qcom,x1p42100-crd" }, |
2008 | { } |
2009 | }; |
2010 | |
2011 | static bool qcom_scm_qseecom_machine_is_allowed(void) |
2012 | { |
2013 | struct device_node *np; |
2014 | bool match; |
2015 | |
2016 | np = of_find_node_by_path(path: "/" ); |
2017 | if (!np) |
2018 | return false; |
2019 | |
2020 | match = of_match_node(matches: qcom_scm_qseecom_allowlist, node: np); |
2021 | of_node_put(node: np); |
2022 | |
2023 | return match; |
2024 | } |
2025 | |
2026 | static void qcom_scm_qseecom_free(void *data) |
2027 | { |
2028 | struct platform_device *qseecom_dev = data; |
2029 | |
2030 | platform_device_del(pdev: qseecom_dev); |
2031 | platform_device_put(pdev: qseecom_dev); |
2032 | } |
2033 | |
2034 | static int qcom_scm_qseecom_init(struct qcom_scm *scm) |
2035 | { |
2036 | struct platform_device *qseecom_dev; |
2037 | u32 version; |
2038 | int ret; |
2039 | |
2040 | /* |
2041 | * Note: We do two steps of validation here: First, we try to query the |
2042 | * QSEECOM version as a check to see if the interface exists on this |
2043 | * device. Second, we check against known good devices due to current |
2044 | * driver limitations (see comment in qcom_scm_qseecom_allowlist). |
2045 | * |
2046 | * Note that we deliberately do the machine check after the version |
2047 | * check so that we can log potentially supported devices. This should |
2048 | * be safe as downstream sources indicate that the version query is |
2049 | * neither blocking nor reentrant. |
2050 | */ |
2051 | ret = qcom_scm_qseecom_get_version(version: &version); |
2052 | if (ret) |
2053 | return 0; |
2054 | |
2055 | dev_info(scm->dev, "qseecom: found qseecom with version 0x%x\n" , version); |
2056 | |
2057 | if (!qcom_scm_qseecom_machine_is_allowed()) { |
2058 | dev_info(scm->dev, "qseecom: untested machine, skipping\n" ); |
2059 | return 0; |
2060 | } |
2061 | |
2062 | /* |
2063 | * Set up QSEECOM interface device. All application clients will be |
2064 | * set up and managed by the corresponding driver for it. |
2065 | */ |
2066 | qseecom_dev = platform_device_alloc(name: "qcom_qseecom" , id: -1); |
2067 | if (!qseecom_dev) |
2068 | return -ENOMEM; |
2069 | |
2070 | qseecom_dev->dev.parent = scm->dev; |
2071 | |
2072 | ret = platform_device_add(pdev: qseecom_dev); |
2073 | if (ret) { |
2074 | platform_device_put(pdev: qseecom_dev); |
2075 | return ret; |
2076 | } |
2077 | |
2078 | return devm_add_action_or_reset(scm->dev, qcom_scm_qseecom_free, qseecom_dev); |
2079 | } |
2080 | |
2081 | #else /* CONFIG_QCOM_QSEECOM */ |
2082 | |
2083 | static int qcom_scm_qseecom_init(struct qcom_scm *scm) |
2084 | { |
2085 | return 0; |
2086 | } |
2087 | |
2088 | #endif /* CONFIG_QCOM_QSEECOM */ |
2089 | |
2090 | /** |
2091 | * qcom_scm_is_available() - Checks if SCM is available |
2092 | */ |
2093 | bool qcom_scm_is_available(void) |
2094 | { |
2095 | /* Paired with smp_store_release() in qcom_scm_probe */ |
2096 | return !!smp_load_acquire(&__scm); |
2097 | } |
2098 | EXPORT_SYMBOL_GPL(qcom_scm_is_available); |
2099 | |
2100 | static int qcom_scm_assert_valid_wq_ctx(u32 wq_ctx) |
2101 | { |
2102 | /* FW currently only supports a single wq_ctx (zero). |
2103 | * TODO: Update this logic to include dynamic allocation and lookup of |
2104 | * completion structs when FW supports more wq_ctx values. |
2105 | */ |
2106 | if (wq_ctx != 0) { |
2107 | dev_err(__scm->dev, "Firmware unexpectedly passed non-zero wq_ctx\n" ); |
2108 | return -EINVAL; |
2109 | } |
2110 | |
2111 | return 0; |
2112 | } |
2113 | |
2114 | int qcom_scm_wait_for_wq_completion(u32 wq_ctx) |
2115 | { |
2116 | int ret; |
2117 | |
2118 | ret = qcom_scm_assert_valid_wq_ctx(wq_ctx); |
2119 | if (ret) |
2120 | return ret; |
2121 | |
2122 | wait_for_completion(&__scm->waitq_comp); |
2123 | |
2124 | return 0; |
2125 | } |
2126 | |
2127 | static int qcom_scm_waitq_wakeup(unsigned int wq_ctx) |
2128 | { |
2129 | int ret; |
2130 | |
2131 | ret = qcom_scm_assert_valid_wq_ctx(wq_ctx); |
2132 | if (ret) |
2133 | return ret; |
2134 | |
2135 | complete(&__scm->waitq_comp); |
2136 | |
2137 | return 0; |
2138 | } |
2139 | |
2140 | static irqreturn_t qcom_scm_irq_handler(int irq, void *data) |
2141 | { |
2142 | int ret; |
2143 | struct qcom_scm *scm = data; |
2144 | u32 wq_ctx, flags, more_pending = 0; |
2145 | |
2146 | do { |
2147 | ret = scm_get_wq_ctx(wq_ctx: &wq_ctx, flags: &flags, more_pending: &more_pending); |
2148 | if (ret) { |
2149 | dev_err(scm->dev, "GET_WQ_CTX SMC call failed: %d\n" , ret); |
2150 | goto out; |
2151 | } |
2152 | |
2153 | if (flags != QCOM_SMC_WAITQ_FLAG_WAKE_ONE) { |
2154 | dev_err(scm->dev, "Invalid flags received for wq_ctx: %u\n" , flags); |
2155 | goto out; |
2156 | } |
2157 | |
2158 | ret = qcom_scm_waitq_wakeup(wq_ctx); |
2159 | if (ret) |
2160 | goto out; |
2161 | } while (more_pending); |
2162 | |
2163 | out: |
2164 | return IRQ_HANDLED; |
2165 | } |
2166 | |
2167 | static int get_download_mode(char *buffer, const struct kernel_param *kp) |
2168 | { |
2169 | if (download_mode >= ARRAY_SIZE(download_mode_name)) |
2170 | return sysfs_emit(buf: buffer, fmt: "unknown mode\n" ); |
2171 | |
2172 | return sysfs_emit(buf: buffer, fmt: "%s\n" , download_mode_name[download_mode]); |
2173 | } |
2174 | |
2175 | static int set_download_mode(const char *val, const struct kernel_param *kp) |
2176 | { |
2177 | bool tmp; |
2178 | int ret; |
2179 | |
2180 | ret = sysfs_match_string(download_mode_name, val); |
2181 | if (ret < 0) { |
2182 | ret = kstrtobool(s: val, res: &tmp); |
2183 | if (ret < 0) { |
2184 | pr_err("qcom_scm: err: %d\n" , ret); |
2185 | return ret; |
2186 | } |
2187 | |
2188 | ret = tmp ? 1 : 0; |
2189 | } |
2190 | |
2191 | download_mode = ret; |
2192 | if (__scm) |
2193 | qcom_scm_set_download_mode(dload_mode: download_mode); |
2194 | |
2195 | return 0; |
2196 | } |
2197 | |
2198 | static const struct kernel_param_ops download_mode_param_ops = { |
2199 | .get = get_download_mode, |
2200 | .set = set_download_mode, |
2201 | }; |
2202 | |
2203 | module_param_cb(download_mode, &download_mode_param_ops, NULL, 0644); |
2204 | MODULE_PARM_DESC(download_mode, "download mode: off/0/N for no dump mode, full/on/1/Y for full dump mode, mini for minidump mode and full,mini for both full and minidump mode together are acceptable values" ); |
2205 | |
2206 | static int qcom_scm_probe(struct platform_device *pdev) |
2207 | { |
2208 | struct qcom_tzmem_pool_config pool_config; |
2209 | struct qcom_scm *scm; |
2210 | int irq, ret; |
2211 | |
2212 | scm = devm_kzalloc(dev: &pdev->dev, size: sizeof(*scm), GFP_KERNEL); |
2213 | if (!scm) |
2214 | return -ENOMEM; |
2215 | |
2216 | scm->dev = &pdev->dev; |
2217 | ret = qcom_scm_find_dload_address(dev: &pdev->dev, addr: &scm->dload_mode_addr); |
2218 | if (ret < 0) |
2219 | return ret; |
2220 | |
2221 | init_completion(x: &scm->waitq_comp); |
2222 | mutex_init(&scm->scm_bw_lock); |
2223 | |
2224 | scm->path = devm_of_icc_get(dev: &pdev->dev, NULL); |
2225 | if (IS_ERR(ptr: scm->path)) |
2226 | return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: scm->path), |
2227 | fmt: "failed to acquire interconnect path\n" ); |
2228 | |
2229 | scm->core_clk = devm_clk_get_optional(dev: &pdev->dev, id: "core" ); |
2230 | if (IS_ERR(ptr: scm->core_clk)) |
2231 | return PTR_ERR(ptr: scm->core_clk); |
2232 | |
2233 | scm->iface_clk = devm_clk_get_optional(dev: &pdev->dev, id: "iface" ); |
2234 | if (IS_ERR(ptr: scm->iface_clk)) |
2235 | return PTR_ERR(ptr: scm->iface_clk); |
2236 | |
2237 | scm->bus_clk = devm_clk_get_optional(dev: &pdev->dev, id: "bus" ); |
2238 | if (IS_ERR(ptr: scm->bus_clk)) |
2239 | return PTR_ERR(ptr: scm->bus_clk); |
2240 | |
2241 | scm->reset.ops = &qcom_scm_pas_reset_ops; |
2242 | scm->reset.nr_resets = 1; |
2243 | scm->reset.of_node = pdev->dev.of_node; |
2244 | ret = devm_reset_controller_register(dev: &pdev->dev, rcdev: &scm->reset); |
2245 | if (ret) |
2246 | return ret; |
2247 | |
2248 | /* vote for max clk rate for highest performance */ |
2249 | ret = clk_set_rate(clk: scm->core_clk, INT_MAX); |
2250 | if (ret) |
2251 | return ret; |
2252 | |
2253 | /* Paired with smp_load_acquire() in qcom_scm_is_available(). */ |
2254 | smp_store_release(&__scm, scm); |
2255 | |
2256 | irq = platform_get_irq_optional(pdev, 0); |
2257 | if (irq < 0) { |
2258 | if (irq != -ENXIO) { |
2259 | ret = irq; |
2260 | goto err; |
2261 | } |
2262 | } else { |
2263 | ret = devm_request_threaded_irq(dev: __scm->dev, irq, NULL, thread_fn: qcom_scm_irq_handler, |
2264 | IRQF_ONESHOT, devname: "qcom-scm" , dev_id: __scm); |
2265 | if (ret < 0) { |
2266 | dev_err_probe(dev: scm->dev, err: ret, fmt: "Failed to request qcom-scm irq\n" ); |
2267 | goto err; |
2268 | } |
2269 | } |
2270 | |
2271 | __get_convention(); |
2272 | |
2273 | /* |
2274 | * If "download mode" is requested, from this point on warmboot |
2275 | * will cause the boot stages to enter download mode, unless |
2276 | * disabled below by a clean shutdown/reboot. |
2277 | */ |
2278 | qcom_scm_set_download_mode(dload_mode: download_mode); |
2279 | |
2280 | /* |
2281 | * Disable SDI if indicated by DT that it is enabled by default. |
2282 | */ |
2283 | if (of_property_read_bool(np: pdev->dev.of_node, propname: "qcom,sdi-enabled" ) || !download_mode) |
2284 | qcom_scm_disable_sdi(); |
2285 | |
2286 | ret = of_reserved_mem_device_init(dev: __scm->dev); |
2287 | if (ret && ret != -ENODEV) { |
2288 | dev_err_probe(dev: __scm->dev, err: ret, |
2289 | fmt: "Failed to setup the reserved memory region for TZ mem\n" ); |
2290 | goto err; |
2291 | } |
2292 | |
2293 | ret = qcom_tzmem_enable(dev: __scm->dev); |
2294 | if (ret) { |
2295 | dev_err_probe(dev: __scm->dev, err: ret, |
2296 | fmt: "Failed to enable the TrustZone memory allocator\n" ); |
2297 | goto err; |
2298 | } |
2299 | |
2300 | memset(&pool_config, 0, sizeof(pool_config)); |
2301 | pool_config.initial_size = 0; |
2302 | pool_config.policy = QCOM_TZMEM_POLICY_ON_DEMAND; |
2303 | pool_config.max_size = SZ_256K; |
2304 | |
2305 | __scm->mempool = devm_qcom_tzmem_pool_new(dev: __scm->dev, config: &pool_config); |
2306 | if (IS_ERR(ptr: __scm->mempool)) { |
2307 | ret = dev_err_probe(dev: __scm->dev, err: PTR_ERR(ptr: __scm->mempool), |
2308 | fmt: "Failed to create the SCM memory pool\n" ); |
2309 | goto err; |
2310 | } |
2311 | |
2312 | /* |
2313 | * Initialize the QSEECOM interface. |
2314 | * |
2315 | * Note: QSEECOM is fairly self-contained and this only adds the |
2316 | * interface device (the driver of which does most of the heavy |
2317 | * lifting). So any errors returned here should be either -ENOMEM or |
2318 | * -EINVAL (with the latter only in case there's a bug in our code). |
2319 | * This means that there is no need to bring down the whole SCM driver. |
2320 | * Just log the error instead and let SCM live. |
2321 | */ |
2322 | ret = qcom_scm_qseecom_init(scm); |
2323 | WARN(ret < 0, "failed to initialize qseecom: %d\n" , ret); |
2324 | |
2325 | return 0; |
2326 | |
2327 | err: |
2328 | /* Paired with smp_load_acquire() in qcom_scm_is_available(). */ |
2329 | smp_store_release(&__scm, NULL); |
2330 | |
2331 | return ret; |
2332 | } |
2333 | |
2334 | static void qcom_scm_shutdown(struct platform_device *pdev) |
2335 | { |
2336 | /* Clean shutdown, disable download mode to allow normal restart */ |
2337 | qcom_scm_set_download_mode(QCOM_DLOAD_NODUMP); |
2338 | } |
2339 | |
2340 | static const struct of_device_id qcom_scm_dt_match[] = { |
2341 | { .compatible = "qcom,scm" }, |
2342 | |
2343 | /* Legacy entries kept for backwards compatibility */ |
2344 | { .compatible = "qcom,scm-apq8064" }, |
2345 | { .compatible = "qcom,scm-apq8084" }, |
2346 | { .compatible = "qcom,scm-ipq4019" }, |
2347 | { .compatible = "qcom,scm-msm8953" }, |
2348 | { .compatible = "qcom,scm-msm8974" }, |
2349 | { .compatible = "qcom,scm-msm8996" }, |
2350 | {} |
2351 | }; |
2352 | MODULE_DEVICE_TABLE(of, qcom_scm_dt_match); |
2353 | |
2354 | static struct platform_driver qcom_scm_driver = { |
2355 | .driver = { |
2356 | .name = "qcom_scm" , |
2357 | .of_match_table = qcom_scm_dt_match, |
2358 | .suppress_bind_attrs = true, |
2359 | }, |
2360 | .probe = qcom_scm_probe, |
2361 | .shutdown = qcom_scm_shutdown, |
2362 | }; |
2363 | |
2364 | static int __init qcom_scm_init(void) |
2365 | { |
2366 | return platform_driver_register(&qcom_scm_driver); |
2367 | } |
2368 | subsys_initcall(qcom_scm_init); |
2369 | |
2370 | MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver" ); |
2371 | MODULE_LICENSE("GPL v2" ); |
2372 | |