1/* SPDX-License-Identifier: MIT */
2/*
3 * Copyright (C) 2017 Google, Inc.
4 * Copyright _ 2017-2019, Intel Corporation.
5 *
6 * Authors:
7 * Sean Paul <seanpaul@chromium.org>
8 * Ramalingam C <ramalingam.c@intel.com>
9 */
10
11#include <linux/component.h>
12#include <linux/i2c.h>
13#include <linux/random.h>
14
15#include <drm/display/drm_hdcp_helper.h>
16#include <drm/i915_component.h>
17
18#include "i915_drv.h"
19#include "i915_reg.h"
20#include "intel_connector.h"
21#include "intel_de.h"
22#include "intel_display_power.h"
23#include "intel_display_power_well.h"
24#include "intel_display_types.h"
25#include "intel_hdcp.h"
26#include "intel_hdcp_gsc.h"
27#include "intel_hdcp_regs.h"
28#include "intel_pcode.h"
29
30#define KEY_LOAD_TRIES 5
31#define HDCP2_LC_RETRY_CNT 3
32
33static int intel_conn_to_vcpi(struct intel_atomic_state *state,
34 struct intel_connector *connector)
35{
36 struct drm_dp_mst_topology_mgr *mgr;
37 struct drm_dp_mst_atomic_payload *payload;
38 struct drm_dp_mst_topology_state *mst_state;
39 int vcpi = 0;
40
41 /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
42 if (!connector->port)
43 return 0;
44 mgr = connector->port->mgr;
45
46 drm_modeset_lock(lock: &mgr->base.lock, ctx: state->base.acquire_ctx);
47 mst_state = to_drm_dp_mst_topology_state(state: mgr->base.state);
48 payload = drm_atomic_get_mst_payload_state(state: mst_state, port: connector->port);
49 if (drm_WARN_ON(mgr->dev, !payload))
50 goto out;
51
52 vcpi = payload->vcpi;
53 if (drm_WARN_ON(mgr->dev, vcpi < 0)) {
54 vcpi = 0;
55 goto out;
56 }
57out:
58 return vcpi;
59}
60
61/*
62 * intel_hdcp_required_content_stream selects the most highest common possible HDCP
63 * content_type for all streams in DP MST topology because security f/w doesn't
64 * have any provision to mark content_type for each stream separately, it marks
65 * all available streams with the content_type proivided at the time of port
66 * authentication. This may prohibit the userspace to use type1 content on
67 * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
68 * DP MST topology. Though it is not compulsory, security fw should change its
69 * policy to mark different content_types for different streams.
70 */
71static int
72intel_hdcp_required_content_stream(struct intel_atomic_state *state,
73 struct intel_digital_port *dig_port)
74{
75 struct drm_connector_list_iter conn_iter;
76 struct intel_digital_port *conn_dig_port;
77 struct intel_connector *connector;
78 struct drm_i915_private *i915 = to_i915(dev: dig_port->base.base.dev);
79 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
80 bool enforce_type0 = false;
81 int k;
82
83 if (dig_port->hdcp_auth_status)
84 return 0;
85
86 data->k = 0;
87
88 if (!dig_port->hdcp_mst_type1_capable)
89 enforce_type0 = true;
90
91 drm_connector_list_iter_begin(dev: &i915->drm, iter: &conn_iter);
92 for_each_intel_connector_iter(connector, &conn_iter) {
93 if (connector->base.status == connector_status_disconnected)
94 continue;
95
96 if (!intel_encoder_is_mst(encoder: intel_attached_encoder(connector)))
97 continue;
98
99 conn_dig_port = intel_attached_dig_port(connector);
100 if (conn_dig_port != dig_port)
101 continue;
102
103 data->streams[data->k].stream_id =
104 intel_conn_to_vcpi(state, connector);
105 data->k++;
106
107 /* if there is only one active stream */
108 if (dig_port->dp.active_mst_links <= 1)
109 break;
110 }
111 drm_connector_list_iter_end(iter: &conn_iter);
112
113 if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
114 return -EINVAL;
115
116 /*
117 * Apply common protection level across all streams in DP MST Topology.
118 * Use highest supported content type for all streams in DP MST Topology.
119 */
120 for (k = 0; k < data->k; k++)
121 data->streams[k].stream_type =
122 enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
123
124 return 0;
125}
126
127static int intel_hdcp_prepare_streams(struct intel_atomic_state *state,
128 struct intel_connector *connector)
129{
130 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
131 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
132 struct intel_hdcp *hdcp = &connector->hdcp;
133
134 if (intel_encoder_is_mst(encoder: intel_attached_encoder(connector)))
135 return intel_hdcp_required_content_stream(state, dig_port);
136
137 data->k = 1;
138 data->streams[0].stream_id = 0;
139 data->streams[0].stream_type = hdcp->content_type;
140
141 return 0;
142}
143
144static
145bool intel_hdcp_is_ksv_valid(u8 *ksv)
146{
147 int i, ones = 0;
148 /* KSV has 20 1's and 20 0's */
149 for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
150 ones += hweight8(ksv[i]);
151 if (ones != 20)
152 return false;
153
154 return true;
155}
156
157static
158int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
159 const struct intel_hdcp_shim *shim, u8 *bksv)
160{
161 struct drm_i915_private *i915 = to_i915(dev: dig_port->base.base.dev);
162 int ret, i, tries = 2;
163
164 /* HDCP spec states that we must retry the bksv if it is invalid */
165 for (i = 0; i < tries; i++) {
166 ret = shim->read_bksv(dig_port, bksv);
167 if (ret)
168 return ret;
169 if (intel_hdcp_is_ksv_valid(ksv: bksv))
170 break;
171 }
172 if (i == tries) {
173 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
174 return -ENODEV;
175 }
176
177 return 0;
178}
179
180/* Is HDCP1.4 capable on Platform and Sink */
181bool intel_hdcp_get_capability(struct intel_connector *connector)
182{
183 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
184 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
185 bool capable = false;
186 u8 bksv[5];
187
188 if (!shim)
189 return capable;
190
191 if (shim->hdcp_get_capability) {
192 shim->hdcp_get_capability(dig_port, &capable);
193 } else {
194 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
195 capable = true;
196 }
197
198 return capable;
199}
200
201/*
202 * Check if the source has all the building blocks ready to make
203 * HDCP 2.2 work
204 */
205static bool intel_hdcp2_prerequisite(struct intel_connector *connector)
206{
207 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
208 struct intel_hdcp *hdcp = &connector->hdcp;
209
210 /* I915 support for HDCP2.2 */
211 if (!hdcp->hdcp2_supported)
212 return false;
213
214 /* If MTL+ make sure gsc is loaded and proxy is setup */
215 if (intel_hdcp_gsc_cs_required(i915)) {
216 if (!intel_hdcp_gsc_check_status(i915))
217 return false;
218 }
219
220 /* MEI/GSC interface is solid depending on which is used */
221 mutex_lock(&i915->display.hdcp.hdcp_mutex);
222 if (!i915->display.hdcp.comp_added || !i915->display.hdcp.arbiter) {
223 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
224 return false;
225 }
226 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
227
228 return true;
229}
230
231/* Is HDCP2.2 capable on Platform and Sink */
232bool intel_hdcp2_get_capability(struct intel_connector *connector)
233{
234 struct intel_hdcp *hdcp = &connector->hdcp;
235 bool capable = false;
236
237 if (!intel_hdcp2_prerequisite(connector))
238 return false;
239
240 /* Sink's capability for HDCP2.2 */
241 hdcp->shim->hdcp_2_2_get_capability(connector, &capable);
242
243 return capable;
244}
245
246void intel_hdcp_get_remote_capability(struct intel_connector *connector,
247 bool *hdcp_capable,
248 bool *hdcp2_capable)
249{
250 struct intel_hdcp *hdcp = &connector->hdcp;
251
252 if (!hdcp->shim->get_remote_hdcp_capability)
253 return;
254
255 hdcp->shim->get_remote_hdcp_capability(connector, hdcp_capable,
256 hdcp2_capable);
257
258 if (!intel_hdcp2_prerequisite(connector))
259 *hdcp2_capable = false;
260}
261
262static bool intel_hdcp_in_use(struct drm_i915_private *i915,
263 enum transcoder cpu_transcoder, enum port port)
264{
265 return intel_de_read(i915,
266 HDCP_STATUS(i915, cpu_transcoder, port)) &
267 HDCP_STATUS_ENC;
268}
269
270static bool intel_hdcp2_in_use(struct drm_i915_private *i915,
271 enum transcoder cpu_transcoder, enum port port)
272{
273 return intel_de_read(i915,
274 HDCP2_STATUS(i915, cpu_transcoder, port)) &
275 LINK_ENCRYPTION_STATUS;
276}
277
278static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
279 const struct intel_hdcp_shim *shim)
280{
281 int ret, read_ret;
282 bool ksv_ready;
283
284 /* Poll for ksv list ready (spec says max time allowed is 5s) */
285 ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
286 &ksv_ready),
287 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
288 100 * 1000);
289 if (ret)
290 return ret;
291 if (read_ret)
292 return read_ret;
293 if (!ksv_ready)
294 return -ETIMEDOUT;
295
296 return 0;
297}
298
299static bool hdcp_key_loadable(struct drm_i915_private *i915)
300{
301 enum i915_power_well_id id;
302 intel_wakeref_t wakeref;
303 bool enabled = false;
304
305 /*
306 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
307 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
308 */
309 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
310 id = HSW_DISP_PW_GLOBAL;
311 else
312 id = SKL_DISP_PW_1;
313
314 /* PG1 (power well #1) needs to be enabled */
315 with_intel_runtime_pm(&i915->runtime_pm, wakeref)
316 enabled = intel_display_power_well_is_enabled(dev_priv: i915, power_well_id: id);
317
318 /*
319 * Another req for hdcp key loadability is enabled state of pll for
320 * cdclk. Without active crtc we wont land here. So we are assuming that
321 * cdclk is already on.
322 */
323
324 return enabled;
325}
326
327static void intel_hdcp_clear_keys(struct drm_i915_private *i915)
328{
329 intel_de_write(i915, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
330 intel_de_write(i915, HDCP_KEY_STATUS,
331 HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
332}
333
334static int intel_hdcp_load_keys(struct drm_i915_private *i915)
335{
336 int ret;
337 u32 val;
338
339 val = intel_de_read(i915, HDCP_KEY_STATUS);
340 if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
341 return 0;
342
343 /*
344 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
345 * out of reset. So if Key is not already loaded, its an error state.
346 */
347 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
348 if (!(intel_de_read(i915, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
349 return -ENXIO;
350
351 /*
352 * Initiate loading the HDCP key from fuses.
353 *
354 * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
355 * version 9 platforms (minus BXT) differ in the key load trigger
356 * process from other platforms. These platforms use the GT Driver
357 * Mailbox interface.
358 */
359 if (DISPLAY_VER(i915) == 9 && !IS_BROXTON(i915)) {
360 ret = snb_pcode_write(&i915->uncore, SKL_PCODE_LOAD_HDCP_KEYS, 1);
361 if (ret) {
362 drm_err(&i915->drm,
363 "Failed to initiate HDCP key load (%d)\n",
364 ret);
365 return ret;
366 }
367 } else {
368 intel_de_write(i915, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
369 }
370
371 /* Wait for the keys to load (500us) */
372 ret = __intel_wait_for_register(uncore: &i915->uncore, HDCP_KEY_STATUS,
373 HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
374 fast_timeout_us: 10, slow_timeout_ms: 1, out_value: &val);
375 if (ret)
376 return ret;
377 else if (!(val & HDCP_KEY_LOAD_STATUS))
378 return -ENXIO;
379
380 /* Send Aksv over to PCH display for use in authentication */
381 intel_de_write(i915, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
382
383 return 0;
384}
385
386/* Returns updated SHA-1 index */
387static int intel_write_sha_text(struct drm_i915_private *i915, u32 sha_text)
388{
389 intel_de_write(i915, HDCP_SHA_TEXT, val: sha_text);
390 if (intel_de_wait_for_set(i915, HDCP_REP_CTL, HDCP_SHA1_READY, timeout: 1)) {
391 drm_err(&i915->drm, "Timed out waiting for SHA1 ready\n");
392 return -ETIMEDOUT;
393 }
394 return 0;
395}
396
397static
398u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *i915,
399 enum transcoder cpu_transcoder, enum port port)
400{
401 if (DISPLAY_VER(i915) >= 12) {
402 switch (cpu_transcoder) {
403 case TRANSCODER_A:
404 return HDCP_TRANSA_REP_PRESENT |
405 HDCP_TRANSA_SHA1_M0;
406 case TRANSCODER_B:
407 return HDCP_TRANSB_REP_PRESENT |
408 HDCP_TRANSB_SHA1_M0;
409 case TRANSCODER_C:
410 return HDCP_TRANSC_REP_PRESENT |
411 HDCP_TRANSC_SHA1_M0;
412 case TRANSCODER_D:
413 return HDCP_TRANSD_REP_PRESENT |
414 HDCP_TRANSD_SHA1_M0;
415 default:
416 drm_err(&i915->drm, "Unknown transcoder %d\n",
417 cpu_transcoder);
418 return 0;
419 }
420 }
421
422 switch (port) {
423 case PORT_A:
424 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
425 case PORT_B:
426 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
427 case PORT_C:
428 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
429 case PORT_D:
430 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
431 case PORT_E:
432 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
433 default:
434 drm_err(&i915->drm, "Unknown port %d\n", port);
435 return 0;
436 }
437}
438
439static
440int intel_hdcp_validate_v_prime(struct intel_connector *connector,
441 const struct intel_hdcp_shim *shim,
442 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
443{
444 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
445 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
446 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
447 enum port port = dig_port->base.port;
448 u32 vprime, sha_text, sha_leftovers, rep_ctl;
449 int ret, i, j, sha_idx;
450
451 /* Process V' values from the receiver */
452 for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
453 ret = shim->read_v_prime_part(dig_port, i, &vprime);
454 if (ret)
455 return ret;
456 intel_de_write(i915, HDCP_SHA_V_PRIME(i), val: vprime);
457 }
458
459 /*
460 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
461 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
462 * stream is written via the HDCP_SHA_TEXT register in 32-bit
463 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
464 * index will keep track of our progress through the 64 bytes as well as
465 * helping us work the 40-bit KSVs through our 32-bit register.
466 *
467 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
468 */
469 sha_idx = 0;
470 sha_text = 0;
471 sha_leftovers = 0;
472 rep_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port);
473 intel_de_write(i915, HDCP_REP_CTL, val: rep_ctl | HDCP_SHA1_TEXT_32);
474 for (i = 0; i < num_downstream; i++) {
475 unsigned int sha_empty;
476 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
477
478 /* Fill up the empty slots in sha_text and write it out */
479 sha_empty = sizeof(sha_text) - sha_leftovers;
480 for (j = 0; j < sha_empty; j++) {
481 u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
482 sha_text |= ksv[j] << off;
483 }
484
485 ret = intel_write_sha_text(i915, sha_text);
486 if (ret < 0)
487 return ret;
488
489 /* Programming guide writes this every 64 bytes */
490 sha_idx += sizeof(sha_text);
491 if (!(sha_idx % 64))
492 intel_de_write(i915, HDCP_REP_CTL,
493 val: rep_ctl | HDCP_SHA1_TEXT_32);
494
495 /* Store the leftover bytes from the ksv in sha_text */
496 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
497 sha_text = 0;
498 for (j = 0; j < sha_leftovers; j++)
499 sha_text |= ksv[sha_empty + j] <<
500 ((sizeof(sha_text) - j - 1) * 8);
501
502 /*
503 * If we still have room in sha_text for more data, continue.
504 * Otherwise, write it out immediately.
505 */
506 if (sizeof(sha_text) > sha_leftovers)
507 continue;
508
509 ret = intel_write_sha_text(i915, sha_text);
510 if (ret < 0)
511 return ret;
512 sha_leftovers = 0;
513 sha_text = 0;
514 sha_idx += sizeof(sha_text);
515 }
516
517 /*
518 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
519 * bytes are leftover from the last ksv, we might be able to fit them
520 * all in sha_text (first 2 cases), or we might need to split them up
521 * into 2 writes (last 2 cases).
522 */
523 if (sha_leftovers == 0) {
524 /* Write 16 bits of text, 16 bits of M0 */
525 intel_de_write(i915, HDCP_REP_CTL,
526 val: rep_ctl | HDCP_SHA1_TEXT_16);
527 ret = intel_write_sha_text(i915,
528 sha_text: bstatus[0] << 8 | bstatus[1]);
529 if (ret < 0)
530 return ret;
531 sha_idx += sizeof(sha_text);
532
533 /* Write 32 bits of M0 */
534 intel_de_write(i915, HDCP_REP_CTL,
535 val: rep_ctl | HDCP_SHA1_TEXT_0);
536 ret = intel_write_sha_text(i915, sha_text: 0);
537 if (ret < 0)
538 return ret;
539 sha_idx += sizeof(sha_text);
540
541 /* Write 16 bits of M0 */
542 intel_de_write(i915, HDCP_REP_CTL,
543 val: rep_ctl | HDCP_SHA1_TEXT_16);
544 ret = intel_write_sha_text(i915, sha_text: 0);
545 if (ret < 0)
546 return ret;
547 sha_idx += sizeof(sha_text);
548
549 } else if (sha_leftovers == 1) {
550 /* Write 24 bits of text, 8 bits of M0 */
551 intel_de_write(i915, HDCP_REP_CTL,
552 val: rep_ctl | HDCP_SHA1_TEXT_24);
553 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
554 /* Only 24-bits of data, must be in the LSB */
555 sha_text = (sha_text & 0xffffff00) >> 8;
556 ret = intel_write_sha_text(i915, sha_text);
557 if (ret < 0)
558 return ret;
559 sha_idx += sizeof(sha_text);
560
561 /* Write 32 bits of M0 */
562 intel_de_write(i915, HDCP_REP_CTL,
563 val: rep_ctl | HDCP_SHA1_TEXT_0);
564 ret = intel_write_sha_text(i915, sha_text: 0);
565 if (ret < 0)
566 return ret;
567 sha_idx += sizeof(sha_text);
568
569 /* Write 24 bits of M0 */
570 intel_de_write(i915, HDCP_REP_CTL,
571 val: rep_ctl | HDCP_SHA1_TEXT_8);
572 ret = intel_write_sha_text(i915, sha_text: 0);
573 if (ret < 0)
574 return ret;
575 sha_idx += sizeof(sha_text);
576
577 } else if (sha_leftovers == 2) {
578 /* Write 32 bits of text */
579 intel_de_write(i915, HDCP_REP_CTL,
580 val: rep_ctl | HDCP_SHA1_TEXT_32);
581 sha_text |= bstatus[0] << 8 | bstatus[1];
582 ret = intel_write_sha_text(i915, sha_text);
583 if (ret < 0)
584 return ret;
585 sha_idx += sizeof(sha_text);
586
587 /* Write 64 bits of M0 */
588 intel_de_write(i915, HDCP_REP_CTL,
589 val: rep_ctl | HDCP_SHA1_TEXT_0);
590 for (i = 0; i < 2; i++) {
591 ret = intel_write_sha_text(i915, sha_text: 0);
592 if (ret < 0)
593 return ret;
594 sha_idx += sizeof(sha_text);
595 }
596
597 /*
598 * Terminate the SHA-1 stream by hand. For the other leftover
599 * cases this is appended by the hardware.
600 */
601 intel_de_write(i915, HDCP_REP_CTL,
602 val: rep_ctl | HDCP_SHA1_TEXT_32);
603 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
604 ret = intel_write_sha_text(i915, sha_text);
605 if (ret < 0)
606 return ret;
607 sha_idx += sizeof(sha_text);
608 } else if (sha_leftovers == 3) {
609 /* Write 32 bits of text (filled from LSB) */
610 intel_de_write(i915, HDCP_REP_CTL,
611 val: rep_ctl | HDCP_SHA1_TEXT_32);
612 sha_text |= bstatus[0];
613 ret = intel_write_sha_text(i915, sha_text);
614 if (ret < 0)
615 return ret;
616 sha_idx += sizeof(sha_text);
617
618 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
619 intel_de_write(i915, HDCP_REP_CTL,
620 val: rep_ctl | HDCP_SHA1_TEXT_8);
621 ret = intel_write_sha_text(i915, sha_text: bstatus[1]);
622 if (ret < 0)
623 return ret;
624 sha_idx += sizeof(sha_text);
625
626 /* Write 32 bits of M0 */
627 intel_de_write(i915, HDCP_REP_CTL,
628 val: rep_ctl | HDCP_SHA1_TEXT_0);
629 ret = intel_write_sha_text(i915, sha_text: 0);
630 if (ret < 0)
631 return ret;
632 sha_idx += sizeof(sha_text);
633
634 /* Write 8 bits of M0 */
635 intel_de_write(i915, HDCP_REP_CTL,
636 val: rep_ctl | HDCP_SHA1_TEXT_24);
637 ret = intel_write_sha_text(i915, sha_text: 0);
638 if (ret < 0)
639 return ret;
640 sha_idx += sizeof(sha_text);
641 } else {
642 drm_dbg_kms(&i915->drm, "Invalid number of leftovers %d\n",
643 sha_leftovers);
644 return -EINVAL;
645 }
646
647 intel_de_write(i915, HDCP_REP_CTL, val: rep_ctl | HDCP_SHA1_TEXT_32);
648 /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
649 while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
650 ret = intel_write_sha_text(i915, sha_text: 0);
651 if (ret < 0)
652 return ret;
653 sha_idx += sizeof(sha_text);
654 }
655
656 /*
657 * Last write gets the length of the concatenation in bits. That is:
658 * - 5 bytes per device
659 * - 10 bytes for BINFO/BSTATUS(2), M0(8)
660 */
661 sha_text = (num_downstream * 5 + 10) * 8;
662 ret = intel_write_sha_text(i915, sha_text);
663 if (ret < 0)
664 return ret;
665
666 /* Tell the HW we're done with the hash and wait for it to ACK */
667 intel_de_write(i915, HDCP_REP_CTL,
668 val: rep_ctl | HDCP_SHA1_COMPLETE_HASH);
669 if (intel_de_wait_for_set(i915, HDCP_REP_CTL,
670 HDCP_SHA1_COMPLETE, timeout: 1)) {
671 drm_err(&i915->drm, "Timed out waiting for SHA1 complete\n");
672 return -ETIMEDOUT;
673 }
674 if (!(intel_de_read(i915, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
675 drm_dbg_kms(&i915->drm, "SHA-1 mismatch, HDCP failed\n");
676 return -ENXIO;
677 }
678
679 return 0;
680}
681
682/* Implements Part 2 of the HDCP authorization procedure */
683static
684int intel_hdcp_auth_downstream(struct intel_connector *connector)
685{
686 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
687 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
688 const struct intel_hdcp_shim *shim = connector->hdcp.shim;
689 u8 bstatus[2], num_downstream, *ksv_fifo;
690 int ret, i, tries = 3;
691
692 ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
693 if (ret) {
694 drm_dbg_kms(&i915->drm,
695 "KSV list failed to become ready (%d)\n", ret);
696 return ret;
697 }
698
699 ret = shim->read_bstatus(dig_port, bstatus);
700 if (ret)
701 return ret;
702
703 if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
704 DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
705 drm_dbg_kms(&i915->drm, "Max Topology Limit Exceeded\n");
706 return -EPERM;
707 }
708
709 /*
710 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
711 * the HDCP encryption. That implies that repeater can't have its own
712 * display. As there is no consumption of encrypted content in the
713 * repeater with 0 downstream devices, we are failing the
714 * authentication.
715 */
716 num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
717 if (num_downstream == 0) {
718 drm_dbg_kms(&i915->drm,
719 "Repeater with zero downstream devices\n");
720 return -EINVAL;
721 }
722
723 ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, size: num_downstream, GFP_KERNEL);
724 if (!ksv_fifo) {
725 drm_dbg_kms(&i915->drm, "Out of mem: ksv_fifo\n");
726 return -ENOMEM;
727 }
728
729 ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
730 if (ret)
731 goto err;
732
733 if (drm_hdcp_check_ksvs_revoked(dev: &i915->drm, ksvs: ksv_fifo,
734 ksv_count: num_downstream) > 0) {
735 drm_err(&i915->drm, "Revoked Ksv(s) in ksv_fifo\n");
736 ret = -EPERM;
737 goto err;
738 }
739
740 /*
741 * When V prime mismatches, DP Spec mandates re-read of
742 * V prime atleast twice.
743 */
744 for (i = 0; i < tries; i++) {
745 ret = intel_hdcp_validate_v_prime(connector, shim,
746 ksv_fifo, num_downstream,
747 bstatus);
748 if (!ret)
749 break;
750 }
751
752 if (i == tries) {
753 drm_dbg_kms(&i915->drm,
754 "V Prime validation failed.(%d)\n", ret);
755 goto err;
756 }
757
758 drm_dbg_kms(&i915->drm, "HDCP is enabled (%d downstream devices)\n",
759 num_downstream);
760 ret = 0;
761err:
762 kfree(objp: ksv_fifo);
763 return ret;
764}
765
766/* Implements Part 1 of the HDCP authorization procedure */
767static int intel_hdcp_auth(struct intel_connector *connector)
768{
769 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
770 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
771 struct intel_hdcp *hdcp = &connector->hdcp;
772 const struct intel_hdcp_shim *shim = hdcp->shim;
773 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
774 enum port port = dig_port->base.port;
775 unsigned long r0_prime_gen_start;
776 int ret, i, tries = 2;
777 union {
778 u32 reg[2];
779 u8 shim[DRM_HDCP_AN_LEN];
780 } an;
781 union {
782 u32 reg[2];
783 u8 shim[DRM_HDCP_KSV_LEN];
784 } bksv;
785 union {
786 u32 reg;
787 u8 shim[DRM_HDCP_RI_LEN];
788 } ri;
789 bool repeater_present, hdcp_capable;
790
791 /*
792 * Detects whether the display is HDCP capable. Although we check for
793 * valid Bksv below, the HDCP over DP spec requires that we check
794 * whether the display supports HDCP before we write An. For HDMI
795 * displays, this is not necessary.
796 */
797 if (shim->hdcp_get_capability) {
798 ret = shim->hdcp_get_capability(dig_port, &hdcp_capable);
799 if (ret)
800 return ret;
801 if (!hdcp_capable) {
802 drm_dbg_kms(&i915->drm,
803 "Panel is not HDCP capable\n");
804 return -EINVAL;
805 }
806 }
807
808 /* Initialize An with 2 random values and acquire it */
809 for (i = 0; i < 2; i++)
810 intel_de_write(i915,
811 HDCP_ANINIT(i915, cpu_transcoder, port),
812 val: get_random_u32());
813 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
814 HDCP_CONF_CAPTURE_AN);
815
816 /* Wait for An to be acquired */
817 if (intel_de_wait_for_set(i915,
818 HDCP_STATUS(i915, cpu_transcoder, port),
819 HDCP_STATUS_AN_READY, timeout: 1)) {
820 drm_err(&i915->drm, "Timed out waiting for An\n");
821 return -ETIMEDOUT;
822 }
823
824 an.reg[0] = intel_de_read(i915,
825 HDCP_ANLO(i915, cpu_transcoder, port));
826 an.reg[1] = intel_de_read(i915,
827 HDCP_ANHI(i915, cpu_transcoder, port));
828 ret = shim->write_an_aksv(dig_port, an.shim);
829 if (ret)
830 return ret;
831
832 r0_prime_gen_start = jiffies;
833
834 memset(&bksv, 0, sizeof(bksv));
835
836 ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv: bksv.shim);
837 if (ret < 0)
838 return ret;
839
840 if (drm_hdcp_check_ksvs_revoked(dev: &i915->drm, ksvs: bksv.shim, ksv_count: 1) > 0) {
841 drm_err(&i915->drm, "BKSV is revoked\n");
842 return -EPERM;
843 }
844
845 intel_de_write(i915, HDCP_BKSVLO(i915, cpu_transcoder, port),
846 val: bksv.reg[0]);
847 intel_de_write(i915, HDCP_BKSVHI(i915, cpu_transcoder, port),
848 val: bksv.reg[1]);
849
850 ret = shim->repeater_present(dig_port, &repeater_present);
851 if (ret)
852 return ret;
853 if (repeater_present)
854 intel_de_write(i915, HDCP_REP_CTL,
855 val: intel_hdcp_get_repeater_ctl(i915, cpu_transcoder, port));
856
857 ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
858 if (ret)
859 return ret;
860
861 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port),
862 HDCP_CONF_AUTH_AND_ENC);
863
864 /* Wait for R0 ready */
865 if (wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
866 (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
867 drm_err(&i915->drm, "Timed out waiting for R0 ready\n");
868 return -ETIMEDOUT;
869 }
870
871 /*
872 * Wait for R0' to become available. The spec says 100ms from Aksv, but
873 * some monitors can take longer than this. We'll set the timeout at
874 * 300ms just to be sure.
875 *
876 * On DP, there's an R0_READY bit available but no such bit
877 * exists on HDMI. Since the upper-bound is the same, we'll just do
878 * the stupid thing instead of polling on one and not the other.
879 */
880 wait_remaining_ms_from_jiffies(timestamp_jiffies: r0_prime_gen_start, to_wait_ms: 300);
881
882 tries = 3;
883
884 /*
885 * DP HDCP Spec mandates the two more reattempt to read R0, incase
886 * of R0 mismatch.
887 */
888 for (i = 0; i < tries; i++) {
889 ri.reg = 0;
890 ret = shim->read_ri_prime(dig_port, ri.shim);
891 if (ret)
892 return ret;
893 intel_de_write(i915,
894 HDCP_RPRIME(i915, cpu_transcoder, port),
895 val: ri.reg);
896
897 /* Wait for Ri prime match */
898 if (!wait_for(intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
899 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
900 break;
901 }
902
903 if (i == tries) {
904 drm_dbg_kms(&i915->drm,
905 "Timed out waiting for Ri prime match (%x)\n",
906 intel_de_read(i915,
907 HDCP_STATUS(i915, cpu_transcoder, port)));
908 return -ETIMEDOUT;
909 }
910
911 /* Wait for encryption confirmation */
912 if (intel_de_wait_for_set(i915,
913 HDCP_STATUS(i915, cpu_transcoder, port),
914 HDCP_STATUS_ENC,
915 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
916 drm_err(&i915->drm, "Timed out waiting for encryption\n");
917 return -ETIMEDOUT;
918 }
919
920 /* DP MST Auth Part 1 Step 2.a and Step 2.b */
921 if (shim->stream_encryption) {
922 ret = shim->stream_encryption(connector, true);
923 if (ret) {
924 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 1.4 stream enc\n",
925 connector->base.base.id, connector->base.name);
926 return ret;
927 }
928 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
929 transcoder_name(hdcp->stream_transcoder));
930 }
931
932 if (repeater_present)
933 return intel_hdcp_auth_downstream(connector);
934
935 drm_dbg_kms(&i915->drm, "HDCP is enabled (no repeater present)\n");
936 return 0;
937}
938
939static int _intel_hdcp_disable(struct intel_connector *connector)
940{
941 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
942 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
943 struct intel_hdcp *hdcp = &connector->hdcp;
944 enum port port = dig_port->base.port;
945 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
946 u32 repeater_ctl;
947 int ret;
948
949 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being disabled...\n",
950 connector->base.base.id, connector->base.name);
951
952 if (hdcp->shim->stream_encryption) {
953 ret = hdcp->shim->stream_encryption(connector, false);
954 if (ret) {
955 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 1.4 stream enc\n",
956 connector->base.base.id, connector->base.name);
957 return ret;
958 }
959 drm_dbg_kms(&i915->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
960 transcoder_name(hdcp->stream_transcoder));
961 /*
962 * If there are other connectors on this port using HDCP,
963 * don't disable it until it disabled HDCP encryption for
964 * all connectors in MST topology.
965 */
966 if (dig_port->num_hdcp_streams > 0)
967 return 0;
968 }
969
970 hdcp->hdcp_encrypted = false;
971 intel_de_write(i915, HDCP_CONF(i915, cpu_transcoder, port), val: 0);
972 if (intel_de_wait_for_clear(i915,
973 HDCP_STATUS(i915, cpu_transcoder, port),
974 mask: ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
975 drm_err(&i915->drm,
976 "Failed to disable HDCP, timeout clearing status\n");
977 return -ETIMEDOUT;
978 }
979
980 repeater_ctl = intel_hdcp_get_repeater_ctl(i915, cpu_transcoder,
981 port);
982 intel_de_rmw(i915, HDCP_REP_CTL, clear: repeater_ctl, set: 0);
983
984 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
985 if (ret) {
986 drm_err(&i915->drm, "Failed to disable HDCP signalling\n");
987 return ret;
988 }
989
990 drm_dbg_kms(&i915->drm, "HDCP is disabled\n");
991 return 0;
992}
993
994static int intel_hdcp1_enable(struct intel_connector *connector)
995{
996 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
997 struct intel_hdcp *hdcp = &connector->hdcp;
998 int i, ret, tries = 3;
999
1000 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP is being enabled...\n",
1001 connector->base.base.id, connector->base.name);
1002
1003 if (!hdcp_key_loadable(i915)) {
1004 drm_err(&i915->drm, "HDCP key Load is not possible\n");
1005 return -ENXIO;
1006 }
1007
1008 for (i = 0; i < KEY_LOAD_TRIES; i++) {
1009 ret = intel_hdcp_load_keys(i915);
1010 if (!ret)
1011 break;
1012 intel_hdcp_clear_keys(i915);
1013 }
1014 if (ret) {
1015 drm_err(&i915->drm, "Could not load HDCP keys, (%d)\n",
1016 ret);
1017 return ret;
1018 }
1019
1020 /* Incase of authentication failures, HDCP spec expects reauth. */
1021 for (i = 0; i < tries; i++) {
1022 ret = intel_hdcp_auth(connector);
1023 if (!ret) {
1024 hdcp->hdcp_encrypted = true;
1025 return 0;
1026 }
1027
1028 drm_dbg_kms(&i915->drm, "HDCP Auth failure (%d)\n", ret);
1029
1030 /* Ensuring HDCP encryption and signalling are stopped. */
1031 _intel_hdcp_disable(connector);
1032 }
1033
1034 drm_dbg_kms(&i915->drm,
1035 "HDCP authentication failed (%d tries/%d)\n", tries, ret);
1036 return ret;
1037}
1038
1039static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
1040{
1041 return container_of(hdcp, struct intel_connector, hdcp);
1042}
1043
1044static void intel_hdcp_update_value(struct intel_connector *connector,
1045 u64 value, bool update_property)
1046{
1047 struct drm_device *dev = connector->base.dev;
1048 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1049 struct intel_hdcp *hdcp = &connector->hdcp;
1050 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1051
1052 drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
1053
1054 if (hdcp->value == value)
1055 return;
1056
1057 drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
1058
1059 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1060 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
1061 dig_port->num_hdcp_streams--;
1062 } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1063 dig_port->num_hdcp_streams++;
1064 }
1065
1066 hdcp->value = value;
1067 if (update_property) {
1068 drm_connector_get(connector: &connector->base);
1069 queue_work(wq: i915->unordered_wq, work: &hdcp->prop_work);
1070 }
1071}
1072
1073/* Implements Part 3 of the HDCP authorization procedure */
1074static int intel_hdcp_check_link(struct intel_connector *connector)
1075{
1076 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1077 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1078 struct intel_hdcp *hdcp = &connector->hdcp;
1079 enum port port = dig_port->base.port;
1080 enum transcoder cpu_transcoder;
1081 int ret = 0;
1082
1083 mutex_lock(&hdcp->mutex);
1084 mutex_lock(&dig_port->hdcp_mutex);
1085
1086 cpu_transcoder = hdcp->cpu_transcoder;
1087
1088 /* Check_link valid only when HDCP1.4 is enabled */
1089 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1090 !hdcp->hdcp_encrypted) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 if (drm_WARN_ON(&i915->drm,
1096 !intel_hdcp_in_use(i915, cpu_transcoder, port))) {
1097 drm_err(&i915->drm,
1098 "[CONNECTOR:%d:%s] HDCP link stopped encryption,%x\n",
1099 connector->base.base.id, connector->base.name,
1100 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)));
1101 ret = -ENXIO;
1102 intel_hdcp_update_value(connector,
1103 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1104 update_property: true);
1105 goto out;
1106 }
1107
1108 if (hdcp->shim->check_link(dig_port, connector)) {
1109 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1110 intel_hdcp_update_value(connector,
1111 DRM_MODE_CONTENT_PROTECTION_ENABLED, update_property: true);
1112 }
1113 goto out;
1114 }
1115
1116 drm_dbg_kms(&i915->drm,
1117 "[CONNECTOR:%d:%s] HDCP link failed, retrying authentication\n",
1118 connector->base.base.id, connector->base.name);
1119
1120 ret = _intel_hdcp_disable(connector);
1121 if (ret) {
1122 drm_err(&i915->drm, "Failed to disable hdcp (%d)\n", ret);
1123 intel_hdcp_update_value(connector,
1124 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1125 update_property: true);
1126 goto out;
1127 }
1128
1129 intel_hdcp_update_value(connector,
1130 DRM_MODE_CONTENT_PROTECTION_DESIRED,
1131 update_property: true);
1132out:
1133 mutex_unlock(lock: &dig_port->hdcp_mutex);
1134 mutex_unlock(lock: &hdcp->mutex);
1135 return ret;
1136}
1137
1138static void intel_hdcp_prop_work(struct work_struct *work)
1139{
1140 struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1141 prop_work);
1142 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1143 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1144
1145 drm_modeset_lock(lock: &i915->drm.mode_config.connection_mutex, NULL);
1146 mutex_lock(&hdcp->mutex);
1147
1148 /*
1149 * This worker is only used to flip between ENABLED/DESIRED. Either of
1150 * those to UNDESIRED is handled by core. If value == UNDESIRED,
1151 * we're running just after hdcp has been disabled, so just exit
1152 */
1153 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1154 drm_hdcp_update_content_protection(connector: &connector->base,
1155 val: hdcp->value);
1156
1157 mutex_unlock(lock: &hdcp->mutex);
1158 drm_modeset_unlock(lock: &i915->drm.mode_config.connection_mutex);
1159
1160 drm_connector_put(connector: &connector->base);
1161}
1162
1163bool is_hdcp_supported(struct drm_i915_private *i915, enum port port)
1164{
1165 return DISPLAY_RUNTIME_INFO(i915)->has_hdcp &&
1166 (DISPLAY_VER(i915) >= 12 || port < PORT_E);
1167}
1168
1169static int
1170hdcp2_prepare_ake_init(struct intel_connector *connector,
1171 struct hdcp2_ake_init *ake_data)
1172{
1173 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1174 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1175 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1176 struct i915_hdcp_arbiter *arbiter;
1177 int ret;
1178
1179 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1180 arbiter = i915->display.hdcp.arbiter;
1181
1182 if (!arbiter || !arbiter->ops) {
1183 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1184 return -EINVAL;
1185 }
1186
1187 ret = arbiter->ops->initiate_hdcp2_session(arbiter->hdcp_dev, data, ake_data);
1188 if (ret)
1189 drm_dbg_kms(&i915->drm, "Prepare_ake_init failed. %d\n",
1190 ret);
1191 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1192
1193 return ret;
1194}
1195
1196static int
1197hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1198 struct hdcp2_ake_send_cert *rx_cert,
1199 bool *paired,
1200 struct hdcp2_ake_no_stored_km *ek_pub_km,
1201 size_t *msg_sz)
1202{
1203 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1204 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1205 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1206 struct i915_hdcp_arbiter *arbiter;
1207 int ret;
1208
1209 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1210 arbiter = i915->display.hdcp.arbiter;
1211
1212 if (!arbiter || !arbiter->ops) {
1213 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1214 return -EINVAL;
1215 }
1216
1217 ret = arbiter->ops->verify_receiver_cert_prepare_km(arbiter->hdcp_dev, data,
1218 rx_cert, paired,
1219 ek_pub_km, msg_sz);
1220 if (ret < 0)
1221 drm_dbg_kms(&i915->drm, "Verify rx_cert failed. %d\n",
1222 ret);
1223 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1224
1225 return ret;
1226}
1227
1228static int hdcp2_verify_hprime(struct intel_connector *connector,
1229 struct hdcp2_ake_send_hprime *rx_hprime)
1230{
1231 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1232 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1233 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1234 struct i915_hdcp_arbiter *arbiter;
1235 int ret;
1236
1237 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1238 arbiter = i915->display.hdcp.arbiter;
1239
1240 if (!arbiter || !arbiter->ops) {
1241 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1242 return -EINVAL;
1243 }
1244
1245 ret = arbiter->ops->verify_hprime(arbiter->hdcp_dev, data, rx_hprime);
1246 if (ret < 0)
1247 drm_dbg_kms(&i915->drm, "Verify hprime failed. %d\n", ret);
1248 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1249
1250 return ret;
1251}
1252
1253static int
1254hdcp2_store_pairing_info(struct intel_connector *connector,
1255 struct hdcp2_ake_send_pairing_info *pairing_info)
1256{
1257 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1258 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1259 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1260 struct i915_hdcp_arbiter *arbiter;
1261 int ret;
1262
1263 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1264 arbiter = i915->display.hdcp.arbiter;
1265
1266 if (!arbiter || !arbiter->ops) {
1267 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1268 return -EINVAL;
1269 }
1270
1271 ret = arbiter->ops->store_pairing_info(arbiter->hdcp_dev, data, pairing_info);
1272 if (ret < 0)
1273 drm_dbg_kms(&i915->drm, "Store pairing info failed. %d\n",
1274 ret);
1275 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1276
1277 return ret;
1278}
1279
1280static int
1281hdcp2_prepare_lc_init(struct intel_connector *connector,
1282 struct hdcp2_lc_init *lc_init)
1283{
1284 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1285 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1286 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1287 struct i915_hdcp_arbiter *arbiter;
1288 int ret;
1289
1290 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1291 arbiter = i915->display.hdcp.arbiter;
1292
1293 if (!arbiter || !arbiter->ops) {
1294 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1295 return -EINVAL;
1296 }
1297
1298 ret = arbiter->ops->initiate_locality_check(arbiter->hdcp_dev, data, lc_init);
1299 if (ret < 0)
1300 drm_dbg_kms(&i915->drm, "Prepare lc_init failed. %d\n",
1301 ret);
1302 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1303
1304 return ret;
1305}
1306
1307static int
1308hdcp2_verify_lprime(struct intel_connector *connector,
1309 struct hdcp2_lc_send_lprime *rx_lprime)
1310{
1311 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1312 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1313 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1314 struct i915_hdcp_arbiter *arbiter;
1315 int ret;
1316
1317 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1318 arbiter = i915->display.hdcp.arbiter;
1319
1320 if (!arbiter || !arbiter->ops) {
1321 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1322 return -EINVAL;
1323 }
1324
1325 ret = arbiter->ops->verify_lprime(arbiter->hdcp_dev, data, rx_lprime);
1326 if (ret < 0)
1327 drm_dbg_kms(&i915->drm, "Verify L_Prime failed. %d\n",
1328 ret);
1329 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1330
1331 return ret;
1332}
1333
1334static int hdcp2_prepare_skey(struct intel_connector *connector,
1335 struct hdcp2_ske_send_eks *ske_data)
1336{
1337 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1338 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1339 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1340 struct i915_hdcp_arbiter *arbiter;
1341 int ret;
1342
1343 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1344 arbiter = i915->display.hdcp.arbiter;
1345
1346 if (!arbiter || !arbiter->ops) {
1347 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1348 return -EINVAL;
1349 }
1350
1351 ret = arbiter->ops->get_session_key(arbiter->hdcp_dev, data, ske_data);
1352 if (ret < 0)
1353 drm_dbg_kms(&i915->drm, "Get session key failed. %d\n",
1354 ret);
1355 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1356
1357 return ret;
1358}
1359
1360static int
1361hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1362 struct hdcp2_rep_send_receiverid_list
1363 *rep_topology,
1364 struct hdcp2_rep_send_ack *rep_send_ack)
1365{
1366 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1367 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1368 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1369 struct i915_hdcp_arbiter *arbiter;
1370 int ret;
1371
1372 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1373 arbiter = i915->display.hdcp.arbiter;
1374
1375 if (!arbiter || !arbiter->ops) {
1376 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1377 return -EINVAL;
1378 }
1379
1380 ret = arbiter->ops->repeater_check_flow_prepare_ack(arbiter->hdcp_dev,
1381 data,
1382 rep_topology,
1383 rep_send_ack);
1384 if (ret < 0)
1385 drm_dbg_kms(&i915->drm,
1386 "Verify rep topology failed. %d\n", ret);
1387 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1388
1389 return ret;
1390}
1391
1392static int
1393hdcp2_verify_mprime(struct intel_connector *connector,
1394 struct hdcp2_rep_stream_ready *stream_ready)
1395{
1396 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1397 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1398 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1399 struct i915_hdcp_arbiter *arbiter;
1400 int ret;
1401
1402 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1403 arbiter = i915->display.hdcp.arbiter;
1404
1405 if (!arbiter || !arbiter->ops) {
1406 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1407 return -EINVAL;
1408 }
1409
1410 ret = arbiter->ops->verify_mprime(arbiter->hdcp_dev, data, stream_ready);
1411 if (ret < 0)
1412 drm_dbg_kms(&i915->drm, "Verify mprime failed. %d\n", ret);
1413 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1414
1415 return ret;
1416}
1417
1418static int hdcp2_authenticate_port(struct intel_connector *connector)
1419{
1420 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1421 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1422 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1423 struct i915_hdcp_arbiter *arbiter;
1424 int ret;
1425
1426 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1427 arbiter = i915->display.hdcp.arbiter;
1428
1429 if (!arbiter || !arbiter->ops) {
1430 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1431 return -EINVAL;
1432 }
1433
1434 ret = arbiter->ops->enable_hdcp_authentication(arbiter->hdcp_dev, data);
1435 if (ret < 0)
1436 drm_dbg_kms(&i915->drm, "Enable hdcp auth failed. %d\n",
1437 ret);
1438 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1439
1440 return ret;
1441}
1442
1443static int hdcp2_close_session(struct intel_connector *connector)
1444{
1445 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1446 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1447 struct i915_hdcp_arbiter *arbiter;
1448 int ret;
1449
1450 mutex_lock(&i915->display.hdcp.hdcp_mutex);
1451 arbiter = i915->display.hdcp.arbiter;
1452
1453 if (!arbiter || !arbiter->ops) {
1454 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1455 return -EINVAL;
1456 }
1457
1458 ret = arbiter->ops->close_hdcp_session(arbiter->hdcp_dev,
1459 &dig_port->hdcp_port_data);
1460 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
1461
1462 return ret;
1463}
1464
1465static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1466{
1467 return hdcp2_close_session(connector);
1468}
1469
1470/* Authentication flow starts from here */
1471static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1472{
1473 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1474 struct intel_hdcp *hdcp = &connector->hdcp;
1475 union {
1476 struct hdcp2_ake_init ake_init;
1477 struct hdcp2_ake_send_cert send_cert;
1478 struct hdcp2_ake_no_stored_km no_stored_km;
1479 struct hdcp2_ake_send_hprime send_hprime;
1480 struct hdcp2_ake_send_pairing_info pairing_info;
1481 } msgs;
1482 const struct intel_hdcp_shim *shim = hdcp->shim;
1483 size_t size;
1484 int ret;
1485
1486 /* Init for seq_num */
1487 hdcp->seq_num_v = 0;
1488 hdcp->seq_num_m = 0;
1489
1490 ret = hdcp2_prepare_ake_init(connector, ake_data: &msgs.ake_init);
1491 if (ret < 0)
1492 return ret;
1493
1494 ret = shim->write_2_2_msg(connector, &msgs.ake_init,
1495 sizeof(msgs.ake_init));
1496 if (ret < 0)
1497 return ret;
1498
1499 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_CERT,
1500 &msgs.send_cert, sizeof(msgs.send_cert));
1501 if (ret < 0)
1502 return ret;
1503
1504 if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1505 drm_dbg_kms(&i915->drm, "cert.rx_caps dont claim HDCP2.2\n");
1506 return -EINVAL;
1507 }
1508
1509 hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1510
1511 if (drm_hdcp_check_ksvs_revoked(dev: &i915->drm,
1512 ksvs: msgs.send_cert.cert_rx.receiver_id,
1513 ksv_count: 1) > 0) {
1514 drm_err(&i915->drm, "Receiver ID is revoked\n");
1515 return -EPERM;
1516 }
1517
1518 /*
1519 * Here msgs.no_stored_km will hold msgs corresponding to the km
1520 * stored also.
1521 */
1522 ret = hdcp2_verify_rx_cert_prepare_km(connector, rx_cert: &msgs.send_cert,
1523 paired: &hdcp->is_paired,
1524 ek_pub_km: &msgs.no_stored_km, msg_sz: &size);
1525 if (ret < 0)
1526 return ret;
1527
1528 ret = shim->write_2_2_msg(connector, &msgs.no_stored_km, size);
1529 if (ret < 0)
1530 return ret;
1531
1532 ret = shim->read_2_2_msg(connector, HDCP_2_2_AKE_SEND_HPRIME,
1533 &msgs.send_hprime, sizeof(msgs.send_hprime));
1534 if (ret < 0)
1535 return ret;
1536
1537 ret = hdcp2_verify_hprime(connector, rx_hprime: &msgs.send_hprime);
1538 if (ret < 0)
1539 return ret;
1540
1541 if (!hdcp->is_paired) {
1542 /* Pairing is required */
1543 ret = shim->read_2_2_msg(connector,
1544 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1545 &msgs.pairing_info,
1546 sizeof(msgs.pairing_info));
1547 if (ret < 0)
1548 return ret;
1549
1550 ret = hdcp2_store_pairing_info(connector, pairing_info: &msgs.pairing_info);
1551 if (ret < 0)
1552 return ret;
1553 hdcp->is_paired = true;
1554 }
1555
1556 return 0;
1557}
1558
1559static int hdcp2_locality_check(struct intel_connector *connector)
1560{
1561 struct intel_hdcp *hdcp = &connector->hdcp;
1562 union {
1563 struct hdcp2_lc_init lc_init;
1564 struct hdcp2_lc_send_lprime send_lprime;
1565 } msgs;
1566 const struct intel_hdcp_shim *shim = hdcp->shim;
1567 int tries = HDCP2_LC_RETRY_CNT, ret, i;
1568
1569 for (i = 0; i < tries; i++) {
1570 ret = hdcp2_prepare_lc_init(connector, lc_init: &msgs.lc_init);
1571 if (ret < 0)
1572 continue;
1573
1574 ret = shim->write_2_2_msg(connector, &msgs.lc_init,
1575 sizeof(msgs.lc_init));
1576 if (ret < 0)
1577 continue;
1578
1579 ret = shim->read_2_2_msg(connector,
1580 HDCP_2_2_LC_SEND_LPRIME,
1581 &msgs.send_lprime,
1582 sizeof(msgs.send_lprime));
1583 if (ret < 0)
1584 continue;
1585
1586 ret = hdcp2_verify_lprime(connector, rx_lprime: &msgs.send_lprime);
1587 if (!ret)
1588 break;
1589 }
1590
1591 return ret;
1592}
1593
1594static int hdcp2_session_key_exchange(struct intel_connector *connector)
1595{
1596 struct intel_hdcp *hdcp = &connector->hdcp;
1597 struct hdcp2_ske_send_eks send_eks;
1598 int ret;
1599
1600 ret = hdcp2_prepare_skey(connector, ske_data: &send_eks);
1601 if (ret < 0)
1602 return ret;
1603
1604 ret = hdcp->shim->write_2_2_msg(connector, &send_eks,
1605 sizeof(send_eks));
1606 if (ret < 0)
1607 return ret;
1608
1609 return 0;
1610}
1611
1612static
1613int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1614{
1615 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1616 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1617 struct intel_hdcp *hdcp = &connector->hdcp;
1618 union {
1619 struct hdcp2_rep_stream_manage stream_manage;
1620 struct hdcp2_rep_stream_ready stream_ready;
1621 } msgs;
1622 const struct intel_hdcp_shim *shim = hdcp->shim;
1623 int ret, streams_size_delta, i;
1624
1625 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1626 return -ERANGE;
1627
1628 /* Prepare RepeaterAuth_Stream_Manage msg */
1629 msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1630 drm_hdcp_cpu_to_be24(seq_num: msgs.stream_manage.seq_num_m, val: hdcp->seq_num_m);
1631
1632 msgs.stream_manage.k = cpu_to_be16(data->k);
1633
1634 for (i = 0; i < data->k; i++) {
1635 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1636 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1637 }
1638
1639 streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1640 sizeof(struct hdcp2_streamid_type);
1641 /* Send it to Repeater */
1642 ret = shim->write_2_2_msg(connector, &msgs.stream_manage,
1643 sizeof(msgs.stream_manage) - streams_size_delta);
1644 if (ret < 0)
1645 goto out;
1646
1647 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_STREAM_READY,
1648 &msgs.stream_ready, sizeof(msgs.stream_ready));
1649 if (ret < 0)
1650 goto out;
1651
1652 data->seq_num_m = hdcp->seq_num_m;
1653
1654 ret = hdcp2_verify_mprime(connector, stream_ready: &msgs.stream_ready);
1655
1656out:
1657 hdcp->seq_num_m++;
1658
1659 return ret;
1660}
1661
1662static
1663int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1664{
1665 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1666 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1667 struct intel_hdcp *hdcp = &connector->hdcp;
1668 union {
1669 struct hdcp2_rep_send_receiverid_list recvid_list;
1670 struct hdcp2_rep_send_ack rep_ack;
1671 } msgs;
1672 const struct intel_hdcp_shim *shim = hdcp->shim;
1673 u32 seq_num_v, device_cnt;
1674 u8 *rx_info;
1675 int ret;
1676
1677 ret = shim->read_2_2_msg(connector, HDCP_2_2_REP_SEND_RECVID_LIST,
1678 &msgs.recvid_list, sizeof(msgs.recvid_list));
1679 if (ret < 0)
1680 return ret;
1681
1682 rx_info = msgs.recvid_list.rx_info;
1683
1684 if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1685 HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1686 drm_dbg_kms(&i915->drm, "Topology Max Size Exceeded\n");
1687 return -EINVAL;
1688 }
1689
1690 /*
1691 * MST topology is not Type 1 capable if it contains a downstream
1692 * device that is only HDCP 1.x or Legacy HDCP 2.0/2.1 compliant.
1693 */
1694 dig_port->hdcp_mst_type1_capable =
1695 !HDCP_2_2_HDCP1_DEVICE_CONNECTED(rx_info[1]) &&
1696 !HDCP_2_2_HDCP_2_0_REP_CONNECTED(rx_info[1]);
1697
1698 if (!dig_port->hdcp_mst_type1_capable && hdcp->content_type) {
1699 drm_dbg_kms(&i915->drm,
1700 "HDCP1.x or 2.0 Legacy Device Downstream\n");
1701 return -EINVAL;
1702 }
1703
1704 /* Converting and Storing the seq_num_v to local variable as DWORD */
1705 seq_num_v =
1706 drm_hdcp_be24_to_cpu(seq_num: (const u8 *)msgs.recvid_list.seq_num_v);
1707
1708 if (!hdcp->hdcp2_encrypted && seq_num_v) {
1709 drm_dbg_kms(&i915->drm,
1710 "Non zero Seq_num_v at first RecvId_List msg\n");
1711 return -EINVAL;
1712 }
1713
1714 if (seq_num_v < hdcp->seq_num_v) {
1715 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1716 drm_dbg_kms(&i915->drm, "Seq_num_v roll over.\n");
1717 return -EINVAL;
1718 }
1719
1720 device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1721 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1722 if (drm_hdcp_check_ksvs_revoked(dev: &i915->drm,
1723 ksvs: msgs.recvid_list.receiver_ids,
1724 ksv_count: device_cnt) > 0) {
1725 drm_err(&i915->drm, "Revoked receiver ID(s) is in list\n");
1726 return -EPERM;
1727 }
1728
1729 ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1730 rep_topology: &msgs.recvid_list,
1731 rep_send_ack: &msgs.rep_ack);
1732 if (ret < 0)
1733 return ret;
1734
1735 hdcp->seq_num_v = seq_num_v;
1736 ret = shim->write_2_2_msg(connector, &msgs.rep_ack,
1737 sizeof(msgs.rep_ack));
1738 if (ret < 0)
1739 return ret;
1740
1741 return 0;
1742}
1743
1744static int hdcp2_authenticate_sink(struct intel_connector *connector)
1745{
1746 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1747 struct intel_hdcp *hdcp = &connector->hdcp;
1748 const struct intel_hdcp_shim *shim = hdcp->shim;
1749 int ret;
1750
1751 ret = hdcp2_authentication_key_exchange(connector);
1752 if (ret < 0) {
1753 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1754 return ret;
1755 }
1756
1757 ret = hdcp2_locality_check(connector);
1758 if (ret < 0) {
1759 drm_dbg_kms(&i915->drm,
1760 "Locality Check failed. Err : %d\n", ret);
1761 return ret;
1762 }
1763
1764 ret = hdcp2_session_key_exchange(connector);
1765 if (ret < 0) {
1766 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1767 return ret;
1768 }
1769
1770 if (shim->config_stream_type) {
1771 ret = shim->config_stream_type(connector,
1772 hdcp->is_repeater,
1773 hdcp->content_type);
1774 if (ret < 0)
1775 return ret;
1776 }
1777
1778 if (hdcp->is_repeater) {
1779 ret = hdcp2_authenticate_repeater_topology(connector);
1780 if (ret < 0) {
1781 drm_dbg_kms(&i915->drm,
1782 "Repeater Auth Failed. Err: %d\n", ret);
1783 return ret;
1784 }
1785 }
1786
1787 return ret;
1788}
1789
1790static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1791{
1792 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1793 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1794 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1795 struct intel_hdcp *hdcp = &connector->hdcp;
1796 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1797 enum port port = dig_port->base.port;
1798 int ret = 0;
1799
1800 if (!(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1801 LINK_ENCRYPTION_STATUS)) {
1802 drm_err(&i915->drm, "[CONNECTOR:%d:%s] HDCP 2.2 Link is not encrypted\n",
1803 connector->base.base.id, connector->base.name);
1804 ret = -EPERM;
1805 goto link_recover;
1806 }
1807
1808 if (hdcp->shim->stream_2_2_encryption) {
1809 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1810 if (ret) {
1811 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to enable HDCP 2.2 stream enc\n",
1812 connector->base.base.id, connector->base.name);
1813 return ret;
1814 }
1815 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1816 transcoder_name(hdcp->stream_transcoder));
1817 }
1818
1819 return 0;
1820
1821link_recover:
1822 if (hdcp2_deauthenticate_port(connector) < 0)
1823 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1824
1825 dig_port->hdcp_auth_status = false;
1826 data->k = 0;
1827
1828 return ret;
1829}
1830
1831static int hdcp2_enable_encryption(struct intel_connector *connector)
1832{
1833 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1834 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1835 struct intel_hdcp *hdcp = &connector->hdcp;
1836 enum port port = dig_port->base.port;
1837 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1838 int ret;
1839
1840 drm_WARN_ON(&i915->drm,
1841 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1842 LINK_ENCRYPTION_STATUS);
1843 if (hdcp->shim->toggle_signalling) {
1844 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1845 true);
1846 if (ret) {
1847 drm_err(&i915->drm,
1848 "Failed to enable HDCP signalling. %d\n",
1849 ret);
1850 return ret;
1851 }
1852 }
1853
1854 if (intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1855 LINK_AUTH_STATUS)
1856 /* Link is Authenticated. Now set for Encryption */
1857 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1858 clear: 0, CTL_LINK_ENCRYPTION_REQ);
1859
1860 ret = intel_de_wait_for_set(i915,
1861 HDCP2_STATUS(i915, cpu_transcoder,
1862 port),
1863 LINK_ENCRYPTION_STATUS,
1864 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1865 dig_port->hdcp_auth_status = true;
1866
1867 return ret;
1868}
1869
1870static int hdcp2_disable_encryption(struct intel_connector *connector)
1871{
1872 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1873 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1874 struct intel_hdcp *hdcp = &connector->hdcp;
1875 enum port port = dig_port->base.port;
1876 enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1877 int ret;
1878
1879 drm_WARN_ON(&i915->drm, !(intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)) &
1880 LINK_ENCRYPTION_STATUS));
1881
1882 intel_de_rmw(i915, HDCP2_CTL(i915, cpu_transcoder, port),
1883 CTL_LINK_ENCRYPTION_REQ, set: 0);
1884
1885 ret = intel_de_wait_for_clear(i915,
1886 HDCP2_STATUS(i915, cpu_transcoder,
1887 port),
1888 LINK_ENCRYPTION_STATUS,
1889 HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1890 if (ret == -ETIMEDOUT)
1891 drm_dbg_kms(&i915->drm, "Disable Encryption Timedout");
1892
1893 if (hdcp->shim->toggle_signalling) {
1894 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1895 false);
1896 if (ret) {
1897 drm_err(&i915->drm,
1898 "Failed to disable HDCP signalling. %d\n",
1899 ret);
1900 return ret;
1901 }
1902 }
1903
1904 return ret;
1905}
1906
1907static int
1908hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1909{
1910 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1911 int i, tries = 3, ret;
1912
1913 if (!connector->hdcp.is_repeater)
1914 return 0;
1915
1916 for (i = 0; i < tries; i++) {
1917 ret = _hdcp2_propagate_stream_management_info(connector);
1918 if (!ret)
1919 break;
1920
1921 /* Lets restart the auth incase of seq_num_m roll over */
1922 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1923 drm_dbg_kms(&i915->drm,
1924 "seq_num_m roll over.(%d)\n", ret);
1925 break;
1926 }
1927
1928 drm_dbg_kms(&i915->drm,
1929 "HDCP2 stream management %d of %d Failed.(%d)\n",
1930 i + 1, tries, ret);
1931 }
1932
1933 return ret;
1934}
1935
1936static int hdcp2_authenticate_and_encrypt(struct intel_atomic_state *state,
1937 struct intel_connector *connector)
1938{
1939 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1940 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
1941 int ret = 0, i, tries = 3;
1942
1943 for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1944 ret = hdcp2_authenticate_sink(connector);
1945 if (!ret) {
1946 ret = intel_hdcp_prepare_streams(state, connector);
1947 if (ret) {
1948 drm_dbg_kms(&i915->drm,
1949 "Prepare stream failed.(%d)\n",
1950 ret);
1951 break;
1952 }
1953
1954 ret = hdcp2_propagate_stream_management_info(connector);
1955 if (ret) {
1956 drm_dbg_kms(&i915->drm,
1957 "Stream management failed.(%d)\n",
1958 ret);
1959 break;
1960 }
1961
1962 ret = hdcp2_authenticate_port(connector);
1963 if (!ret)
1964 break;
1965 drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1966 ret);
1967 }
1968
1969 /* Clearing the mei hdcp session */
1970 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1971 i + 1, tries, ret);
1972 if (hdcp2_deauthenticate_port(connector) < 0)
1973 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1974 }
1975
1976 if (!ret && !dig_port->hdcp_auth_status) {
1977 /*
1978 * Ensuring the required 200mSec min time interval between
1979 * Session Key Exchange and encryption.
1980 */
1981 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1982 ret = hdcp2_enable_encryption(connector);
1983 if (ret < 0) {
1984 drm_dbg_kms(&i915->drm,
1985 "Encryption Enable Failed.(%d)\n", ret);
1986 if (hdcp2_deauthenticate_port(connector) < 0)
1987 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1988 }
1989 }
1990
1991 if (!ret)
1992 ret = hdcp2_enable_stream_encryption(connector);
1993
1994 return ret;
1995}
1996
1997static int _intel_hdcp2_enable(struct intel_atomic_state *state,
1998 struct intel_connector *connector)
1999{
2000 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2001 struct intel_hdcp *hdcp = &connector->hdcp;
2002 int ret;
2003
2004 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being enabled. Type: %d\n",
2005 connector->base.base.id, connector->base.name,
2006 hdcp->content_type);
2007
2008 ret = hdcp2_authenticate_and_encrypt(state, connector);
2009 if (ret) {
2010 drm_dbg_kms(&i915->drm, "HDCP2 Type%d Enabling Failed. (%d)\n",
2011 hdcp->content_type, ret);
2012 return ret;
2013 }
2014
2015 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is enabled. Type %d\n",
2016 connector->base.base.id, connector->base.name,
2017 hdcp->content_type);
2018
2019 hdcp->hdcp2_encrypted = true;
2020 return 0;
2021}
2022
2023static int
2024_intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
2025{
2026 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2027 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2028 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2029 struct intel_hdcp *hdcp = &connector->hdcp;
2030 int ret;
2031
2032 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] HDCP2.2 is being Disabled\n",
2033 connector->base.base.id, connector->base.name);
2034
2035 if (hdcp->shim->stream_2_2_encryption) {
2036 ret = hdcp->shim->stream_2_2_encryption(connector, false);
2037 if (ret) {
2038 drm_err(&i915->drm, "[CONNECTOR:%d:%s] Failed to disable HDCP 2.2 stream enc\n",
2039 connector->base.base.id, connector->base.name);
2040 return ret;
2041 }
2042 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
2043 transcoder_name(hdcp->stream_transcoder));
2044
2045 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
2046 return 0;
2047 }
2048
2049 ret = hdcp2_disable_encryption(connector);
2050
2051 if (hdcp2_deauthenticate_port(connector) < 0)
2052 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
2053
2054 connector->hdcp.hdcp2_encrypted = false;
2055 dig_port->hdcp_auth_status = false;
2056 data->k = 0;
2057
2058 return ret;
2059}
2060
2061/* Implements the Link Integrity Check for HDCP2.2 */
2062static int intel_hdcp2_check_link(struct intel_connector *connector)
2063{
2064 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2065 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2066 struct intel_hdcp *hdcp = &connector->hdcp;
2067 enum port port = dig_port->base.port;
2068 enum transcoder cpu_transcoder;
2069 int ret = 0;
2070
2071 mutex_lock(&hdcp->mutex);
2072 mutex_lock(&dig_port->hdcp_mutex);
2073 cpu_transcoder = hdcp->cpu_transcoder;
2074
2075 /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2076 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2077 !hdcp->hdcp2_encrypted) {
2078 ret = -EINVAL;
2079 goto out;
2080 }
2081
2082 if (drm_WARN_ON(&i915->drm,
2083 !intel_hdcp2_in_use(i915, cpu_transcoder, port))) {
2084 drm_err(&i915->drm,
2085 "HDCP2.2 link stopped the encryption, %x\n",
2086 intel_de_read(i915, HDCP2_STATUS(i915, cpu_transcoder, port)));
2087 ret = -ENXIO;
2088 _intel_hdcp2_disable(connector, hdcp2_link_recovery: true);
2089 intel_hdcp_update_value(connector,
2090 DRM_MODE_CONTENT_PROTECTION_DESIRED,
2091 update_property: true);
2092 goto out;
2093 }
2094
2095 ret = hdcp->shim->check_2_2_link(dig_port, connector);
2096 if (ret == HDCP_LINK_PROTECTED) {
2097 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2098 intel_hdcp_update_value(connector,
2099 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2100 update_property: true);
2101 }
2102 goto out;
2103 }
2104
2105 if (ret == HDCP_TOPOLOGY_CHANGE) {
2106 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2107 goto out;
2108
2109 drm_dbg_kms(&i915->drm,
2110 "HDCP2.2 Downstream topology change\n");
2111 } else {
2112 drm_dbg_kms(&i915->drm,
2113 "[CONNECTOR:%d:%s] HDCP2.2 link failed, retrying auth\n",
2114 connector->base.base.id, connector->base.name);
2115 }
2116
2117 ret = _intel_hdcp2_disable(connector, hdcp2_link_recovery: true);
2118 if (ret) {
2119 drm_err(&i915->drm,
2120 "[CONNECTOR:%d:%s] Failed to disable hdcp2.2 (%d)\n",
2121 connector->base.base.id, connector->base.name, ret);
2122 intel_hdcp_update_value(connector,
2123 DRM_MODE_CONTENT_PROTECTION_DESIRED, update_property: true);
2124 goto out;
2125 }
2126
2127 intel_hdcp_update_value(connector,
2128 DRM_MODE_CONTENT_PROTECTION_DESIRED, update_property: true);
2129out:
2130 mutex_unlock(lock: &dig_port->hdcp_mutex);
2131 mutex_unlock(lock: &hdcp->mutex);
2132 return ret;
2133}
2134
2135static void intel_hdcp_check_work(struct work_struct *work)
2136{
2137 struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2138 struct intel_hdcp,
2139 check_work);
2140 struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2141 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2142
2143 if (drm_connector_is_unregistered(connector: &connector->base))
2144 return;
2145
2146 if (!intel_hdcp2_check_link(connector))
2147 queue_delayed_work(wq: i915->unordered_wq, dwork: &hdcp->check_work,
2148 DRM_HDCP2_CHECK_PERIOD_MS);
2149 else if (!intel_hdcp_check_link(connector))
2150 queue_delayed_work(wq: i915->unordered_wq, dwork: &hdcp->check_work,
2151 DRM_HDCP_CHECK_PERIOD_MS);
2152}
2153
2154static int i915_hdcp_component_bind(struct device *i915_kdev,
2155 struct device *mei_kdev, void *data)
2156{
2157 struct drm_i915_private *i915 = kdev_to_i915(kdev: i915_kdev);
2158
2159 drm_dbg(&i915->drm, "I915 HDCP comp bind\n");
2160 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2161 i915->display.hdcp.arbiter = (struct i915_hdcp_arbiter *)data;
2162 i915->display.hdcp.arbiter->hdcp_dev = mei_kdev;
2163 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
2164
2165 return 0;
2166}
2167
2168static void i915_hdcp_component_unbind(struct device *i915_kdev,
2169 struct device *mei_kdev, void *data)
2170{
2171 struct drm_i915_private *i915 = kdev_to_i915(kdev: i915_kdev);
2172
2173 drm_dbg(&i915->drm, "I915 HDCP comp unbind\n");
2174 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2175 i915->display.hdcp.arbiter = NULL;
2176 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
2177}
2178
2179static const struct component_ops i915_hdcp_ops = {
2180 .bind = i915_hdcp_component_bind,
2181 .unbind = i915_hdcp_component_unbind,
2182};
2183
2184static enum hdcp_ddi intel_get_hdcp_ddi_index(enum port port)
2185{
2186 switch (port) {
2187 case PORT_A:
2188 return HDCP_DDI_A;
2189 case PORT_B ... PORT_F:
2190 return (enum hdcp_ddi)port;
2191 default:
2192 return HDCP_DDI_INVALID_PORT;
2193 }
2194}
2195
2196static enum hdcp_transcoder intel_get_hdcp_transcoder(enum transcoder cpu_transcoder)
2197{
2198 switch (cpu_transcoder) {
2199 case TRANSCODER_A ... TRANSCODER_D:
2200 return (enum hdcp_transcoder)(cpu_transcoder | 0x10);
2201 default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2202 return HDCP_INVALID_TRANSCODER;
2203 }
2204}
2205
2206static int initialize_hdcp_port_data(struct intel_connector *connector,
2207 struct intel_digital_port *dig_port,
2208 const struct intel_hdcp_shim *shim)
2209{
2210 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2211 struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2212 enum port port = dig_port->base.port;
2213
2214 if (DISPLAY_VER(i915) < 12)
2215 data->hdcp_ddi = intel_get_hdcp_ddi_index(port);
2216 else
2217 /*
2218 * As per ME FW API expectation, for GEN 12+, hdcp_ddi is filled
2219 * with zero(INVALID PORT index).
2220 */
2221 data->hdcp_ddi = HDCP_DDI_INVALID_PORT;
2222
2223 /*
2224 * As associated transcoder is set and modified at modeset, here hdcp_transcoder
2225 * is initialized to zero (invalid transcoder index). This will be
2226 * retained for <Gen12 forever.
2227 */
2228 data->hdcp_transcoder = HDCP_INVALID_TRANSCODER;
2229
2230 data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2231 data->protocol = (u8)shim->protocol;
2232
2233 if (!data->streams)
2234 data->streams = kcalloc(INTEL_NUM_PIPES(i915),
2235 size: sizeof(struct hdcp2_streamid_type),
2236 GFP_KERNEL);
2237 if (!data->streams) {
2238 drm_err(&i915->drm, "Out of Memory\n");
2239 return -ENOMEM;
2240 }
2241
2242 return 0;
2243}
2244
2245static bool is_hdcp2_supported(struct drm_i915_private *i915)
2246{
2247 if (intel_hdcp_gsc_cs_required(i915))
2248 return true;
2249
2250 if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2251 return false;
2252
2253 return (DISPLAY_VER(i915) >= 10 ||
2254 IS_KABYLAKE(i915) ||
2255 IS_COFFEELAKE(i915) ||
2256 IS_COMETLAKE(i915));
2257}
2258
2259void intel_hdcp_component_init(struct drm_i915_private *i915)
2260{
2261 int ret;
2262
2263 if (!is_hdcp2_supported(i915))
2264 return;
2265
2266 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2267 drm_WARN_ON(&i915->drm, i915->display.hdcp.comp_added);
2268
2269 i915->display.hdcp.comp_added = true;
2270 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
2271 if (intel_hdcp_gsc_cs_required(i915))
2272 ret = intel_hdcp_gsc_init(i915);
2273 else
2274 ret = component_add_typed(dev: i915->drm.dev, ops: &i915_hdcp_ops,
2275 subcomponent: I915_COMPONENT_HDCP);
2276
2277 if (ret < 0) {
2278 drm_dbg_kms(&i915->drm, "Failed at fw component add(%d)\n",
2279 ret);
2280 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2281 i915->display.hdcp.comp_added = false;
2282 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
2283 return;
2284 }
2285}
2286
2287static void intel_hdcp2_init(struct intel_connector *connector,
2288 struct intel_digital_port *dig_port,
2289 const struct intel_hdcp_shim *shim)
2290{
2291 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2292 struct intel_hdcp *hdcp = &connector->hdcp;
2293 int ret;
2294
2295 ret = initialize_hdcp_port_data(connector, dig_port, shim);
2296 if (ret) {
2297 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2298 return;
2299 }
2300
2301 hdcp->hdcp2_supported = true;
2302}
2303
2304int intel_hdcp_init(struct intel_connector *connector,
2305 struct intel_digital_port *dig_port,
2306 const struct intel_hdcp_shim *shim)
2307{
2308 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2309 struct intel_hdcp *hdcp = &connector->hdcp;
2310 int ret;
2311
2312 if (!shim)
2313 return -EINVAL;
2314
2315 if (is_hdcp2_supported(i915))
2316 intel_hdcp2_init(connector, dig_port, shim);
2317
2318 ret =
2319 drm_connector_attach_content_protection_property(connector: &connector->base,
2320 hdcp_content_type: hdcp->hdcp2_supported);
2321 if (ret) {
2322 hdcp->hdcp2_supported = false;
2323 kfree(objp: dig_port->hdcp_port_data.streams);
2324 return ret;
2325 }
2326
2327 hdcp->shim = shim;
2328 mutex_init(&hdcp->mutex);
2329 INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2330 INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2331 init_waitqueue_head(&hdcp->cp_irq_queue);
2332
2333 return 0;
2334}
2335
2336static int _intel_hdcp_enable(struct intel_atomic_state *state,
2337 struct intel_encoder *encoder,
2338 const struct intel_crtc_state *pipe_config,
2339 const struct drm_connector_state *conn_state)
2340{
2341 struct drm_i915_private *i915 = to_i915(dev: encoder->base.dev);
2342 struct intel_connector *connector =
2343 to_intel_connector(conn_state->connector);
2344 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2345 struct intel_hdcp *hdcp = &connector->hdcp;
2346 unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2347 int ret = -EINVAL;
2348
2349 if (!hdcp->shim)
2350 return -ENOENT;
2351
2352 if (!connector->encoder) {
2353 drm_err(&i915->drm, "[CONNECTOR:%d:%s] encoder is not initialized\n",
2354 connector->base.base.id, connector->base.name);
2355 return -ENODEV;
2356 }
2357
2358 mutex_lock(&hdcp->mutex);
2359 mutex_lock(&dig_port->hdcp_mutex);
2360 drm_WARN_ON(&i915->drm,
2361 hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2362 hdcp->content_type = (u8)conn_state->hdcp_content_type;
2363
2364 if (intel_crtc_has_type(crtc_state: pipe_config, type: INTEL_OUTPUT_DP_MST)) {
2365 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2366 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2367 } else {
2368 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2369 hdcp->stream_transcoder = INVALID_TRANSCODER;
2370 }
2371
2372 if (DISPLAY_VER(i915) >= 12)
2373 dig_port->hdcp_port_data.hdcp_transcoder =
2374 intel_get_hdcp_transcoder(cpu_transcoder: hdcp->cpu_transcoder);
2375
2376 /*
2377 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2378 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2379 */
2380 if (intel_hdcp2_get_capability(connector)) {
2381 ret = _intel_hdcp2_enable(state, connector);
2382 if (!ret)
2383 check_link_interval =
2384 DRM_HDCP2_CHECK_PERIOD_MS;
2385 }
2386
2387 /*
2388 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2389 * be attempted.
2390 */
2391 if (ret && intel_hdcp_get_capability(connector) &&
2392 hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2393 ret = intel_hdcp1_enable(connector);
2394 }
2395
2396 if (!ret) {
2397 queue_delayed_work(wq: i915->unordered_wq, dwork: &hdcp->check_work,
2398 delay: check_link_interval);
2399 intel_hdcp_update_value(connector,
2400 DRM_MODE_CONTENT_PROTECTION_ENABLED,
2401 update_property: true);
2402 }
2403
2404 mutex_unlock(lock: &dig_port->hdcp_mutex);
2405 mutex_unlock(lock: &hdcp->mutex);
2406 return ret;
2407}
2408
2409void intel_hdcp_enable(struct intel_atomic_state *state,
2410 struct intel_encoder *encoder,
2411 const struct intel_crtc_state *crtc_state,
2412 const struct drm_connector_state *conn_state)
2413{
2414 struct intel_connector *connector =
2415 to_intel_connector(conn_state->connector);
2416 struct intel_hdcp *hdcp = &connector->hdcp;
2417
2418 /*
2419 * Enable hdcp if it's desired or if userspace is enabled and
2420 * driver set its state to undesired
2421 */
2422 if (conn_state->content_protection ==
2423 DRM_MODE_CONTENT_PROTECTION_DESIRED ||
2424 (conn_state->content_protection ==
2425 DRM_MODE_CONTENT_PROTECTION_ENABLED && hdcp->value ==
2426 DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2427 _intel_hdcp_enable(state, encoder, pipe_config: crtc_state, conn_state);
2428}
2429
2430int intel_hdcp_disable(struct intel_connector *connector)
2431{
2432 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2433 struct intel_hdcp *hdcp = &connector->hdcp;
2434 int ret = 0;
2435
2436 if (!hdcp->shim)
2437 return -ENOENT;
2438
2439 mutex_lock(&hdcp->mutex);
2440 mutex_lock(&dig_port->hdcp_mutex);
2441
2442 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2443 goto out;
2444
2445 intel_hdcp_update_value(connector,
2446 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, update_property: false);
2447 if (hdcp->hdcp2_encrypted)
2448 ret = _intel_hdcp2_disable(connector, hdcp2_link_recovery: false);
2449 else if (hdcp->hdcp_encrypted)
2450 ret = _intel_hdcp_disable(connector);
2451
2452out:
2453 mutex_unlock(lock: &dig_port->hdcp_mutex);
2454 mutex_unlock(lock: &hdcp->mutex);
2455 cancel_delayed_work_sync(dwork: &hdcp->check_work);
2456 return ret;
2457}
2458
2459void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2460 struct intel_encoder *encoder,
2461 const struct intel_crtc_state *crtc_state,
2462 const struct drm_connector_state *conn_state)
2463{
2464 struct intel_connector *connector =
2465 to_intel_connector(conn_state->connector);
2466 struct intel_hdcp *hdcp = &connector->hdcp;
2467 bool content_protection_type_changed, desired_and_not_enabled = false;
2468 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2469
2470 if (!connector->hdcp.shim)
2471 return;
2472
2473 content_protection_type_changed =
2474 (conn_state->hdcp_content_type != hdcp->content_type &&
2475 conn_state->content_protection !=
2476 DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2477
2478 /*
2479 * During the HDCP encryption session if Type change is requested,
2480 * disable the HDCP and reenable it with new TYPE value.
2481 */
2482 if (conn_state->content_protection ==
2483 DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2484 content_protection_type_changed)
2485 intel_hdcp_disable(connector);
2486
2487 /*
2488 * Mark the hdcp state as DESIRED after the hdcp disable of type
2489 * change procedure.
2490 */
2491 if (content_protection_type_changed) {
2492 mutex_lock(&hdcp->mutex);
2493 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2494 drm_connector_get(connector: &connector->base);
2495 queue_work(wq: i915->unordered_wq, work: &hdcp->prop_work);
2496 mutex_unlock(lock: &hdcp->mutex);
2497 }
2498
2499 if (conn_state->content_protection ==
2500 DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2501 mutex_lock(&hdcp->mutex);
2502 /* Avoid enabling hdcp, if it already ENABLED */
2503 desired_and_not_enabled =
2504 hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2505 mutex_unlock(lock: &hdcp->mutex);
2506 /*
2507 * If HDCP already ENABLED and CP property is DESIRED, schedule
2508 * prop_work to update correct CP property to user space.
2509 */
2510 if (!desired_and_not_enabled && !content_protection_type_changed) {
2511 drm_connector_get(connector: &connector->base);
2512 queue_work(wq: i915->unordered_wq, work: &hdcp->prop_work);
2513 }
2514 }
2515
2516 if (desired_and_not_enabled || content_protection_type_changed)
2517 _intel_hdcp_enable(state, encoder, pipe_config: crtc_state, conn_state);
2518}
2519
2520void intel_hdcp_component_fini(struct drm_i915_private *i915)
2521{
2522 mutex_lock(&i915->display.hdcp.hdcp_mutex);
2523 if (!i915->display.hdcp.comp_added) {
2524 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
2525 return;
2526 }
2527
2528 i915->display.hdcp.comp_added = false;
2529 mutex_unlock(lock: &i915->display.hdcp.hdcp_mutex);
2530
2531 if (intel_hdcp_gsc_cs_required(i915))
2532 intel_hdcp_gsc_fini(i915);
2533 else
2534 component_del(i915->drm.dev, &i915_hdcp_ops);
2535}
2536
2537void intel_hdcp_cleanup(struct intel_connector *connector)
2538{
2539 struct intel_hdcp *hdcp = &connector->hdcp;
2540
2541 if (!hdcp->shim)
2542 return;
2543
2544 /*
2545 * If the connector is registered, it's possible userspace could kick
2546 * off another HDCP enable, which would re-spawn the workers.
2547 */
2548 drm_WARN_ON(connector->base.dev,
2549 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2550
2551 /*
2552 * Now that the connector is not registered, check_work won't be run,
2553 * but cancel any outstanding instances of it
2554 */
2555 cancel_delayed_work_sync(dwork: &hdcp->check_work);
2556
2557 /*
2558 * We don't cancel prop_work in the same way as check_work since it
2559 * requires connection_mutex which could be held while calling this
2560 * function. Instead, we rely on the connector references grabbed before
2561 * scheduling prop_work to ensure the connector is alive when prop_work
2562 * is run. So if we're in the destroy path (which is where this
2563 * function should be called), we're "guaranteed" that prop_work is not
2564 * active (tl;dr This Should Never Happen).
2565 */
2566 drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2567
2568 mutex_lock(&hdcp->mutex);
2569 hdcp->shim = NULL;
2570 mutex_unlock(lock: &hdcp->mutex);
2571}
2572
2573void intel_hdcp_atomic_check(struct drm_connector *connector,
2574 struct drm_connector_state *old_state,
2575 struct drm_connector_state *new_state)
2576{
2577 u64 old_cp = old_state->content_protection;
2578 u64 new_cp = new_state->content_protection;
2579 struct drm_crtc_state *crtc_state;
2580
2581 if (!new_state->crtc) {
2582 /*
2583 * If the connector is being disabled with CP enabled, mark it
2584 * desired so it's re-enabled when the connector is brought back
2585 */
2586 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2587 new_state->content_protection =
2588 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2589 return;
2590 }
2591
2592 crtc_state = drm_atomic_get_new_crtc_state(state: new_state->state,
2593 crtc: new_state->crtc);
2594 /*
2595 * Fix the HDCP uapi content protection state in case of modeset.
2596 * FIXME: As per HDCP content protection property uapi doc, an uevent()
2597 * need to be sent if there is transition from ENABLED->DESIRED.
2598 */
2599 if (drm_atomic_crtc_needs_modeset(state: crtc_state) &&
2600 (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2601 new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2602 new_state->content_protection =
2603 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2604
2605 /*
2606 * Nothing to do if the state didn't change, or HDCP was activated since
2607 * the last commit. And also no change in hdcp content type.
2608 */
2609 if (old_cp == new_cp ||
2610 (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2611 new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2612 if (old_state->hdcp_content_type ==
2613 new_state->hdcp_content_type)
2614 return;
2615 }
2616
2617 crtc_state->mode_changed = true;
2618}
2619
2620/* Handles the CP_IRQ raised from the DP HDCP sink */
2621void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2622{
2623 struct intel_hdcp *hdcp = &connector->hdcp;
2624 struct drm_i915_private *i915 = to_i915(dev: connector->base.dev);
2625
2626 if (!hdcp->shim)
2627 return;
2628
2629 atomic_inc(v: &connector->hdcp.cp_irq_count);
2630 wake_up_all(&connector->hdcp.cp_irq_queue);
2631
2632 queue_delayed_work(wq: i915->unordered_wq, dwork: &hdcp->check_work, delay: 0);
2633}
2634

source code of linux/drivers/gpu/drm/i915/display/intel_hdcp.c