1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
9 */
10
11#include <linux/acpi_iort.h>
12#include <linux/atomic.h>
13#include <linux/crash_dump.h>
14#include <linux/device.h>
15#include <linux/dma-direct.h>
16#include <linux/dma-map-ops.h>
17#include <linux/gfp.h>
18#include <linux/huge_mm.h>
19#include <linux/iommu.h>
20#include <linux/iova.h>
21#include <linux/irq.h>
22#include <linux/list_sort.h>
23#include <linux/memremap.h>
24#include <linux/mm.h>
25#include <linux/mutex.h>
26#include <linux/of_iommu.h>
27#include <linux/pci.h>
28#include <linux/scatterlist.h>
29#include <linux/spinlock.h>
30#include <linux/swiotlb.h>
31#include <linux/vmalloc.h>
32#include <trace/events/swiotlb.h>
33
34#include "dma-iommu.h"
35
36struct iommu_dma_msi_page {
37 struct list_head list;
38 dma_addr_t iova;
39 phys_addr_t phys;
40};
41
42enum iommu_dma_cookie_type {
43 IOMMU_DMA_IOVA_COOKIE,
44 IOMMU_DMA_MSI_COOKIE,
45};
46
47enum iommu_dma_queue_type {
48 IOMMU_DMA_OPTS_PER_CPU_QUEUE,
49 IOMMU_DMA_OPTS_SINGLE_QUEUE,
50};
51
52struct iommu_dma_options {
53 enum iommu_dma_queue_type qt;
54 size_t fq_size;
55 unsigned int fq_timeout;
56};
57
58struct iommu_dma_cookie {
59 enum iommu_dma_cookie_type type;
60 union {
61 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
62 struct {
63 struct iova_domain iovad;
64 /* Flush queue */
65 union {
66 struct iova_fq *single_fq;
67 struct iova_fq __percpu *percpu_fq;
68 };
69 /* Number of TLB flushes that have been started */
70 atomic64_t fq_flush_start_cnt;
71 /* Number of TLB flushes that have been finished */
72 atomic64_t fq_flush_finish_cnt;
73 /* Timer to regularily empty the flush queues */
74 struct timer_list fq_timer;
75 /* 1 when timer is active, 0 when not */
76 atomic_t fq_timer_on;
77 };
78 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
79 dma_addr_t msi_iova;
80 };
81 struct list_head msi_page_list;
82
83 /* Domain for flush queue callback; NULL if flush queue not in use */
84 struct iommu_domain *fq_domain;
85 /* Options for dma-iommu use */
86 struct iommu_dma_options options;
87 struct mutex mutex;
88};
89
90static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
91bool iommu_dma_forcedac __read_mostly;
92
93static int __init iommu_dma_forcedac_setup(char *str)
94{
95 int ret = kstrtobool(s: str, res: &iommu_dma_forcedac);
96
97 if (!ret && iommu_dma_forcedac)
98 pr_info("Forcing DAC for PCI devices\n");
99 return ret;
100}
101early_param("iommu.forcedac", iommu_dma_forcedac_setup);
102
103/* Number of entries per flush queue */
104#define IOVA_DEFAULT_FQ_SIZE 256
105#define IOVA_SINGLE_FQ_SIZE 32768
106
107/* Timeout (in ms) after which entries are flushed from the queue */
108#define IOVA_DEFAULT_FQ_TIMEOUT 10
109#define IOVA_SINGLE_FQ_TIMEOUT 1000
110
111/* Flush queue entry for deferred flushing */
112struct iova_fq_entry {
113 unsigned long iova_pfn;
114 unsigned long pages;
115 struct list_head freelist;
116 u64 counter; /* Flush counter when this entry was added */
117};
118
119/* Per-CPU flush queue structure */
120struct iova_fq {
121 spinlock_t lock;
122 unsigned int head, tail;
123 unsigned int mod_mask;
124 struct iova_fq_entry entries[];
125};
126
127#define fq_ring_for_each(i, fq) \
128 for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
129
130static inline bool fq_full(struct iova_fq *fq)
131{
132 assert_spin_locked(&fq->lock);
133 return (((fq->tail + 1) & fq->mod_mask) == fq->head);
134}
135
136static inline unsigned int fq_ring_add(struct iova_fq *fq)
137{
138 unsigned int idx = fq->tail;
139
140 assert_spin_locked(&fq->lock);
141
142 fq->tail = (idx + 1) & fq->mod_mask;
143
144 return idx;
145}
146
147static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
148{
149 u64 counter = atomic64_read(v: &cookie->fq_flush_finish_cnt);
150 unsigned int idx;
151
152 assert_spin_locked(&fq->lock);
153
154 fq_ring_for_each(idx, fq) {
155
156 if (fq->entries[idx].counter >= counter)
157 break;
158
159 put_pages_list(pages: &fq->entries[idx].freelist);
160 free_iova_fast(iovad: &cookie->iovad,
161 pfn: fq->entries[idx].iova_pfn,
162 size: fq->entries[idx].pages);
163
164 fq->head = (fq->head + 1) & fq->mod_mask;
165 }
166}
167
168static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
169{
170 unsigned long flags;
171
172 spin_lock_irqsave(&fq->lock, flags);
173 fq_ring_free_locked(cookie, fq);
174 spin_unlock_irqrestore(lock: &fq->lock, flags);
175}
176
177static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
178{
179 atomic64_inc(v: &cookie->fq_flush_start_cnt);
180 cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
181 atomic64_inc(v: &cookie->fq_flush_finish_cnt);
182}
183
184static void fq_flush_timeout(struct timer_list *t)
185{
186 struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
187 int cpu;
188
189 atomic_set(v: &cookie->fq_timer_on, i: 0);
190 fq_flush_iotlb(cookie);
191
192 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
193 fq_ring_free(cookie, fq: cookie->single_fq);
194 } else {
195 for_each_possible_cpu(cpu)
196 fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
197 }
198}
199
200static void queue_iova(struct iommu_dma_cookie *cookie,
201 unsigned long pfn, unsigned long pages,
202 struct list_head *freelist)
203{
204 struct iova_fq *fq;
205 unsigned long flags;
206 unsigned int idx;
207
208 /*
209 * Order against the IOMMU driver's pagetable update from unmapping
210 * @pte, to guarantee that fq_flush_iotlb() observes that if called
211 * from a different CPU before we release the lock below. Full barrier
212 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
213 * written fq state here.
214 */
215 smp_mb();
216
217 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
218 fq = cookie->single_fq;
219 else
220 fq = raw_cpu_ptr(cookie->percpu_fq);
221
222 spin_lock_irqsave(&fq->lock, flags);
223
224 /*
225 * First remove all entries from the flush queue that have already been
226 * flushed out on another CPU. This makes the fq_full() check below less
227 * likely to be true.
228 */
229 fq_ring_free_locked(cookie, fq);
230
231 if (fq_full(fq)) {
232 fq_flush_iotlb(cookie);
233 fq_ring_free_locked(cookie, fq);
234 }
235
236 idx = fq_ring_add(fq);
237
238 fq->entries[idx].iova_pfn = pfn;
239 fq->entries[idx].pages = pages;
240 fq->entries[idx].counter = atomic64_read(v: &cookie->fq_flush_start_cnt);
241 list_splice(list: freelist, head: &fq->entries[idx].freelist);
242
243 spin_unlock_irqrestore(lock: &fq->lock, flags);
244
245 /* Avoid false sharing as much as possible. */
246 if (!atomic_read(v: &cookie->fq_timer_on) &&
247 !atomic_xchg(v: &cookie->fq_timer_on, new: 1))
248 mod_timer(timer: &cookie->fq_timer,
249 expires: jiffies + msecs_to_jiffies(m: cookie->options.fq_timeout));
250}
251
252static void iommu_dma_free_fq_single(struct iova_fq *fq)
253{
254 int idx;
255
256 fq_ring_for_each(idx, fq)
257 put_pages_list(pages: &fq->entries[idx].freelist);
258 vfree(addr: fq);
259}
260
261static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
262{
263 int cpu, idx;
264
265 /* The IOVAs will be torn down separately, so just free our queued pages */
266 for_each_possible_cpu(cpu) {
267 struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
268
269 fq_ring_for_each(idx, fq)
270 put_pages_list(pages: &fq->entries[idx].freelist);
271 }
272
273 free_percpu(pdata: percpu_fq);
274}
275
276static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
277{
278 if (!cookie->fq_domain)
279 return;
280
281 del_timer_sync(timer: &cookie->fq_timer);
282 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
283 iommu_dma_free_fq_single(fq: cookie->single_fq);
284 else
285 iommu_dma_free_fq_percpu(percpu_fq: cookie->percpu_fq);
286}
287
288static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
289{
290 int i;
291
292 fq->head = 0;
293 fq->tail = 0;
294 fq->mod_mask = fq_size - 1;
295
296 spin_lock_init(&fq->lock);
297
298 for (i = 0; i < fq_size; i++)
299 INIT_LIST_HEAD(list: &fq->entries[i].freelist);
300}
301
302static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
303{
304 size_t fq_size = cookie->options.fq_size;
305 struct iova_fq *queue;
306
307 queue = vmalloc(struct_size(queue, entries, fq_size));
308 if (!queue)
309 return -ENOMEM;
310 iommu_dma_init_one_fq(fq: queue, fq_size);
311 cookie->single_fq = queue;
312
313 return 0;
314}
315
316static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
317{
318 size_t fq_size = cookie->options.fq_size;
319 struct iova_fq __percpu *queue;
320 int cpu;
321
322 queue = __alloc_percpu(struct_size(queue, entries, fq_size),
323 align: __alignof__(*queue));
324 if (!queue)
325 return -ENOMEM;
326
327 for_each_possible_cpu(cpu)
328 iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
329 cookie->percpu_fq = queue;
330 return 0;
331}
332
333/* sysfs updates are serialised by the mutex of the group owning @domain */
334int iommu_dma_init_fq(struct iommu_domain *domain)
335{
336 struct iommu_dma_cookie *cookie = domain->iova_cookie;
337 int rc;
338
339 if (cookie->fq_domain)
340 return 0;
341
342 atomic64_set(v: &cookie->fq_flush_start_cnt, i: 0);
343 atomic64_set(v: &cookie->fq_flush_finish_cnt, i: 0);
344
345 if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
346 rc = iommu_dma_init_fq_single(cookie);
347 else
348 rc = iommu_dma_init_fq_percpu(cookie);
349
350 if (rc) {
351 pr_warn("iova flush queue initialization failed\n");
352 return -ENOMEM;
353 }
354
355 timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
356 atomic_set(v: &cookie->fq_timer_on, i: 0);
357 /*
358 * Prevent incomplete fq state being observable. Pairs with path from
359 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
360 */
361 smp_wmb();
362 WRITE_ONCE(cookie->fq_domain, domain);
363 return 0;
364}
365
366static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
367{
368 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
369 return cookie->iovad.granule;
370 return PAGE_SIZE;
371}
372
373static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
374{
375 struct iommu_dma_cookie *cookie;
376
377 cookie = kzalloc(size: sizeof(*cookie), GFP_KERNEL);
378 if (cookie) {
379 INIT_LIST_HEAD(list: &cookie->msi_page_list);
380 cookie->type = type;
381 }
382 return cookie;
383}
384
385/**
386 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
387 * @domain: IOMMU domain to prepare for DMA-API usage
388 */
389int iommu_get_dma_cookie(struct iommu_domain *domain)
390{
391 if (domain->iova_cookie)
392 return -EEXIST;
393
394 domain->iova_cookie = cookie_alloc(type: IOMMU_DMA_IOVA_COOKIE);
395 if (!domain->iova_cookie)
396 return -ENOMEM;
397
398 mutex_init(&domain->iova_cookie->mutex);
399 return 0;
400}
401
402/**
403 * iommu_get_msi_cookie - Acquire just MSI remapping resources
404 * @domain: IOMMU domain to prepare
405 * @base: Start address of IOVA region for MSI mappings
406 *
407 * Users who manage their own IOVA allocation and do not want DMA API support,
408 * but would still like to take advantage of automatic MSI remapping, can use
409 * this to initialise their own domain appropriately. Users should reserve a
410 * contiguous IOVA region, starting at @base, large enough to accommodate the
411 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
412 * used by the devices attached to @domain.
413 */
414int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
415{
416 struct iommu_dma_cookie *cookie;
417
418 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
419 return -EINVAL;
420
421 if (domain->iova_cookie)
422 return -EEXIST;
423
424 cookie = cookie_alloc(type: IOMMU_DMA_MSI_COOKIE);
425 if (!cookie)
426 return -ENOMEM;
427
428 cookie->msi_iova = base;
429 domain->iova_cookie = cookie;
430 return 0;
431}
432EXPORT_SYMBOL(iommu_get_msi_cookie);
433
434/**
435 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
436 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
437 * iommu_get_msi_cookie()
438 */
439void iommu_put_dma_cookie(struct iommu_domain *domain)
440{
441 struct iommu_dma_cookie *cookie = domain->iova_cookie;
442 struct iommu_dma_msi_page *msi, *tmp;
443
444 if (!cookie)
445 return;
446
447 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
448 iommu_dma_free_fq(cookie);
449 put_iova_domain(iovad: &cookie->iovad);
450 }
451
452 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
453 list_del(entry: &msi->list);
454 kfree(objp: msi);
455 }
456 kfree(objp: cookie);
457 domain->iova_cookie = NULL;
458}
459
460/**
461 * iommu_dma_get_resv_regions - Reserved region driver helper
462 * @dev: Device from iommu_get_resv_regions()
463 * @list: Reserved region list from iommu_get_resv_regions()
464 *
465 * IOMMU drivers can use this to implement their .get_resv_regions callback
466 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
467 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
468 * reservation.
469 */
470void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
471{
472
473 if (!is_of_node(fwnode: dev_iommu_fwspec_get(dev)->iommu_fwnode))
474 iort_iommu_get_resv_regions(dev, head: list);
475
476 if (dev->of_node)
477 of_iommu_get_resv_regions(dev, list);
478}
479EXPORT_SYMBOL(iommu_dma_get_resv_regions);
480
481static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
482 phys_addr_t start, phys_addr_t end)
483{
484 struct iova_domain *iovad = &cookie->iovad;
485 struct iommu_dma_msi_page *msi_page;
486 int i, num_pages;
487
488 start -= iova_offset(iovad, iova: start);
489 num_pages = iova_align(iovad, size: end - start) >> iova_shift(iovad);
490
491 for (i = 0; i < num_pages; i++) {
492 msi_page = kmalloc(size: sizeof(*msi_page), GFP_KERNEL);
493 if (!msi_page)
494 return -ENOMEM;
495
496 msi_page->phys = start;
497 msi_page->iova = start;
498 INIT_LIST_HEAD(list: &msi_page->list);
499 list_add(new: &msi_page->list, head: &cookie->msi_page_list);
500 start += iovad->granule;
501 }
502
503 return 0;
504}
505
506static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
507 const struct list_head *b)
508{
509 struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
510 struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
511
512 return res_a->res->start > res_b->res->start;
513}
514
515static int iova_reserve_pci_windows(struct pci_dev *dev,
516 struct iova_domain *iovad)
517{
518 struct pci_host_bridge *bridge = pci_find_host_bridge(bus: dev->bus);
519 struct resource_entry *window;
520 unsigned long lo, hi;
521 phys_addr_t start = 0, end;
522
523 resource_list_for_each_entry(window, &bridge->windows) {
524 if (resource_type(res: window->res) != IORESOURCE_MEM)
525 continue;
526
527 lo = iova_pfn(iovad, iova: window->res->start - window->offset);
528 hi = iova_pfn(iovad, iova: window->res->end - window->offset);
529 reserve_iova(iovad, pfn_lo: lo, pfn_hi: hi);
530 }
531
532 /* Get reserved DMA windows from host bridge */
533 list_sort(NULL, head: &bridge->dma_ranges, cmp: iommu_dma_ranges_sort);
534 resource_list_for_each_entry(window, &bridge->dma_ranges) {
535 end = window->res->start - window->offset;
536resv_iova:
537 if (end > start) {
538 lo = iova_pfn(iovad, iova: start);
539 hi = iova_pfn(iovad, iova: end);
540 reserve_iova(iovad, pfn_lo: lo, pfn_hi: hi);
541 } else if (end < start) {
542 /* DMA ranges should be non-overlapping */
543 dev_err(&dev->dev,
544 "Failed to reserve IOVA [%pa-%pa]\n",
545 &start, &end);
546 return -EINVAL;
547 }
548
549 start = window->res->end - window->offset + 1;
550 /* If window is last entry */
551 if (window->node.next == &bridge->dma_ranges &&
552 end != ~(phys_addr_t)0) {
553 end = ~(phys_addr_t)0;
554 goto resv_iova;
555 }
556 }
557
558 return 0;
559}
560
561static int iova_reserve_iommu_regions(struct device *dev,
562 struct iommu_domain *domain)
563{
564 struct iommu_dma_cookie *cookie = domain->iova_cookie;
565 struct iova_domain *iovad = &cookie->iovad;
566 struct iommu_resv_region *region;
567 LIST_HEAD(resv_regions);
568 int ret = 0;
569
570 if (dev_is_pci(dev)) {
571 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
572 if (ret)
573 return ret;
574 }
575
576 iommu_get_resv_regions(dev, list: &resv_regions);
577 list_for_each_entry(region, &resv_regions, list) {
578 unsigned long lo, hi;
579
580 /* We ARE the software that manages these! */
581 if (region->type == IOMMU_RESV_SW_MSI)
582 continue;
583
584 lo = iova_pfn(iovad, iova: region->start);
585 hi = iova_pfn(iovad, iova: region->start + region->length - 1);
586 reserve_iova(iovad, pfn_lo: lo, pfn_hi: hi);
587
588 if (region->type == IOMMU_RESV_MSI)
589 ret = cookie_init_hw_msi_region(cookie, start: region->start,
590 end: region->start + region->length);
591 if (ret)
592 break;
593 }
594 iommu_put_resv_regions(dev, list: &resv_regions);
595
596 return ret;
597}
598
599static bool dev_is_untrusted(struct device *dev)
600{
601 return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
602}
603
604static bool dev_use_swiotlb(struct device *dev, size_t size,
605 enum dma_data_direction dir)
606{
607 return IS_ENABLED(CONFIG_SWIOTLB) &&
608 (dev_is_untrusted(dev) ||
609 dma_kmalloc_needs_bounce(dev, size, dir));
610}
611
612static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
613 int nents, enum dma_data_direction dir)
614{
615 struct scatterlist *s;
616 int i;
617
618 if (!IS_ENABLED(CONFIG_SWIOTLB))
619 return false;
620
621 if (dev_is_untrusted(dev))
622 return true;
623
624 /*
625 * If kmalloc() buffers are not DMA-safe for this device and
626 * direction, check the individual lengths in the sg list. If any
627 * element is deemed unsafe, use the swiotlb for bouncing.
628 */
629 if (!dma_kmalloc_safe(dev, dir)) {
630 for_each_sg(sg, s, nents, i)
631 if (!dma_kmalloc_size_aligned(size: s->length))
632 return true;
633 }
634
635 return false;
636}
637
638/**
639 * iommu_dma_init_options - Initialize dma-iommu options
640 * @options: The options to be initialized
641 * @dev: Device the options are set for
642 *
643 * This allows tuning dma-iommu specific to device properties
644 */
645static void iommu_dma_init_options(struct iommu_dma_options *options,
646 struct device *dev)
647{
648 /* Shadowing IOTLB flushes do better with a single large queue */
649 if (dev->iommu->shadow_on_flush) {
650 options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
651 options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
652 options->fq_size = IOVA_SINGLE_FQ_SIZE;
653 } else {
654 options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
655 options->fq_size = IOVA_DEFAULT_FQ_SIZE;
656 options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
657 }
658}
659
660/**
661 * iommu_dma_init_domain - Initialise a DMA mapping domain
662 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
663 * @base: IOVA at which the mappable address space starts
664 * @limit: Last address of the IOVA space
665 * @dev: Device the domain is being initialised for
666 *
667 * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
668 * avoid rounding surprises. If necessary, we reserve the page at address 0
669 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
670 * any change which could make prior IOVAs invalid will fail.
671 */
672static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
673 dma_addr_t limit, struct device *dev)
674{
675 struct iommu_dma_cookie *cookie = domain->iova_cookie;
676 unsigned long order, base_pfn;
677 struct iova_domain *iovad;
678 int ret;
679
680 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
681 return -EINVAL;
682
683 iovad = &cookie->iovad;
684
685 /* Use the smallest supported page size for IOVA granularity */
686 order = __ffs(domain->pgsize_bitmap);
687 base_pfn = max_t(unsigned long, 1, base >> order);
688
689 /* Check the domain allows at least some access to the device... */
690 if (domain->geometry.force_aperture) {
691 if (base > domain->geometry.aperture_end ||
692 limit < domain->geometry.aperture_start) {
693 pr_warn("specified DMA range outside IOMMU capability\n");
694 return -EFAULT;
695 }
696 /* ...then finally give it a kicking to make sure it fits */
697 base_pfn = max_t(unsigned long, base_pfn,
698 domain->geometry.aperture_start >> order);
699 }
700
701 /* start_pfn is always nonzero for an already-initialised domain */
702 mutex_lock(&cookie->mutex);
703 if (iovad->start_pfn) {
704 if (1UL << order != iovad->granule ||
705 base_pfn != iovad->start_pfn) {
706 pr_warn("Incompatible range for DMA domain\n");
707 ret = -EFAULT;
708 goto done_unlock;
709 }
710
711 ret = 0;
712 goto done_unlock;
713 }
714
715 init_iova_domain(iovad, granule: 1UL << order, start_pfn: base_pfn);
716 ret = iova_domain_init_rcaches(iovad);
717 if (ret)
718 goto done_unlock;
719
720 iommu_dma_init_options(options: &cookie->options, dev);
721
722 /* If the FQ fails we can simply fall back to strict mode */
723 if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
724 (!device_iommu_capable(dev, cap: IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
725 domain->type = IOMMU_DOMAIN_DMA;
726
727 ret = iova_reserve_iommu_regions(dev, domain);
728
729done_unlock:
730 mutex_unlock(lock: &cookie->mutex);
731 return ret;
732}
733
734/**
735 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
736 * page flags.
737 * @dir: Direction of DMA transfer
738 * @coherent: Is the DMA master cache-coherent?
739 * @attrs: DMA attributes for the mapping
740 *
741 * Return: corresponding IOMMU API page protection flags
742 */
743static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
744 unsigned long attrs)
745{
746 int prot = coherent ? IOMMU_CACHE : 0;
747
748 if (attrs & DMA_ATTR_PRIVILEGED)
749 prot |= IOMMU_PRIV;
750
751 switch (dir) {
752 case DMA_BIDIRECTIONAL:
753 return prot | IOMMU_READ | IOMMU_WRITE;
754 case DMA_TO_DEVICE:
755 return prot | IOMMU_READ;
756 case DMA_FROM_DEVICE:
757 return prot | IOMMU_WRITE;
758 default:
759 return 0;
760 }
761}
762
763static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
764 size_t size, u64 dma_limit, struct device *dev)
765{
766 struct iommu_dma_cookie *cookie = domain->iova_cookie;
767 struct iova_domain *iovad = &cookie->iovad;
768 unsigned long shift, iova_len, iova;
769
770 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
771 cookie->msi_iova += size;
772 return cookie->msi_iova - size;
773 }
774
775 shift = iova_shift(iovad);
776 iova_len = size >> shift;
777
778 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
779
780 if (domain->geometry.force_aperture)
781 dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
782
783 /*
784 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
785 * DAC reasoning loses relevance with PCIe, but enough hardware and
786 * firmware bugs are still lurking out there that it's safest not to
787 * venture into the 64-bit space until necessary.
788 *
789 * If your device goes wrong after seeing the notice then likely either
790 * its driver is not setting DMA masks accurately, the hardware has
791 * some inherent bug in handling >32-bit addresses, or not all the
792 * expected address bits are wired up between the device and the IOMMU.
793 */
794 if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
795 iova = alloc_iova_fast(iovad, size: iova_len,
796 DMA_BIT_MASK(32) >> shift, flush_rcache: false);
797 if (iova)
798 goto done;
799
800 dev->iommu->pci_32bit_workaround = false;
801 dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
802 }
803
804 iova = alloc_iova_fast(iovad, size: iova_len, limit_pfn: dma_limit >> shift, flush_rcache: true);
805done:
806 return (dma_addr_t)iova << shift;
807}
808
809static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
810 dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
811{
812 struct iova_domain *iovad = &cookie->iovad;
813
814 /* The MSI case is only ever cleaning up its most recent allocation */
815 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
816 cookie->msi_iova -= size;
817 else if (gather && gather->queued)
818 queue_iova(cookie, pfn: iova_pfn(iovad, iova),
819 pages: size >> iova_shift(iovad),
820 freelist: &gather->freelist);
821 else
822 free_iova_fast(iovad, pfn: iova_pfn(iovad, iova),
823 size: size >> iova_shift(iovad));
824}
825
826static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
827 size_t size)
828{
829 struct iommu_domain *domain = iommu_get_dma_domain(dev);
830 struct iommu_dma_cookie *cookie = domain->iova_cookie;
831 struct iova_domain *iovad = &cookie->iovad;
832 size_t iova_off = iova_offset(iovad, iova: dma_addr);
833 struct iommu_iotlb_gather iotlb_gather;
834 size_t unmapped;
835
836 dma_addr -= iova_off;
837 size = iova_align(iovad, size: size + iova_off);
838 iommu_iotlb_gather_init(gather: &iotlb_gather);
839 iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
840
841 unmapped = iommu_unmap_fast(domain, iova: dma_addr, size, iotlb_gather: &iotlb_gather);
842 WARN_ON(unmapped != size);
843
844 if (!iotlb_gather.queued)
845 iommu_iotlb_sync(domain, iotlb_gather: &iotlb_gather);
846 iommu_dma_free_iova(cookie, iova: dma_addr, size, gather: &iotlb_gather);
847}
848
849static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
850 size_t size, int prot, u64 dma_mask)
851{
852 struct iommu_domain *domain = iommu_get_dma_domain(dev);
853 struct iommu_dma_cookie *cookie = domain->iova_cookie;
854 struct iova_domain *iovad = &cookie->iovad;
855 size_t iova_off = iova_offset(iovad, iova: phys);
856 dma_addr_t iova;
857
858 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
859 iommu_deferred_attach(dev, domain))
860 return DMA_MAPPING_ERROR;
861
862 /* If anyone ever wants this we'd need support in the IOVA allocator */
863 if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
864 "Unsupported alignment constraint\n"))
865 return DMA_MAPPING_ERROR;
866
867 size = iova_align(iovad, size: size + iova_off);
868
869 iova = iommu_dma_alloc_iova(domain, size, dma_limit: dma_mask, dev);
870 if (!iova)
871 return DMA_MAPPING_ERROR;
872
873 if (iommu_map(domain, iova, paddr: phys - iova_off, size, prot, GFP_ATOMIC)) {
874 iommu_dma_free_iova(cookie, iova, size, NULL);
875 return DMA_MAPPING_ERROR;
876 }
877 return iova + iova_off;
878}
879
880static void __iommu_dma_free_pages(struct page **pages, int count)
881{
882 while (count--)
883 __free_page(pages[count]);
884 kvfree(addr: pages);
885}
886
887static struct page **__iommu_dma_alloc_pages(struct device *dev,
888 unsigned int count, unsigned long order_mask, gfp_t gfp)
889{
890 struct page **pages;
891 unsigned int i = 0, nid = dev_to_node(dev);
892
893 order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
894 if (!order_mask)
895 return NULL;
896
897 pages = kvcalloc(n: count, size: sizeof(*pages), GFP_KERNEL);
898 if (!pages)
899 return NULL;
900
901 /* IOMMU can map any pages, so himem can also be used here */
902 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
903
904 while (count) {
905 struct page *page = NULL;
906 unsigned int order_size;
907
908 /*
909 * Higher-order allocations are a convenience rather
910 * than a necessity, hence using __GFP_NORETRY until
911 * falling back to minimum-order allocations.
912 */
913 for (order_mask &= GENMASK(__fls(count), 0);
914 order_mask; order_mask &= ~order_size) {
915 unsigned int order = __fls(word: order_mask);
916 gfp_t alloc_flags = gfp;
917
918 order_size = 1U << order;
919 if (order_mask > order_size)
920 alloc_flags |= __GFP_NORETRY;
921 page = alloc_pages_node(nid, gfp_mask: alloc_flags, order);
922 if (!page)
923 continue;
924 if (order)
925 split_page(page, order);
926 break;
927 }
928 if (!page) {
929 __iommu_dma_free_pages(pages, count: i);
930 return NULL;
931 }
932 count -= order_size;
933 while (order_size--)
934 pages[i++] = page++;
935 }
936 return pages;
937}
938
939/*
940 * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
941 * but an IOMMU which supports smaller pages might not map the whole thing.
942 */
943static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
944 size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
945 unsigned long attrs)
946{
947 struct iommu_domain *domain = iommu_get_dma_domain(dev);
948 struct iommu_dma_cookie *cookie = domain->iova_cookie;
949 struct iova_domain *iovad = &cookie->iovad;
950 bool coherent = dev_is_dma_coherent(dev);
951 int ioprot = dma_info_to_prot(dir: DMA_BIDIRECTIONAL, coherent, attrs);
952 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
953 struct page **pages;
954 dma_addr_t iova;
955 ssize_t ret;
956
957 if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
958 iommu_deferred_attach(dev, domain))
959 return NULL;
960
961 min_size = alloc_sizes & -alloc_sizes;
962 if (min_size < PAGE_SIZE) {
963 min_size = PAGE_SIZE;
964 alloc_sizes |= PAGE_SIZE;
965 } else {
966 size = ALIGN(size, min_size);
967 }
968 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
969 alloc_sizes = min_size;
970
971 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
972 pages = __iommu_dma_alloc_pages(dev, count, order_mask: alloc_sizes >> PAGE_SHIFT,
973 gfp);
974 if (!pages)
975 return NULL;
976
977 size = iova_align(iovad, size);
978 iova = iommu_dma_alloc_iova(domain, size, dma_limit: dev->coherent_dma_mask, dev);
979 if (!iova)
980 goto out_free_pages;
981
982 /*
983 * Remove the zone/policy flags from the GFP - these are applied to the
984 * __iommu_dma_alloc_pages() but are not used for the supporting
985 * internal allocations that follow.
986 */
987 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
988
989 if (sg_alloc_table_from_pages(sgt, pages, n_pages: count, offset: 0, size, gfp_mask: gfp))
990 goto out_free_iova;
991
992 if (!(ioprot & IOMMU_CACHE)) {
993 struct scatterlist *sg;
994 int i;
995
996 for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
997 arch_dma_prep_coherent(page: sg_page(sg), size: sg->length);
998 }
999
1000 ret = iommu_map_sg(domain, iova, sg: sgt->sgl, nents: sgt->orig_nents, prot: ioprot,
1001 gfp);
1002 if (ret < 0 || ret < size)
1003 goto out_free_sg;
1004
1005 sgt->sgl->dma_address = iova;
1006 sgt->sgl->dma_length = size;
1007 return pages;
1008
1009out_free_sg:
1010 sg_free_table(sgt);
1011out_free_iova:
1012 iommu_dma_free_iova(cookie, iova, size, NULL);
1013out_free_pages:
1014 __iommu_dma_free_pages(pages, count);
1015 return NULL;
1016}
1017
1018static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
1019 dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
1020 unsigned long attrs)
1021{
1022 struct page **pages;
1023 struct sg_table sgt;
1024 void *vaddr;
1025
1026 pages = __iommu_dma_alloc_noncontiguous(dev, size, sgt: &sgt, gfp, prot,
1027 attrs);
1028 if (!pages)
1029 return NULL;
1030 *dma_handle = sgt.sgl->dma_address;
1031 sg_free_table(&sgt);
1032 vaddr = dma_common_pages_remap(pages, size, prot,
1033 caller: __builtin_return_address(0));
1034 if (!vaddr)
1035 goto out_unmap;
1036 return vaddr;
1037
1038out_unmap:
1039 __iommu_dma_unmap(dev, dma_addr: *dma_handle, size);
1040 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1041 return NULL;
1042}
1043
1044static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
1045 size_t size, enum dma_data_direction dir, gfp_t gfp,
1046 unsigned long attrs)
1047{
1048 struct dma_sgt_handle *sh;
1049
1050 sh = kmalloc(size: sizeof(*sh), flags: gfp);
1051 if (!sh)
1052 return NULL;
1053
1054 sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, sgt: &sh->sgt, gfp,
1055 PAGE_KERNEL, attrs);
1056 if (!sh->pages) {
1057 kfree(objp: sh);
1058 return NULL;
1059 }
1060 return &sh->sgt;
1061}
1062
1063static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
1064 struct sg_table *sgt, enum dma_data_direction dir)
1065{
1066 struct dma_sgt_handle *sh = sgt_handle(sgt);
1067
1068 __iommu_dma_unmap(dev, dma_addr: sgt->sgl->dma_address, size);
1069 __iommu_dma_free_pages(pages: sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
1070 sg_free_table(&sh->sgt);
1071 kfree(objp: sh);
1072}
1073
1074static void iommu_dma_sync_single_for_cpu(struct device *dev,
1075 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
1076{
1077 phys_addr_t phys;
1078
1079 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1080 return;
1081
1082 phys = iommu_iova_to_phys(domain: iommu_get_dma_domain(dev), iova: dma_handle);
1083 if (!dev_is_dma_coherent(dev))
1084 arch_sync_dma_for_cpu(paddr: phys, size, dir);
1085
1086 if (is_swiotlb_buffer(dev, paddr: phys))
1087 swiotlb_sync_single_for_cpu(dev, tlb_addr: phys, size, dir);
1088}
1089
1090static void iommu_dma_sync_single_for_device(struct device *dev,
1091 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
1092{
1093 phys_addr_t phys;
1094
1095 if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
1096 return;
1097
1098 phys = iommu_iova_to_phys(domain: iommu_get_dma_domain(dev), iova: dma_handle);
1099 if (is_swiotlb_buffer(dev, paddr: phys))
1100 swiotlb_sync_single_for_device(dev, tlb_addr: phys, size, dir);
1101
1102 if (!dev_is_dma_coherent(dev))
1103 arch_sync_dma_for_device(paddr: phys, size, dir);
1104}
1105
1106static void iommu_dma_sync_sg_for_cpu(struct device *dev,
1107 struct scatterlist *sgl, int nelems,
1108 enum dma_data_direction dir)
1109{
1110 struct scatterlist *sg;
1111 int i;
1112
1113 if (sg_dma_is_swiotlb(sg: sgl))
1114 for_each_sg(sgl, sg, nelems, i)
1115 iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
1116 size: sg->length, dir);
1117 else if (!dev_is_dma_coherent(dev))
1118 for_each_sg(sgl, sg, nelems, i)
1119 arch_sync_dma_for_cpu(paddr: sg_phys(sg), size: sg->length, dir);
1120}
1121
1122static void iommu_dma_sync_sg_for_device(struct device *dev,
1123 struct scatterlist *sgl, int nelems,
1124 enum dma_data_direction dir)
1125{
1126 struct scatterlist *sg;
1127 int i;
1128
1129 if (sg_dma_is_swiotlb(sg: sgl))
1130 for_each_sg(sgl, sg, nelems, i)
1131 iommu_dma_sync_single_for_device(dev,
1132 sg_dma_address(sg),
1133 size: sg->length, dir);
1134 else if (!dev_is_dma_coherent(dev))
1135 for_each_sg(sgl, sg, nelems, i)
1136 arch_sync_dma_for_device(paddr: sg_phys(sg), size: sg->length, dir);
1137}
1138
1139static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
1140 unsigned long offset, size_t size, enum dma_data_direction dir,
1141 unsigned long attrs)
1142{
1143 phys_addr_t phys = page_to_phys(page) + offset;
1144 bool coherent = dev_is_dma_coherent(dev);
1145 int prot = dma_info_to_prot(dir, coherent, attrs);
1146 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1147 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1148 struct iova_domain *iovad = &cookie->iovad;
1149 dma_addr_t iova, dma_mask = dma_get_mask(dev);
1150
1151 /*
1152 * If both the physical buffer start address and size are
1153 * page aligned, we don't need to use a bounce page.
1154 */
1155 if (dev_use_swiotlb(dev, size, dir) &&
1156 iova_offset(iovad, iova: phys | size)) {
1157 void *padding_start;
1158 size_t padding_size, aligned_size;
1159
1160 if (!is_swiotlb_active(dev)) {
1161 dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1162 return DMA_MAPPING_ERROR;
1163 }
1164
1165 trace_swiotlb_bounced(dev, dev_addr: phys, size);
1166
1167 aligned_size = iova_align(iovad, size);
1168 phys = swiotlb_tbl_map_single(hwdev: dev, phys, mapping_size: size, alloc_size: aligned_size,
1169 alloc_aligned_mask: iova_mask(iovad), dir, attrs);
1170
1171 if (phys == DMA_MAPPING_ERROR)
1172 return DMA_MAPPING_ERROR;
1173
1174 /* Cleanup the padding area. */
1175 padding_start = phys_to_virt(address: phys);
1176 padding_size = aligned_size;
1177
1178 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1179 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1180 padding_start += size;
1181 padding_size -= size;
1182 }
1183
1184 memset(padding_start, 0, padding_size);
1185 }
1186
1187 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1188 arch_sync_dma_for_device(paddr: phys, size, dir);
1189
1190 iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1191 if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, paddr: phys))
1192 swiotlb_tbl_unmap_single(hwdev: dev, tlb_addr: phys, mapping_size: size, dir, attrs);
1193 return iova;
1194}
1195
1196static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1197 size_t size, enum dma_data_direction dir, unsigned long attrs)
1198{
1199 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1200 phys_addr_t phys;
1201
1202 phys = iommu_iova_to_phys(domain, iova: dma_handle);
1203 if (WARN_ON(!phys))
1204 return;
1205
1206 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1207 arch_sync_dma_for_cpu(paddr: phys, size, dir);
1208
1209 __iommu_dma_unmap(dev, dma_addr: dma_handle, size);
1210
1211 if (unlikely(is_swiotlb_buffer(dev, phys)))
1212 swiotlb_tbl_unmap_single(hwdev: dev, tlb_addr: phys, mapping_size: size, dir, attrs);
1213}
1214
1215/*
1216 * Prepare a successfully-mapped scatterlist to give back to the caller.
1217 *
1218 * At this point the segments are already laid out by iommu_dma_map_sg() to
1219 * avoid individually crossing any boundaries, so we merely need to check a
1220 * segment's start address to avoid concatenating across one.
1221 */
1222static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1223 dma_addr_t dma_addr)
1224{
1225 struct scatterlist *s, *cur = sg;
1226 unsigned long seg_mask = dma_get_seg_boundary(dev);
1227 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1228 int i, count = 0;
1229
1230 for_each_sg(sg, s, nents, i) {
1231 /* Restore this segment's original unaligned fields first */
1232 dma_addr_t s_dma_addr = sg_dma_address(s);
1233 unsigned int s_iova_off = sg_dma_address(s);
1234 unsigned int s_length = sg_dma_len(s);
1235 unsigned int s_iova_len = s->length;
1236
1237 sg_dma_address(s) = DMA_MAPPING_ERROR;
1238 sg_dma_len(s) = 0;
1239
1240 if (sg_dma_is_bus_address(sg: s)) {
1241 if (i > 0)
1242 cur = sg_next(cur);
1243
1244 sg_dma_unmark_bus_address(sg: s);
1245 sg_dma_address(cur) = s_dma_addr;
1246 sg_dma_len(cur) = s_length;
1247 sg_dma_mark_bus_address(sg: cur);
1248 count++;
1249 cur_len = 0;
1250 continue;
1251 }
1252
1253 s->offset += s_iova_off;
1254 s->length = s_length;
1255
1256 /*
1257 * Now fill in the real DMA data. If...
1258 * - there is a valid output segment to append to
1259 * - and this segment starts on an IOVA page boundary
1260 * - but doesn't fall at a segment boundary
1261 * - and wouldn't make the resulting output segment too long
1262 */
1263 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1264 (max_len - cur_len >= s_length)) {
1265 /* ...then concatenate it with the previous one */
1266 cur_len += s_length;
1267 } else {
1268 /* Otherwise start the next output segment */
1269 if (i > 0)
1270 cur = sg_next(cur);
1271 cur_len = s_length;
1272 count++;
1273
1274 sg_dma_address(cur) = dma_addr + s_iova_off;
1275 }
1276
1277 sg_dma_len(cur) = cur_len;
1278 dma_addr += s_iova_len;
1279
1280 if (s_length + s_iova_off < s_iova_len)
1281 cur_len = 0;
1282 }
1283 return count;
1284}
1285
1286/*
1287 * If mapping failed, then just restore the original list,
1288 * but making sure the DMA fields are invalidated.
1289 */
1290static void __invalidate_sg(struct scatterlist *sg, int nents)
1291{
1292 struct scatterlist *s;
1293 int i;
1294
1295 for_each_sg(sg, s, nents, i) {
1296 if (sg_dma_is_bus_address(sg: s)) {
1297 sg_dma_unmark_bus_address(sg: s);
1298 } else {
1299 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1300 s->offset += sg_dma_address(s);
1301 if (sg_dma_len(s))
1302 s->length = sg_dma_len(s);
1303 }
1304 sg_dma_address(s) = DMA_MAPPING_ERROR;
1305 sg_dma_len(s) = 0;
1306 }
1307}
1308
1309static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1310 int nents, enum dma_data_direction dir, unsigned long attrs)
1311{
1312 struct scatterlist *s;
1313 int i;
1314
1315 for_each_sg(sg, s, nents, i)
1316 iommu_dma_unmap_page(dev, sg_dma_address(s),
1317 sg_dma_len(s), dir, attrs);
1318}
1319
1320static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1321 int nents, enum dma_data_direction dir, unsigned long attrs)
1322{
1323 struct scatterlist *s;
1324 int i;
1325
1326 sg_dma_mark_swiotlb(sg);
1327
1328 for_each_sg(sg, s, nents, i) {
1329 sg_dma_address(s) = iommu_dma_map_page(dev, page: sg_page(sg: s),
1330 offset: s->offset, size: s->length, dir, attrs);
1331 if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1332 goto out_unmap;
1333 sg_dma_len(s) = s->length;
1334 }
1335
1336 return nents;
1337
1338out_unmap:
1339 iommu_dma_unmap_sg_swiotlb(dev, sg, nents: i, dir, attrs: attrs | DMA_ATTR_SKIP_CPU_SYNC);
1340 return -EIO;
1341}
1342
1343/*
1344 * The DMA API client is passing in a scatterlist which could describe
1345 * any old buffer layout, but the IOMMU API requires everything to be
1346 * aligned to IOMMU pages. Hence the need for this complicated bit of
1347 * impedance-matching, to be able to hand off a suitably-aligned list,
1348 * but still preserve the original offsets and sizes for the caller.
1349 */
1350static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1351 int nents, enum dma_data_direction dir, unsigned long attrs)
1352{
1353 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1354 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1355 struct iova_domain *iovad = &cookie->iovad;
1356 struct scatterlist *s, *prev = NULL;
1357 int prot = dma_info_to_prot(dir, coherent: dev_is_dma_coherent(dev), attrs);
1358 struct pci_p2pdma_map_state p2pdma_state = {};
1359 enum pci_p2pdma_map_type map;
1360 dma_addr_t iova;
1361 size_t iova_len = 0;
1362 unsigned long mask = dma_get_seg_boundary(dev);
1363 ssize_t ret;
1364 int i;
1365
1366 if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1367 ret = iommu_deferred_attach(dev, domain);
1368 if (ret)
1369 goto out;
1370 }
1371
1372 if (dev_use_sg_swiotlb(dev, sg, nents, dir))
1373 return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1374
1375 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1376 iommu_dma_sync_sg_for_device(dev, sgl: sg, nelems: nents, dir);
1377
1378 /*
1379 * Work out how much IOVA space we need, and align the segments to
1380 * IOVA granules for the IOMMU driver to handle. With some clever
1381 * trickery we can modify the list in-place, but reversibly, by
1382 * stashing the unaligned parts in the as-yet-unused DMA fields.
1383 */
1384 for_each_sg(sg, s, nents, i) {
1385 size_t s_iova_off = iova_offset(iovad, iova: s->offset);
1386 size_t s_length = s->length;
1387 size_t pad_len = (mask - iova_len + 1) & mask;
1388
1389 if (is_pci_p2pdma_page(page: sg_page(sg: s))) {
1390 map = pci_p2pdma_map_segment(state: &p2pdma_state, dev, sg: s);
1391 switch (map) {
1392 case PCI_P2PDMA_MAP_BUS_ADDR:
1393 /*
1394 * iommu_map_sg() will skip this segment as
1395 * it is marked as a bus address,
1396 * __finalise_sg() will copy the dma address
1397 * into the output segment.
1398 */
1399 continue;
1400 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1401 /*
1402 * Mapping through host bridge should be
1403 * mapped with regular IOVAs, thus we
1404 * do nothing here and continue below.
1405 */
1406 break;
1407 default:
1408 ret = -EREMOTEIO;
1409 goto out_restore_sg;
1410 }
1411 }
1412
1413 sg_dma_address(s) = s_iova_off;
1414 sg_dma_len(s) = s_length;
1415 s->offset -= s_iova_off;
1416 s_length = iova_align(iovad, size: s_length + s_iova_off);
1417 s->length = s_length;
1418
1419 /*
1420 * Due to the alignment of our single IOVA allocation, we can
1421 * depend on these assumptions about the segment boundary mask:
1422 * - If mask size >= IOVA size, then the IOVA range cannot
1423 * possibly fall across a boundary, so we don't care.
1424 * - If mask size < IOVA size, then the IOVA range must start
1425 * exactly on a boundary, therefore we can lay things out
1426 * based purely on segment lengths without needing to know
1427 * the actual addresses beforehand.
1428 * - The mask must be a power of 2, so pad_len == 0 if
1429 * iova_len == 0, thus we cannot dereference prev the first
1430 * time through here (i.e. before it has a meaningful value).
1431 */
1432 if (pad_len && pad_len < s_length - 1) {
1433 prev->length += pad_len;
1434 iova_len += pad_len;
1435 }
1436
1437 iova_len += s_length;
1438 prev = s;
1439 }
1440
1441 if (!iova_len)
1442 return __finalise_sg(dev, sg, nents, dma_addr: 0);
1443
1444 iova = iommu_dma_alloc_iova(domain, size: iova_len, dma_limit: dma_get_mask(dev), dev);
1445 if (!iova) {
1446 ret = -ENOMEM;
1447 goto out_restore_sg;
1448 }
1449
1450 /*
1451 * We'll leave any physical concatenation to the IOMMU driver's
1452 * implementation - it knows better than we do.
1453 */
1454 ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
1455 if (ret < 0 || ret < iova_len)
1456 goto out_free_iova;
1457
1458 return __finalise_sg(dev, sg, nents, dma_addr: iova);
1459
1460out_free_iova:
1461 iommu_dma_free_iova(cookie, iova, size: iova_len, NULL);
1462out_restore_sg:
1463 __invalidate_sg(sg, nents);
1464out:
1465 if (ret != -ENOMEM && ret != -EREMOTEIO)
1466 return -EINVAL;
1467 return ret;
1468}
1469
1470static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1471 int nents, enum dma_data_direction dir, unsigned long attrs)
1472{
1473 dma_addr_t end = 0, start;
1474 struct scatterlist *tmp;
1475 int i;
1476
1477 if (sg_dma_is_swiotlb(sg)) {
1478 iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1479 return;
1480 }
1481
1482 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1483 iommu_dma_sync_sg_for_cpu(dev, sgl: sg, nelems: nents, dir);
1484
1485 /*
1486 * The scatterlist segments are mapped into a single
1487 * contiguous IOVA allocation, the start and end points
1488 * just have to be determined.
1489 */
1490 for_each_sg(sg, tmp, nents, i) {
1491 if (sg_dma_is_bus_address(sg: tmp)) {
1492 sg_dma_unmark_bus_address(sg: tmp);
1493 continue;
1494 }
1495
1496 if (sg_dma_len(tmp) == 0)
1497 break;
1498
1499 start = sg_dma_address(tmp);
1500 break;
1501 }
1502
1503 nents -= i;
1504 for_each_sg(tmp, tmp, nents, i) {
1505 if (sg_dma_is_bus_address(sg: tmp)) {
1506 sg_dma_unmark_bus_address(sg: tmp);
1507 continue;
1508 }
1509
1510 if (sg_dma_len(tmp) == 0)
1511 break;
1512
1513 end = sg_dma_address(tmp) + sg_dma_len(tmp);
1514 }
1515
1516 if (end)
1517 __iommu_dma_unmap(dev, dma_addr: start, size: end - start);
1518}
1519
1520static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1521 size_t size, enum dma_data_direction dir, unsigned long attrs)
1522{
1523 return __iommu_dma_map(dev, phys, size,
1524 prot: dma_info_to_prot(dir, coherent: false, attrs) | IOMMU_MMIO,
1525 dma_mask: dma_get_mask(dev));
1526}
1527
1528static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1529 size_t size, enum dma_data_direction dir, unsigned long attrs)
1530{
1531 __iommu_dma_unmap(dev, dma_addr: handle, size);
1532}
1533
1534static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1535{
1536 size_t alloc_size = PAGE_ALIGN(size);
1537 int count = alloc_size >> PAGE_SHIFT;
1538 struct page *page = NULL, **pages = NULL;
1539
1540 /* Non-coherent atomic allocation? Easy */
1541 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1542 dma_free_from_pool(dev, start: cpu_addr, size: alloc_size))
1543 return;
1544
1545 if (is_vmalloc_addr(x: cpu_addr)) {
1546 /*
1547 * If it the address is remapped, then it's either non-coherent
1548 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1549 */
1550 pages = dma_common_find_pages(cpu_addr);
1551 if (!pages)
1552 page = vmalloc_to_page(addr: cpu_addr);
1553 dma_common_free_remap(cpu_addr, size: alloc_size);
1554 } else {
1555 /* Lowmem means a coherent atomic or CMA allocation */
1556 page = virt_to_page(cpu_addr);
1557 }
1558
1559 if (pages)
1560 __iommu_dma_free_pages(pages, count);
1561 if (page)
1562 dma_free_contiguous(dev, page, size: alloc_size);
1563}
1564
1565static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1566 dma_addr_t handle, unsigned long attrs)
1567{
1568 __iommu_dma_unmap(dev, dma_addr: handle, size);
1569 __iommu_dma_free(dev, size, cpu_addr);
1570}
1571
1572static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1573 struct page **pagep, gfp_t gfp, unsigned long attrs)
1574{
1575 bool coherent = dev_is_dma_coherent(dev);
1576 size_t alloc_size = PAGE_ALIGN(size);
1577 int node = dev_to_node(dev);
1578 struct page *page = NULL;
1579 void *cpu_addr;
1580
1581 page = dma_alloc_contiguous(dev, size: alloc_size, gfp);
1582 if (!page)
1583 page = alloc_pages_node(nid: node, gfp_mask: gfp, order: get_order(size: alloc_size));
1584 if (!page)
1585 return NULL;
1586
1587 if (!coherent || PageHighMem(page)) {
1588 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1589
1590 cpu_addr = dma_common_contiguous_remap(page, size: alloc_size,
1591 prot, caller: __builtin_return_address(0));
1592 if (!cpu_addr)
1593 goto out_free_pages;
1594
1595 if (!coherent)
1596 arch_dma_prep_coherent(page, size);
1597 } else {
1598 cpu_addr = page_address(page);
1599 }
1600
1601 *pagep = page;
1602 memset(cpu_addr, 0, alloc_size);
1603 return cpu_addr;
1604out_free_pages:
1605 dma_free_contiguous(dev, page, size: alloc_size);
1606 return NULL;
1607}
1608
1609static void *iommu_dma_alloc(struct device *dev, size_t size,
1610 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1611{
1612 bool coherent = dev_is_dma_coherent(dev);
1613 int ioprot = dma_info_to_prot(dir: DMA_BIDIRECTIONAL, coherent, attrs);
1614 struct page *page = NULL;
1615 void *cpu_addr;
1616
1617 gfp |= __GFP_ZERO;
1618
1619 if (gfpflags_allow_blocking(gfp_flags: gfp) &&
1620 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1621 return iommu_dma_alloc_remap(dev, size, dma_handle: handle, gfp,
1622 prot: dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1623 }
1624
1625 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1626 !gfpflags_allow_blocking(gfp_flags: gfp) && !coherent)
1627 page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), cpu_addr: &cpu_addr,
1628 flags: gfp, NULL);
1629 else
1630 cpu_addr = iommu_dma_alloc_pages(dev, size, pagep: &page, gfp, attrs);
1631 if (!cpu_addr)
1632 return NULL;
1633
1634 *handle = __iommu_dma_map(dev, page_to_phys(page), size, prot: ioprot,
1635 dma_mask: dev->coherent_dma_mask);
1636 if (*handle == DMA_MAPPING_ERROR) {
1637 __iommu_dma_free(dev, size, cpu_addr);
1638 return NULL;
1639 }
1640
1641 return cpu_addr;
1642}
1643
1644static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1645 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1646 unsigned long attrs)
1647{
1648 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1649 unsigned long pfn, off = vma->vm_pgoff;
1650 int ret;
1651
1652 vma->vm_page_prot = dma_pgprot(dev, prot: vma->vm_page_prot, attrs);
1653
1654 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, ret: &ret))
1655 return ret;
1656
1657 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1658 return -ENXIO;
1659
1660 if (is_vmalloc_addr(x: cpu_addr)) {
1661 struct page **pages = dma_common_find_pages(cpu_addr);
1662
1663 if (pages)
1664 return vm_map_pages(vma, pages, num: nr_pages);
1665 pfn = vmalloc_to_pfn(addr: cpu_addr);
1666 } else {
1667 pfn = page_to_pfn(virt_to_page(cpu_addr));
1668 }
1669
1670 return remap_pfn_range(vma, addr: vma->vm_start, pfn: pfn + off,
1671 size: vma->vm_end - vma->vm_start,
1672 vma->vm_page_prot);
1673}
1674
1675static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1676 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1677 unsigned long attrs)
1678{
1679 struct page *page;
1680 int ret;
1681
1682 if (is_vmalloc_addr(x: cpu_addr)) {
1683 struct page **pages = dma_common_find_pages(cpu_addr);
1684
1685 if (pages) {
1686 return sg_alloc_table_from_pages(sgt, pages,
1687 PAGE_ALIGN(size) >> PAGE_SHIFT,
1688 offset: 0, size, GFP_KERNEL);
1689 }
1690
1691 page = vmalloc_to_page(addr: cpu_addr);
1692 } else {
1693 page = virt_to_page(cpu_addr);
1694 }
1695
1696 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1697 if (!ret)
1698 sg_set_page(sg: sgt->sgl, page, PAGE_ALIGN(size), offset: 0);
1699 return ret;
1700}
1701
1702static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1703{
1704 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1705
1706 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1707}
1708
1709static size_t iommu_dma_opt_mapping_size(void)
1710{
1711 return iova_rcache_range();
1712}
1713
1714static size_t iommu_dma_max_mapping_size(struct device *dev)
1715{
1716 if (dev_is_untrusted(dev))
1717 return swiotlb_max_mapping_size(dev);
1718
1719 return SIZE_MAX;
1720}
1721
1722static const struct dma_map_ops iommu_dma_ops = {
1723 .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
1724 .alloc = iommu_dma_alloc,
1725 .free = iommu_dma_free,
1726 .alloc_pages = dma_common_alloc_pages,
1727 .free_pages = dma_common_free_pages,
1728 .alloc_noncontiguous = iommu_dma_alloc_noncontiguous,
1729 .free_noncontiguous = iommu_dma_free_noncontiguous,
1730 .mmap = iommu_dma_mmap,
1731 .get_sgtable = iommu_dma_get_sgtable,
1732 .map_page = iommu_dma_map_page,
1733 .unmap_page = iommu_dma_unmap_page,
1734 .map_sg = iommu_dma_map_sg,
1735 .unmap_sg = iommu_dma_unmap_sg,
1736 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1737 .sync_single_for_device = iommu_dma_sync_single_for_device,
1738 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1739 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1740 .map_resource = iommu_dma_map_resource,
1741 .unmap_resource = iommu_dma_unmap_resource,
1742 .get_merge_boundary = iommu_dma_get_merge_boundary,
1743 .opt_mapping_size = iommu_dma_opt_mapping_size,
1744 .max_mapping_size = iommu_dma_max_mapping_size,
1745};
1746
1747/*
1748 * The IOMMU core code allocates the default DMA domain, which the underlying
1749 * IOMMU driver needs to support via the dma-iommu layer.
1750 */
1751void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1752{
1753 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1754
1755 if (!domain)
1756 goto out_err;
1757
1758 /*
1759 * The IOMMU core code allocates the default DMA domain, which the
1760 * underlying IOMMU driver needs to support via the dma-iommu layer.
1761 */
1762 if (iommu_is_dma_domain(domain)) {
1763 if (iommu_dma_init_domain(domain, base: dma_base, limit: dma_limit, dev))
1764 goto out_err;
1765 dev->dma_ops = &iommu_dma_ops;
1766 }
1767
1768 return;
1769out_err:
1770 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1771 dev_name(dev));
1772}
1773EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1774
1775static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1776 phys_addr_t msi_addr, struct iommu_domain *domain)
1777{
1778 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1779 struct iommu_dma_msi_page *msi_page;
1780 dma_addr_t iova;
1781 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1782 size_t size = cookie_msi_granule(cookie);
1783
1784 msi_addr &= ~(phys_addr_t)(size - 1);
1785 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1786 if (msi_page->phys == msi_addr)
1787 return msi_page;
1788
1789 msi_page = kzalloc(size: sizeof(*msi_page), GFP_KERNEL);
1790 if (!msi_page)
1791 return NULL;
1792
1793 iova = iommu_dma_alloc_iova(domain, size, dma_limit: dma_get_mask(dev), dev);
1794 if (!iova)
1795 goto out_free_page;
1796
1797 if (iommu_map(domain, iova, paddr: msi_addr, size, prot, GFP_KERNEL))
1798 goto out_free_iova;
1799
1800 INIT_LIST_HEAD(list: &msi_page->list);
1801 msi_page->phys = msi_addr;
1802 msi_page->iova = iova;
1803 list_add(new: &msi_page->list, head: &cookie->msi_page_list);
1804 return msi_page;
1805
1806out_free_iova:
1807 iommu_dma_free_iova(cookie, iova, size, NULL);
1808out_free_page:
1809 kfree(objp: msi_page);
1810 return NULL;
1811}
1812
1813/**
1814 * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1815 * @desc: MSI descriptor, will store the MSI page
1816 * @msi_addr: MSI target address to be mapped
1817 *
1818 * Return: 0 on success or negative error code if the mapping failed.
1819 */
1820int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1821{
1822 struct device *dev = msi_desc_to_dev(desc);
1823 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1824 struct iommu_dma_msi_page *msi_page;
1825 static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1826
1827 if (!domain || !domain->iova_cookie) {
1828 desc->iommu_cookie = NULL;
1829 return 0;
1830 }
1831
1832 /*
1833 * In fact the whole prepare operation should already be serialised by
1834 * irq_domain_mutex further up the callchain, but that's pretty subtle
1835 * on its own, so consider this locking as failsafe documentation...
1836 */
1837 mutex_lock(&msi_prepare_lock);
1838 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1839 mutex_unlock(lock: &msi_prepare_lock);
1840
1841 msi_desc_set_iommu_cookie(desc, iommu_cookie: msi_page);
1842
1843 if (!msi_page)
1844 return -ENOMEM;
1845 return 0;
1846}
1847
1848/**
1849 * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1850 * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1851 * @msg: MSI message containing target physical address
1852 */
1853void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1854{
1855 struct device *dev = msi_desc_to_dev(desc);
1856 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1857 const struct iommu_dma_msi_page *msi_page;
1858
1859 msi_page = msi_desc_get_iommu_cookie(desc);
1860
1861 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1862 return;
1863
1864 msg->address_hi = upper_32_bits(msi_page->iova);
1865 msg->address_lo &= cookie_msi_granule(cookie: domain->iova_cookie) - 1;
1866 msg->address_lo += lower_32_bits(msi_page->iova);
1867}
1868
1869static int iommu_dma_init(void)
1870{
1871 if (is_kdump_kernel())
1872 static_branch_enable(&iommu_deferred_attach_enabled);
1873
1874 return iova_cache_get();
1875}
1876arch_initcall(iommu_dma_init);
1877

source code of linux/drivers/iommu/dma-iommu.c