1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file is the ADC part of the STM32 DFSDM driver
4 *
5 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 * Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
7 */
8
9#include <linux/dmaengine.h>
10#include <linux/dma-mapping.h>
11#include <linux/iio/adc/stm32-dfsdm-adc.h>
12#include <linux/iio/backend.h>
13#include <linux/iio/buffer.h>
14#include <linux/iio/hw-consumer.h>
15#include <linux/iio/sysfs.h>
16#include <linux/iio/timer/stm32-lptim-trigger.h>
17#include <linux/iio/timer/stm32-timer-trigger.h>
18#include <linux/iio/trigger.h>
19#include <linux/iio/trigger_consumer.h>
20#include <linux/iio/triggered_buffer.h>
21#include <linux/interrupt.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_platform.h>
25#include <linux/platform_device.h>
26#include <linux/regmap.h>
27#include <linux/slab.h>
28
29#include "stm32-dfsdm.h"
30
31#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
32
33/* Conversion timeout */
34#define DFSDM_TIMEOUT_US 100000
35#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
36
37/* Oversampling attribute default */
38#define DFSDM_DEFAULT_OVERSAMPLING 100
39
40/* Oversampling max values */
41#define DFSDM_MAX_INT_OVERSAMPLING 256
42#define DFSDM_MAX_FL_OVERSAMPLING 1024
43
44/* Limit filter output resolution to 31 bits. (i.e. sample range is +/-2^30) */
45#define DFSDM_DATA_MAX BIT(30)
46/*
47 * Data are output as two's complement data in a 24 bit field.
48 * Data from filters are in the range +/-2^(n-1)
49 * 2^(n-1) maximum positive value cannot be coded in 2's complement n bits
50 * An extra bit is required to avoid wrap-around of the binary code for 2^(n-1)
51 * So, the resolution of samples from filter is actually limited to 23 bits
52 */
53#define DFSDM_DATA_RES 24
54
55/* Filter configuration */
56#define DFSDM_CR1_CFG_MASK (DFSDM_CR1_RCH_MASK | DFSDM_CR1_RCONT_MASK | \
57 DFSDM_CR1_RSYNC_MASK | DFSDM_CR1_JSYNC_MASK | \
58 DFSDM_CR1_JSCAN_MASK)
59
60enum sd_converter_type {
61 DFSDM_AUDIO,
62 DFSDM_IIO,
63};
64
65struct stm32_dfsdm_dev_data {
66 int type;
67 int (*init)(struct device *dev, struct iio_dev *indio_dev);
68 unsigned int num_channels;
69 const struct regmap_config *regmap_cfg;
70};
71
72struct stm32_dfsdm_adc {
73 struct stm32_dfsdm *dfsdm;
74 const struct stm32_dfsdm_dev_data *dev_data;
75 unsigned int fl_id;
76 unsigned int nconv;
77 unsigned long smask;
78
79 /* ADC specific */
80 unsigned int oversamp;
81 struct iio_hw_consumer *hwc;
82 struct iio_backend **backend;
83 struct completion completion;
84 u32 *buffer;
85
86 /* Audio specific */
87 unsigned int spi_freq; /* SPI bus clock frequency */
88 unsigned int sample_freq; /* Sample frequency after filter decimation */
89 int (*cb)(const void *data, size_t size, void *cb_priv);
90 void *cb_priv;
91
92 /* DMA */
93 u8 *rx_buf;
94 unsigned int bufi; /* Buffer current position */
95 unsigned int buf_sz; /* Buffer size */
96 struct dma_chan *dma_chan;
97 dma_addr_t dma_buf;
98};
99
100struct stm32_dfsdm_str2field {
101 const char *name;
102 unsigned int val;
103};
104
105/* DFSDM channel serial interface type */
106static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
107 { "SPI_R", 0 }, /* SPI with data on rising edge */
108 { "SPI_F", 1 }, /* SPI with data on falling edge */
109 { "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
110 { "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
111 { }
112};
113
114/* DFSDM channel clock source */
115static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
116 /* External SPI clock (CLKIN x) */
117 { "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
118 /* Internal SPI clock (CLKOUT) */
119 { "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
120 /* Internal SPI clock divided by 2 (falling edge) */
121 { "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
122 /* Internal SPI clock divided by 2 (falling edge) */
123 { "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
124 { }
125};
126
127static int stm32_dfsdm_str2val(const char *str,
128 const struct stm32_dfsdm_str2field *list)
129{
130 const struct stm32_dfsdm_str2field *p = list;
131
132 for (p = list; p && p->name; p++)
133 if (!strcmp(p->name, str))
134 return p->val;
135
136 return -EINVAL;
137}
138
139/**
140 * struct stm32_dfsdm_trig_info - DFSDM trigger info
141 * @name: name of the trigger, corresponding to its source
142 * @jextsel: trigger signal selection
143 */
144struct stm32_dfsdm_trig_info {
145 const char *name;
146 unsigned int jextsel;
147};
148
149/* hardware injected trigger enable, edge selection */
150enum stm32_dfsdm_jexten {
151 STM32_DFSDM_JEXTEN_DISABLED,
152 STM32_DFSDM_JEXTEN_RISING_EDGE,
153 STM32_DFSDM_JEXTEN_FALLING_EDGE,
154 STM32_DFSDM_EXTEN_BOTH_EDGES,
155};
156
157static const struct stm32_dfsdm_trig_info stm32_dfsdm_trigs[] = {
158 { TIM1_TRGO, 0 },
159 { TIM1_TRGO2, 1 },
160 { TIM8_TRGO, 2 },
161 { TIM8_TRGO2, 3 },
162 { TIM3_TRGO, 4 },
163 { TIM4_TRGO, 5 },
164 { TIM16_OC1, 6 },
165 { TIM6_TRGO, 7 },
166 { TIM7_TRGO, 8 },
167 { LPTIM1_OUT, 26 },
168 { LPTIM2_OUT, 27 },
169 { LPTIM3_OUT, 28 },
170 { }
171};
172
173static int stm32_dfsdm_get_jextsel(struct iio_dev *indio_dev,
174 struct iio_trigger *trig)
175{
176 int i;
177
178 /* lookup triggers registered by stm32 timer trigger driver */
179 for (i = 0; stm32_dfsdm_trigs[i].name; i++) {
180 /**
181 * Checking both stm32 timer trigger type and trig name
182 * should be safe against arbitrary trigger names.
183 */
184 if ((is_stm32_timer_trigger(trig) ||
185 is_stm32_lptim_trigger(trig)) &&
186 !strcmp(stm32_dfsdm_trigs[i].name, trig->name)) {
187 return stm32_dfsdm_trigs[i].jextsel;
188 }
189 }
190
191 return -EINVAL;
192}
193
194static int stm32_dfsdm_compute_osrs(struct stm32_dfsdm_filter *fl,
195 unsigned int fast, unsigned int oversamp)
196{
197 unsigned int i, d, fosr, iosr;
198 u64 res, max;
199 int bits, shift;
200 unsigned int m = 1; /* multiplication factor */
201 unsigned int p = fl->ford; /* filter order (ford) */
202 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fast];
203
204 pr_debug("Requested oversampling: %d\n", oversamp);
205 /*
206 * This function tries to compute filter oversampling and integrator
207 * oversampling, base on oversampling ratio requested by user.
208 *
209 * Decimation d depends on the filter order and the oversampling ratios.
210 * ford: filter order
211 * fosr: filter over sampling ratio
212 * iosr: integrator over sampling ratio
213 */
214 if (fl->ford == DFSDM_FASTSINC_ORDER) {
215 m = 2;
216 p = 2;
217 }
218
219 /*
220 * Look for filter and integrator oversampling ratios which allows
221 * to maximize data output resolution.
222 */
223 for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
224 for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
225 if (fast)
226 d = fosr * iosr;
227 else if (fl->ford == DFSDM_FASTSINC_ORDER)
228 d = fosr * (iosr + 3) + 2;
229 else
230 d = fosr * (iosr - 1 + p) + p;
231
232 if (d > oversamp)
233 break;
234 else if (d != oversamp)
235 continue;
236 /*
237 * Check resolution (limited to signed 32 bits)
238 * res <= 2^31
239 * Sincx filters:
240 * res = m * fosr^p x iosr (with m=1, p=ford)
241 * FastSinc filter
242 * res = m * fosr^p x iosr (with m=2, p=2)
243 */
244 res = fosr;
245 for (i = p - 1; i > 0; i--) {
246 res = res * (u64)fosr;
247 if (res > DFSDM_DATA_MAX)
248 break;
249 }
250 if (res > DFSDM_DATA_MAX)
251 continue;
252
253 res = res * (u64)m * (u64)iosr;
254 if (res > DFSDM_DATA_MAX)
255 continue;
256
257 if (res >= flo->res) {
258 flo->res = res;
259 flo->fosr = fosr;
260 flo->iosr = iosr;
261
262 bits = fls(x: flo->res);
263 /* 8 LBSs in data register contain chan info */
264 max = flo->res << 8;
265
266 /* if resolution is not a power of two */
267 if (flo->res > BIT(bits - 1))
268 bits++;
269 else
270 max--;
271
272 shift = DFSDM_DATA_RES - bits;
273 /*
274 * Compute right/left shift
275 * Right shift is performed by hardware
276 * when transferring samples to data register.
277 * Left shift is done by software on buffer
278 */
279 if (shift > 0) {
280 /* Resolution is lower than 24 bits */
281 flo->rshift = 0;
282 flo->lshift = shift;
283 } else {
284 /*
285 * If resolution is 24 bits or more,
286 * max positive value may be ambiguous
287 * (equal to max negative value as sign
288 * bit is dropped).
289 * Reduce resolution to 23 bits (rshift)
290 * to keep the sign on bit 23 and treat
291 * saturation before rescaling on 24
292 * bits (lshift).
293 */
294 flo->rshift = 1 - shift;
295 flo->lshift = 1;
296 max >>= flo->rshift;
297 }
298 flo->max = (s32)max;
299 flo->bits = bits;
300
301 pr_debug("fast %d, fosr %d, iosr %d, res 0x%llx/%d bits, rshift %d, lshift %d\n",
302 fast, flo->fosr, flo->iosr,
303 flo->res, bits, flo->rshift,
304 flo->lshift);
305 }
306 }
307 }
308
309 if (!flo->res)
310 return -EINVAL;
311
312 return 0;
313}
314
315static int stm32_dfsdm_compute_all_osrs(struct iio_dev *indio_dev,
316 unsigned int oversamp)
317{
318 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
319 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
320 int ret0, ret1;
321
322 memset(&fl->flo[0], 0, sizeof(fl->flo[0]));
323 memset(&fl->flo[1], 0, sizeof(fl->flo[1]));
324
325 ret0 = stm32_dfsdm_compute_osrs(fl, fast: 0, oversamp);
326 ret1 = stm32_dfsdm_compute_osrs(fl, fast: 1, oversamp);
327 if (ret0 < 0 && ret1 < 0) {
328 dev_err(&indio_dev->dev,
329 "Filter parameters not found: errors %d/%d\n",
330 ret0, ret1);
331 return -EINVAL;
332 }
333
334 return 0;
335}
336
337static int stm32_dfsdm_start_channel(struct iio_dev *indio_dev)
338{
339 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
340 struct regmap *regmap = adc->dfsdm->regmap;
341 const struct iio_chan_spec *chan;
342 unsigned int bit;
343 int ret;
344
345 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
346 chan = indio_dev->channels + bit;
347 ret = regmap_update_bits(map: regmap, DFSDM_CHCFGR1(chan->channel),
348 DFSDM_CHCFGR1_CHEN_MASK,
349 DFSDM_CHCFGR1_CHEN(1));
350 if (ret < 0)
351 return ret;
352 }
353
354 return 0;
355}
356
357static void stm32_dfsdm_stop_channel(struct iio_dev *indio_dev)
358{
359 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
360 struct regmap *regmap = adc->dfsdm->regmap;
361 const struct iio_chan_spec *chan;
362 unsigned int bit;
363
364 for_each_set_bit(bit, &adc->smask, sizeof(adc->smask) * BITS_PER_BYTE) {
365 chan = indio_dev->channels + bit;
366 regmap_update_bits(map: regmap, DFSDM_CHCFGR1(chan->channel),
367 DFSDM_CHCFGR1_CHEN_MASK,
368 DFSDM_CHCFGR1_CHEN(0));
369 }
370}
371
372static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
373 struct stm32_dfsdm_channel *ch)
374{
375 unsigned int id = ch->id;
376 struct regmap *regmap = dfsdm->regmap;
377 int ret;
378
379 ret = regmap_update_bits(map: regmap, DFSDM_CHCFGR1(id),
380 DFSDM_CHCFGR1_SITP_MASK,
381 DFSDM_CHCFGR1_SITP(ch->type));
382 if (ret < 0)
383 return ret;
384 ret = regmap_update_bits(map: regmap, DFSDM_CHCFGR1(id),
385 DFSDM_CHCFGR1_SPICKSEL_MASK,
386 DFSDM_CHCFGR1_SPICKSEL(ch->src));
387 if (ret < 0)
388 return ret;
389 return regmap_update_bits(map: regmap, DFSDM_CHCFGR1(id),
390 DFSDM_CHCFGR1_CHINSEL_MASK,
391 DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
392}
393
394static int stm32_dfsdm_start_filter(struct stm32_dfsdm_adc *adc,
395 unsigned int fl_id,
396 struct iio_trigger *trig)
397{
398 struct stm32_dfsdm *dfsdm = adc->dfsdm;
399 int ret;
400
401 /* Enable filter */
402 ret = regmap_update_bits(map: dfsdm->regmap, DFSDM_CR1(fl_id),
403 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
404 if (ret < 0)
405 return ret;
406
407 /* Nothing more to do for injected (scan mode/triggered) conversions */
408 if (adc->nconv > 1 || trig)
409 return 0;
410
411 /* Software start (single or continuous) regular conversion */
412 return regmap_update_bits(map: dfsdm->regmap, DFSDM_CR1(fl_id),
413 DFSDM_CR1_RSWSTART_MASK,
414 DFSDM_CR1_RSWSTART(1));
415}
416
417static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm,
418 unsigned int fl_id)
419{
420 /* Disable conversion */
421 regmap_update_bits(map: dfsdm->regmap, DFSDM_CR1(fl_id),
422 DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
423}
424
425static int stm32_dfsdm_filter_set_trig(struct iio_dev *indio_dev,
426 unsigned int fl_id,
427 struct iio_trigger *trig)
428{
429 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
430 struct regmap *regmap = adc->dfsdm->regmap;
431 u32 jextsel = 0, jexten = STM32_DFSDM_JEXTEN_DISABLED;
432 int ret;
433
434 if (trig) {
435 ret = stm32_dfsdm_get_jextsel(indio_dev, trig);
436 if (ret < 0)
437 return ret;
438
439 /* set trigger source and polarity (default to rising edge) */
440 jextsel = ret;
441 jexten = STM32_DFSDM_JEXTEN_RISING_EDGE;
442 }
443
444 ret = regmap_update_bits(map: regmap, DFSDM_CR1(fl_id),
445 DFSDM_CR1_JEXTSEL_MASK | DFSDM_CR1_JEXTEN_MASK,
446 DFSDM_CR1_JEXTSEL(jextsel) |
447 DFSDM_CR1_JEXTEN(jexten));
448 if (ret < 0)
449 return ret;
450
451 return 0;
452}
453
454static int stm32_dfsdm_channels_configure(struct iio_dev *indio_dev,
455 unsigned int fl_id,
456 struct iio_trigger *trig)
457{
458 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
459 struct regmap *regmap = adc->dfsdm->regmap;
460 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
461 struct stm32_dfsdm_filter_osr *flo = &fl->flo[0];
462 const struct iio_chan_spec *chan;
463 unsigned int bit;
464 int ret;
465
466 fl->fast = 0;
467
468 /*
469 * In continuous mode, use fast mode configuration,
470 * if it provides a better resolution.
471 */
472 if (adc->nconv == 1 && !trig && iio_buffer_enabled(indio_dev)) {
473 if (fl->flo[1].res >= fl->flo[0].res) {
474 fl->fast = 1;
475 flo = &fl->flo[1];
476 }
477 }
478
479 if (!flo->res)
480 return -EINVAL;
481
482 dev_dbg(&indio_dev->dev, "Samples actual resolution: %d bits",
483 min(flo->bits, (u32)DFSDM_DATA_RES - 1));
484
485 for_each_set_bit(bit, &adc->smask,
486 sizeof(adc->smask) * BITS_PER_BYTE) {
487 chan = indio_dev->channels + bit;
488
489 ret = regmap_update_bits(map: regmap,
490 DFSDM_CHCFGR2(chan->channel),
491 DFSDM_CHCFGR2_DTRBS_MASK,
492 DFSDM_CHCFGR2_DTRBS(flo->rshift));
493 if (ret)
494 return ret;
495 }
496
497 return 0;
498}
499
500static int stm32_dfsdm_filter_configure(struct iio_dev *indio_dev,
501 unsigned int fl_id,
502 struct iio_trigger *trig)
503{
504 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
505 struct regmap *regmap = adc->dfsdm->regmap;
506 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[fl_id];
507 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
508 u32 cr1;
509 const struct iio_chan_spec *chan;
510 unsigned int bit, jchg = 0;
511 int ret;
512
513 /* Average integrator oversampling */
514 ret = regmap_update_bits(map: regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
515 DFSDM_FCR_IOSR(flo->iosr - 1));
516 if (ret)
517 return ret;
518
519 /* Filter order and Oversampling */
520 ret = regmap_update_bits(map: regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
521 DFSDM_FCR_FOSR(flo->fosr - 1));
522 if (ret)
523 return ret;
524
525 ret = regmap_update_bits(map: regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
526 DFSDM_FCR_FORD(fl->ford));
527 if (ret)
528 return ret;
529
530 ret = stm32_dfsdm_filter_set_trig(indio_dev, fl_id, trig);
531 if (ret)
532 return ret;
533
534 ret = regmap_update_bits(map: regmap, DFSDM_CR1(fl_id),
535 DFSDM_CR1_FAST_MASK,
536 DFSDM_CR1_FAST(fl->fast));
537 if (ret)
538 return ret;
539
540 /*
541 * DFSDM modes configuration W.R.T audio/iio type modes
542 * ----------------------------------------------------------------
543 * Modes | regular | regular | injected | injected |
544 * | | continuous | | + scan |
545 * --------------|---------|--------------|----------|------------|
546 * single conv | x | | | |
547 * (1 chan) | | | | |
548 * --------------|---------|--------------|----------|------------|
549 * 1 Audio chan | | sample freq | | |
550 * | | or sync_mode | | |
551 * --------------|---------|--------------|----------|------------|
552 * 1 IIO chan | | sample freq | trigger | |
553 * | | or sync_mode | | |
554 * --------------|---------|--------------|----------|------------|
555 * 2+ IIO chans | | | | trigger or |
556 * | | | | sync_mode |
557 * ----------------------------------------------------------------
558 */
559 if (adc->nconv == 1 && !trig) {
560 bit = __ffs(adc->smask);
561 chan = indio_dev->channels + bit;
562
563 /* Use regular conversion for single channel without trigger */
564 cr1 = DFSDM_CR1_RCH(chan->channel);
565
566 /* Continuous conversions triggered by SPI clk in buffer mode */
567 if (iio_buffer_enabled(indio_dev))
568 cr1 |= DFSDM_CR1_RCONT(1);
569
570 cr1 |= DFSDM_CR1_RSYNC(fl->sync_mode);
571 } else {
572 /* Use injected conversion for multiple channels */
573 for_each_set_bit(bit, &adc->smask,
574 sizeof(adc->smask) * BITS_PER_BYTE) {
575 chan = indio_dev->channels + bit;
576 jchg |= BIT(chan->channel);
577 }
578 ret = regmap_write(map: regmap, DFSDM_JCHGR(fl_id), val: jchg);
579 if (ret < 0)
580 return ret;
581
582 /* Use scan mode for multiple channels */
583 cr1 = DFSDM_CR1_JSCAN((adc->nconv > 1) ? 1 : 0);
584
585 /*
586 * Continuous conversions not supported in injected mode,
587 * either use:
588 * - conversions in sync with filter 0
589 * - triggered conversions
590 */
591 if (!fl->sync_mode && !trig)
592 return -EINVAL;
593 cr1 |= DFSDM_CR1_JSYNC(fl->sync_mode);
594 }
595
596 return regmap_update_bits(map: regmap, DFSDM_CR1(fl_id), DFSDM_CR1_CFG_MASK,
597 val: cr1);
598}
599
600static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
601 struct iio_dev *indio_dev,
602 struct iio_chan_spec *ch)
603{
604 struct stm32_dfsdm_channel *df_ch;
605 const char *of_str;
606 int chan_idx = ch->scan_index;
607 int ret, val;
608
609 ret = of_property_read_u32_index(np: indio_dev->dev.of_node,
610 propname: "st,adc-channels", index: chan_idx,
611 out_value: &ch->channel);
612 if (ret < 0) {
613 dev_err(&indio_dev->dev,
614 " Error parsing 'st,adc-channels' for idx %d\n",
615 chan_idx);
616 return ret;
617 }
618 if (ch->channel >= dfsdm->num_chs) {
619 dev_err(&indio_dev->dev,
620 " Error bad channel number %d (max = %d)\n",
621 ch->channel, dfsdm->num_chs);
622 return -EINVAL;
623 }
624
625 ret = of_property_read_string_index(np: indio_dev->dev.of_node,
626 propname: "st,adc-channel-names", index: chan_idx,
627 output: &ch->datasheet_name);
628 if (ret < 0) {
629 dev_err(&indio_dev->dev,
630 " Error parsing 'st,adc-channel-names' for idx %d\n",
631 chan_idx);
632 return ret;
633 }
634
635 df_ch = &dfsdm->ch_list[ch->channel];
636 df_ch->id = ch->channel;
637
638 ret = of_property_read_string_index(np: indio_dev->dev.of_node,
639 propname: "st,adc-channel-types", index: chan_idx,
640 output: &of_str);
641 if (!ret) {
642 val = stm32_dfsdm_str2val(str: of_str, list: stm32_dfsdm_chan_type);
643 if (val < 0)
644 return val;
645 } else {
646 val = 0;
647 }
648 df_ch->type = val;
649
650 ret = of_property_read_string_index(np: indio_dev->dev.of_node,
651 propname: "st,adc-channel-clk-src", index: chan_idx,
652 output: &of_str);
653 if (!ret) {
654 val = stm32_dfsdm_str2val(str: of_str, list: stm32_dfsdm_chan_src);
655 if (val < 0)
656 return val;
657 } else {
658 val = 0;
659 }
660 df_ch->src = val;
661
662 ret = of_property_read_u32_index(np: indio_dev->dev.of_node,
663 propname: "st,adc-alt-channel", index: chan_idx,
664 out_value: &df_ch->alt_si);
665 if (ret < 0)
666 df_ch->alt_si = 0;
667
668 return 0;
669}
670
671static int stm32_dfsdm_generic_channel_parse_of(struct stm32_dfsdm *dfsdm,
672 struct iio_dev *indio_dev,
673 struct iio_chan_spec *ch,
674 struct fwnode_handle *node)
675{
676 struct stm32_dfsdm_channel *df_ch;
677 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
678 struct iio_backend *backend;
679 const char *of_str;
680 int ret, val;
681
682 ret = fwnode_property_read_u32(fwnode: node, propname: "reg", val: &ch->channel);
683 if (ret < 0) {
684 dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
685 return ret;
686 }
687
688 if (ch->channel >= dfsdm->num_chs) {
689 dev_err(&indio_dev->dev, " Error bad channel number %d (max = %d)\n",
690 ch->channel, dfsdm->num_chs);
691 return -EINVAL;
692 }
693
694 if (fwnode_property_present(fwnode: node, propname: "label")) {
695 /* label is optional */
696 ret = fwnode_property_read_string(fwnode: node, propname: "label", val: &ch->datasheet_name);
697 if (ret < 0) {
698 dev_err(&indio_dev->dev,
699 " Error parsing 'label' for idx %d\n", ch->channel);
700 return ret;
701 }
702 }
703
704 df_ch = &dfsdm->ch_list[ch->channel];
705 df_ch->id = ch->channel;
706
707 ret = fwnode_property_read_string(fwnode: node, propname: "st,adc-channel-type", val: &of_str);
708 if (!ret) {
709 val = stm32_dfsdm_str2val(str: of_str, list: stm32_dfsdm_chan_type);
710 if (val < 0)
711 return val;
712 } else {
713 val = 0;
714 }
715 df_ch->type = val;
716
717 ret = fwnode_property_read_string(fwnode: node, propname: "st,adc-channel-clk-src", val: &of_str);
718 if (!ret) {
719 val = stm32_dfsdm_str2val(str: of_str, list: stm32_dfsdm_chan_src);
720 if (val < 0)
721 return val;
722 } else {
723 val = 0;
724 }
725 df_ch->src = val;
726
727 ret = fwnode_property_read_u32(fwnode: node, propname: "st,adc-alt-channel", val: &df_ch->alt_si);
728 if (ret != -EINVAL)
729 df_ch->alt_si = 0;
730
731 if (adc->dev_data->type == DFSDM_IIO) {
732 backend = devm_iio_backend_fwnode_get(dev: &indio_dev->dev, NULL, fwnode: node);
733 if (IS_ERR(ptr: backend))
734 return dev_err_probe(dev: &indio_dev->dev, err: PTR_ERR(ptr: backend),
735 fmt: "Failed to get backend\n");
736 adc->backend[ch->scan_index] = backend;
737 }
738
739 return 0;
740}
741
742static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
743 uintptr_t priv,
744 const struct iio_chan_spec *chan,
745 char *buf)
746{
747 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
748
749 return snprintf(buf, PAGE_SIZE, fmt: "%d\n", adc->spi_freq);
750}
751
752static int dfsdm_adc_set_samp_freq(struct iio_dev *indio_dev,
753 unsigned int sample_freq,
754 unsigned int spi_freq)
755{
756 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
757 unsigned int oversamp;
758 int ret;
759
760 oversamp = DIV_ROUND_CLOSEST(spi_freq, sample_freq);
761 if (spi_freq % sample_freq)
762 dev_dbg(&indio_dev->dev,
763 "Rate not accurate. requested (%u), actual (%u)\n",
764 sample_freq, spi_freq / oversamp);
765
766 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp);
767 if (ret < 0)
768 return ret;
769
770 adc->sample_freq = spi_freq / oversamp;
771 adc->oversamp = oversamp;
772
773 return 0;
774}
775
776static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
777 uintptr_t priv,
778 const struct iio_chan_spec *chan,
779 const char *buf, size_t len)
780{
781 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
782 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
783 unsigned int sample_freq = adc->sample_freq;
784 unsigned int spi_freq;
785 int ret;
786
787 dev_err(&indio_dev->dev, "enter %s\n", __func__);
788 /* If DFSDM is master on SPI, SPI freq can not be updated */
789 if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
790 return -EPERM;
791
792 ret = kstrtoint(s: buf, base: 0, res: &spi_freq);
793 if (ret)
794 return ret;
795
796 if (!spi_freq)
797 return -EINVAL;
798
799 if (sample_freq) {
800 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq, spi_freq);
801 if (ret < 0)
802 return ret;
803 }
804 adc->spi_freq = spi_freq;
805
806 return len;
807}
808
809static int stm32_dfsdm_start_conv(struct iio_dev *indio_dev,
810 struct iio_trigger *trig)
811{
812 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
813 struct regmap *regmap = adc->dfsdm->regmap;
814 int ret;
815
816 ret = stm32_dfsdm_channels_configure(indio_dev, fl_id: adc->fl_id, trig);
817 if (ret < 0)
818 return ret;
819
820 ret = stm32_dfsdm_start_channel(indio_dev);
821 if (ret < 0)
822 return ret;
823
824 ret = stm32_dfsdm_filter_configure(indio_dev, fl_id: adc->fl_id, trig);
825 if (ret < 0)
826 goto stop_channels;
827
828 ret = stm32_dfsdm_start_filter(adc, fl_id: adc->fl_id, trig);
829 if (ret < 0)
830 goto filter_unconfigure;
831
832 return 0;
833
834filter_unconfigure:
835 regmap_clear_bits(map: regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
836stop_channels:
837 stm32_dfsdm_stop_channel(indio_dev);
838
839 return ret;
840}
841
842static void stm32_dfsdm_stop_conv(struct iio_dev *indio_dev)
843{
844 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
845 struct regmap *regmap = adc->dfsdm->regmap;
846
847 stm32_dfsdm_stop_filter(dfsdm: adc->dfsdm, fl_id: adc->fl_id);
848
849 regmap_clear_bits(map: regmap, DFSDM_CR1(adc->fl_id), DFSDM_CR1_CFG_MASK);
850
851 stm32_dfsdm_stop_channel(indio_dev);
852}
853
854static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
855 unsigned int val)
856{
857 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
858 unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
859 unsigned int rx_buf_sz = DFSDM_DMA_BUFFER_SIZE;
860
861 /*
862 * DMA cyclic transfers are used, buffer is split into two periods.
863 * There should be :
864 * - always one buffer (period) DMA is working on
865 * - one buffer (period) driver pushed to ASoC side.
866 */
867 watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
868 adc->buf_sz = min(rx_buf_sz, watermark * 2 * adc->nconv);
869
870 return 0;
871}
872
873static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
874{
875 struct dma_tx_state state;
876 enum dma_status status;
877
878 status = dmaengine_tx_status(chan: adc->dma_chan,
879 cookie: adc->dma_chan->cookie,
880 state: &state);
881 if (status == DMA_IN_PROGRESS) {
882 /* Residue is size in bytes from end of buffer */
883 unsigned int i = adc->buf_sz - state.residue;
884 unsigned int size;
885
886 /* Return available bytes */
887 if (i >= adc->bufi)
888 size = i - adc->bufi;
889 else
890 size = adc->buf_sz + i - adc->bufi;
891
892 return size;
893 }
894
895 return 0;
896}
897
898static inline void stm32_dfsdm_process_data(struct stm32_dfsdm_adc *adc,
899 s32 *buffer)
900{
901 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
902 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
903 unsigned int i = adc->nconv;
904 s32 *ptr = buffer;
905
906 while (i--) {
907 /* Mask 8 LSB that contains the channel ID */
908 *ptr &= 0xFFFFFF00;
909 /* Convert 2^(n-1) sample to 2^(n-1)-1 to avoid wrap-around */
910 if (*ptr > flo->max)
911 *ptr -= 1;
912 /*
913 * Samples from filter are retrieved with 23 bits resolution
914 * or less. Shift left to align MSB on 24 bits.
915 */
916 *ptr <<= flo->lshift;
917
918 ptr++;
919 }
920}
921
922static void stm32_dfsdm_dma_buffer_done(void *data)
923{
924 struct iio_dev *indio_dev = data;
925 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
926 int available = stm32_dfsdm_adc_dma_residue(adc);
927 size_t old_pos;
928
929 /*
930 * FIXME: In Kernel interface does not support cyclic DMA buffer,and
931 * offers only an interface to push data samples per samples.
932 * For this reason IIO buffer interface is not used and interface is
933 * bypassed using a private callback registered by ASoC.
934 * This should be a temporary solution waiting a cyclic DMA engine
935 * support in IIO.
936 */
937
938 dev_dbg(&indio_dev->dev, "pos = %d, available = %d\n",
939 adc->bufi, available);
940 old_pos = adc->bufi;
941
942 while (available >= indio_dev->scan_bytes) {
943 s32 *buffer = (s32 *)&adc->rx_buf[adc->bufi];
944
945 stm32_dfsdm_process_data(adc, buffer);
946
947 available -= indio_dev->scan_bytes;
948 adc->bufi += indio_dev->scan_bytes;
949 if (adc->bufi >= adc->buf_sz) {
950 if (adc->cb)
951 adc->cb(&adc->rx_buf[old_pos],
952 adc->buf_sz - old_pos, adc->cb_priv);
953 adc->bufi = 0;
954 old_pos = 0;
955 }
956 /*
957 * In DMA mode the trigger services of IIO are not used
958 * (e.g. no call to iio_trigger_poll).
959 * Calling irq handler associated to the hardware trigger is not
960 * relevant as the conversions have already been done. Data
961 * transfers are performed directly in DMA callback instead.
962 * This implementation avoids to call trigger irq handler that
963 * may sleep, in an atomic context (DMA irq handler context).
964 */
965 if (adc->dev_data->type == DFSDM_IIO)
966 iio_push_to_buffers(indio_dev, data: buffer);
967 }
968 if (adc->cb)
969 adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
970 adc->cb_priv);
971}
972
973static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
974{
975 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
976 /*
977 * The DFSDM supports half-word transfers. However, for 16 bits record,
978 * 4 bytes buswidth is kept, to avoid losing samples LSBs when left
979 * shift is required.
980 */
981 struct dma_slave_config config = {
982 .src_addr = (dma_addr_t)adc->dfsdm->phys_base,
983 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
984 };
985 struct dma_async_tx_descriptor *desc;
986 dma_cookie_t cookie;
987 int ret;
988
989 if (!adc->dma_chan)
990 return -EINVAL;
991
992 dev_dbg(&indio_dev->dev, "size=%d watermark=%d\n",
993 adc->buf_sz, adc->buf_sz / 2);
994
995 if (adc->nconv == 1 && !indio_dev->trig)
996 config.src_addr += DFSDM_RDATAR(adc->fl_id);
997 else
998 config.src_addr += DFSDM_JDATAR(adc->fl_id);
999 ret = dmaengine_slave_config(chan: adc->dma_chan, config: &config);
1000 if (ret)
1001 return ret;
1002
1003 /* Prepare a DMA cyclic transaction */
1004 desc = dmaengine_prep_dma_cyclic(chan: adc->dma_chan,
1005 buf_addr: adc->dma_buf,
1006 buf_len: adc->buf_sz, period_len: adc->buf_sz / 2,
1007 dir: DMA_DEV_TO_MEM,
1008 flags: DMA_PREP_INTERRUPT);
1009 if (!desc)
1010 return -EBUSY;
1011
1012 desc->callback = stm32_dfsdm_dma_buffer_done;
1013 desc->callback_param = indio_dev;
1014
1015 cookie = dmaengine_submit(desc);
1016 ret = dma_submit_error(cookie);
1017 if (ret)
1018 goto err_stop_dma;
1019
1020 /* Issue pending DMA requests */
1021 dma_async_issue_pending(chan: adc->dma_chan);
1022
1023 if (adc->nconv == 1 && !indio_dev->trig) {
1024 /* Enable regular DMA transfer*/
1025 ret = regmap_set_bits(map: adc->dfsdm->regmap,
1026 DFSDM_CR1(adc->fl_id),
1027 DFSDM_CR1_RDMAEN_MASK);
1028 } else {
1029 /* Enable injected DMA transfer*/
1030 ret = regmap_set_bits(map: adc->dfsdm->regmap,
1031 DFSDM_CR1(adc->fl_id),
1032 DFSDM_CR1_JDMAEN_MASK);
1033 }
1034
1035 if (ret < 0)
1036 goto err_stop_dma;
1037
1038 return 0;
1039
1040err_stop_dma:
1041 dmaengine_terminate_all(chan: adc->dma_chan);
1042
1043 return ret;
1044}
1045
1046static void stm32_dfsdm_adc_dma_stop(struct iio_dev *indio_dev)
1047{
1048 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1049
1050 if (!adc->dma_chan)
1051 return;
1052
1053 regmap_clear_bits(map: adc->dfsdm->regmap, DFSDM_CR1(adc->fl_id),
1054 DFSDM_CR1_RDMAEN_MASK | DFSDM_CR1_JDMAEN_MASK);
1055 dmaengine_terminate_all(chan: adc->dma_chan);
1056}
1057
1058static int stm32_dfsdm_update_scan_mode(struct iio_dev *indio_dev,
1059 const unsigned long *scan_mask)
1060{
1061 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1062
1063 adc->nconv = bitmap_weight(src: scan_mask, nbits: iio_get_masklength(indio_dev));
1064 adc->smask = *scan_mask;
1065
1066 dev_dbg(&indio_dev->dev, "nconv=%d mask=%lx\n", adc->nconv, *scan_mask);
1067
1068 return 0;
1069}
1070
1071static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
1072{
1073 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1074 int i = 0;
1075 int ret;
1076
1077 /* Reset adc buffer index */
1078 adc->bufi = 0;
1079
1080 if (adc->hwc) {
1081 ret = iio_hw_consumer_enable(hwc: adc->hwc);
1082 if (ret < 0)
1083 return ret;
1084 }
1085
1086 if (adc->backend) {
1087 while (adc->backend[i]) {
1088 ret = iio_backend_enable(back: adc->backend[i]);
1089 if (ret < 0)
1090 return ret;
1091 i++;
1092 }
1093 }
1094
1095 ret = stm32_dfsdm_start_dfsdm(dfsdm: adc->dfsdm);
1096 if (ret < 0)
1097 goto err_stop_hwc;
1098
1099 ret = stm32_dfsdm_adc_dma_start(indio_dev);
1100 if (ret) {
1101 dev_err(&indio_dev->dev, "Can't start DMA\n");
1102 goto stop_dfsdm;
1103 }
1104
1105 ret = stm32_dfsdm_start_conv(indio_dev, trig: indio_dev->trig);
1106 if (ret) {
1107 dev_err(&indio_dev->dev, "Can't start conversion\n");
1108 goto err_stop_dma;
1109 }
1110
1111 return 0;
1112
1113err_stop_dma:
1114 stm32_dfsdm_adc_dma_stop(indio_dev);
1115stop_dfsdm:
1116 stm32_dfsdm_stop_dfsdm(dfsdm: adc->dfsdm);
1117err_stop_hwc:
1118 if (adc->hwc)
1119 iio_hw_consumer_disable(hwc: adc->hwc);
1120
1121 return ret;
1122}
1123
1124static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
1125{
1126 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1127 int i = 0;
1128
1129 stm32_dfsdm_stop_conv(indio_dev);
1130
1131 stm32_dfsdm_adc_dma_stop(indio_dev);
1132
1133 stm32_dfsdm_stop_dfsdm(dfsdm: adc->dfsdm);
1134
1135 if (adc->backend) {
1136 while (adc->backend[i]) {
1137 iio_backend_disable(back: adc->backend[i]);
1138 i++;
1139 }
1140 }
1141
1142 if (adc->hwc)
1143 iio_hw_consumer_disable(hwc: adc->hwc);
1144
1145 return 0;
1146}
1147
1148static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
1149 .postenable = &stm32_dfsdm_postenable,
1150 .predisable = &stm32_dfsdm_predisable,
1151};
1152
1153/**
1154 * stm32_dfsdm_get_buff_cb() - register a callback that will be called when
1155 * DMA transfer period is achieved.
1156 *
1157 * @iio_dev: Handle to IIO device.
1158 * @cb: Pointer to callback function:
1159 * - data: pointer to data buffer
1160 * - size: size in byte of the data buffer
1161 * - private: pointer to consumer private structure.
1162 * @private: Pointer to consumer private structure.
1163 */
1164int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
1165 int (*cb)(const void *data, size_t size,
1166 void *private),
1167 void *private)
1168{
1169 struct stm32_dfsdm_adc *adc;
1170
1171 if (!iio_dev)
1172 return -EINVAL;
1173 adc = iio_priv(indio_dev: iio_dev);
1174
1175 adc->cb = cb;
1176 adc->cb_priv = private;
1177
1178 return 0;
1179}
1180EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
1181
1182/**
1183 * stm32_dfsdm_release_buff_cb - unregister buffer callback
1184 *
1185 * @iio_dev: Handle to IIO device.
1186 */
1187int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
1188{
1189 struct stm32_dfsdm_adc *adc;
1190
1191 if (!iio_dev)
1192 return -EINVAL;
1193 adc = iio_priv(indio_dev: iio_dev);
1194
1195 adc->cb = NULL;
1196 adc->cb_priv = NULL;
1197
1198 return 0;
1199}
1200EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
1201
1202static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
1203 const struct iio_chan_spec *chan, int *res)
1204{
1205 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1206 long time_left;
1207 int ret;
1208
1209 reinit_completion(x: &adc->completion);
1210
1211 adc->buffer = res;
1212
1213 ret = stm32_dfsdm_start_dfsdm(dfsdm: adc->dfsdm);
1214 if (ret < 0)
1215 return ret;
1216
1217 ret = regmap_update_bits(map: adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1218 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
1219 if (ret < 0)
1220 goto stop_dfsdm;
1221
1222 adc->nconv = 1;
1223 adc->smask = BIT(chan->scan_index);
1224 ret = stm32_dfsdm_start_conv(indio_dev, NULL);
1225 if (ret < 0) {
1226 regmap_update_bits(map: adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1227 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1228 goto stop_dfsdm;
1229 }
1230
1231 time_left = wait_for_completion_interruptible_timeout(x: &adc->completion,
1232 DFSDM_TIMEOUT);
1233
1234 /* Mask IRQ for regular conversion achievement*/
1235 regmap_update_bits(map: adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
1236 DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
1237
1238 if (time_left == 0)
1239 ret = -ETIMEDOUT;
1240 else if (time_left < 0)
1241 ret = time_left;
1242 else
1243 ret = IIO_VAL_INT;
1244
1245 stm32_dfsdm_stop_conv(indio_dev);
1246
1247 stm32_dfsdm_process_data(adc, buffer: res);
1248
1249stop_dfsdm:
1250 stm32_dfsdm_stop_dfsdm(dfsdm: adc->dfsdm);
1251
1252 return ret;
1253}
1254
1255static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
1256 struct iio_chan_spec const *chan,
1257 int val, int val2, long mask)
1258{
1259 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1260 struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[chan->channel];
1261 unsigned int spi_freq;
1262 int ret = -EINVAL;
1263
1264 switch (ch->src) {
1265 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL:
1266 spi_freq = adc->dfsdm->spi_master_freq;
1267 break;
1268 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING:
1269 case DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING:
1270 spi_freq = adc->dfsdm->spi_master_freq / 2;
1271 break;
1272 default:
1273 spi_freq = adc->spi_freq;
1274 }
1275
1276 switch (mask) {
1277 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1278 if (!iio_device_claim_direct(indio_dev))
1279 return -EBUSY;
1280
1281 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp: val);
1282 if (!ret) {
1283 dev_dbg(&indio_dev->dev,
1284 "Sampling rate changed from (%u) to (%u)\n",
1285 adc->sample_freq, spi_freq / val);
1286 adc->oversamp = val;
1287 adc->sample_freq = spi_freq / val;
1288 }
1289 iio_device_release_direct(indio_dev);
1290 return ret;
1291
1292 case IIO_CHAN_INFO_SAMP_FREQ:
1293 if (!val)
1294 return -EINVAL;
1295
1296 if (!iio_device_claim_direct(indio_dev))
1297 return -EBUSY;
1298
1299 ret = dfsdm_adc_set_samp_freq(indio_dev, sample_freq: val, spi_freq);
1300 iio_device_release_direct(indio_dev);
1301 return ret;
1302 }
1303
1304 return -EINVAL;
1305}
1306
1307static int __stm32_dfsdm_read_info_raw(struct iio_dev *indio_dev,
1308 struct iio_chan_spec const *chan,
1309 int *val)
1310{
1311 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1312 int ret = 0;
1313
1314 if (adc->hwc)
1315 ret = iio_hw_consumer_enable(hwc: adc->hwc);
1316 if (adc->backend)
1317 ret = iio_backend_enable(back: adc->backend[chan->scan_index]);
1318 if (ret < 0) {
1319 dev_err(&indio_dev->dev,
1320 "%s: IIO enable failed (channel %d)\n",
1321 __func__, chan->channel);
1322 return ret;
1323 }
1324 ret = stm32_dfsdm_single_conv(indio_dev, chan, res: val);
1325 if (adc->hwc)
1326 iio_hw_consumer_disable(hwc: adc->hwc);
1327 if (adc->backend)
1328 iio_backend_disable(back: adc->backend[chan->scan_index]);
1329 if (ret < 0) {
1330 dev_err(&indio_dev->dev,
1331 "%s: Conversion failed (channel %d)\n",
1332 __func__, chan->channel);
1333 return ret;
1334 }
1335
1336 return 0;
1337}
1338
1339static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
1340 struct iio_chan_spec const *chan, int *val,
1341 int *val2, long mask)
1342{
1343 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1344
1345 struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
1346 struct stm32_dfsdm_filter_osr *flo = &fl->flo[fl->fast];
1347 u32 max = flo->max << (flo->lshift - chan->scan_type.shift);
1348 int idx = chan->scan_index;
1349 int ret;
1350
1351 if (flo->lshift < chan->scan_type.shift)
1352 max = flo->max >> (chan->scan_type.shift - flo->lshift);
1353
1354 switch (mask) {
1355 case IIO_CHAN_INFO_RAW:
1356 if (!iio_device_claim_direct(indio_dev))
1357 return -EBUSY;
1358
1359 ret = __stm32_dfsdm_read_info_raw(indio_dev, chan, val);
1360 iio_device_release_direct(indio_dev);
1361 if (ret)
1362 return ret;
1363 return IIO_VAL_INT;
1364
1365 case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
1366 *val = adc->oversamp;
1367
1368 return IIO_VAL_INT;
1369
1370 case IIO_CHAN_INFO_SAMP_FREQ:
1371 *val = adc->sample_freq;
1372
1373 return IIO_VAL_INT;
1374
1375 case IIO_CHAN_INFO_SCALE:
1376 /*
1377 * Scale is expressed in mV.
1378 * When fast mode is disabled, actual resolution may be lower
1379 * than 2^n, where n = realbits - 1.
1380 * This leads to underestimating the input voltage.
1381 * To compensate this deviation, the voltage reference can be
1382 * corrected with a factor = realbits resolution / actual max
1383 */
1384 if (adc->backend) {
1385 ret = iio_backend_read_scale(back: adc->backend[idx], chan, val, NULL);
1386 if (ret < 0)
1387 return ret;
1388
1389 *val = div_u64(dividend: (u64)*val * (u64)BIT(DFSDM_DATA_RES - 1), divisor: max);
1390 *val2 = chan->scan_type.realbits;
1391 if (chan->differential)
1392 *val *= 2;
1393 }
1394 return IIO_VAL_FRACTIONAL_LOG2;
1395
1396 case IIO_CHAN_INFO_OFFSET:
1397 /*
1398 * DFSDM output data are in the range [-2^n, 2^n],
1399 * with n = realbits - 1.
1400 * - Differential modulator:
1401 * Offset correspond to SD modulator offset.
1402 * - Single ended modulator:
1403 * Input is in [0V, Vref] range,
1404 * where 0V corresponds to -2^n, and Vref to 2^n.
1405 * Add 2^n to offset. (i.e. middle of input range)
1406 * offset = offset(sd) * vref / res(sd) * max / vref.
1407 */
1408 if (adc->backend) {
1409 ret = iio_backend_read_offset(back: adc->backend[idx], chan, val, NULL);
1410 if (ret < 0)
1411 return ret;
1412
1413 *val = div_u64(dividend: (u64)max * *val, BIT(*val2 - 1));
1414 if (!chan->differential)
1415 *val += max;
1416 }
1417 return IIO_VAL_INT;
1418 }
1419
1420 return -EINVAL;
1421}
1422
1423static int stm32_dfsdm_validate_trigger(struct iio_dev *indio_dev,
1424 struct iio_trigger *trig)
1425{
1426 return stm32_dfsdm_get_jextsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1427}
1428
1429static const struct iio_info stm32_dfsdm_info_audio = {
1430 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1431 .read_raw = stm32_dfsdm_read_raw,
1432 .write_raw = stm32_dfsdm_write_raw,
1433 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1434};
1435
1436static const struct iio_info stm32_dfsdm_info_adc = {
1437 .hwfifo_set_watermark = stm32_dfsdm_set_watermark,
1438 .read_raw = stm32_dfsdm_read_raw,
1439 .write_raw = stm32_dfsdm_write_raw,
1440 .update_scan_mode = stm32_dfsdm_update_scan_mode,
1441 .validate_trigger = stm32_dfsdm_validate_trigger,
1442};
1443
1444static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
1445{
1446 struct iio_dev *indio_dev = arg;
1447 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1448 struct regmap *regmap = adc->dfsdm->regmap;
1449 unsigned int status, int_en;
1450
1451 regmap_read(map: regmap, DFSDM_ISR(adc->fl_id), val: &status);
1452 regmap_read(map: regmap, DFSDM_CR2(adc->fl_id), val: &int_en);
1453
1454 if (status & DFSDM_ISR_REOCF_MASK) {
1455 /* Read the data register clean the IRQ status */
1456 regmap_read(map: regmap, DFSDM_RDATAR(adc->fl_id), val: adc->buffer);
1457 complete(&adc->completion);
1458 }
1459
1460 if (status & DFSDM_ISR_ROVRF_MASK) {
1461 if (int_en & DFSDM_CR2_ROVRIE_MASK)
1462 dev_warn(&indio_dev->dev, "Overrun detected\n");
1463 regmap_set_bits(map: regmap, DFSDM_ICR(adc->fl_id),
1464 DFSDM_ICR_CLRROVRF_MASK);
1465 }
1466
1467 return IRQ_HANDLED;
1468}
1469
1470/*
1471 * Define external info for SPI Frequency and audio sampling rate that can be
1472 * configured by ASoC driver through consumer.h API
1473 */
1474static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
1475 /* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
1476 {
1477 .name = "spi_clk_freq",
1478 .shared = IIO_SHARED_BY_TYPE,
1479 .read = dfsdm_adc_audio_get_spiclk,
1480 .write = dfsdm_adc_audio_set_spiclk,
1481 },
1482 { }
1483};
1484
1485static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
1486{
1487 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1488
1489 if (adc->dma_chan) {
1490 dma_free_coherent(dev: adc->dma_chan->device->dev,
1491 DFSDM_DMA_BUFFER_SIZE,
1492 cpu_addr: adc->rx_buf, dma_handle: adc->dma_buf);
1493 dma_release_channel(chan: adc->dma_chan);
1494 }
1495}
1496
1497static int stm32_dfsdm_dma_request(struct device *dev,
1498 struct iio_dev *indio_dev)
1499{
1500 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1501
1502 adc->dma_chan = dma_request_chan(dev, name: "rx");
1503 if (IS_ERR(ptr: adc->dma_chan)) {
1504 int ret = PTR_ERR(ptr: adc->dma_chan);
1505
1506 adc->dma_chan = NULL;
1507 return ret;
1508 }
1509
1510 adc->rx_buf = dma_alloc_coherent(dev: adc->dma_chan->device->dev,
1511 DFSDM_DMA_BUFFER_SIZE,
1512 dma_handle: &adc->dma_buf, GFP_KERNEL);
1513 if (!adc->rx_buf) {
1514 dma_release_channel(chan: adc->dma_chan);
1515 return -ENOMEM;
1516 }
1517
1518 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1519 indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
1520
1521 return 0;
1522}
1523
1524static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev, struct iio_chan_spec *ch,
1525 struct fwnode_handle *child)
1526{
1527 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1528 int ret;
1529
1530 if (child)
1531 ret = stm32_dfsdm_generic_channel_parse_of(dfsdm: adc->dfsdm, indio_dev, ch, node: child);
1532 else /* Legacy binding */
1533 ret = stm32_dfsdm_channel_parse_of(dfsdm: adc->dfsdm, indio_dev, ch);
1534 if (ret < 0)
1535 return dev_err_probe(dev: &indio_dev->dev, err: ret, fmt: "Failed to parse channel\n");
1536
1537 ch->type = IIO_VOLTAGE;
1538 ch->indexed = 1;
1539
1540 /*
1541 * IIO_CHAN_INFO_RAW: used to compute regular conversion
1542 * IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
1543 */
1544 if (child) {
1545 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
1546 BIT(IIO_CHAN_INFO_SCALE) |
1547 BIT(IIO_CHAN_INFO_OFFSET);
1548 } else {
1549 /* Legacy. Scaling not supported */
1550 ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1551 }
1552
1553 ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) |
1554 BIT(IIO_CHAN_INFO_SAMP_FREQ);
1555
1556 if (adc->dev_data->type == DFSDM_AUDIO) {
1557 ch->ext_info = dfsdm_adc_audio_ext_info;
1558 ch->scan_index = 0;
1559 } else {
1560 ch->scan_type.shift = 8;
1561 }
1562 ch->scan_type.sign = 's';
1563 ch->scan_type.realbits = 24;
1564 ch->scan_type.storagebits = 32;
1565
1566 return stm32_dfsdm_chan_configure(dfsdm: adc->dfsdm,
1567 ch: &adc->dfsdm->ch_list[ch->channel]);
1568}
1569
1570static int stm32_dfsdm_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1571{
1572 int num_ch = indio_dev->num_channels;
1573 int chan_idx = 0;
1574 int ret;
1575
1576 for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
1577 channels[chan_idx].scan_index = chan_idx;
1578 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch: &channels[chan_idx], NULL);
1579 if (ret < 0)
1580 return dev_err_probe(dev: &indio_dev->dev, err: ret, fmt: "Channels init failed\n");
1581 }
1582
1583 return 0;
1584}
1585
1586static int stm32_dfsdm_generic_chan_init(struct iio_dev *indio_dev, struct iio_chan_spec *channels)
1587{
1588 int chan_idx = 0, ret;
1589
1590 device_for_each_child_node_scoped(&indio_dev->dev, child) {
1591 /* Skip DAI node in DFSDM audio nodes */
1592 if (fwnode_property_present(fwnode: child, propname: "compatible"))
1593 continue;
1594
1595 channels[chan_idx].scan_index = chan_idx;
1596 ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch: &channels[chan_idx], child);
1597 if (ret < 0)
1598 return dev_err_probe(dev: &indio_dev->dev, err: ret, fmt: "Channels init failed\n");
1599
1600 chan_idx++;
1601 }
1602
1603 return chan_idx;
1604}
1605
1606static int stm32_dfsdm_audio_init(struct device *dev, struct iio_dev *indio_dev)
1607{
1608 struct iio_chan_spec *ch;
1609 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1610 struct stm32_dfsdm_channel *d_ch;
1611 bool legacy = false;
1612 int num_ch, ret;
1613
1614 /* If st,adc-channels is defined legacy binding is used. Else assume generic binding. */
1615 num_ch = of_property_count_u32_elems(np: indio_dev->dev.of_node, propname: "st,adc-channels");
1616 if (num_ch == 1)
1617 legacy = true;
1618
1619 ch = devm_kzalloc(dev: &indio_dev->dev, size: sizeof(*ch), GFP_KERNEL);
1620 if (!ch)
1621 return -ENOMEM;
1622
1623 indio_dev->num_channels = 1;
1624 indio_dev->channels = ch;
1625
1626 if (legacy)
1627 ret = stm32_dfsdm_chan_init(indio_dev, channels: ch);
1628 else
1629 ret = stm32_dfsdm_generic_chan_init(indio_dev, channels: ch);
1630
1631 if (ret < 0) {
1632 dev_err(&indio_dev->dev, "Channels init failed\n");
1633 return ret;
1634 }
1635 ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
1636
1637 d_ch = &adc->dfsdm->ch_list[ch->channel];
1638 if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
1639 adc->spi_freq = adc->dfsdm->spi_master_freq;
1640
1641 return stm32_dfsdm_dma_request(dev, indio_dev);
1642}
1643
1644static int stm32_dfsdm_adc_init(struct device *dev, struct iio_dev *indio_dev)
1645{
1646 struct iio_chan_spec *ch;
1647 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1648 int num_ch, ret;
1649 bool legacy = false;
1650
1651 adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
1652 ret = stm32_dfsdm_compute_all_osrs(indio_dev, oversamp: adc->oversamp);
1653 if (ret < 0)
1654 return ret;
1655
1656 num_ch = device_get_child_node_count(dev: &indio_dev->dev);
1657 if (!num_ch) {
1658 /* No channels nodes found. Assume legacy binding */
1659 num_ch = of_property_count_u32_elems(np: indio_dev->dev.of_node, propname: "st,adc-channels");
1660 if (num_ch < 0) {
1661 dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
1662 return num_ch;
1663 }
1664
1665 legacy = true;
1666 }
1667
1668 if (num_ch > adc->dfsdm->num_chs) {
1669 dev_err(&indio_dev->dev, "Number of channel [%d] exceeds [%d]\n",
1670 num_ch, adc->dfsdm->num_chs);
1671 return -EINVAL;
1672 }
1673 indio_dev->num_channels = num_ch;
1674
1675 if (legacy) {
1676 /* Bind to SD modulator IIO device. */
1677 adc->hwc = devm_iio_hw_consumer_alloc(dev: &indio_dev->dev);
1678 if (IS_ERR(ptr: adc->hwc))
1679 return dev_err_probe(dev: &indio_dev->dev, err: -EPROBE_DEFER,
1680 fmt: "waiting for SD modulator\n");
1681 } else {
1682 /* Generic binding. SD modulator IIO device not used. Use SD modulator backend. */
1683 adc->hwc = NULL;
1684
1685 adc->backend = devm_kcalloc(dev: &indio_dev->dev, n: num_ch, size: sizeof(*adc->backend),
1686 GFP_KERNEL);
1687 if (!adc->backend)
1688 return -ENOMEM;
1689 }
1690
1691 ch = devm_kcalloc(dev: &indio_dev->dev, n: num_ch, size: sizeof(*ch), GFP_KERNEL);
1692 if (!ch)
1693 return -ENOMEM;
1694 indio_dev->channels = ch;
1695
1696 if (legacy)
1697 ret = stm32_dfsdm_chan_init(indio_dev, channels: ch);
1698 else
1699 ret = stm32_dfsdm_generic_chan_init(indio_dev, channels: ch);
1700 if (ret < 0)
1701 return ret;
1702
1703 init_completion(x: &adc->completion);
1704
1705 /* Optionally request DMA */
1706 ret = stm32_dfsdm_dma_request(dev, indio_dev);
1707 if (ret) {
1708 if (ret != -ENODEV)
1709 return dev_err_probe(dev, err: ret,
1710 fmt: "DMA channel request failed with\n");
1711
1712 dev_dbg(dev, "No DMA support\n");
1713 return 0;
1714 }
1715
1716 ret = iio_triggered_buffer_setup(indio_dev,
1717 &iio_pollfunc_store_time, NULL,
1718 &stm32_dfsdm_buffer_setup_ops);
1719 if (ret) {
1720 stm32_dfsdm_dma_release(indio_dev);
1721 dev_err(&indio_dev->dev, "buffer setup failed\n");
1722 return ret;
1723 }
1724
1725 /* lptimer/timer hardware triggers */
1726 indio_dev->modes |= INDIO_HARDWARE_TRIGGERED;
1727
1728 return 0;
1729}
1730
1731static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
1732 .type = DFSDM_IIO,
1733 .init = stm32_dfsdm_adc_init,
1734};
1735
1736static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
1737 .type = DFSDM_AUDIO,
1738 .init = stm32_dfsdm_audio_init,
1739};
1740
1741static const struct of_device_id stm32_dfsdm_adc_match[] = {
1742 {
1743 .compatible = "st,stm32-dfsdm-adc",
1744 .data = &stm32h7_dfsdm_adc_data,
1745 },
1746 {
1747 .compatible = "st,stm32-dfsdm-dmic",
1748 .data = &stm32h7_dfsdm_audio_data,
1749 },
1750 { }
1751};
1752MODULE_DEVICE_TABLE(of, stm32_dfsdm_adc_match);
1753
1754static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
1755{
1756 struct device *dev = &pdev->dev;
1757 struct stm32_dfsdm_adc *adc;
1758 struct device_node *np = dev->of_node;
1759 const struct stm32_dfsdm_dev_data *dev_data;
1760 struct iio_dev *iio;
1761 char *name;
1762 int ret, irq, val;
1763
1764 dev_data = of_device_get_match_data(dev);
1765 iio = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*adc));
1766 if (!iio) {
1767 dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
1768 return -ENOMEM;
1769 }
1770
1771 adc = iio_priv(indio_dev: iio);
1772 adc->dfsdm = dev_get_drvdata(dev: dev->parent);
1773
1774 iio->dev.of_node = np;
1775 iio->modes = INDIO_DIRECT_MODE;
1776
1777 platform_set_drvdata(pdev, data: iio);
1778
1779 ret = of_property_read_u32(np: dev->of_node, propname: "reg", out_value: &adc->fl_id);
1780 if (ret != 0 || adc->fl_id >= adc->dfsdm->num_fls) {
1781 dev_err(dev, "Missing or bad reg property\n");
1782 return -EINVAL;
1783 }
1784
1785 name = devm_kzalloc(dev, size: sizeof("dfsdm-adc0"), GFP_KERNEL);
1786 if (!name)
1787 return -ENOMEM;
1788 if (dev_data->type == DFSDM_AUDIO) {
1789 iio->info = &stm32_dfsdm_info_audio;
1790 snprintf(buf: name, size: sizeof("dfsdm-pdm0"), fmt: "dfsdm-pdm%d", adc->fl_id);
1791 } else {
1792 iio->info = &stm32_dfsdm_info_adc;
1793 snprintf(buf: name, size: sizeof("dfsdm-adc0"), fmt: "dfsdm-adc%d", adc->fl_id);
1794 }
1795 iio->name = name;
1796
1797 /*
1798 * In a first step IRQs generated for channels are not treated.
1799 * So IRQ associated to filter instance 0 is dedicated to the Filter 0.
1800 */
1801 irq = platform_get_irq(pdev, 0);
1802 if (irq < 0)
1803 return irq;
1804
1805 ret = devm_request_irq(dev, irq, handler: stm32_dfsdm_irq,
1806 irqflags: 0, devname: pdev->name, dev_id: iio);
1807 if (ret < 0) {
1808 dev_err(dev, "Failed to request IRQ\n");
1809 return ret;
1810 }
1811
1812 ret = of_property_read_u32(np: dev->of_node, propname: "st,filter-order", out_value: &val);
1813 if (ret < 0) {
1814 dev_err(dev, "Failed to set filter order\n");
1815 return ret;
1816 }
1817
1818 adc->dfsdm->fl_list[adc->fl_id].ford = val;
1819
1820 ret = of_property_read_u32(np: dev->of_node, propname: "st,filter0-sync", out_value: &val);
1821 if (!ret)
1822 adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
1823
1824 adc->dev_data = dev_data;
1825 ret = dev_data->init(dev, iio);
1826 if (ret < 0)
1827 return ret;
1828
1829 ret = iio_device_register(iio);
1830 if (ret < 0)
1831 goto err_cleanup;
1832
1833 if (dev_data->type == DFSDM_AUDIO) {
1834 ret = of_platform_populate(root: np, NULL, NULL, parent: dev);
1835 if (ret < 0) {
1836 dev_err(dev, "Failed to find an audio DAI\n");
1837 goto err_unregister;
1838 }
1839 }
1840
1841 return 0;
1842
1843err_unregister:
1844 iio_device_unregister(indio_dev: iio);
1845err_cleanup:
1846 stm32_dfsdm_dma_release(indio_dev: iio);
1847
1848 return ret;
1849}
1850
1851static void stm32_dfsdm_adc_remove(struct platform_device *pdev)
1852{
1853 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
1854 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1855
1856 if (adc->dev_data->type == DFSDM_AUDIO)
1857 of_platform_depopulate(parent: &pdev->dev);
1858 iio_device_unregister(indio_dev);
1859 stm32_dfsdm_dma_release(indio_dev);
1860}
1861
1862static int stm32_dfsdm_adc_suspend(struct device *dev)
1863{
1864 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1865
1866 if (iio_buffer_enabled(indio_dev))
1867 stm32_dfsdm_predisable(indio_dev);
1868
1869 return 0;
1870}
1871
1872static int stm32_dfsdm_adc_resume(struct device *dev)
1873{
1874 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1875 struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
1876 const struct iio_chan_spec *chan;
1877 struct stm32_dfsdm_channel *ch;
1878 int i, ret;
1879
1880 /* restore channels configuration */
1881 for (i = 0; i < indio_dev->num_channels; i++) {
1882 chan = indio_dev->channels + i;
1883 ch = &adc->dfsdm->ch_list[chan->channel];
1884 ret = stm32_dfsdm_chan_configure(dfsdm: adc->dfsdm, ch);
1885 if (ret)
1886 return ret;
1887 }
1888
1889 if (iio_buffer_enabled(indio_dev))
1890 stm32_dfsdm_postenable(indio_dev);
1891
1892 return 0;
1893}
1894
1895static DEFINE_SIMPLE_DEV_PM_OPS(stm32_dfsdm_adc_pm_ops,
1896 stm32_dfsdm_adc_suspend,
1897 stm32_dfsdm_adc_resume);
1898
1899static struct platform_driver stm32_dfsdm_adc_driver = {
1900 .driver = {
1901 .name = "stm32-dfsdm-adc",
1902 .of_match_table = stm32_dfsdm_adc_match,
1903 .pm = pm_sleep_ptr(&stm32_dfsdm_adc_pm_ops),
1904 },
1905 .probe = stm32_dfsdm_adc_probe,
1906 .remove = stm32_dfsdm_adc_remove,
1907};
1908module_platform_driver(stm32_dfsdm_adc_driver);
1909
1910MODULE_DESCRIPTION("STM32 sigma delta ADC");
1911MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
1912MODULE_LICENSE("GPL v2");
1913MODULE_IMPORT_NS("IIO_BACKEND");
1914

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/iio/adc/stm32-dfsdm-adc.c