| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Silvaco dual-role I3C master driver |
| 4 | * |
| 5 | * Copyright (C) 2020 Silvaco |
| 6 | * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> |
| 7 | * Based on a work from: Conor Culhane <conor.culhane@silvaco.com> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/bitfield.h> |
| 11 | #include <linux/clk.h> |
| 12 | #include <linux/completion.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/i3c/master.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/iopoll.h> |
| 17 | #include <linux/list.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/of.h> |
| 20 | #include <linux/pinctrl/consumer.h> |
| 21 | #include <linux/platform_device.h> |
| 22 | #include <linux/pm_runtime.h> |
| 23 | |
| 24 | /* Master Mode Registers */ |
| 25 | #define SVC_I3C_MCONFIG 0x000 |
| 26 | #define SVC_I3C_MCONFIG_MASTER_EN BIT(0) |
| 27 | #define SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x)) |
| 28 | #define SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x)) |
| 29 | #define SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x)) |
| 30 | #define SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x)) |
| 31 | #define SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x)) |
| 32 | #define SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x)) |
| 33 | #define SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x)) |
| 34 | #define SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x)) |
| 35 | #define SVC_I3C_MCONFIG_SKEW_MASK GENMASK(27, 25) |
| 36 | #define SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x)) |
| 37 | |
| 38 | #define SVC_I3C_MCTRL 0x084 |
| 39 | #define SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0) |
| 40 | #define SVC_I3C_MCTRL_REQUEST_NONE 0 |
| 41 | #define SVC_I3C_MCTRL_REQUEST_START_ADDR 1 |
| 42 | #define SVC_I3C_MCTRL_REQUEST_STOP 2 |
| 43 | #define SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3 |
| 44 | #define SVC_I3C_MCTRL_REQUEST_PROC_DAA 4 |
| 45 | #define SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7 |
| 46 | #define SVC_I3C_MCTRL_TYPE_I3C 0 |
| 47 | #define SVC_I3C_MCTRL_TYPE_I2C BIT(4) |
| 48 | #define SVC_I3C_MCTRL_IBIRESP_AUTO 0 |
| 49 | #define SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0 |
| 50 | #define SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7) |
| 51 | #define SVC_I3C_MCTRL_IBIRESP_NACK BIT(6) |
| 52 | #define SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6) |
| 53 | #define SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x)) |
| 54 | #define SVC_I3C_MCTRL_DIR_WRITE 0 |
| 55 | #define SVC_I3C_MCTRL_DIR_READ 1 |
| 56 | #define SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x)) |
| 57 | #define SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x)) |
| 58 | |
| 59 | #define SVC_I3C_MSTATUS 0x088 |
| 60 | #define SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x)) |
| 61 | #define SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5) |
| 62 | #define SVC_I3C_MSTATUS_STATE_SLVREQ(x) (SVC_I3C_MSTATUS_STATE(x) == 1) |
| 63 | #define SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0) |
| 64 | #define SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x)) |
| 65 | #define SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x)) |
| 66 | #define SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x)) |
| 67 | #define SVC_I3C_MSTATUS_IBITYPE_IBI 1 |
| 68 | #define SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2 |
| 69 | #define SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3 |
| 70 | #define SVC_I3C_MINT_SLVSTART BIT(8) |
| 71 | #define SVC_I3C_MINT_MCTRLDONE BIT(9) |
| 72 | #define SVC_I3C_MINT_COMPLETE BIT(10) |
| 73 | #define SVC_I3C_MINT_RXPEND BIT(11) |
| 74 | #define SVC_I3C_MINT_TXNOTFULL BIT(12) |
| 75 | #define SVC_I3C_MINT_IBIWON BIT(13) |
| 76 | #define SVC_I3C_MINT_ERRWARN BIT(15) |
| 77 | #define SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x)) |
| 78 | #define SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x)) |
| 79 | #define SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x)) |
| 80 | #define SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x)) |
| 81 | #define SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x)) |
| 82 | #define SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x)) |
| 83 | #define SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x)) |
| 84 | #define SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x)) |
| 85 | |
| 86 | #define SVC_I3C_IBIRULES 0x08C |
| 87 | #define SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \ |
| 88 | ((addr) & 0x3F) << ((slot) * 6)) |
| 89 | #define SVC_I3C_IBIRULES_ADDRS 5 |
| 90 | #define SVC_I3C_IBIRULES_MSB0 BIT(30) |
| 91 | #define SVC_I3C_IBIRULES_NOBYTE BIT(31) |
| 92 | #define SVC_I3C_IBIRULES_MANDBYTE 0 |
| 93 | #define SVC_I3C_MINTSET 0x090 |
| 94 | #define SVC_I3C_MINTCLR 0x094 |
| 95 | #define SVC_I3C_MINTMASKED 0x098 |
| 96 | #define SVC_I3C_MERRWARN 0x09C |
| 97 | #define SVC_I3C_MERRWARN_NACK BIT(2) |
| 98 | #define SVC_I3C_MERRWARN_TIMEOUT BIT(20) |
| 99 | #define SVC_I3C_MDMACTRL 0x0A0 |
| 100 | #define SVC_I3C_MDATACTRL 0x0AC |
| 101 | #define SVC_I3C_MDATACTRL_FLUSHTB BIT(0) |
| 102 | #define SVC_I3C_MDATACTRL_FLUSHRB BIT(1) |
| 103 | #define SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3) |
| 104 | #define SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4) |
| 105 | #define SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0 |
| 106 | #define SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x)) |
| 107 | #define SVC_I3C_MDATACTRL_TXFULL BIT(30) |
| 108 | #define SVC_I3C_MDATACTRL_RXEMPTY BIT(31) |
| 109 | |
| 110 | #define SVC_I3C_MWDATAB 0x0B0 |
| 111 | #define SVC_I3C_MWDATAB_END BIT(8) |
| 112 | |
| 113 | #define SVC_I3C_MWDATABE 0x0B4 |
| 114 | #define SVC_I3C_MWDATAH 0x0B8 |
| 115 | #define SVC_I3C_MWDATAHE 0x0BC |
| 116 | #define SVC_I3C_MRDATAB 0x0C0 |
| 117 | #define SVC_I3C_MRDATAH 0x0C8 |
| 118 | #define SVC_I3C_MWDATAB1 0x0CC |
| 119 | #define SVC_I3C_MWMSG_SDR 0x0D0 |
| 120 | #define SVC_I3C_MRMSG_SDR 0x0D4 |
| 121 | #define SVC_I3C_MWMSG_DDR 0x0D8 |
| 122 | #define SVC_I3C_MRMSG_DDR 0x0DC |
| 123 | |
| 124 | #define SVC_I3C_MDYNADDR 0x0E4 |
| 125 | #define SVC_MDYNADDR_VALID BIT(0) |
| 126 | #define SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x)) |
| 127 | |
| 128 | #define SVC_I3C_MAX_DEVS 32 |
| 129 | #define SVC_I3C_PM_TIMEOUT_MS 1000 |
| 130 | |
| 131 | /* This parameter depends on the implementation and may be tuned */ |
| 132 | #define SVC_I3C_FIFO_SIZE 16 |
| 133 | #define SVC_I3C_PPBAUD_MAX 15 |
| 134 | #define SVC_I3C_QUICK_I2C_CLK 4170000 |
| 135 | |
| 136 | #define SVC_I3C_EVENT_IBI GENMASK(7, 0) |
| 137 | #define SVC_I3C_EVENT_HOTJOIN BIT(31) |
| 138 | |
| 139 | /* |
| 140 | * SVC_I3C_QUIRK_FIFO_EMPTY: |
| 141 | * I3C HW stalls the write transfer if the transmit FIFO becomes empty, |
| 142 | * when new data is written to FIFO, I3C HW resumes the transfer but |
| 143 | * the first transmitted data bit may have the wrong value. |
| 144 | * Workaround: |
| 145 | * Fill the FIFO in advance to prevent FIFO from becoming empty. |
| 146 | */ |
| 147 | #define SVC_I3C_QUIRK_FIFO_EMPTY BIT(0) |
| 148 | /* |
| 149 | * SVC_I3C_QUIRK_FLASE_SLVSTART: |
| 150 | * I3C HW may generate an invalid SlvStart event when emitting a STOP. |
| 151 | * If it is a true SlvStart, the MSTATUS state is SLVREQ. |
| 152 | */ |
| 153 | #define SVC_I3C_QUIRK_FALSE_SLVSTART BIT(1) |
| 154 | /* |
| 155 | * SVC_I3C_QUIRK_DAA_CORRUPT: |
| 156 | * When MCONFIG.SKEW=0 and MCONFIG.ODHPP=0, the ENTDAA transaction gets |
| 157 | * corrupted and results in a no repeated-start condition at the end of |
| 158 | * address assignment. |
| 159 | * Workaround: |
| 160 | * Set MCONFIG.SKEW to 1 before initiating the DAA process. After the DAA |
| 161 | * process is completed, return MCONFIG.SKEW to its previous value. |
| 162 | */ |
| 163 | #define SVC_I3C_QUIRK_DAA_CORRUPT BIT(2) |
| 164 | |
| 165 | struct svc_i3c_cmd { |
| 166 | u8 addr; |
| 167 | bool rnw; |
| 168 | u8 *in; |
| 169 | const void *out; |
| 170 | unsigned int len; |
| 171 | unsigned int actual_len; |
| 172 | struct i3c_priv_xfer *xfer; |
| 173 | bool continued; |
| 174 | }; |
| 175 | |
| 176 | struct svc_i3c_xfer { |
| 177 | struct list_head node; |
| 178 | struct completion comp; |
| 179 | int ret; |
| 180 | unsigned int type; |
| 181 | unsigned int ncmds; |
| 182 | struct svc_i3c_cmd cmds[] __counted_by(ncmds); |
| 183 | }; |
| 184 | |
| 185 | struct svc_i3c_regs_save { |
| 186 | u32 mconfig; |
| 187 | u32 mdynaddr; |
| 188 | }; |
| 189 | |
| 190 | struct svc_i3c_drvdata { |
| 191 | u32 quirks; |
| 192 | }; |
| 193 | |
| 194 | /** |
| 195 | * struct svc_i3c_master - Silvaco I3C Master structure |
| 196 | * @base: I3C master controller |
| 197 | * @dev: Corresponding device |
| 198 | * @regs: Memory mapping |
| 199 | * @saved_regs: Volatile values for PM operations |
| 200 | * @free_slots: Bit array of available slots |
| 201 | * @addrs: Array containing the dynamic addresses of each attached device |
| 202 | * @descs: Array of descriptors, one per attached device |
| 203 | * @hj_work: Hot-join work |
| 204 | * @irq: Main interrupt |
| 205 | * @num_clks: I3C clock number |
| 206 | * @fclk: Fast clock (bus) |
| 207 | * @clks: I3C clock array |
| 208 | * @xferqueue: Transfer queue structure |
| 209 | * @xferqueue.list: List member |
| 210 | * @xferqueue.cur: Current ongoing transfer |
| 211 | * @xferqueue.lock: Queue lock |
| 212 | * @ibi: IBI structure |
| 213 | * @ibi.num_slots: Number of slots available in @ibi.slots |
| 214 | * @ibi.slots: Available IBI slots |
| 215 | * @ibi.tbq_slot: To be queued IBI slot |
| 216 | * @ibi.lock: IBI lock |
| 217 | * @lock: Transfer lock, protect between IBI work thread and callbacks from master |
| 218 | * @drvdata: Driver data |
| 219 | * @enabled_events: Bit masks for enable events (IBI, HotJoin). |
| 220 | * @mctrl_config: Configuration value in SVC_I3C_MCTRL for setting speed back. |
| 221 | */ |
| 222 | struct svc_i3c_master { |
| 223 | struct i3c_master_controller base; |
| 224 | struct device *dev; |
| 225 | void __iomem *regs; |
| 226 | struct svc_i3c_regs_save saved_regs; |
| 227 | u32 free_slots; |
| 228 | u8 addrs[SVC_I3C_MAX_DEVS]; |
| 229 | struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS]; |
| 230 | struct work_struct hj_work; |
| 231 | int irq; |
| 232 | int num_clks; |
| 233 | struct clk *fclk; |
| 234 | struct clk_bulk_data *clks; |
| 235 | struct { |
| 236 | struct list_head list; |
| 237 | struct svc_i3c_xfer *cur; |
| 238 | /* Prevent races between transfers */ |
| 239 | spinlock_t lock; |
| 240 | } xferqueue; |
| 241 | struct { |
| 242 | unsigned int num_slots; |
| 243 | struct i3c_dev_desc **slots; |
| 244 | struct i3c_ibi_slot *tbq_slot; |
| 245 | /* Prevent races within IBI handlers */ |
| 246 | spinlock_t lock; |
| 247 | } ibi; |
| 248 | struct mutex lock; |
| 249 | const struct svc_i3c_drvdata *drvdata; |
| 250 | u32 enabled_events; |
| 251 | u32 mctrl_config; |
| 252 | }; |
| 253 | |
| 254 | /** |
| 255 | * struct svc_i3c_i2c_dev_data - Device specific data |
| 256 | * @index: Index in the master tables corresponding to this device |
| 257 | * @ibi: IBI slot index in the master structure |
| 258 | * @ibi_pool: IBI pool associated to this device |
| 259 | */ |
| 260 | struct svc_i3c_i2c_dev_data { |
| 261 | u8 index; |
| 262 | int ibi; |
| 263 | struct i3c_generic_ibi_pool *ibi_pool; |
| 264 | }; |
| 265 | |
| 266 | static inline bool svc_has_quirk(struct svc_i3c_master *master, u32 quirk) |
| 267 | { |
| 268 | return (master->drvdata->quirks & quirk); |
| 269 | } |
| 270 | |
| 271 | static inline bool svc_has_daa_corrupt(struct svc_i3c_master *master) |
| 272 | { |
| 273 | return ((master->drvdata->quirks & SVC_I3C_QUIRK_DAA_CORRUPT) && |
| 274 | !(master->mctrl_config & |
| 275 | (SVC_I3C_MCONFIG_SKEW_MASK | SVC_I3C_MCONFIG_ODHPP(1)))); |
| 276 | } |
| 277 | |
| 278 | static inline bool is_events_enabled(struct svc_i3c_master *master, u32 mask) |
| 279 | { |
| 280 | return !!(master->enabled_events & mask); |
| 281 | } |
| 282 | |
| 283 | static bool svc_i3c_master_error(struct svc_i3c_master *master) |
| 284 | { |
| 285 | u32 mstatus, merrwarn; |
| 286 | |
| 287 | mstatus = readl(addr: master->regs + SVC_I3C_MSTATUS); |
| 288 | if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) { |
| 289 | merrwarn = readl(addr: master->regs + SVC_I3C_MERRWARN); |
| 290 | writel(val: merrwarn, addr: master->regs + SVC_I3C_MERRWARN); |
| 291 | |
| 292 | /* Ignore timeout error */ |
| 293 | if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) { |
| 294 | dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n" , |
| 295 | mstatus, merrwarn); |
| 296 | return false; |
| 297 | } |
| 298 | |
| 299 | dev_err(master->dev, |
| 300 | "Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n" , |
| 301 | mstatus, merrwarn); |
| 302 | |
| 303 | return true; |
| 304 | } |
| 305 | |
| 306 | return false; |
| 307 | } |
| 308 | |
| 309 | static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask) |
| 310 | { |
| 311 | writel(val: mask, addr: master->regs + SVC_I3C_MINTSET); |
| 312 | } |
| 313 | |
| 314 | static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master) |
| 315 | { |
| 316 | u32 mask = readl(addr: master->regs + SVC_I3C_MINTSET); |
| 317 | |
| 318 | writel(val: mask, addr: master->regs + SVC_I3C_MINTCLR); |
| 319 | } |
| 320 | |
| 321 | static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master) |
| 322 | { |
| 323 | /* Clear pending warnings */ |
| 324 | writel(readl(addr: master->regs + SVC_I3C_MERRWARN), |
| 325 | addr: master->regs + SVC_I3C_MERRWARN); |
| 326 | } |
| 327 | |
| 328 | static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master) |
| 329 | { |
| 330 | /* Flush FIFOs */ |
| 331 | writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB, |
| 332 | addr: master->regs + SVC_I3C_MDATACTRL); |
| 333 | } |
| 334 | |
| 335 | static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master) |
| 336 | { |
| 337 | u32 reg; |
| 338 | |
| 339 | /* Set RX and TX tigger levels, flush FIFOs */ |
| 340 | reg = SVC_I3C_MDATACTRL_FLUSHTB | |
| 341 | SVC_I3C_MDATACTRL_FLUSHRB | |
| 342 | SVC_I3C_MDATACTRL_UNLOCK_TRIG | |
| 343 | SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL | |
| 344 | SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY; |
| 345 | writel(val: reg, addr: master->regs + SVC_I3C_MDATACTRL); |
| 346 | } |
| 347 | |
| 348 | static void svc_i3c_master_reset(struct svc_i3c_master *master) |
| 349 | { |
| 350 | svc_i3c_master_clear_merrwarn(master); |
| 351 | svc_i3c_master_reset_fifo_trigger(master); |
| 352 | svc_i3c_master_disable_interrupts(master); |
| 353 | } |
| 354 | |
| 355 | static inline struct svc_i3c_master * |
| 356 | to_svc_i3c_master(struct i3c_master_controller *master) |
| 357 | { |
| 358 | return container_of(master, struct svc_i3c_master, base); |
| 359 | } |
| 360 | |
| 361 | static void svc_i3c_master_hj_work(struct work_struct *work) |
| 362 | { |
| 363 | struct svc_i3c_master *master; |
| 364 | |
| 365 | master = container_of(work, struct svc_i3c_master, hj_work); |
| 366 | i3c_master_do_daa(master: &master->base); |
| 367 | } |
| 368 | |
| 369 | static struct i3c_dev_desc * |
| 370 | svc_i3c_master_dev_from_addr(struct svc_i3c_master *master, |
| 371 | unsigned int ibiaddr) |
| 372 | { |
| 373 | int i; |
| 374 | |
| 375 | for (i = 0; i < SVC_I3C_MAX_DEVS; i++) |
| 376 | if (master->addrs[i] == ibiaddr) |
| 377 | break; |
| 378 | |
| 379 | if (i == SVC_I3C_MAX_DEVS) |
| 380 | return NULL; |
| 381 | |
| 382 | return master->descs[i]; |
| 383 | } |
| 384 | |
| 385 | static void svc_i3c_master_emit_stop(struct svc_i3c_master *master) |
| 386 | { |
| 387 | writel(SVC_I3C_MCTRL_REQUEST_STOP, addr: master->regs + SVC_I3C_MCTRL); |
| 388 | |
| 389 | /* |
| 390 | * This delay is necessary after the emission of a stop, otherwise eg. |
| 391 | * repeating IBIs do not get detected. There is a note in the manual |
| 392 | * about it, stating that the stop condition might not be settled |
| 393 | * correctly if a start condition follows too rapidly. |
| 394 | */ |
| 395 | udelay(usec: 1); |
| 396 | } |
| 397 | |
| 398 | static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master, |
| 399 | struct i3c_dev_desc *dev) |
| 400 | { |
| 401 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 402 | struct i3c_ibi_slot *slot; |
| 403 | unsigned int count; |
| 404 | u32 mdatactrl; |
| 405 | int ret, val; |
| 406 | u8 *buf; |
| 407 | |
| 408 | slot = i3c_generic_ibi_get_free_slot(pool: data->ibi_pool); |
| 409 | if (!slot) |
| 410 | return -ENOSPC; |
| 411 | |
| 412 | slot->len = 0; |
| 413 | buf = slot->data; |
| 414 | |
| 415 | ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val, |
| 416 | SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000); |
| 417 | if (ret) { |
| 418 | dev_err(master->dev, "Timeout when polling for COMPLETE\n" ); |
| 419 | return ret; |
| 420 | } |
| 421 | |
| 422 | while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS)) && |
| 423 | slot->len < SVC_I3C_FIFO_SIZE) { |
| 424 | mdatactrl = readl(addr: master->regs + SVC_I3C_MDATACTRL); |
| 425 | count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl); |
| 426 | readsb(addr: master->regs + SVC_I3C_MRDATAB, buffer: buf, count); |
| 427 | slot->len += count; |
| 428 | buf += count; |
| 429 | } |
| 430 | |
| 431 | master->ibi.tbq_slot = slot; |
| 432 | |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | static int svc_i3c_master_ack_ibi(struct svc_i3c_master *master, |
| 437 | bool mandatory_byte) |
| 438 | { |
| 439 | unsigned int ibi_ack_nack; |
| 440 | u32 reg; |
| 441 | |
| 442 | ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK; |
| 443 | if (mandatory_byte) |
| 444 | ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE; |
| 445 | else |
| 446 | ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE; |
| 447 | |
| 448 | writel(val: ibi_ack_nack, addr: master->regs + SVC_I3C_MCTRL); |
| 449 | |
| 450 | return readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, |
| 451 | SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000); |
| 452 | |
| 453 | } |
| 454 | |
| 455 | static int svc_i3c_master_nack_ibi(struct svc_i3c_master *master) |
| 456 | { |
| 457 | int ret; |
| 458 | u32 reg; |
| 459 | |
| 460 | writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK | |
| 461 | SVC_I3C_MCTRL_IBIRESP_NACK, |
| 462 | addr: master->regs + SVC_I3C_MCTRL); |
| 463 | |
| 464 | ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, reg, |
| 465 | SVC_I3C_MSTATUS_MCTRLDONE(reg), 1, 1000); |
| 466 | return ret; |
| 467 | } |
| 468 | |
| 469 | static int svc_i3c_master_handle_ibi_won(struct svc_i3c_master *master, u32 mstatus) |
| 470 | { |
| 471 | u32 ibitype; |
| 472 | int ret = 0; |
| 473 | |
| 474 | ibitype = SVC_I3C_MSTATUS_IBITYPE(mstatus); |
| 475 | |
| 476 | writel(SVC_I3C_MINT_IBIWON, addr: master->regs + SVC_I3C_MSTATUS); |
| 477 | |
| 478 | /* Hardware can't auto emit NACK for hot join and master request */ |
| 479 | switch (ibitype) { |
| 480 | case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: |
| 481 | case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: |
| 482 | ret = svc_i3c_master_nack_ibi(master); |
| 483 | } |
| 484 | |
| 485 | return ret; |
| 486 | } |
| 487 | |
| 488 | static void svc_i3c_master_ibi_isr(struct svc_i3c_master *master) |
| 489 | { |
| 490 | struct svc_i3c_i2c_dev_data *data; |
| 491 | unsigned int ibitype, ibiaddr; |
| 492 | struct i3c_dev_desc *dev; |
| 493 | u32 status, val; |
| 494 | int ret; |
| 495 | |
| 496 | /* |
| 497 | * According to I3C spec ver 1.1, 09-Jun-2021, section 5.1.2.5: |
| 498 | * |
| 499 | * The I3C Controller shall hold SCL low while the Bus is in ACK/NACK Phase of I3C/I2C |
| 500 | * transfer. But maximum stall time is 100us. The IRQs have to be disabled to prevent |
| 501 | * schedule during the whole I3C transaction, otherwise, the I3C bus timeout may happen if |
| 502 | * any irq or schedule happen during transaction. |
| 503 | */ |
| 504 | guard(spinlock)(l: &master->xferqueue.lock); |
| 505 | |
| 506 | /* |
| 507 | * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing |
| 508 | * readl_relaxed_poll_timeout() to return immediately. Consequently, |
| 509 | * ibitype will be 0 since it was last updated only after the 8th SCL |
| 510 | * cycle, leading to missed client IBI handlers. |
| 511 | * |
| 512 | * A typical scenario is when IBIWON occurs and bus arbitration is lost |
| 513 | * at svc_i3c_master_priv_xfers(). |
| 514 | * |
| 515 | * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI. |
| 516 | */ |
| 517 | writel(SVC_I3C_MINT_IBIWON, addr: master->regs + SVC_I3C_MSTATUS); |
| 518 | |
| 519 | /* Acknowledge the incoming interrupt with the AUTOIBI mechanism */ |
| 520 | writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI | |
| 521 | SVC_I3C_MCTRL_IBIRESP_AUTO, |
| 522 | addr: master->regs + SVC_I3C_MCTRL); |
| 523 | |
| 524 | /* Wait for IBIWON, should take approximately 100us */ |
| 525 | ret = readl_relaxed_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, val, |
| 526 | SVC_I3C_MSTATUS_IBIWON(val), 0, 100); |
| 527 | if (ret) { |
| 528 | dev_err(master->dev, "Timeout when polling for IBIWON\n" ); |
| 529 | svc_i3c_master_emit_stop(master); |
| 530 | return; |
| 531 | } |
| 532 | |
| 533 | status = readl(addr: master->regs + SVC_I3C_MSTATUS); |
| 534 | ibitype = SVC_I3C_MSTATUS_IBITYPE(status); |
| 535 | ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status); |
| 536 | |
| 537 | /* Handle the critical responses to IBI's */ |
| 538 | switch (ibitype) { |
| 539 | case SVC_I3C_MSTATUS_IBITYPE_IBI: |
| 540 | dev = svc_i3c_master_dev_from_addr(master, ibiaddr); |
| 541 | if (!dev || !is_events_enabled(master, SVC_I3C_EVENT_IBI)) |
| 542 | svc_i3c_master_nack_ibi(master); |
| 543 | else |
| 544 | svc_i3c_master_handle_ibi(master, dev); |
| 545 | break; |
| 546 | case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: |
| 547 | if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN)) |
| 548 | svc_i3c_master_ack_ibi(master, mandatory_byte: false); |
| 549 | else |
| 550 | svc_i3c_master_nack_ibi(master); |
| 551 | break; |
| 552 | case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: |
| 553 | svc_i3c_master_nack_ibi(master); |
| 554 | break; |
| 555 | default: |
| 556 | break; |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * If an error happened, we probably got interrupted and the exchange |
| 561 | * timedout. In this case we just drop everything, emit a stop and wait |
| 562 | * for the slave to interrupt again. |
| 563 | */ |
| 564 | if (svc_i3c_master_error(master)) { |
| 565 | if (master->ibi.tbq_slot) { |
| 566 | data = i3c_dev_get_master_data(dev); |
| 567 | i3c_generic_ibi_recycle_slot(pool: data->ibi_pool, |
| 568 | slot: master->ibi.tbq_slot); |
| 569 | master->ibi.tbq_slot = NULL; |
| 570 | } |
| 571 | |
| 572 | svc_i3c_master_emit_stop(master); |
| 573 | |
| 574 | return; |
| 575 | } |
| 576 | |
| 577 | /* Handle the non critical tasks */ |
| 578 | switch (ibitype) { |
| 579 | case SVC_I3C_MSTATUS_IBITYPE_IBI: |
| 580 | svc_i3c_master_emit_stop(master); |
| 581 | if (dev) { |
| 582 | i3c_master_queue_ibi(dev, slot: master->ibi.tbq_slot); |
| 583 | master->ibi.tbq_slot = NULL; |
| 584 | } |
| 585 | break; |
| 586 | case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: |
| 587 | svc_i3c_master_emit_stop(master); |
| 588 | if (is_events_enabled(master, SVC_I3C_EVENT_HOTJOIN)) |
| 589 | queue_work(wq: master->base.wq, work: &master->hj_work); |
| 590 | break; |
| 591 | case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: |
| 592 | svc_i3c_master_emit_stop(master); |
| 593 | break; |
| 594 | default: |
| 595 | break; |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id) |
| 600 | { |
| 601 | struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id; |
| 602 | u32 active = readl(addr: master->regs + SVC_I3C_MSTATUS); |
| 603 | |
| 604 | if (!SVC_I3C_MSTATUS_SLVSTART(active)) |
| 605 | return IRQ_NONE; |
| 606 | |
| 607 | /* Clear the interrupt status */ |
| 608 | writel(SVC_I3C_MINT_SLVSTART, addr: master->regs + SVC_I3C_MSTATUS); |
| 609 | |
| 610 | /* Ignore the false event */ |
| 611 | if (svc_has_quirk(master, SVC_I3C_QUIRK_FALSE_SLVSTART) && |
| 612 | !SVC_I3C_MSTATUS_STATE_SLVREQ(active)) |
| 613 | return IRQ_HANDLED; |
| 614 | |
| 615 | /* |
| 616 | * The SDA line remains low until the request is processed. |
| 617 | * Receive the request in the interrupt context to respond promptly |
| 618 | * and restore the bus to idle state. |
| 619 | */ |
| 620 | svc_i3c_master_ibi_isr(master); |
| 621 | |
| 622 | return IRQ_HANDLED; |
| 623 | } |
| 624 | |
| 625 | static int svc_i3c_master_set_speed(struct i3c_master_controller *m, |
| 626 | enum i3c_open_drain_speed speed) |
| 627 | { |
| 628 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 629 | struct i3c_bus *bus = i3c_master_get_bus(master: &master->base); |
| 630 | u32 ppbaud, odbaud, odhpp, mconfig; |
| 631 | unsigned long fclk_rate; |
| 632 | int ret; |
| 633 | |
| 634 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 635 | if (ret < 0) { |
| 636 | dev_err(master->dev, "<%s> Cannot get runtime PM.\n" , __func__); |
| 637 | return ret; |
| 638 | } |
| 639 | |
| 640 | switch (speed) { |
| 641 | case I3C_OPEN_DRAIN_SLOW_SPEED: |
| 642 | fclk_rate = clk_get_rate(clk: master->fclk); |
| 643 | if (!fclk_rate) { |
| 644 | ret = -EINVAL; |
| 645 | goto rpm_out; |
| 646 | } |
| 647 | /* |
| 648 | * Set 50% duty-cycle I2C speed to I3C OPEN-DRAIN mode, so the first |
| 649 | * broadcast address is visible to all I2C/I3C devices on the I3C bus. |
| 650 | * I3C device working as a I2C device will turn off its 50ns Spike |
| 651 | * Filter to change to I3C mode. |
| 652 | */ |
| 653 | mconfig = master->mctrl_config; |
| 654 | ppbaud = FIELD_GET(GENMASK(11, 8), mconfig); |
| 655 | odhpp = 0; |
| 656 | odbaud = DIV_ROUND_UP(fclk_rate, bus->scl_rate.i2c * (2 + 2 * ppbaud)) - 1; |
| 657 | mconfig &= ~GENMASK(24, 16); |
| 658 | mconfig |= SVC_I3C_MCONFIG_ODBAUD(odbaud) | SVC_I3C_MCONFIG_ODHPP(odhpp); |
| 659 | writel(val: mconfig, addr: master->regs + SVC_I3C_MCONFIG); |
| 660 | break; |
| 661 | case I3C_OPEN_DRAIN_NORMAL_SPEED: |
| 662 | writel(val: master->mctrl_config, addr: master->regs + SVC_I3C_MCONFIG); |
| 663 | break; |
| 664 | } |
| 665 | |
| 666 | rpm_out: |
| 667 | pm_runtime_mark_last_busy(dev: master->dev); |
| 668 | pm_runtime_put_autosuspend(dev: master->dev); |
| 669 | |
| 670 | return ret; |
| 671 | } |
| 672 | |
| 673 | static int svc_i3c_master_bus_init(struct i3c_master_controller *m) |
| 674 | { |
| 675 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 676 | struct i3c_bus *bus = i3c_master_get_bus(master: m); |
| 677 | struct i3c_device_info info = {}; |
| 678 | unsigned long fclk_rate, fclk_period_ns; |
| 679 | unsigned long i2c_period_ns, i2c_scl_rate, i3c_scl_rate; |
| 680 | unsigned int high_period_ns, od_low_period_ns; |
| 681 | u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg; |
| 682 | int ret; |
| 683 | |
| 684 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 685 | if (ret < 0) { |
| 686 | dev_err(master->dev, |
| 687 | "<%s> cannot resume i3c bus master, err: %d\n" , |
| 688 | __func__, ret); |
| 689 | return ret; |
| 690 | } |
| 691 | |
| 692 | /* Timings derivation */ |
| 693 | fclk_rate = clk_get_rate(clk: master->fclk); |
| 694 | if (!fclk_rate) { |
| 695 | ret = -EINVAL; |
| 696 | goto rpm_out; |
| 697 | } |
| 698 | |
| 699 | fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate); |
| 700 | i2c_period_ns = DIV_ROUND_UP(1000000000, bus->scl_rate.i2c); |
| 701 | i2c_scl_rate = bus->scl_rate.i2c; |
| 702 | i3c_scl_rate = bus->scl_rate.i3c; |
| 703 | |
| 704 | /* |
| 705 | * Using I3C Push-Pull mode, target is 12.5MHz/80ns period. |
| 706 | * Simplest configuration is using a 50% duty-cycle of 40ns. |
| 707 | */ |
| 708 | ppbaud = DIV_ROUND_UP(fclk_rate / 2, i3c_scl_rate) - 1; |
| 709 | pplow = 0; |
| 710 | |
| 711 | /* |
| 712 | * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a |
| 713 | * duty-cycle tuned so that high levels are filetered out by |
| 714 | * the 50ns filter (target being 40ns). |
| 715 | */ |
| 716 | odhpp = 1; |
| 717 | high_period_ns = (ppbaud + 1) * fclk_period_ns; |
| 718 | odbaud = DIV_ROUND_UP(fclk_rate, SVC_I3C_QUICK_I2C_CLK * (1 + ppbaud)) - 2; |
| 719 | od_low_period_ns = (odbaud + 1) * high_period_ns; |
| 720 | |
| 721 | switch (bus->mode) { |
| 722 | case I3C_BUS_MODE_PURE: |
| 723 | i2cbaud = 0; |
| 724 | odstop = 0; |
| 725 | break; |
| 726 | case I3C_BUS_MODE_MIXED_FAST: |
| 727 | /* |
| 728 | * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference |
| 729 | * between the high and low period does not really matter. |
| 730 | */ |
| 731 | i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2; |
| 732 | odstop = 1; |
| 733 | break; |
| 734 | case I3C_BUS_MODE_MIXED_LIMITED: |
| 735 | case I3C_BUS_MODE_MIXED_SLOW: |
| 736 | /* I3C PP + I3C OP + I2C OP both use i2c clk rate */ |
| 737 | if (ppbaud > SVC_I3C_PPBAUD_MAX) { |
| 738 | ppbaud = SVC_I3C_PPBAUD_MAX; |
| 739 | pplow = DIV_ROUND_UP(fclk_rate, i3c_scl_rate) - (2 + 2 * ppbaud); |
| 740 | } |
| 741 | |
| 742 | high_period_ns = (ppbaud + 1) * fclk_period_ns; |
| 743 | odhpp = 0; |
| 744 | odbaud = DIV_ROUND_UP(fclk_rate, i2c_scl_rate * (2 + 2 * ppbaud)) - 1; |
| 745 | |
| 746 | od_low_period_ns = (odbaud + 1) * high_period_ns; |
| 747 | i2cbaud = DIV_ROUND_UP(i2c_period_ns, od_low_period_ns) - 2; |
| 748 | odstop = 1; |
| 749 | break; |
| 750 | default: |
| 751 | goto rpm_out; |
| 752 | } |
| 753 | |
| 754 | reg = SVC_I3C_MCONFIG_MASTER_EN | |
| 755 | SVC_I3C_MCONFIG_DISTO(0) | |
| 756 | SVC_I3C_MCONFIG_HKEEP(0) | |
| 757 | SVC_I3C_MCONFIG_ODSTOP(odstop) | |
| 758 | SVC_I3C_MCONFIG_PPBAUD(ppbaud) | |
| 759 | SVC_I3C_MCONFIG_PPLOW(pplow) | |
| 760 | SVC_I3C_MCONFIG_ODBAUD(odbaud) | |
| 761 | SVC_I3C_MCONFIG_ODHPP(odhpp) | |
| 762 | SVC_I3C_MCONFIG_SKEW(0) | |
| 763 | SVC_I3C_MCONFIG_I2CBAUD(i2cbaud); |
| 764 | writel(val: reg, addr: master->regs + SVC_I3C_MCONFIG); |
| 765 | |
| 766 | master->mctrl_config = reg; |
| 767 | /* Master core's registration */ |
| 768 | ret = i3c_master_get_free_addr(master: m, start_addr: 0); |
| 769 | if (ret < 0) |
| 770 | goto rpm_out; |
| 771 | |
| 772 | info.dyn_addr = ret; |
| 773 | |
| 774 | writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr), |
| 775 | addr: master->regs + SVC_I3C_MDYNADDR); |
| 776 | |
| 777 | ret = i3c_master_set_info(master: &master->base, info: &info); |
| 778 | if (ret) |
| 779 | goto rpm_out; |
| 780 | |
| 781 | rpm_out: |
| 782 | pm_runtime_mark_last_busy(dev: master->dev); |
| 783 | pm_runtime_put_autosuspend(dev: master->dev); |
| 784 | |
| 785 | return ret; |
| 786 | } |
| 787 | |
| 788 | static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m) |
| 789 | { |
| 790 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 791 | int ret; |
| 792 | |
| 793 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 794 | if (ret < 0) { |
| 795 | dev_err(master->dev, "<%s> Cannot get runtime PM.\n" , __func__); |
| 796 | return; |
| 797 | } |
| 798 | |
| 799 | svc_i3c_master_disable_interrupts(master); |
| 800 | |
| 801 | /* Disable master */ |
| 802 | writel(val: 0, addr: master->regs + SVC_I3C_MCONFIG); |
| 803 | |
| 804 | pm_runtime_mark_last_busy(dev: master->dev); |
| 805 | pm_runtime_put_autosuspend(dev: master->dev); |
| 806 | } |
| 807 | |
| 808 | static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master) |
| 809 | { |
| 810 | unsigned int slot; |
| 811 | |
| 812 | if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0))) |
| 813 | return -ENOSPC; |
| 814 | |
| 815 | slot = ffs(master->free_slots) - 1; |
| 816 | |
| 817 | master->free_slots &= ~BIT(slot); |
| 818 | |
| 819 | return slot; |
| 820 | } |
| 821 | |
| 822 | static void svc_i3c_master_release_slot(struct svc_i3c_master *master, |
| 823 | unsigned int slot) |
| 824 | { |
| 825 | master->free_slots |= BIT(slot); |
| 826 | } |
| 827 | |
| 828 | static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev) |
| 829 | { |
| 830 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 831 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 832 | struct svc_i3c_i2c_dev_data *data; |
| 833 | int slot; |
| 834 | |
| 835 | slot = svc_i3c_master_reserve_slot(master); |
| 836 | if (slot < 0) |
| 837 | return slot; |
| 838 | |
| 839 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 840 | if (!data) { |
| 841 | svc_i3c_master_release_slot(master, slot); |
| 842 | return -ENOMEM; |
| 843 | } |
| 844 | |
| 845 | data->ibi = -1; |
| 846 | data->index = slot; |
| 847 | master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr : |
| 848 | dev->info.static_addr; |
| 849 | master->descs[slot] = dev; |
| 850 | |
| 851 | i3c_dev_set_master_data(dev, data); |
| 852 | |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev, |
| 857 | u8 old_dyn_addr) |
| 858 | { |
| 859 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 860 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 861 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 862 | |
| 863 | master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr : |
| 864 | dev->info.static_addr; |
| 865 | |
| 866 | return 0; |
| 867 | } |
| 868 | |
| 869 | static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev) |
| 870 | { |
| 871 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 872 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 873 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 874 | |
| 875 | master->addrs[data->index] = 0; |
| 876 | svc_i3c_master_release_slot(master, slot: data->index); |
| 877 | |
| 878 | kfree(objp: data); |
| 879 | } |
| 880 | |
| 881 | static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev) |
| 882 | { |
| 883 | struct i3c_master_controller *m = i2c_dev_get_master(dev); |
| 884 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 885 | struct svc_i3c_i2c_dev_data *data; |
| 886 | int slot; |
| 887 | |
| 888 | slot = svc_i3c_master_reserve_slot(master); |
| 889 | if (slot < 0) |
| 890 | return slot; |
| 891 | |
| 892 | data = kzalloc(sizeof(*data), GFP_KERNEL); |
| 893 | if (!data) { |
| 894 | svc_i3c_master_release_slot(master, slot); |
| 895 | return -ENOMEM; |
| 896 | } |
| 897 | |
| 898 | data->index = slot; |
| 899 | master->addrs[slot] = dev->addr; |
| 900 | |
| 901 | i2c_dev_set_master_data(dev, data); |
| 902 | |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev) |
| 907 | { |
| 908 | struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); |
| 909 | struct i3c_master_controller *m = i2c_dev_get_master(dev); |
| 910 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 911 | |
| 912 | svc_i3c_master_release_slot(master, slot: data->index); |
| 913 | |
| 914 | kfree(objp: data); |
| 915 | } |
| 916 | |
| 917 | static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst, |
| 918 | unsigned int len) |
| 919 | { |
| 920 | int ret, i; |
| 921 | u32 reg; |
| 922 | |
| 923 | for (i = 0; i < len; i++) { |
| 924 | ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, |
| 925 | reg, |
| 926 | SVC_I3C_MSTATUS_RXPEND(reg), |
| 927 | 0, 1000); |
| 928 | if (ret) |
| 929 | return ret; |
| 930 | |
| 931 | dst[i] = readl(addr: master->regs + SVC_I3C_MRDATAB); |
| 932 | } |
| 933 | |
| 934 | return 0; |
| 935 | } |
| 936 | |
| 937 | static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master, |
| 938 | u8 *addrs, unsigned int *count) |
| 939 | { |
| 940 | u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0; |
| 941 | unsigned int dev_nb = 0, last_addr = 0, dyn_addr = 0; |
| 942 | u32 reg; |
| 943 | int ret, i; |
| 944 | |
| 945 | svc_i3c_master_flush_fifo(master); |
| 946 | |
| 947 | while (true) { |
| 948 | /* clean SVC_I3C_MINT_IBIWON w1c bits */ |
| 949 | writel(SVC_I3C_MINT_IBIWON, addr: master->regs + SVC_I3C_MSTATUS); |
| 950 | |
| 951 | /* SVC_I3C_MCTRL_REQUEST_PROC_DAA have two mode, ENTER DAA or PROCESS DAA. |
| 952 | * |
| 953 | * ENTER DAA: |
| 954 | * 1 will issue START, 7E, ENTDAA, and then emits 7E/R to process first target. |
| 955 | * 2 Stops just before the new Dynamic Address (DA) is to be emitted. |
| 956 | * |
| 957 | * PROCESS DAA: |
| 958 | * 1 The DA is written using MWDATAB or ADDR bits 6:0. |
| 959 | * 2 ProcessDAA is requested again to write the new address, and then starts the |
| 960 | * next (START, 7E, ENTDAA) unless marked to STOP; an MSTATUS indicating NACK |
| 961 | * means DA was not accepted (e.g. parity error). If PROCESSDAA is NACKed on the |
| 962 | * 7E/R, which means no more Slaves need a DA, then a COMPLETE will be signaled |
| 963 | * (along with DONE), and a STOP issued automatically. |
| 964 | */ |
| 965 | writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA | |
| 966 | SVC_I3C_MCTRL_TYPE_I3C | |
| 967 | SVC_I3C_MCTRL_IBIRESP_NACK | |
| 968 | SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE), |
| 969 | addr: master->regs + SVC_I3C_MCTRL); |
| 970 | |
| 971 | /* |
| 972 | * Either one slave will send its ID, or the assignment process |
| 973 | * is done. |
| 974 | */ |
| 975 | ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, |
| 976 | reg, |
| 977 | SVC_I3C_MSTATUS_RXPEND(reg) | |
| 978 | SVC_I3C_MSTATUS_MCTRLDONE(reg), |
| 979 | 1, 1000); |
| 980 | if (ret) |
| 981 | break; |
| 982 | |
| 983 | if (SVC_I3C_MSTATUS_RXPEND(reg)) { |
| 984 | u8 data[6]; |
| 985 | |
| 986 | /* |
| 987 | * One slave sends its ID to request for address assignment, |
| 988 | * prefilling the dynamic address can reduce SCL clock stalls |
| 989 | * and also fix the SVC_I3C_QUIRK_FIFO_EMPTY quirk. |
| 990 | * |
| 991 | * Ideally, prefilling before the processDAA command is better. |
| 992 | * However, it requires an additional check to write the dyn_addr |
| 993 | * at the right time because the driver needs to write the processDAA |
| 994 | * command twice for one assignment. |
| 995 | * Prefilling here is safe and efficient because the FIFO starts |
| 996 | * filling within a few hundred nanoseconds, which is significantly |
| 997 | * faster compared to the 64 SCL clock cycles. |
| 998 | */ |
| 999 | ret = i3c_master_get_free_addr(master: &master->base, start_addr: last_addr + 1); |
| 1000 | if (ret < 0) |
| 1001 | break; |
| 1002 | |
| 1003 | dyn_addr = ret; |
| 1004 | writel(val: dyn_addr, addr: master->regs + SVC_I3C_MWDATAB); |
| 1005 | |
| 1006 | /* |
| 1007 | * We only care about the 48-bit provisioned ID yet to |
| 1008 | * be sure a device does not nack an address twice. |
| 1009 | * Otherwise, we would just need to flush the RX FIFO. |
| 1010 | */ |
| 1011 | ret = svc_i3c_master_readb(master, dst: data, len: 6); |
| 1012 | if (ret) |
| 1013 | break; |
| 1014 | |
| 1015 | for (i = 0; i < 6; i++) |
| 1016 | prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i)); |
| 1017 | |
| 1018 | /* We do not care about the BCR and DCR yet */ |
| 1019 | ret = svc_i3c_master_readb(master, dst: data, len: 2); |
| 1020 | if (ret) |
| 1021 | break; |
| 1022 | } else if (SVC_I3C_MSTATUS_IBIWON(reg)) { |
| 1023 | ret = svc_i3c_master_handle_ibi_won(master, mstatus: reg); |
| 1024 | if (ret) |
| 1025 | break; |
| 1026 | continue; |
| 1027 | } else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) { |
| 1028 | if (SVC_I3C_MSTATUS_STATE_IDLE(reg) && |
| 1029 | SVC_I3C_MSTATUS_COMPLETE(reg)) { |
| 1030 | /* |
| 1031 | * All devices received and acked they dynamic |
| 1032 | * address, this is the natural end of the DAA |
| 1033 | * procedure. |
| 1034 | * |
| 1035 | * Hardware will auto emit STOP at this case. |
| 1036 | */ |
| 1037 | *count = dev_nb; |
| 1038 | return 0; |
| 1039 | |
| 1040 | } else if (SVC_I3C_MSTATUS_NACKED(reg)) { |
| 1041 | /* No I3C devices attached */ |
| 1042 | if (dev_nb == 0) { |
| 1043 | /* |
| 1044 | * Hardware can't treat first NACK for ENTAA as normal |
| 1045 | * COMPLETE. So need manual emit STOP. |
| 1046 | */ |
| 1047 | ret = 0; |
| 1048 | *count = 0; |
| 1049 | break; |
| 1050 | } |
| 1051 | |
| 1052 | /* |
| 1053 | * A slave device nacked the address, this is |
| 1054 | * allowed only once, DAA will be stopped and |
| 1055 | * then resumed. The same device is supposed to |
| 1056 | * answer again immediately and shall ack the |
| 1057 | * address this time. |
| 1058 | */ |
| 1059 | if (prov_id[dev_nb] == nacking_prov_id) { |
| 1060 | ret = -EIO; |
| 1061 | break; |
| 1062 | } |
| 1063 | |
| 1064 | dev_nb--; |
| 1065 | nacking_prov_id = prov_id[dev_nb]; |
| 1066 | svc_i3c_master_emit_stop(master); |
| 1067 | |
| 1068 | continue; |
| 1069 | } else { |
| 1070 | break; |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | /* Wait for the slave to be ready to receive its address */ |
| 1075 | ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, |
| 1076 | reg, |
| 1077 | SVC_I3C_MSTATUS_MCTRLDONE(reg) && |
| 1078 | SVC_I3C_MSTATUS_STATE_DAA(reg) && |
| 1079 | SVC_I3C_MSTATUS_BETWEEN(reg), |
| 1080 | 0, 1000); |
| 1081 | if (ret) |
| 1082 | break; |
| 1083 | |
| 1084 | addrs[dev_nb] = dyn_addr; |
| 1085 | dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n" , |
| 1086 | dev_nb, addrs[dev_nb]); |
| 1087 | last_addr = addrs[dev_nb++]; |
| 1088 | } |
| 1089 | |
| 1090 | /* Need manual issue STOP except for Complete condition */ |
| 1091 | svc_i3c_master_emit_stop(master); |
| 1092 | svc_i3c_master_flush_fifo(master); |
| 1093 | |
| 1094 | return ret; |
| 1095 | } |
| 1096 | |
| 1097 | static int svc_i3c_update_ibirules(struct svc_i3c_master *master) |
| 1098 | { |
| 1099 | struct i3c_dev_desc *dev; |
| 1100 | u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE; |
| 1101 | unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0, |
| 1102 | nobyte_addr_ko = 0; |
| 1103 | bool list_mbyte = false, list_nobyte = false; |
| 1104 | |
| 1105 | /* Create the IBIRULES register for both cases */ |
| 1106 | i3c_bus_for_each_i3cdev(&master->base.bus, dev) { |
| 1107 | if (!(dev->info.bcr & I3C_BCR_IBI_REQ_CAP)) |
| 1108 | continue; |
| 1109 | |
| 1110 | if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) { |
| 1111 | reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok, |
| 1112 | dev->info.dyn_addr); |
| 1113 | |
| 1114 | /* IBI rules cannot be applied to devices with MSb=1 */ |
| 1115 | if (dev->info.dyn_addr & BIT(7)) |
| 1116 | mbyte_addr_ko++; |
| 1117 | else |
| 1118 | mbyte_addr_ok++; |
| 1119 | } else { |
| 1120 | reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok, |
| 1121 | dev->info.dyn_addr); |
| 1122 | |
| 1123 | /* IBI rules cannot be applied to devices with MSb=1 */ |
| 1124 | if (dev->info.dyn_addr & BIT(7)) |
| 1125 | nobyte_addr_ko++; |
| 1126 | else |
| 1127 | nobyte_addr_ok++; |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | /* Device list cannot be handled by hardware */ |
| 1132 | if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS) |
| 1133 | list_mbyte = true; |
| 1134 | |
| 1135 | if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS) |
| 1136 | list_nobyte = true; |
| 1137 | |
| 1138 | /* No list can be properly handled, return an error */ |
| 1139 | if (!list_mbyte && !list_nobyte) |
| 1140 | return -ERANGE; |
| 1141 | |
| 1142 | /* Pick the first list that can be handled by hardware, randomly */ |
| 1143 | if (list_mbyte) |
| 1144 | writel(val: reg_mbyte, addr: master->regs + SVC_I3C_IBIRULES); |
| 1145 | else |
| 1146 | writel(val: reg_nobyte, addr: master->regs + SVC_I3C_IBIRULES); |
| 1147 | |
| 1148 | return 0; |
| 1149 | } |
| 1150 | |
| 1151 | static int svc_i3c_master_do_daa(struct i3c_master_controller *m) |
| 1152 | { |
| 1153 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1154 | u8 addrs[SVC_I3C_MAX_DEVS]; |
| 1155 | unsigned long flags; |
| 1156 | unsigned int dev_nb; |
| 1157 | int ret, i; |
| 1158 | |
| 1159 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 1160 | if (ret < 0) { |
| 1161 | dev_err(master->dev, "<%s> Cannot get runtime PM.\n" , __func__); |
| 1162 | return ret; |
| 1163 | } |
| 1164 | |
| 1165 | spin_lock_irqsave(&master->xferqueue.lock, flags); |
| 1166 | |
| 1167 | if (svc_has_daa_corrupt(master)) |
| 1168 | writel(val: master->mctrl_config | SVC_I3C_MCONFIG_SKEW(1), |
| 1169 | addr: master->regs + SVC_I3C_MCONFIG); |
| 1170 | |
| 1171 | ret = svc_i3c_master_do_daa_locked(master, addrs, count: &dev_nb); |
| 1172 | |
| 1173 | if (svc_has_daa_corrupt(master)) |
| 1174 | writel(val: master->mctrl_config, addr: master->regs + SVC_I3C_MCONFIG); |
| 1175 | |
| 1176 | spin_unlock_irqrestore(lock: &master->xferqueue.lock, flags); |
| 1177 | |
| 1178 | svc_i3c_master_clear_merrwarn(master); |
| 1179 | if (ret) |
| 1180 | goto rpm_out; |
| 1181 | |
| 1182 | /* |
| 1183 | * Register all devices who participated to the core |
| 1184 | * |
| 1185 | * If two devices (A and B) are detected in DAA and address 0xa is assigned to |
| 1186 | * device A and 0xb to device B, a failure in i3c_master_add_i3c_dev_locked() |
| 1187 | * for device A (addr: 0xa) could prevent device B (addr: 0xb) from being |
| 1188 | * registered on the bus. The I3C stack might still consider 0xb a free |
| 1189 | * address. If a subsequent Hotjoin occurs, 0xb might be assigned to Device A, |
| 1190 | * causing both devices A and B to use the same address 0xb, violating the I3C |
| 1191 | * specification. |
| 1192 | * |
| 1193 | * The return value for i3c_master_add_i3c_dev_locked() should not be checked |
| 1194 | * because subsequent steps will scan the entire I3C bus, independent of |
| 1195 | * whether i3c_master_add_i3c_dev_locked() returns success. |
| 1196 | * |
| 1197 | * If device A registration fails, there is still a chance to register device |
| 1198 | * B. i3c_master_add_i3c_dev_locked() can reset DAA if a failure occurs while |
| 1199 | * retrieving device information. |
| 1200 | */ |
| 1201 | for (i = 0; i < dev_nb; i++) |
| 1202 | i3c_master_add_i3c_dev_locked(master: m, addr: addrs[i]); |
| 1203 | |
| 1204 | /* Configure IBI auto-rules */ |
| 1205 | ret = svc_i3c_update_ibirules(master); |
| 1206 | if (ret) |
| 1207 | dev_err(master->dev, "Cannot handle such a list of devices" ); |
| 1208 | |
| 1209 | rpm_out: |
| 1210 | pm_runtime_mark_last_busy(dev: master->dev); |
| 1211 | pm_runtime_put_autosuspend(dev: master->dev); |
| 1212 | |
| 1213 | return ret; |
| 1214 | } |
| 1215 | |
| 1216 | static int svc_i3c_master_read(struct svc_i3c_master *master, |
| 1217 | u8 *in, unsigned int len) |
| 1218 | { |
| 1219 | int offset = 0, i; |
| 1220 | u32 mdctrl, mstatus; |
| 1221 | bool completed = false; |
| 1222 | unsigned int count; |
| 1223 | unsigned long start = jiffies; |
| 1224 | |
| 1225 | while (!completed) { |
| 1226 | mstatus = readl(addr: master->regs + SVC_I3C_MSTATUS); |
| 1227 | if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0) |
| 1228 | completed = true; |
| 1229 | |
| 1230 | if (time_after(jiffies, start + msecs_to_jiffies(1000))) { |
| 1231 | dev_dbg(master->dev, "I3C read timeout\n" ); |
| 1232 | return -ETIMEDOUT; |
| 1233 | } |
| 1234 | |
| 1235 | mdctrl = readl(addr: master->regs + SVC_I3C_MDATACTRL); |
| 1236 | count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl); |
| 1237 | if (offset + count > len) { |
| 1238 | dev_err(master->dev, "I3C receive length too long!\n" ); |
| 1239 | return -EINVAL; |
| 1240 | } |
| 1241 | for (i = 0; i < count; i++) |
| 1242 | in[offset + i] = readl(addr: master->regs + SVC_I3C_MRDATAB); |
| 1243 | |
| 1244 | offset += count; |
| 1245 | } |
| 1246 | |
| 1247 | return offset; |
| 1248 | } |
| 1249 | |
| 1250 | static int svc_i3c_master_write(struct svc_i3c_master *master, |
| 1251 | const u8 *out, unsigned int len) |
| 1252 | { |
| 1253 | int offset = 0, ret; |
| 1254 | u32 mdctrl; |
| 1255 | |
| 1256 | while (offset < len) { |
| 1257 | ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL, |
| 1258 | mdctrl, |
| 1259 | !(mdctrl & SVC_I3C_MDATACTRL_TXFULL), |
| 1260 | 0, 1000); |
| 1261 | if (ret) |
| 1262 | return ret; |
| 1263 | |
| 1264 | /* |
| 1265 | * The last byte to be sent over the bus must either have the |
| 1266 | * "end" bit set or be written in MWDATABE. |
| 1267 | */ |
| 1268 | if (likely(offset < (len - 1))) |
| 1269 | writel(val: out[offset++], addr: master->regs + SVC_I3C_MWDATAB); |
| 1270 | else |
| 1271 | writel(val: out[offset++], addr: master->regs + SVC_I3C_MWDATABE); |
| 1272 | } |
| 1273 | |
| 1274 | return 0; |
| 1275 | } |
| 1276 | |
| 1277 | static int svc_i3c_master_xfer(struct svc_i3c_master *master, |
| 1278 | bool rnw, unsigned int xfer_type, u8 addr, |
| 1279 | u8 *in, const u8 *out, unsigned int xfer_len, |
| 1280 | unsigned int *actual_len, bool continued, bool repeat_start) |
| 1281 | { |
| 1282 | int retry = repeat_start ? 1 : 2; |
| 1283 | u32 reg; |
| 1284 | int ret; |
| 1285 | |
| 1286 | /* clean SVC_I3C_MINT_IBIWON w1c bits */ |
| 1287 | writel(SVC_I3C_MINT_IBIWON, addr: master->regs + SVC_I3C_MSTATUS); |
| 1288 | |
| 1289 | |
| 1290 | while (retry--) { |
| 1291 | writel(SVC_I3C_MCTRL_REQUEST_START_ADDR | |
| 1292 | xfer_type | |
| 1293 | SVC_I3C_MCTRL_IBIRESP_NACK | |
| 1294 | SVC_I3C_MCTRL_DIR(rnw) | |
| 1295 | SVC_I3C_MCTRL_ADDR(addr) | |
| 1296 | SVC_I3C_MCTRL_RDTERM(*actual_len), |
| 1297 | addr: master->regs + SVC_I3C_MCTRL); |
| 1298 | |
| 1299 | /* |
| 1300 | * The entire transaction can consist of multiple write transfers. |
| 1301 | * Prefilling before EmitStartAddr causes the data to be emitted |
| 1302 | * immediately, becoming part of the previous transfer. |
| 1303 | * The only way to work around this hardware issue is to let the |
| 1304 | * FIFO start filling as soon as possible after EmitStartAddr. |
| 1305 | */ |
| 1306 | if (svc_has_quirk(master, SVC_I3C_QUIRK_FIFO_EMPTY) && !rnw && xfer_len) { |
| 1307 | u32 end = xfer_len > SVC_I3C_FIFO_SIZE ? 0 : SVC_I3C_MWDATAB_END; |
| 1308 | u32 len = min_t(u32, xfer_len, SVC_I3C_FIFO_SIZE); |
| 1309 | |
| 1310 | writesb(addr: master->regs + SVC_I3C_MWDATAB1, buffer: out, count: len - 1); |
| 1311 | /* Mark END bit if this is the last byte */ |
| 1312 | writel(val: out[len - 1] | end, addr: master->regs + SVC_I3C_MWDATAB); |
| 1313 | xfer_len -= len; |
| 1314 | out += len; |
| 1315 | } |
| 1316 | |
| 1317 | ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, |
| 1318 | SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000); |
| 1319 | if (ret) |
| 1320 | goto emit_stop; |
| 1321 | |
| 1322 | /* |
| 1323 | * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a |
| 1324 | * Frame with I3C Target Address. |
| 1325 | * |
| 1326 | * The I3C Controller normally should start a Frame, the Address may be arbitrated, |
| 1327 | * and so the Controller shall monitor to see whether an In-Band Interrupt request, |
| 1328 | * a Controller Role Request (i.e., Secondary Controller requests to become the |
| 1329 | * Active Controller), or a Hot-Join Request has been made. |
| 1330 | * |
| 1331 | * If missed IBIWON check, the wrong data will be return. When IBIWON happen, issue |
| 1332 | * repeat start. Address arbitrate only happen at START, never happen at REPEAT |
| 1333 | * start. |
| 1334 | */ |
| 1335 | if (SVC_I3C_MSTATUS_IBIWON(reg)) { |
| 1336 | ret = svc_i3c_master_handle_ibi_won(master, mstatus: reg); |
| 1337 | if (ret) |
| 1338 | goto emit_stop; |
| 1339 | continue; |
| 1340 | } |
| 1341 | |
| 1342 | if (readl(addr: master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) { |
| 1343 | /* |
| 1344 | * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3. |
| 1345 | * If the Controller chooses to start an I3C Message with an I3C Dynamic |
| 1346 | * Address, then special provisions shall be made because that same I3C |
| 1347 | * Target may be initiating an IBI or a Controller Role Request. So, one of |
| 1348 | * three things may happen: (skip 1, 2) |
| 1349 | * |
| 1350 | * 3. The Addresses match and the RnW bits also match, and so neither |
| 1351 | * Controller nor Target will ACK since both are expecting the other side to |
| 1352 | * provide ACK. As a result, each side might think it had "won" arbitration, |
| 1353 | * but neither side would continue, as each would subsequently see that the |
| 1354 | * other did not provide ACK. |
| 1355 | * ... |
| 1356 | * For either value of RnW: Due to the NACK, the Controller shall defer the |
| 1357 | * Private Write or Private Read, and should typically transmit the Target |
| 1358 | * Address again after a Repeated START (i.e., the next one or any one prior |
| 1359 | * to a STOP in the Frame). Since the Address Header following a Repeated |
| 1360 | * START is not arbitrated, the Controller will always win (see Section |
| 1361 | * 5.1.2.2.4). |
| 1362 | */ |
| 1363 | if (retry && addr != 0x7e) { |
| 1364 | writel(SVC_I3C_MERRWARN_NACK, addr: master->regs + SVC_I3C_MERRWARN); |
| 1365 | } else { |
| 1366 | ret = -ENXIO; |
| 1367 | *actual_len = 0; |
| 1368 | goto emit_stop; |
| 1369 | } |
| 1370 | } else { |
| 1371 | break; |
| 1372 | } |
| 1373 | } |
| 1374 | |
| 1375 | if (rnw) |
| 1376 | ret = svc_i3c_master_read(master, in, len: xfer_len); |
| 1377 | else |
| 1378 | ret = svc_i3c_master_write(master, out, len: xfer_len); |
| 1379 | if (ret < 0) |
| 1380 | goto emit_stop; |
| 1381 | |
| 1382 | if (rnw) |
| 1383 | *actual_len = ret; |
| 1384 | |
| 1385 | ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, |
| 1386 | SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000); |
| 1387 | if (ret) |
| 1388 | goto emit_stop; |
| 1389 | |
| 1390 | writel(SVC_I3C_MINT_COMPLETE, addr: master->regs + SVC_I3C_MSTATUS); |
| 1391 | |
| 1392 | if (!continued) { |
| 1393 | svc_i3c_master_emit_stop(master); |
| 1394 | |
| 1395 | /* Wait idle if stop is sent. */ |
| 1396 | readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, |
| 1397 | SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000); |
| 1398 | } |
| 1399 | |
| 1400 | return 0; |
| 1401 | |
| 1402 | emit_stop: |
| 1403 | svc_i3c_master_emit_stop(master); |
| 1404 | svc_i3c_master_clear_merrwarn(master); |
| 1405 | svc_i3c_master_flush_fifo(master); |
| 1406 | |
| 1407 | return ret; |
| 1408 | } |
| 1409 | |
| 1410 | static struct svc_i3c_xfer * |
| 1411 | svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds) |
| 1412 | { |
| 1413 | struct svc_i3c_xfer *xfer; |
| 1414 | |
| 1415 | xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL); |
| 1416 | if (!xfer) |
| 1417 | return NULL; |
| 1418 | |
| 1419 | INIT_LIST_HEAD(list: &xfer->node); |
| 1420 | xfer->ncmds = ncmds; |
| 1421 | xfer->ret = -ETIMEDOUT; |
| 1422 | |
| 1423 | return xfer; |
| 1424 | } |
| 1425 | |
| 1426 | static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer) |
| 1427 | { |
| 1428 | kfree(objp: xfer); |
| 1429 | } |
| 1430 | |
| 1431 | static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master, |
| 1432 | struct svc_i3c_xfer *xfer) |
| 1433 | { |
| 1434 | if (master->xferqueue.cur == xfer) |
| 1435 | master->xferqueue.cur = NULL; |
| 1436 | else |
| 1437 | list_del_init(entry: &xfer->node); |
| 1438 | } |
| 1439 | |
| 1440 | static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master, |
| 1441 | struct svc_i3c_xfer *xfer) |
| 1442 | { |
| 1443 | unsigned long flags; |
| 1444 | |
| 1445 | spin_lock_irqsave(&master->xferqueue.lock, flags); |
| 1446 | svc_i3c_master_dequeue_xfer_locked(master, xfer); |
| 1447 | spin_unlock_irqrestore(lock: &master->xferqueue.lock, flags); |
| 1448 | } |
| 1449 | |
| 1450 | static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master) |
| 1451 | { |
| 1452 | struct svc_i3c_xfer *xfer = master->xferqueue.cur; |
| 1453 | int ret, i; |
| 1454 | |
| 1455 | if (!xfer) |
| 1456 | return; |
| 1457 | |
| 1458 | svc_i3c_master_clear_merrwarn(master); |
| 1459 | svc_i3c_master_flush_fifo(master); |
| 1460 | |
| 1461 | for (i = 0; i < xfer->ncmds; i++) { |
| 1462 | struct svc_i3c_cmd *cmd = &xfer->cmds[i]; |
| 1463 | |
| 1464 | ret = svc_i3c_master_xfer(master, rnw: cmd->rnw, xfer_type: xfer->type, |
| 1465 | addr: cmd->addr, in: cmd->in, out: cmd->out, |
| 1466 | xfer_len: cmd->len, actual_len: &cmd->actual_len, |
| 1467 | continued: cmd->continued, repeat_start: i > 0); |
| 1468 | /* cmd->xfer is NULL if I2C or CCC transfer */ |
| 1469 | if (cmd->xfer) |
| 1470 | cmd->xfer->actual_len = cmd->actual_len; |
| 1471 | |
| 1472 | if (ret) |
| 1473 | break; |
| 1474 | } |
| 1475 | |
| 1476 | xfer->ret = ret; |
| 1477 | complete(&xfer->comp); |
| 1478 | |
| 1479 | if (ret < 0) |
| 1480 | svc_i3c_master_dequeue_xfer_locked(master, xfer); |
| 1481 | |
| 1482 | xfer = list_first_entry_or_null(&master->xferqueue.list, |
| 1483 | struct svc_i3c_xfer, |
| 1484 | node); |
| 1485 | if (xfer) |
| 1486 | list_del_init(entry: &xfer->node); |
| 1487 | |
| 1488 | master->xferqueue.cur = xfer; |
| 1489 | svc_i3c_master_start_xfer_locked(master); |
| 1490 | } |
| 1491 | |
| 1492 | static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master, |
| 1493 | struct svc_i3c_xfer *xfer) |
| 1494 | { |
| 1495 | unsigned long flags; |
| 1496 | int ret; |
| 1497 | |
| 1498 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 1499 | if (ret < 0) { |
| 1500 | dev_err(master->dev, "<%s> Cannot get runtime PM.\n" , __func__); |
| 1501 | return; |
| 1502 | } |
| 1503 | |
| 1504 | init_completion(x: &xfer->comp); |
| 1505 | spin_lock_irqsave(&master->xferqueue.lock, flags); |
| 1506 | if (master->xferqueue.cur) { |
| 1507 | list_add_tail(new: &xfer->node, head: &master->xferqueue.list); |
| 1508 | } else { |
| 1509 | master->xferqueue.cur = xfer; |
| 1510 | svc_i3c_master_start_xfer_locked(master); |
| 1511 | } |
| 1512 | spin_unlock_irqrestore(lock: &master->xferqueue.lock, flags); |
| 1513 | |
| 1514 | pm_runtime_mark_last_busy(dev: master->dev); |
| 1515 | pm_runtime_put_autosuspend(dev: master->dev); |
| 1516 | } |
| 1517 | |
| 1518 | static bool |
| 1519 | svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master, |
| 1520 | const struct i3c_ccc_cmd *cmd) |
| 1521 | { |
| 1522 | /* No software support for CCC commands targeting more than one slave */ |
| 1523 | return (cmd->ndests == 1); |
| 1524 | } |
| 1525 | |
| 1526 | static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master, |
| 1527 | struct i3c_ccc_cmd *ccc) |
| 1528 | { |
| 1529 | unsigned int xfer_len = ccc->dests[0].payload.len + 1; |
| 1530 | struct svc_i3c_xfer *xfer; |
| 1531 | struct svc_i3c_cmd *cmd; |
| 1532 | u8 *buf; |
| 1533 | int ret; |
| 1534 | |
| 1535 | xfer = svc_i3c_master_alloc_xfer(master, ncmds: 1); |
| 1536 | if (!xfer) |
| 1537 | return -ENOMEM; |
| 1538 | |
| 1539 | buf = kmalloc(xfer_len, GFP_KERNEL); |
| 1540 | if (!buf) { |
| 1541 | svc_i3c_master_free_xfer(xfer); |
| 1542 | return -ENOMEM; |
| 1543 | } |
| 1544 | |
| 1545 | buf[0] = ccc->id; |
| 1546 | memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len); |
| 1547 | |
| 1548 | xfer->type = SVC_I3C_MCTRL_TYPE_I3C; |
| 1549 | |
| 1550 | cmd = &xfer->cmds[0]; |
| 1551 | cmd->addr = ccc->dests[0].addr; |
| 1552 | cmd->rnw = ccc->rnw; |
| 1553 | cmd->in = NULL; |
| 1554 | cmd->out = buf; |
| 1555 | cmd->len = xfer_len; |
| 1556 | cmd->actual_len = 0; |
| 1557 | cmd->continued = false; |
| 1558 | |
| 1559 | mutex_lock(&master->lock); |
| 1560 | svc_i3c_master_enqueue_xfer(master, xfer); |
| 1561 | if (!wait_for_completion_timeout(x: &xfer->comp, timeout: msecs_to_jiffies(m: 1000))) |
| 1562 | svc_i3c_master_dequeue_xfer(master, xfer); |
| 1563 | mutex_unlock(lock: &master->lock); |
| 1564 | |
| 1565 | ret = xfer->ret; |
| 1566 | kfree(objp: buf); |
| 1567 | svc_i3c_master_free_xfer(xfer); |
| 1568 | |
| 1569 | return ret; |
| 1570 | } |
| 1571 | |
| 1572 | static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master, |
| 1573 | struct i3c_ccc_cmd *ccc) |
| 1574 | { |
| 1575 | unsigned int xfer_len = ccc->dests[0].payload.len; |
| 1576 | unsigned int actual_len = ccc->rnw ? xfer_len : 0; |
| 1577 | struct svc_i3c_xfer *xfer; |
| 1578 | struct svc_i3c_cmd *cmd; |
| 1579 | int ret; |
| 1580 | |
| 1581 | xfer = svc_i3c_master_alloc_xfer(master, ncmds: 2); |
| 1582 | if (!xfer) |
| 1583 | return -ENOMEM; |
| 1584 | |
| 1585 | xfer->type = SVC_I3C_MCTRL_TYPE_I3C; |
| 1586 | |
| 1587 | /* Broadcasted message */ |
| 1588 | cmd = &xfer->cmds[0]; |
| 1589 | cmd->addr = I3C_BROADCAST_ADDR; |
| 1590 | cmd->rnw = 0; |
| 1591 | cmd->in = NULL; |
| 1592 | cmd->out = &ccc->id; |
| 1593 | cmd->len = 1; |
| 1594 | cmd->actual_len = 0; |
| 1595 | cmd->continued = true; |
| 1596 | |
| 1597 | /* Directed message */ |
| 1598 | cmd = &xfer->cmds[1]; |
| 1599 | cmd->addr = ccc->dests[0].addr; |
| 1600 | cmd->rnw = ccc->rnw; |
| 1601 | cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL; |
| 1602 | cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data; |
| 1603 | cmd->len = xfer_len; |
| 1604 | cmd->actual_len = actual_len; |
| 1605 | cmd->continued = false; |
| 1606 | |
| 1607 | mutex_lock(&master->lock); |
| 1608 | svc_i3c_master_enqueue_xfer(master, xfer); |
| 1609 | if (!wait_for_completion_timeout(x: &xfer->comp, timeout: msecs_to_jiffies(m: 1000))) |
| 1610 | svc_i3c_master_dequeue_xfer(master, xfer); |
| 1611 | mutex_unlock(lock: &master->lock); |
| 1612 | |
| 1613 | if (cmd->actual_len != xfer_len) |
| 1614 | ccc->dests[0].payload.len = cmd->actual_len; |
| 1615 | |
| 1616 | ret = xfer->ret; |
| 1617 | svc_i3c_master_free_xfer(xfer); |
| 1618 | |
| 1619 | return ret; |
| 1620 | } |
| 1621 | |
| 1622 | static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m, |
| 1623 | struct i3c_ccc_cmd *cmd) |
| 1624 | { |
| 1625 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1626 | bool broadcast = cmd->id < 0x80; |
| 1627 | int ret; |
| 1628 | |
| 1629 | if (broadcast) |
| 1630 | ret = svc_i3c_master_send_bdcast_ccc_cmd(master, ccc: cmd); |
| 1631 | else |
| 1632 | ret = svc_i3c_master_send_direct_ccc_cmd(master, ccc: cmd); |
| 1633 | |
| 1634 | if (ret) |
| 1635 | cmd->err = I3C_ERROR_M2; |
| 1636 | |
| 1637 | return ret; |
| 1638 | } |
| 1639 | |
| 1640 | static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev, |
| 1641 | struct i3c_priv_xfer *xfers, |
| 1642 | int nxfers) |
| 1643 | { |
| 1644 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 1645 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1646 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 1647 | struct svc_i3c_xfer *xfer; |
| 1648 | int ret, i; |
| 1649 | |
| 1650 | xfer = svc_i3c_master_alloc_xfer(master, ncmds: nxfers); |
| 1651 | if (!xfer) |
| 1652 | return -ENOMEM; |
| 1653 | |
| 1654 | xfer->type = SVC_I3C_MCTRL_TYPE_I3C; |
| 1655 | |
| 1656 | for (i = 0; i < nxfers; i++) { |
| 1657 | struct svc_i3c_cmd *cmd = &xfer->cmds[i]; |
| 1658 | |
| 1659 | cmd->xfer = &xfers[i]; |
| 1660 | cmd->addr = master->addrs[data->index]; |
| 1661 | cmd->rnw = xfers[i].rnw; |
| 1662 | cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL; |
| 1663 | cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out; |
| 1664 | cmd->len = xfers[i].len; |
| 1665 | cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0; |
| 1666 | cmd->continued = (i + 1) < nxfers; |
| 1667 | } |
| 1668 | |
| 1669 | mutex_lock(&master->lock); |
| 1670 | svc_i3c_master_enqueue_xfer(master, xfer); |
| 1671 | if (!wait_for_completion_timeout(x: &xfer->comp, timeout: msecs_to_jiffies(m: 1000))) |
| 1672 | svc_i3c_master_dequeue_xfer(master, xfer); |
| 1673 | mutex_unlock(lock: &master->lock); |
| 1674 | |
| 1675 | ret = xfer->ret; |
| 1676 | svc_i3c_master_free_xfer(xfer); |
| 1677 | |
| 1678 | return ret; |
| 1679 | } |
| 1680 | |
| 1681 | static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev, |
| 1682 | struct i2c_msg *xfers, |
| 1683 | int nxfers) |
| 1684 | { |
| 1685 | struct i3c_master_controller *m = i2c_dev_get_master(dev); |
| 1686 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1687 | struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); |
| 1688 | struct svc_i3c_xfer *xfer; |
| 1689 | int ret, i; |
| 1690 | |
| 1691 | xfer = svc_i3c_master_alloc_xfer(master, ncmds: nxfers); |
| 1692 | if (!xfer) |
| 1693 | return -ENOMEM; |
| 1694 | |
| 1695 | xfer->type = SVC_I3C_MCTRL_TYPE_I2C; |
| 1696 | |
| 1697 | for (i = 0; i < nxfers; i++) { |
| 1698 | struct svc_i3c_cmd *cmd = &xfer->cmds[i]; |
| 1699 | |
| 1700 | cmd->addr = master->addrs[data->index]; |
| 1701 | cmd->rnw = xfers[i].flags & I2C_M_RD; |
| 1702 | cmd->in = cmd->rnw ? xfers[i].buf : NULL; |
| 1703 | cmd->out = cmd->rnw ? NULL : xfers[i].buf; |
| 1704 | cmd->len = xfers[i].len; |
| 1705 | cmd->actual_len = cmd->rnw ? xfers[i].len : 0; |
| 1706 | cmd->continued = (i + 1 < nxfers); |
| 1707 | } |
| 1708 | |
| 1709 | mutex_lock(&master->lock); |
| 1710 | svc_i3c_master_enqueue_xfer(master, xfer); |
| 1711 | if (!wait_for_completion_timeout(x: &xfer->comp, timeout: msecs_to_jiffies(m: 1000))) |
| 1712 | svc_i3c_master_dequeue_xfer(master, xfer); |
| 1713 | mutex_unlock(lock: &master->lock); |
| 1714 | |
| 1715 | ret = xfer->ret; |
| 1716 | svc_i3c_master_free_xfer(xfer); |
| 1717 | |
| 1718 | return ret; |
| 1719 | } |
| 1720 | |
| 1721 | static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev, |
| 1722 | const struct i3c_ibi_setup *req) |
| 1723 | { |
| 1724 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 1725 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1726 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 1727 | unsigned long flags; |
| 1728 | unsigned int i; |
| 1729 | |
| 1730 | if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) { |
| 1731 | dev_err(master->dev, "IBI max payload %d should be < %d\n" , |
| 1732 | dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE); |
| 1733 | return -ERANGE; |
| 1734 | } |
| 1735 | |
| 1736 | data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req); |
| 1737 | if (IS_ERR(ptr: data->ibi_pool)) |
| 1738 | return PTR_ERR(ptr: data->ibi_pool); |
| 1739 | |
| 1740 | spin_lock_irqsave(&master->ibi.lock, flags); |
| 1741 | for (i = 0; i < master->ibi.num_slots; i++) { |
| 1742 | if (!master->ibi.slots[i]) { |
| 1743 | data->ibi = i; |
| 1744 | master->ibi.slots[i] = dev; |
| 1745 | break; |
| 1746 | } |
| 1747 | } |
| 1748 | spin_unlock_irqrestore(lock: &master->ibi.lock, flags); |
| 1749 | |
| 1750 | if (i < master->ibi.num_slots) |
| 1751 | return 0; |
| 1752 | |
| 1753 | i3c_generic_ibi_free_pool(pool: data->ibi_pool); |
| 1754 | data->ibi_pool = NULL; |
| 1755 | |
| 1756 | return -ENOSPC; |
| 1757 | } |
| 1758 | |
| 1759 | static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev) |
| 1760 | { |
| 1761 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 1762 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1763 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 1764 | unsigned long flags; |
| 1765 | |
| 1766 | spin_lock_irqsave(&master->ibi.lock, flags); |
| 1767 | master->ibi.slots[data->ibi] = NULL; |
| 1768 | data->ibi = -1; |
| 1769 | spin_unlock_irqrestore(lock: &master->ibi.lock, flags); |
| 1770 | |
| 1771 | i3c_generic_ibi_free_pool(pool: data->ibi_pool); |
| 1772 | } |
| 1773 | |
| 1774 | static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev) |
| 1775 | { |
| 1776 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 1777 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1778 | int ret; |
| 1779 | |
| 1780 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 1781 | if (ret < 0) { |
| 1782 | dev_err(master->dev, "<%s> Cannot get runtime PM.\n" , __func__); |
| 1783 | return ret; |
| 1784 | } |
| 1785 | |
| 1786 | master->enabled_events++; |
| 1787 | svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); |
| 1788 | |
| 1789 | return i3c_master_enec_locked(master: m, addr: dev->info.dyn_addr, I3C_CCC_EVENT_SIR); |
| 1790 | } |
| 1791 | |
| 1792 | static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev) |
| 1793 | { |
| 1794 | struct i3c_master_controller *m = i3c_dev_get_master(dev); |
| 1795 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1796 | int ret; |
| 1797 | |
| 1798 | master->enabled_events--; |
| 1799 | if (!master->enabled_events) |
| 1800 | svc_i3c_master_disable_interrupts(master); |
| 1801 | |
| 1802 | ret = i3c_master_disec_locked(master: m, addr: dev->info.dyn_addr, I3C_CCC_EVENT_SIR); |
| 1803 | |
| 1804 | pm_runtime_mark_last_busy(dev: master->dev); |
| 1805 | pm_runtime_put_autosuspend(dev: master->dev); |
| 1806 | |
| 1807 | return ret; |
| 1808 | } |
| 1809 | |
| 1810 | static int svc_i3c_master_enable_hotjoin(struct i3c_master_controller *m) |
| 1811 | { |
| 1812 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1813 | int ret; |
| 1814 | |
| 1815 | ret = pm_runtime_resume_and_get(dev: master->dev); |
| 1816 | if (ret < 0) { |
| 1817 | dev_err(master->dev, "<%s> Cannot get runtime PM.\n" , __func__); |
| 1818 | return ret; |
| 1819 | } |
| 1820 | |
| 1821 | master->enabled_events |= SVC_I3C_EVENT_HOTJOIN; |
| 1822 | |
| 1823 | svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); |
| 1824 | |
| 1825 | return 0; |
| 1826 | } |
| 1827 | |
| 1828 | static int svc_i3c_master_disable_hotjoin(struct i3c_master_controller *m) |
| 1829 | { |
| 1830 | struct svc_i3c_master *master = to_svc_i3c_master(master: m); |
| 1831 | |
| 1832 | master->enabled_events &= ~SVC_I3C_EVENT_HOTJOIN; |
| 1833 | |
| 1834 | if (!master->enabled_events) |
| 1835 | svc_i3c_master_disable_interrupts(master); |
| 1836 | |
| 1837 | pm_runtime_mark_last_busy(dev: master->dev); |
| 1838 | pm_runtime_put_autosuspend(dev: master->dev); |
| 1839 | |
| 1840 | return 0; |
| 1841 | } |
| 1842 | |
| 1843 | static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev, |
| 1844 | struct i3c_ibi_slot *slot) |
| 1845 | { |
| 1846 | struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); |
| 1847 | |
| 1848 | i3c_generic_ibi_recycle_slot(pool: data->ibi_pool, slot); |
| 1849 | } |
| 1850 | |
| 1851 | static const struct i3c_master_controller_ops svc_i3c_master_ops = { |
| 1852 | .bus_init = svc_i3c_master_bus_init, |
| 1853 | .bus_cleanup = svc_i3c_master_bus_cleanup, |
| 1854 | .attach_i3c_dev = svc_i3c_master_attach_i3c_dev, |
| 1855 | .detach_i3c_dev = svc_i3c_master_detach_i3c_dev, |
| 1856 | .reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev, |
| 1857 | .attach_i2c_dev = svc_i3c_master_attach_i2c_dev, |
| 1858 | .detach_i2c_dev = svc_i3c_master_detach_i2c_dev, |
| 1859 | .do_daa = svc_i3c_master_do_daa, |
| 1860 | .supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd, |
| 1861 | .send_ccc_cmd = svc_i3c_master_send_ccc_cmd, |
| 1862 | .priv_xfers = svc_i3c_master_priv_xfers, |
| 1863 | .i2c_xfers = svc_i3c_master_i2c_xfers, |
| 1864 | .request_ibi = svc_i3c_master_request_ibi, |
| 1865 | .free_ibi = svc_i3c_master_free_ibi, |
| 1866 | .recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot, |
| 1867 | .enable_ibi = svc_i3c_master_enable_ibi, |
| 1868 | .disable_ibi = svc_i3c_master_disable_ibi, |
| 1869 | .enable_hotjoin = svc_i3c_master_enable_hotjoin, |
| 1870 | .disable_hotjoin = svc_i3c_master_disable_hotjoin, |
| 1871 | .set_speed = svc_i3c_master_set_speed, |
| 1872 | }; |
| 1873 | |
| 1874 | static int svc_i3c_master_probe(struct platform_device *pdev) |
| 1875 | { |
| 1876 | struct device *dev = &pdev->dev; |
| 1877 | struct svc_i3c_master *master; |
| 1878 | int ret, i; |
| 1879 | |
| 1880 | master = devm_kzalloc(dev, size: sizeof(*master), GFP_KERNEL); |
| 1881 | if (!master) |
| 1882 | return -ENOMEM; |
| 1883 | |
| 1884 | master->drvdata = of_device_get_match_data(dev); |
| 1885 | if (!master->drvdata) |
| 1886 | return -EINVAL; |
| 1887 | |
| 1888 | master->regs = devm_platform_ioremap_resource(pdev, index: 0); |
| 1889 | if (IS_ERR(ptr: master->regs)) |
| 1890 | return PTR_ERR(ptr: master->regs); |
| 1891 | |
| 1892 | master->num_clks = devm_clk_bulk_get_all(dev, clks: &master->clks); |
| 1893 | if (master->num_clks < 0) |
| 1894 | return dev_err_probe(dev, err: -EINVAL, fmt: "can't get I3C clocks\n" ); |
| 1895 | |
| 1896 | for (i = 0; i < master->num_clks; i++) { |
| 1897 | if (!strcmp(master->clks[i].id, "fast_clk" )) |
| 1898 | break; |
| 1899 | } |
| 1900 | |
| 1901 | if (i == master->num_clks) |
| 1902 | return dev_err_probe(dev, err: -EINVAL, |
| 1903 | fmt: "can't get I3C peripheral clock\n" ); |
| 1904 | |
| 1905 | master->fclk = master->clks[i].clk; |
| 1906 | if (IS_ERR(ptr: master->fclk)) |
| 1907 | return PTR_ERR(ptr: master->fclk); |
| 1908 | |
| 1909 | master->irq = platform_get_irq(pdev, 0); |
| 1910 | if (master->irq < 0) |
| 1911 | return master->irq; |
| 1912 | |
| 1913 | master->dev = dev; |
| 1914 | ret = clk_bulk_prepare_enable(num_clks: master->num_clks, clks: master->clks); |
| 1915 | if (ret) |
| 1916 | return dev_err_probe(dev, err: ret, fmt: "can't enable I3C clocks\n" ); |
| 1917 | |
| 1918 | INIT_WORK(&master->hj_work, svc_i3c_master_hj_work); |
| 1919 | mutex_init(&master->lock); |
| 1920 | |
| 1921 | ret = devm_request_irq(dev, irq: master->irq, handler: svc_i3c_master_irq_handler, |
| 1922 | IRQF_NO_SUSPEND, devname: "svc-i3c-irq" , dev_id: master); |
| 1923 | if (ret) |
| 1924 | goto err_disable_clks; |
| 1925 | |
| 1926 | master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0); |
| 1927 | |
| 1928 | spin_lock_init(&master->xferqueue.lock); |
| 1929 | INIT_LIST_HEAD(list: &master->xferqueue.list); |
| 1930 | |
| 1931 | spin_lock_init(&master->ibi.lock); |
| 1932 | master->ibi.num_slots = SVC_I3C_MAX_DEVS; |
| 1933 | master->ibi.slots = devm_kcalloc(dev: &pdev->dev, n: master->ibi.num_slots, |
| 1934 | size: sizeof(*master->ibi.slots), |
| 1935 | GFP_KERNEL); |
| 1936 | if (!master->ibi.slots) { |
| 1937 | ret = -ENOMEM; |
| 1938 | goto err_disable_clks; |
| 1939 | } |
| 1940 | |
| 1941 | platform_set_drvdata(pdev, data: master); |
| 1942 | |
| 1943 | pm_runtime_set_autosuspend_delay(dev: &pdev->dev, SVC_I3C_PM_TIMEOUT_MS); |
| 1944 | pm_runtime_use_autosuspend(dev: &pdev->dev); |
| 1945 | pm_runtime_get_noresume(dev: &pdev->dev); |
| 1946 | pm_runtime_set_active(dev: &pdev->dev); |
| 1947 | pm_runtime_enable(dev: &pdev->dev); |
| 1948 | |
| 1949 | svc_i3c_master_reset(master); |
| 1950 | |
| 1951 | /* Register the master */ |
| 1952 | ret = i3c_master_register(master: &master->base, parent: &pdev->dev, |
| 1953 | ops: &svc_i3c_master_ops, secondary: false); |
| 1954 | if (ret) |
| 1955 | goto rpm_disable; |
| 1956 | |
| 1957 | pm_runtime_mark_last_busy(dev: &pdev->dev); |
| 1958 | pm_runtime_put_autosuspend(dev: &pdev->dev); |
| 1959 | |
| 1960 | return 0; |
| 1961 | |
| 1962 | rpm_disable: |
| 1963 | pm_runtime_dont_use_autosuspend(dev: &pdev->dev); |
| 1964 | pm_runtime_put_noidle(dev: &pdev->dev); |
| 1965 | pm_runtime_disable(dev: &pdev->dev); |
| 1966 | pm_runtime_set_suspended(dev: &pdev->dev); |
| 1967 | |
| 1968 | err_disable_clks: |
| 1969 | clk_bulk_disable_unprepare(num_clks: master->num_clks, clks: master->clks); |
| 1970 | |
| 1971 | return ret; |
| 1972 | } |
| 1973 | |
| 1974 | static void svc_i3c_master_remove(struct platform_device *pdev) |
| 1975 | { |
| 1976 | struct svc_i3c_master *master = platform_get_drvdata(pdev); |
| 1977 | |
| 1978 | cancel_work_sync(work: &master->hj_work); |
| 1979 | i3c_master_unregister(master: &master->base); |
| 1980 | |
| 1981 | pm_runtime_dont_use_autosuspend(dev: &pdev->dev); |
| 1982 | pm_runtime_disable(dev: &pdev->dev); |
| 1983 | } |
| 1984 | |
| 1985 | static void svc_i3c_save_regs(struct svc_i3c_master *master) |
| 1986 | { |
| 1987 | master->saved_regs.mconfig = readl(addr: master->regs + SVC_I3C_MCONFIG); |
| 1988 | master->saved_regs.mdynaddr = readl(addr: master->regs + SVC_I3C_MDYNADDR); |
| 1989 | } |
| 1990 | |
| 1991 | static void svc_i3c_restore_regs(struct svc_i3c_master *master) |
| 1992 | { |
| 1993 | if (readl(addr: master->regs + SVC_I3C_MDYNADDR) != |
| 1994 | master->saved_regs.mdynaddr) { |
| 1995 | writel(val: master->saved_regs.mconfig, |
| 1996 | addr: master->regs + SVC_I3C_MCONFIG); |
| 1997 | writel(val: master->saved_regs.mdynaddr, |
| 1998 | addr: master->regs + SVC_I3C_MDYNADDR); |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev) |
| 2003 | { |
| 2004 | struct svc_i3c_master *master = dev_get_drvdata(dev); |
| 2005 | |
| 2006 | svc_i3c_save_regs(master); |
| 2007 | clk_bulk_disable_unprepare(num_clks: master->num_clks, clks: master->clks); |
| 2008 | pinctrl_pm_select_sleep_state(dev); |
| 2009 | |
| 2010 | return 0; |
| 2011 | } |
| 2012 | |
| 2013 | static int __maybe_unused svc_i3c_runtime_resume(struct device *dev) |
| 2014 | { |
| 2015 | struct svc_i3c_master *master = dev_get_drvdata(dev); |
| 2016 | int ret; |
| 2017 | |
| 2018 | pinctrl_pm_select_default_state(dev); |
| 2019 | ret = clk_bulk_prepare_enable(num_clks: master->num_clks, clks: master->clks); |
| 2020 | if (ret) |
| 2021 | return ret; |
| 2022 | |
| 2023 | svc_i3c_restore_regs(master); |
| 2024 | |
| 2025 | return 0; |
| 2026 | } |
| 2027 | |
| 2028 | static const struct dev_pm_ops svc_i3c_pm_ops = { |
| 2029 | SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, |
| 2030 | pm_runtime_force_resume) |
| 2031 | SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend, |
| 2032 | svc_i3c_runtime_resume, NULL) |
| 2033 | }; |
| 2034 | |
| 2035 | static const struct svc_i3c_drvdata npcm845_drvdata = { |
| 2036 | .quirks = SVC_I3C_QUIRK_FIFO_EMPTY | |
| 2037 | SVC_I3C_QUIRK_FALSE_SLVSTART | |
| 2038 | SVC_I3C_QUIRK_DAA_CORRUPT, |
| 2039 | }; |
| 2040 | |
| 2041 | static const struct svc_i3c_drvdata svc_default_drvdata = {}; |
| 2042 | |
| 2043 | static const struct of_device_id svc_i3c_master_of_match_tbl[] = { |
| 2044 | { .compatible = "nuvoton,npcm845-i3c" , .data = &npcm845_drvdata }, |
| 2045 | { .compatible = "silvaco,i3c-master-v1" , .data = &svc_default_drvdata }, |
| 2046 | { /* sentinel */ }, |
| 2047 | }; |
| 2048 | MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl); |
| 2049 | |
| 2050 | static struct platform_driver svc_i3c_master = { |
| 2051 | .probe = svc_i3c_master_probe, |
| 2052 | .remove = svc_i3c_master_remove, |
| 2053 | .driver = { |
| 2054 | .name = "silvaco-i3c-master" , |
| 2055 | .of_match_table = svc_i3c_master_of_match_tbl, |
| 2056 | .pm = &svc_i3c_pm_ops, |
| 2057 | }, |
| 2058 | }; |
| 2059 | module_platform_driver(svc_i3c_master); |
| 2060 | |
| 2061 | MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>" ); |
| 2062 | MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>" ); |
| 2063 | MODULE_DESCRIPTION("Silvaco dual-role I3C master driver" ); |
| 2064 | MODULE_LICENSE("GPL v2" ); |
| 2065 | |